1
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
2
|
Grayck MR, McCarthy WC, Solar M, Balasubramaniyan N, Zheng L, Orlicky DJ, Wright CJ. Implications of neonatal absence of innate immune mediated NFκB/AP1 signaling in the murine liver. Pediatr Res 2024; 95:1791-1802. [PMID: 38396130 DOI: 10.1038/s41390-024-03071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND The developmental immaturity of the innate immune system helps explains the increased risk of infection in the neonatal period. Importantly, innate immune signaling pathways such as p65/NFκB and c-Jun/AP1 are responsible for the prevention of hepatocyte apoptosis in adult animals, yet whether developmental immaturity of these pathways increases the risk of hepatic injury in the neonatal period is unknown. METHODS Using a murine model of endotoxemia (LPS 5 mg/kg IP x 1) in neonatal (P3) and adult mice, we evaluated histologic evidence of hepatic injury and apoptosis, presence of p65/NFκB and c-Jun/AP1 activation and associated transcriptional regulation of apoptotic genes. RESULTS We demonstrate that in contrast to adults, endotoxemic neonatal (P3) mice exhibit a significant increase in hepatic apoptosis. This is associated with absent hepatic p65/NFκB signaling and impaired expression of anti-apoptotic target genes. Hepatic c-Jun/AP1 activity was attenuated in endotoxemic P3 mice, with resulting upregulation of pro-apoptotic factors. CONCLUSIONS These results demonstrate that developmental absence of innate immune p65/NFκB and c-Jun/AP1 signaling, and target gene expression is associated with apoptotic injury in neonatal mice. More work is needed to determine if this contributes to long-term hepatic dysfunction, and whether immunomodulatory approaches can prevent this injury. IMPACT Various aspects of developmental immaturity of the innate immune system may help explain the increased risk of infection in the neonatal period. In adult models of inflammation and infection, innate immune signaling pathways such as p65/NFκB and c-Jun/AP1 are responsible for a protective, pro-inflammatory transcriptome and regulation of apoptosis. We demonstrate that in contrast to adults, endotoxemic neonatal (P3) mice exhibit a significant increase in hepatic apoptosis associated with absent hepatic p65/NFκB signaling and c-Jun/AP1 activity. We believe that these results may explain in part hepatic dysfunction with neonatal sepsis, and that there may be unrecognized developmental and long-term hepatic implications of early life exposure to systemic inflammatory stress.
Collapse
Affiliation(s)
- Maya R Grayck
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - William C McCarthy
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mack Solar
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Natarajan Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - David J Orlicky
- Dept of Pathology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
3
|
Xiao D, Li T, Huang X, Zhu K, Li Z, Dong Y, Wang L, Huang J. Advances in the Study of Selenium-Enriched Probiotics: From the Inorganic Se into Se Nanoparticles. Mol Nutr Food Res 2023; 67:e2300432. [PMID: 37786318 DOI: 10.1002/mnfr.202300432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/29/2023] [Indexed: 10/04/2023]
Abstract
Selenium (Se) is a momentous metallic element that plays an irreplaceable role in biochemical activities. Se deficiency remains a nutritional challenge across the world. Organic Se supplementation is the most effective treatment means for Se deficiency. Organic Se transformed from Se-enriched probiotics show outstanding excellent properties in antibacteria, anti-oxidation, anti-inflammation, and immunoregulation. Studying the influencing factors for Se enrichment capacity and enrichment mechanisms of Se-enriched probiotics is conducive to the exploit of more potent Se-enriched probiotics. Se-enriched probiotics transform inorganic Se into Se nanoparticles (SeNPs), which have been widely used in animal husbandry and biomedical field. In this paper, the novel development of Se-enriched probiotics is reviewed, and the bioactivities of SeNPs are assessed, so as to display their potential application prospects. The excellent role of SeNPs in anti-oxidation is summarized, and the mechanism by which SeNPs improve Se deficiency and boost animal health is explained.
Collapse
Affiliation(s)
- Dan Xiao
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Tong Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Xin Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Zimeng Li
- Hebei Key Laboratory of Ocean Dynamics Resources and Environments, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Yulan Dong
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100083, China
| | - Lianshun Wang
- College of Fisheries and Life, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
4
|
Li H, Niu X, Zhang D, Qu MH, Yang K. The role of the canonical nf-κb signaling pathway in the development of acute liver failure. Biotechnol Genet Eng Rev 2023; 39:775-795. [PMID: 36578157 DOI: 10.1080/02648725.2022.2162999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
As a clinical emergency with a high mortality rate, the treatment of acute liver failure has been paid attention to by society. At present, liver transplantation is the most effective treatment for acute liver failure, but there is still an insufficient supply of liver sources and a poor prognosis. In view of the current therapeutic development of this disease, more researchers have turned their attention to the research of drugs related to the NF-κB pathway. The NF-κB canonical pathway has been proven to play a role in a variety of diseases, regulating inflammation, apoptosis, and other physiological processes. More and more evidence shows that the NF-κB canonical pathway regulates the pathogenesis of acute liver failure. In this review, we will summarize the regulation process of the NF-κB canonical pathway on acute liver failure, and develop a new way to treat acute liver failure by targeting the components of the pathway.
Collapse
Affiliation(s)
- Hanyue Li
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of life science and Technology, Weifang Medical University, Weifang, China
| | - Xiao Niu
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of life science and Technology, Weifang Medical University, Weifang, China
| | - Dajin Zhang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, China
| | - Mei-Hua Qu
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of life science and Technology, Weifang Medical University, Weifang, China
| | - Kunning Yang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, China
| |
Collapse
|
5
|
Gallucci GM, Alsuwayt B, Auclair AM, Boyer JL, Assis DN, Ghonem NS. Fenofibrate Downregulates NF-κB Signaling to Inhibit Pro-inflammatory Cytokine Secretion in Human THP-1 Macrophages and During Primary Biliary Cholangitis. Inflammation 2022; 45:2570-2581. [PMID: 35838934 PMCID: PMC10853883 DOI: 10.1007/s10753-022-01713-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022]
Abstract
Chronic liver diseases, e.g., cholestasis, are negatively impacted by inflammation, which further aggravates liver injury. Pharmacotherapy targeting the peroxisome proliferator-activated receptor alpha (PPARα), e.g., fenofibrate, has recently become an off-label therapeutic option for patients with refractory cholestasis. Clinical studies show that fibrates can reduce some pro-inflammatory cytokines in primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC); however, its anti-inflammatory mechanisms have not been established. Numerous cytokines are regulated by the transcription factor nuclear receptor kappa B (NF-κB), and PPARα has been shown to interfere with NF-κB signaling. This study investigates the anti-inflammatory mechanism of fenofibrate by inhibiting NF-κB signaling in human macrophages and clinical outcomes in patients with PBC. For adult patients with PBC and an incomplete biochemical response to ursodiol (13-15 mg/kg/day), the addition of fenofibrate (145-160 mg/day) reduced serum levels of TNF-α, IL-17A, IL-1β, IL-6, IL-8, and MCP-1 and increased IL-10. In THP-1 cells, pretreatment with fenofibrate (125 μM) reduced LPS-stimulated peak concentrations of IL-1β (- 63%), TNF-α (- 88%), and IL-8 (- 54%), in a PPARα-dependent manner. Treatment with fenofibrate prior to LPS significantly decreased nuclear NF-κB p50 and p65 subunit binding by 49% and 31%, respectively. Additionally, fenofibrate decreased nuclear NF-κB p50 and p65 protein expression by 66% and 55% and increased cytoplasmic levels by 53% and 54% versus LPS alone, respectively. Lastly, fenofibrate increased IκBα levels by 2.7-fold (p < 0.001) vs. LPS. These data demonstrate that fenofibrate reduces pro-inflammatory cytokines section by inhibiting in NF-κB signaling, which likely contribute to its anti-inflammatory effects during chronic liver diseases.
Collapse
Affiliation(s)
- Gina M Gallucci
- College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Kingston, RI 02881, USA
| | - Bader Alsuwayt
- School of Pharmacy, Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Adam M Auclair
- College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Kingston, RI 02881, USA
| | - James L Boyer
- Yale School of Medicine, Liver Center, New Haven, CT, USA
| | - David N Assis
- Yale School of Medicine, Liver Center, New Haven, CT, USA
| | - Nisanne S Ghonem
- College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Kingston, RI 02881, USA.
| |
Collapse
|
6
|
Kim SH, Baek SI, Jung J, Lee ES, Na Y, Hwang BY, Roh YS, Hong JT, Han SB, Kim Y. Chemical inhibition of TRAF6-TAK1 axis as therapeutic strategy of endotoxin-induced liver disease. Biomed Pharmacother 2022; 155:113688. [PMID: 36150308 DOI: 10.1016/j.biopha.2022.113688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
The liver is exposed to gut-derived bacterial endotoxin via portal circulation, and recognizes it through toll-like receptor 4 (TLR4). Endotoxin lipopolysaccharide (LPS) stimulates the self-ubiquitination of ubiquitin ligase TRAF6, which is linked to scaffold with protein kinase TAK1 for auto-phosphorylation and subsequent activation. TAK1 activity is a signal transducer in the activating pathways of transcription factors NF-κB and AP-1 for production of various cytokines. Here, we hypothesized that TRAF6-TAK1 axis would be implicated in endotoxin-induced liver disease. Following exposure to endotoxin LPS, TLR4-mediated phosphorylation of TAK1 and transcription of cell-death cytokine TNF-α were triggered in Kupffer cells but not in hepatocytes as well as TNF receptor-mediated and caspase-3-executed apoptosis was occurred in D-galactosamine (GalN)-sensitized hepatocytes under co-culture with Kupffer cells. Treatment with pyridinylmethylene benzothiophene (PMBT) improved endotoxin LPS-induced hepatocyte apoptosis in GalN-sensitized C57BL/6 mice via suppressing NF-κB- and AP-1-regulated expression of TNF-α in Kupffer cells, and rescued the mice from hepatic damage-associated bleeding and death. As a mechanism, PMBT directly inhibited Lys 63-linked ubiquitination of TRAF6, and mitigated scaffold assembly between TRAF6 and the TAK1-activator adaptors TAB1 and TAB2 complex in Kupffer cells. Thereby, PMBT interrupted TRAF6 ubiquitination-induced activation of TAK1 activity in the TLR4-mediated signal cascade leading to TNF-α production. However, PMBT did not directly affect the apoptotic activity of TNF-α on GalN-sensitized hepatocytes. Finally, we propose chemical inhibition of TRAF6-TAK1 axis in Kupffer cells as a strategy for treating liver disease due to gut-derived endotoxin or Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Song-Hee Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Seung-Il Baek
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Jihye Jung
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, South Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon 11160, South Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Yoon-Seok Roh
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Youngsoo Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea.
| |
Collapse
|
7
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
8
|
Lee IC, Bae JS. Hepatic Protective Effects of Jujuboside B through the Modulation of Inflammatory Pathways. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0049-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Rostom B, Karaky R, Kassab I, Sylla-Iyarreta Veitia M. Coumarins derivatives and inflammation: Review of their effects on the inflammatory signaling pathways. Eur J Pharmacol 2022; 922:174867. [DOI: 10.1016/j.ejphar.2022.174867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/27/2022]
|
10
|
Yang F, Cai H, Zhang X, Sun J, Feng X, Yuan H, Zhang X, Xiao B, Li Q. An active marine halophenol derivative attenuates lipopolysaccharide-induced acute liver injury in mice by improving M2 macrophage-mediated therapy. Int Immunopharmacol 2021; 96:107676. [PMID: 34023550 DOI: 10.1016/j.intimp.2021.107676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022]
Abstract
2,4',5'-Trihydroxyl-5,2'-dibromo diphenylmethanone (LM49), an active halophenol derivative synthesized by our group, which exhibits a broad spectrum of therapeutic properties, such as antioxidant and anti-inflammatory activities. In this study, we found LM49 could obviously attenuate acute liver injury induced by lipopolysaccharide (LPS) in mice by polarizing macrophages. The protective effect was described by reducing the hepatic inflammation and improving hepatic function using aspartate transaminase (AST) and alanine transaminase (ALT) assay. Further study revealed that LM49 pretreatment induced the Kupffer cells (KCs) to M2 polarization and decreased the production of inflammatory cytokines. The action mechanism in RAW 264.7 macrophages showed that LM49 could induce the activation of JAK1/STAT6 signaling pathway and the inhibition of TLR-4/NF-kB axis. Morever, LM49 also upregulated the expression of SOCS1 and FLK-4, which can promote M2 polarization by cooperating with STAT6 and inhibit M1 formation by reducing JAK1/STAT1. Our results suggested that LM49 could protect against LPS-induced acute liver injury in mice via anti-inflammatory signaling pathways and subsequent induction of M2 Kupffer cells. The results provided the first experimental evidence of active halophenols for the anti-inflammatory therapy by targeting M2 macrophages.
Collapse
Affiliation(s)
- Fan Yang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - HongHong Cai
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Xuan Zhang
- Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030001, PR China
| | - Jian Sun
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation,Shanxi University of Chinese Medicine, Taiyuan 030619, PR China
| | - XiuE Feng
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - HongXia Yuan
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation,Shanxi University of Chinese Medicine, Taiyuan 030619, PR China
| | - XiaoYan Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - BaoGuo Xiao
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation,Shanxi University of Chinese Medicine, Taiyuan 030619, PR China
| | - QingShan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation,Shanxi University of Chinese Medicine, Taiyuan 030619, PR China.
| |
Collapse
|
11
|
Ying Y, Sun CB, Zhang SQ, Chen BJ, Yu JZ, Liu FY, Wen J, Hou J, Han SS, Yan JY, Yang ZS, Xiong L. Induction of autophagy via the TLR4/NF-κB signaling pathway by astragaloside Ⅳ contributes to the amelioration of inflammation in RAW264.7 cells. Biomed Pharmacother 2021; 137:111271. [PMID: 33561643 DOI: 10.1016/j.biopha.2021.111271] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 12/31/2022] Open
Abstract
Cigarette smoking-related lung injury is one of the most common and fatal etiologies of many respiratory diseases, for which no effective interventions are available. Astragaloside Ⅳ (ASⅣ) is an active component extracted from Astragalus membranaceus. It is prescribed as a treatment for upper respiratory tract infections. Here, we report the potential anti-inflammatory effects and mechanisms of ASⅣ on cigarette smoking extract- (CSE)-exposed RAW264.7 cells. Murine macrophages were exposed to CSE, followed by administration of ASⅣ at 25-100 μg/mL for 24 h. ASⅣ significantly rescued CSE-induced cell death by inhibition of release pro-inflammatory cytokines. We measured autophagy as an intracellular scavenger by analyzing autophagic flux using tandem mRFP-GFP-LC3 fluorescence microscopy. Following administration with ASⅣ in CSE-exposed RAW264.7 cells, there was a notable increase in autophagosomes and a range of autophagic vacuoles were generated, as seen with transmission electron microscopy. Loss of autophagy following transfection siRNA aggravated inflammatory injury and release of inflammatory cytokines. Mechanistically, ASⅣ-triggered autophagy is mediated by the TLR4/NF-κB signaling pathway to reduce inflammation. Taken together, our findings suggest that ASⅣ acts stimulates autophagy, and that ASⅣ induces autophagy by inhibiting the TLR4/NF-κB signaling pathway, contributing to alleviation of inflammation.
Collapse
Affiliation(s)
- Yi Ying
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chun-Bin Sun
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si-Qi Zhang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bo-Jun Chen
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China; The First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing-Ze Yu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Fei-Yu Liu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jing Wen
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiong Hou
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si-Si Han
- PingHu Hospital Shenzhen University, Shenzhen University, Shenzhen, Guangdong, China
| | - Jin-Yuan Yan
- Central Laboratory, Kunming Medical University Second Hospital, Kunming, Yunnan, China.
| | - Zhong-Shan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China; Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming, Yunnan University of Chinese Medicine, Yunnan, China.
| | - Lei Xiong
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China; The First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Chen Y, Cheng Y, Wen C, Zhou Y. Protective effects of dietary mannan oligosaccharide on heat stress-induced hepatic damage in broilers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29000-29008. [PMID: 32424752 DOI: 10.1007/s11356-020-09212-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Heat stress is a major concern in broiler's production, which can damage liver of broilers. This study investigated the protective effects of mannan oligosaccharide (MOS) on heat stress-induced hepatic injury in broilers. A total of 144 day-old male chicks were allocated into three treatment groups. Broilers raised under normal ambient temperature were fed a basal diet (control group), and broilers under heat stress (32-33 °C for 8 h daily) were given the basal diet supplemented without MOS (heat stress group) or with 1 g/kg MOS (MOS group) for 42 days. Compared with the control group, heat stress reduced liver weight, whereas increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities in the serum. It also reduced glutathione peroxidase (GSH-Px) activity in the serum and liver, GSH content, and superoxide dismutase (SOD) activity in the liver, but increased malondialdehyde (MDA) concentration in the serum and liver. Dietary MOS decreased serum ALT activity in heat-stressed broilers. MOS inclusion also decreased serum MDA content, but elevated hepatic GSH-Px and SOD activities, with MDA content and GSH-Px activity still being different from the control group, and SOD activity being similar to the control group. Heat stress increased concentrations of tumor necrosis factor α (TNF-α) in the serum and liver, interleukin-1β (IL-1β) in the liver, and mRNA abundances of HSP70, TLR4, MyD88, TNF-α, and IL-1β in the liver of broilers. Serum TNF-α content and mRNA abundances of hepatic TLR4 and TNF-α in MOS group were lower than the heat stress group, whereas these indexes were still higher than the control group. Our results indicated that dietary MOS ameliorated hepatic damage in heat-stressed broilers through alleviation of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yefei Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
13
|
Zhang E, Huang J, Wang K, Yu Q, Zhu C, Ren H. Pterostilbene Protects Against Lipopolysaccharide/D-Galactosamine-Induced Acute Liver Failure by Upregulating the Nrf2 Pathway and Inhibiting NF- κB, MAPK, and NLRP3 Inflammasome Activation. J Med Food 2020; 23:952-960. [PMID: 32701014 DOI: 10.1089/jmf.2019.4647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The purpose of this study was to evaluate the protective effect of pterostilbene (Psb) against lipopolysaccharide and D-galactosamine (L/D)-induced acute liver failure (ALF) in mice and its potential mechanisms. Histology of liver was detected by H&E staining. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in serum and malondialdehyde (MDA), myeloperoxidase (MPO), glutathione (GSH), and superoxide dismutase (SOD) contents in liver were examined using detection kits. The levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) secretion were detected by ELISA. Meanwhile, MAPK, NF-κB, NLRP3 inflammasome, and Nrf2 were assessed by western blotting. Our findings showed that pretreatment with Psb protected against L/D-induced ALF by lowering the lethality, improving liver histology, reducing ALT, AST, IL-6, IL-1β, TNF-α, MDA, and MPO levels, and boosting liver GSH content and SOD activity. Moreover, Psb pretreatment effectively suppressed inflammation by decreasing NLRP3 inflammasome, MAPK, and NF-κB pathway activations. Moreover, Psb pretreatment efficiently enhanced the expression of several antioxidant enzymes, mainly depending on Nrf2 activation. This was the first study to demonstrate that Psb protects against L/D-induced ALF by inactivating MAPK, NF-κb, and NLRP3 inflammasome and upregulating the Nrf2 signaling pathway, indicating a potential therapeutic application for ALF treatment.
Collapse
Affiliation(s)
- Erli Zhang
- Department of Traditional Chinese Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jingbo Huang
- Department of Traditional Chinese Medicine, The First Hospital of Jilin University, Changchun, China
| | - Kun Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, Changchun, China
| | - Chao Zhu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Hua Ren
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Zhang S, Hou Y, Yang J, Xie D, Jiang L, Hu H, Hu J, Luo C, Zhang Q. Application of mesenchymal stem cell exosomes and their drug-loading systems in acute liver failure. J Cell Mol Med 2020; 24:7082-7093. [PMID: 32492261 PMCID: PMC7339207 DOI: 10.1111/jcmm.15290] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Stem cell exosomes are nanoscale membrane vesicles released from stem cells of various origins that can regulate signal transduction pathways between liver cells, and their functions in intercellular communication have been recognized. Due to their natural substance transport properties and excellent biocompatibility, exosomes can also be used as drug carriers to release a variety of substances, which has great prospects in the treatment of critical and incurable diseases. Different types of stem cell exosomes have been used to study liver diseases. Due to current difficulties in the treatment of acute liver failure (ALF), this review will outline the potential of stem cell exosomes for ALF treatment. Specifically, we reviewed the pathogenesis of acute liver failure and the latest progress in the use of stem cell exosomes in the treatment of ALF, including the role of exosomes in inhibiting the ALF inflammatory response and regulating signal transduction pathways, the advantages of stem cell exosomes and their use as a drug‐loading system, and their pre‐clinical application in the treatment of ALF. Finally, the clinical research status of stem cell therapy for ALF and the current challenges of exosome clinical transformation are summarized.
Collapse
Affiliation(s)
- Shuqin Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yu Hou
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jing Yang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Denghui Xie
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Linrui Jiang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Huazhong Hu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jingjing Hu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Caizhu Luo
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Doğanyiğit Z, Okan A, Kaymak E, Pandır D, Silici S. Investigation of protective effects of apilarnil against lipopolysaccharide induced liver injury in rats via TLR 4/ HMGB-1/ NF-κB pathway. Biomed Pharmacother 2020; 125:109967. [DOI: 10.1016/j.biopha.2020.109967] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
|
16
|
Lee C, Yang S, Lee BS, Jeong SY, Kim KM, Ku SK, Bae JS. Hepatic protective effects of sulforaphane through the modulation of inflammatory pathways. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:386-396. [PMID: 30821482 DOI: 10.1080/10286020.2019.1581174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate the effects of sulforaphane (SFN) on lipopolysaccharide (LPS)-induced liver failure, and to elucidate underlying mechanisms. SFN, a natural isothiocyanate present in cruciferous vegetables such as broccoli and cabbage, is effective in preventing carcinogenesis, diabetes, and inflammatory responses. Mice were treated intravenously with SFN at 12 h after LPS treatment. LPS significantly increased mortality, serum levels of liver damage markers, and inflammatory cytokines, and toll-like receptor 4 (TLR4) protein expression, which were reduced by SFN. Our results suggest that SFN protects against LPS-induced liver damage, indicating its potential to treat liver diseases.
Collapse
Affiliation(s)
- Changhun Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sumin Yang
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Seon Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - So Yeon Jeong
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied BioSciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
17
|
Xu C, Chen T, Li J, Jin M, Ye M. The structural analysis and its hepatoprotective activity of melanin isolated from Lachnum sp. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Recombinant Alkaline Phosphatase Prevents Acute on Chronic Liver Failure. Sci Rep 2020; 10:389. [PMID: 31942020 PMCID: PMC6962206 DOI: 10.1038/s41598-019-57284-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/09/2019] [Indexed: 12/11/2022] Open
Abstract
The lipopolysaccharide (LPS)– toll-like receptor-4 (TLR4) pathway plays an important role in liver failure. Recombinant alkaline phosphatase (recAP) deactivates LPS. The aim of this study was to determine whether recAP prevents the progression of acute and acute-on-chronic liver failure (ACLF). Eight groups of rats were studied 4-weeks after sham surgery or bile duct ligation and were injected with saline or LPS to mimic ACLF. Acute liver failure was induced with Galactosamine-LPS and in both models animals were treated with recAP prior to LPS administration. In the ACLF model, the severity of liver dysfunction and brain edema was attenuated by recAP, associated with reduction in cytokines, chemokines, liver cell death, and brain water. The activity of LPS was reduced by recAP. The treatment was not effective in acute liver failure. Hepatic TLR4 expression was reduced by recAP in ACLF but not acute liver failure. Increased sensitivity to endotoxins in cirrhosis is associated with upregulation of hepatic TLR4, which explains susceptibility to development of ACLF whereas acute liver failure is likely due to direct hepatoxicity. RecAP prevents multiple organ injury by reducing receptor expression and is a potential novel treatment option for prevention of ACLF but not acute liver failure.
Collapse
|
19
|
Lv H, An B, Yu Q, Cao Y, Liu Y, Li S. The hepatoprotective effect of myricetin against lipopolysaccharide and D-galactosamine-induced fulminant hepatitis. Int J Biol Macromol 2019; 155:1092-1104. [PMID: 31712142 DOI: 10.1016/j.ijbiomac.2019.11.075] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
Fulminant hepatitis (FH) is a severe liver disease characterized by extensive hepatic necrosis, oxidative stress, and inflammation. Myricetin (Myr), a botanical flavonoid glycoside, is recognized to exert antiapoptosis, anti-inflammatory, and antioxidant properties. In the current study, we focused on exploring the protective effects and underlying mechanisms of Myr against lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced FH. These data indicated that Myr effectively protected from LPS/D-GalN-induced FH by lowering the mortality of mice, decreasing ALT and AST levels, and alleviating histopathological changes, oxidative stress, inflammation, and hepatic apoptosis. Moreover, Myr could efficiently mediate multiple signaling pathways, displaying not only the regulation of caspase-3/9 and P53 protein, inhibition of toll-like receptor 4 (TLR4)-nuclear factor-kappa B (NF-κB) activation, and -mitogen-activated protein kinase (MAPK), but also the increase of heme oxygenase-1 (HO-1) and nuclear factor-erythroid 2-related factor 2 (Nrf2) expression, as well as induction of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation in mice with LPS/D-GalN-induced FH. Importantly, our further results in vitro suggested that Myr remarkably attenuated H2O2-triggered hepatotoxicity and ROS generation, activated Keap1-Nrf2/HO-1 and AMPK/ACC signaling pathway. However, Myr-enhanced the expression of HO-1 and Nrf2 protein was reversed by Keap1-overexpression, Nrf2-null and AMPK inhibitor. Meanwhile, Myr-relieved hepatotoxicity excited by H2O2 was blocked by Nrf2-null and AMPK inhibitor. Taken together, Myr exhibits a protective role against LPS/D-GalN-induced FH by suppressing hepatic apoptosis, inflammation, and oxidative stress, likely involving in the regulation of apoptosis-related protein, TLR4-NF-κB/-MAPK and NLRP3 inflammasome, and AMPK-Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Beiying An
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun 130062, China
| | - Yu Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Yang Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China.
| |
Collapse
|
20
|
Gao K, Liu F, Chen X, Chen M, Deng Q, Zou X, Guo H. Crocetin protects against fulminant hepatic failure induced by lipopolysaccharide/D-galactosamine by decreasing apoptosis, inflammation and oxidative stress in a rat model. Exp Ther Med 2019; 18:3775-3782. [PMID: 31616509 PMCID: PMC6781807 DOI: 10.3892/etm.2019.8030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Fulminant hepatic failure (FHF) is a clinical syndrome characterized by sudden and severe liver dysfunction. Apoptosis and inflammation are essential for the pathogenesis of FHF. Crocetin, the major component present in saffron, has been reported to possess anti-inflammatory and antioxidant functions; however, its role in FHF is poorly understood. The aim of this study was to explore the protective effects of crocetin against lipopolysac§§charide (LPS)/D-galactosamine (D-GalN)-induced FHF and the underlying mechanisms in a rat model. For the in vivo study, rats were assigned to the LPS/D-GalN group or to the crocetin pre-treatment+LPS/D- GalN group. Each group was then further divided according to the different LPS/D-GalN treatment times of 0, 6, 12 or 48 h. The results demonstrated that crocetin pre-treatment efficiently protected against LPS/D-GalN-induced FHF by improving liver tissue morphology, reducing total bilirubin generation and decreasing the activities of alanine transaminase and aspartate aminotransferase. Moreover, crocetin pre-treatment significantly decreased hepatocyte apoptosis, p53 mRNA expression and the expression of proteins in the caspase family and the Bcl-2 pro-apoptotic family following LPS/D-GalN treatment. Furthermore, crocetin also decreased the secretion of pro-inflammatory cytokines in the serum and in the liver via suppression of NF-κB activation, and also suppressed hepatic oxidative stress. In conclusion, crocetin protected against LPS/D-GalN-induced FHF and inhibited apoptosis, inflammation and oxidative stress. The underlying mechanisms may be related to the regulation of apoptotic proteins in the caspase family and the Bcl-2 family, as well as the modulation of NF-κB expression. Therefore, crocetin may be used as a novel therapy for preventing FHF.
Collapse
Affiliation(s)
- Ke Gao
- Department of Pathology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Faquan Liu
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Xi Chen
- Department of Ears, Nose and Throat, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518115, P.R. China
| | - Mengxue Chen
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Qingwen Deng
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Xingjian Zou
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Hongxing Guo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| |
Collapse
|
21
|
|
22
|
Hepatoprotective Effect of the Ethanol Extract of Illicium henryi against Acute Liver Injury in Mice Induced by Lipopolysaccharide. Antioxidants (Basel) 2019; 8:antiox8100446. [PMID: 31581526 PMCID: PMC6826918 DOI: 10.3390/antiox8100446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
The root bark of Illicium henryi has been used in traditional Chinese medicine to treat lumbar muscle strain and rheumatic pain. Its ethanol extract (EEIH) has been previously reported to attenuate lipopolysaccharide (LPS)-induced acute kidney injury in mice. The present study aimed to evaluate the in vitro antioxidant activities and in vivo protective effects of EEIH against LPS-induced acute liver injury (ALI) in mice as well as explore its molecular mechanisms. The mice were injected intraperitoneally (i.p.) with EEIH at the doses of 1.25, 2.5, and 5.0 mg/kg every day for 5 days. One hour after the last administration, the mice were administered i.p. with LPS (8 mg/kg). After fasting for 12 h, blood and liver tissues were collected to histopathological observation, biochemical assay, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot analyses. EEIH possessed 2,2-diphenyl-1-picrylhydrazil (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiozoline-6-sulfonic acid) disodium salt (ABTS) radical scavenging activities and ferric-reducing antioxidant capacity in vitro. The histopathological examination, serum biochemical analysis, and liver myeloperoxidase (MPO) activity showed that EEIH pretreatment alleviated LPS-induced liver injury in mice. EEIH significantly dose-dependently decreased the mRNA and protein expression levels of inflammatory factors TNF-α, IL-1β, IL-6, and COX-2 in liver tissue of LPS-induced ALI mice via downregulating the mRNA and protein expressions of toll-like receptor 4 (TLR4) and inhibiting the phosphorylation of nuclear factor-κB (NF-κB) p65. Furthermore, EEIH markedly ameliorated liver oxidative and nitrosative stress burden in LPS-treated mice through reducing the content of thiobarbituric acid reactive substances (TBARS), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) levels, restoring the decreased superoxide dismutase (SOD) and reduced glutathione (GSH) levels, and up-regulating nuclear factor erythroid 2 related factor 2 (Nrf2). These results demonstrate that EEIH has protective effects against ALI in mice via alleviating inflammatory response, oxidative and nitrosative stress burden through activating the Nrf2 and suppressing the TLR4/NF-κB signaling pathways. The hepatoprotective activity of EEIH might be attributed to the flavonoid compounds such as catechin (1), 3',4',7-trihydroxyflavone (2), and taxifolin (7) that most possibly act synergistically.
Collapse
|
23
|
Huang L, Zhao Z, Duan C, Wang C, Zhao Y, Yang G, Gao L, Niu C, Xu J, Li S. Lactobacillus plantarum C88 protects against aflatoxin B 1-induced liver injury in mice via inhibition of NF-κB-mediated inflammatory responses and excessive apoptosis. BMC Microbiol 2019; 19:170. [PMID: 31357935 PMCID: PMC6664579 DOI: 10.1186/s12866-019-1525-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 06/20/2019] [Indexed: 01/23/2023] Open
Abstract
Background Probiotics play an important role in the human and animal defense against liver damage. However, the protective mechanism of Lactobacillus plantarum C88 on chronic liver injury induced by mycotoxin remains unclear. Results In this study, the addition of L. plantarum C88 obviously ameliorated the increased contents of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total cholesterol and triglyceride, the diminish contents of total protein and albumin in serum of mice challenged with AFB1. Simultaneously, L. plantarum C88 attenuated the inflammatory response via significantly reducing the levels of pro-inflammatory factors, including interleukin-1β (IL-1β), IL-6, IL-8, interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in serum. Furthermore, L. plantarum C88 remarkably down-regulated the nuclear factor kappa B (NF-κB) signaling pathways by weakening the expression of toll-like receptor 2 (TLR2) and TLR4, and inhibited NF-κB nuclear translocation through enhancing the expression of NF-κB inhibitor (IκB). Neutralization experiments confirmed that L. plantarum C88 decreased the levels of some pro-inflammatory factors due to the suppression of the NF-κB signaling pathways. Besides, L. plantarum C88 decreased the levels of Bax and Caspase-3, elevated the level of Bcl-2, and reduced mRNA expressions of Fatty acid synthetase receptor (Fas), FAS-associated death domain (FADD), TNF receptor associated death domain (TRADD) and Caspase-8 in the liver. Conclusions Probiotic L. plantarum C88 prevented AFB1-induced secretion of pro-inflammatory cytokines by modulating TLR2/NF-κB and TLR4/NF-κB pathways. The molecular mechanisms of L. plantarum C88 in ameliorating AFB1-induced excessive apoptosis included regulating the mitochondrial pathway and cell death receptor pathways. Electronic supplementary material The online version of this article (10.1186/s12866-019-1525-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Huang
- School of Environment, Northeast Normal University, No. 2555 Jing-Yue Street, Changchun, Jilin Province, 130117, People's Republic of China
| | - Zijian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Cuicui Duan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Chao Wang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Yujuan Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Ge Yang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Lei Gao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Chunhua Niu
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Jingbo Xu
- School of Environment, Northeast Normal University, No. 2555 Jing-Yue Street, Changchun, Jilin Province, 130117, People's Republic of China.
| | - Shengyu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China.
| |
Collapse
|
24
|
Lee IC, Bae JS. Hepatoprotective effects of vicenin-2 and scolymoside through the modulation of inflammatory pathways. J Nat Med 2019; 74:90-97. [PMID: 31350693 DOI: 10.1007/s11418-019-01348-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/19/2019] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the effects of two structurally related flavonoids found in Cyclopia subternata, vicenin-2 (VCN) and scolymoside (SCL) on lipopolysaccharide (LPS)-induced liver failure in mice and to elucidate underlying mechanisms. Mice were treated intravenously with VCN or SCL at 12 h after LPS treatment. LPS significantly increased mortality, serum levels of alanine transaminase, aspartate transaminase, and inflammatory cytokines, and toll-like receptor 4 (TLR4) protein expression; these effects of LPS were inhibited by VCN or SCL. It also attenuated the LPS-induced activation of myeloid differentiation primary response gene 88 and TLR-associated activator of interferon-dependent signaling pathways of the TLR system. Our results suggest that VCN or SCL protects against LPS-induced liver damage by inhibiting the TLR-mediated inflammatory pathway, indicating its potential to treat liver diseases.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju, 28674, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
25
|
Meng X, Wang Z, Liang S, Tang Z, Liu J, Xin Y, Kuang H, Wang Q. Hepatoprotective effect of a polysaccharide from Radix Cyathulae officinalis Kuan against CCl4-induced acute liver injury in rat. Int J Biol Macromol 2019; 132:1057-1067. [DOI: 10.1016/j.ijbiomac.2019.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 02/08/2023]
|
26
|
Tao YC, Wang ML, Wu DB, Luo C, Tang H, Chen EQ. Apolipoprotein A5 alleviates LPS/D-GalN-induced fulminant liver failure in mice by inhibiting TLR4-mediated NF-κB pathway. J Transl Med 2019; 17:151. [PMID: 31077206 PMCID: PMC6511152 DOI: 10.1186/s12967-019-1900-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/29/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Fulminant liver failure (FHF) is a serious clinical problem and liver transplantation is the major intervention. But the overall survival rate of FHF is low owing to the donated organ shortage. Apolipoprotein A-V (ApoA5) is a regulator of triglyceride metabolism and has been reported to act as a predictor for remnant liver growth after preoperative portal vein embolization and liver surgery. This study aimed to investigate the therapeutic effect of ApoA5 on lipopolysaccharide/D-galactosamine (LPS/D-GalN)-induced fulminant liver failure in mice. METHODS FHF mouse model was established using LPS/D-GalN and ApoA5 plasmid was injected by tail vein prior to LPS/D-GalN treatment. The expressions of ApoA5, toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor kappa B p65 (NF-κBp65) were assessed by real-time PCR and western blotting. Serum alanine aminotransferase (ALT) and tumor necrosis factor-α (TNF-α) levels were measured using automatic biochemical analyzer. Histological assessment and immunohistochemical (IHC) staining were conducted. Survival rate after LPS/D-GalN administration was also determined with Kaplan-Meier curve. Meanwhile, the expression of ApoA5 in injured huh7 cells was tested. Cell apoptosis analysis was performed after huh7 cells were transfected with ApoA5 plasmid and stimulated with LPS. RESULTS The expressions of ApoA5 decreased both in injured huh7 cells and FHF mice. ApoA5 overexpression reduced cell death rate using flow cytometry. ApoA5 not only decreased the serum ALT and TNF-α levels but also attenuated hepatic damage in hematoxylin-eosin (HE)-stained liver section. The protein expressions of TLR4, MyD88 and NF-κBp65 were inhibited when ApoA5 overexpressed. But the inhibitory effect would weaken with the increasing concentration of LPS in spite of ApoA5 overexpression. Besides, ApoA5 improved liver injury in a dose-dependent manner and the survival rate in FHF mice increased with increasing concentration of ApoA5. CONCLUSION ApoA5 had a protective effect against LPS/D-GalN-induced fulminant liver failure in mice within a certain range by inhibiting TLR4-mediated NF-κB pathway.
Collapse
Affiliation(s)
- Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, 610041 China
- Division of Infectious Diseases, National Key Laboratory of Biotherapy (Sichuan University), West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Meng-Lan Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, 610041 China
- Division of Infectious Diseases, National Key Laboratory of Biotherapy (Sichuan University), West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, 610041 China
- Division of Infectious Diseases, National Key Laboratory of Biotherapy (Sichuan University), West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chen Luo
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, 610041 China
- Division of Infectious Diseases, National Key Laboratory of Biotherapy (Sichuan University), West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, 610041 China
- Division of Infectious Diseases, National Key Laboratory of Biotherapy (Sichuan University), West China Hospital of Sichuan University, Chengdu, 610041 China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, 610041 China
- Division of Infectious Diseases, National Key Laboratory of Biotherapy (Sichuan University), West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
27
|
Dong X, Liu J, Xu Y, Cao H. Role of macrophages in experimental liver injury and repair in mice. Exp Ther Med 2019; 17:3835-3847. [PMID: 31007731 PMCID: PMC6468932 DOI: 10.3892/etm.2019.7450] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
Liver macrophages make up the largest proportion of tissue macrophages in the host and consist of two dissimilar groups: Kupffer cells (KCs) and monocyte-derived macrophages (MoMø). As the liver is injured, KCs sense the injury and initiate inflammatory cascades mediated by the release of inflammatory cytokines and chemokines. Subsequently, inflammatory monocytes accumulate in the liver via chemokine-chemokine receptor interactions, resulting in massive inflammatory MoMø infiltration. When live r injury ceases, restorative macrophages, derived from recruited inflammatory monocytes (lymphocyte antigen 6 complex, locus Chi monocytes), promote the resolution of hepatic damage and fibrosis. Consequently, a large number of studies have assessed the mechanisms by which liver macrophages exert their opposing functions at different time-points during liver injury. The present review primarily focuses on the diverse functions of macrophages in experimental liver injury, fibrosis and repair in mice and illustrates how macrophages may be targeted to treat liver disease.
Collapse
Affiliation(s)
- Xiaotian Dong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jingqi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yanping Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
28
|
Zhang L, Zhao Y, Fan L, Xu K, Ji F, Xie Z, Ouyang X, Wu D, Li L. Tectorigenin protects against experimental fulminant hepatic failure by regulating the TLR4/mitogen-activated protein kinase and TLR4/nuclear factor-κB pathways and autophagy. Phytother Res 2019; 33:1055-1064. [PMID: 30701601 PMCID: PMC6590665 DOI: 10.1002/ptr.6299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/06/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
Tectorigenin has received attention due to its antiproliferation, anti-inflammatory, and antioxidant activities. In this study, we investigated the effects of tectorigenin on lipopolysaccharide (LPS)/D-galactosamine(D-GalN)-induced fulminant hepatic failure (FHF) in mice and LPS-stimulated macrophages (RAW 264.7 cells). Pretreatment with tectorigenin significantly reduced the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), histological injury, apoptosis, and the mortality of FHF mice, by suppressing the production of inflammatory cytokines such as TNF-α and IL-6. Tectorigenin also suppressed the activation of the inflammatory response in LPS-stimulated RAW 264.7 cells. Tectorigenin-induced protection is mediated through its mitigation of TLR4 expression, inhibition of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathway activation, and promotion of autophagy in FHF mice and LPS-stimulated RAW 264.7 cells. Therefore, tectorigenin has therapeutic potential for FHF in mice via the regulation of TLR4/MAPK and TLR4/NF-κB pathways and autophagy.
Collapse
Affiliation(s)
- Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Linxiao Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Kai Xu
- Department of Orthopaedic Surgery, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Daxian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
29
|
Li KZ, Liao ZY, Li YX, Ming ZY, Zhong JH, Wu GB, Huang S, Zhao YN. A20 rescues hepatocytes from apoptosis through the NF-κB signaling pathway in rats with acute liver failure. Biosci Rep 2019; 39:BSR20180316. [PMID: 30446523 PMCID: PMC6328859 DOI: 10.1042/bsr20180316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/12/2018] [Accepted: 11/04/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Acute liver failure (ALF) is a disease of acute derangements in the hepatic synthetic function with defects involving innate immune responses, which was reported to be negatively regulated by tumor necrosis factor α-induced protein 3 (A20). Herein, the present study was conducted to investigate the effects the A20 protein on the proliferation and apoptosis of hepatocytes through the nuclear factor (NF)-κB signaling pathway in the rat models simulating ALF.Methods: Male Wistar rats were used to simulate ALF in the model rats. Next, the positive expression of A20 and Caspase-3 proteins was measured in liver tissues. Rat hepatocytes were separated and subjected to pyrrolidine dithiocarbamate (PDTC, inhibitor of NF-κB pathway) or A20 siRNA. Additionally, both mRNA and protein levels of A20, NF-κB, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), and receptor-interacting protein 1 (RIP1) were determined. Finally, we detected the hepatocyte proliferation, cell cycle entry, and apoptosis.Results: ALF rats displayed a lower positive expression of A20 protein and a higher expression of Caspase-3 protein. Furthermore, A20 was down-regulated, while NF-κB, TRAF6, and RIP1 were all up-regulated in ALF rats. Notably, A20 inhibited activation of NF-κB signaling pathway. The blockade of NF-κB signaling pathway enhanced proliferation and cell cycle progression of hepatocytes, whereas inhibited apoptosis of hepatocytes. On the contrary, A20 siRNA reversed the above situation.Conclusion: A20 inhibits apoptosis of hepatocytes and promotes the proliferation through the NF-κB signaling pathway in ALF rats, potentially providing new insight into the treatment of ALF.
Collapse
Affiliation(s)
- Ke-Zhi Li
- Department of Basic Experimental Research, Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Zhi-Yi Liao
- The First Department of Surgery, Affiliated Wuming Hospital of Guangxi Medical University, Nanning 530199, P.R. China
| | - Yu-Xuan Li
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Zhi-Yong Ming
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Jian-Hong Zhong
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Guo-Bin Wu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Shan Huang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Yin-Ning Zhao
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| |
Collapse
|
30
|
Ding Z, Du D, Yang Y, Yang M, Miao Y, Zou Z, Zhang X, Li Z, Zhang X, Zhang L, Wang X, Zhao Y, Jiang J, Jiang F, Zhou P. Short-term use of MyD88 inhibitor TJ-M2010-5 prevents d-galactosamine/lipopolysaccharide-induced acute liver injury in mice. Int Immunopharmacol 2018; 67:356-365. [PMID: 30583234 DOI: 10.1016/j.intimp.2018.11.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 01/14/2023]
Abstract
Excessive activation of the TLR/MyD88 signaling pathway contributes to several inflammation-related diseases. Previously, our laboratory synthesized a novel thiazaol-aminoramification MyD88 inhibitor named TJ-M2010-5. In this study, we interrogated the role of MyD88, as well as the protective effect of TJ-M2010-5, in a d-gal/LPS-induced acute liver injury mouse model. In order to induce acute liver injury, BALB/c mice received intraperitoneal injection of d-gal and LPS at a dose of 800 mg/kg and 80 μg/kg body weight, respectively. All mice died within 48 h of injection without intervention. However, pre-treatment with TJ-M2010-5 as well as knock-out (KO) of the MyD88 gene significantly improved mouse survival rate to 73.3% and 80% at 48 h, respectively, and both treatments protected liver function. These pathological results demonstrated that TJ-M2010-5 and MyD88 KO reduced the infiltration of inflammatory cells and protected hepatocytes against apoptosis. Furthermore, TJ-M2010-5 remarkably inhibited NF-κB and MAPK signaling in vivo. LPS-induced activation of macrophages as well as pro-inflammatory factors were also shown to be decreased after TJ-M2010-5 treatment in vivo and in vitro. Taken together, these results suggested that blockage of the TLR/MyD88 signaling pathway by TJ-M2010-5 has an important role in the prevention of inflammation-related acute liver injury.
Collapse
Affiliation(s)
- Zuochuan Ding
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Dunfeng Du
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Yang Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Min Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Yan Miao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Zhimiao Zou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zeyang Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Xue Zhang
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430030, China
| | - Limin Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Xinqiang Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Jipin Jiang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Fengchao Jiang
- Academy of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
31
|
Li Y, Wang N, Jiang Y. Geraniol protects against lipopolysaccharide and D-galactosamine-induced fulminant hepatic failure by activating PPARγ. Microb Pathog 2018; 128:7-12. [PMID: 30550845 DOI: 10.1016/j.micpath.2018.11.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/16/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
Abstract
Geraniol (GOH), a natural component of plant essential oils, exhibits potent antioxidant and anti-inflammatory properties. The aim of this study was to assess the protective effects and mechanisms of GOH on lipopolysaccharide (LPS)/d-galactosamine (D-GalN)-induced fulminant hepatic failure (FHF). Mice were treated with GOH (12.5, 25, and 50 μg/kg) 1 h before challenging LPS (60 mg/kg) and D-GalN (800 mg/kg). 8 h later LPS/D-GlaN treatment, mice were sacrificed and the serum and the liver tissues were collected for testing. The liver pathological changes were assessed by H & E staining. MPO activity, MDA level in liver tissues, and AST, ALT levels in serum were detected by specific detection kits. The levels of TNF-α and IL-1β were detected by ELISA. The expression of NF-κB and PPARγ were detected by western blot analysis and qRT-PCR. The results showed that GOH had a protective effect on LPS/D-GalN-induced FHF, as evidence by the attenuation of liver pathological injury, MPO activity, MDA level, and serum AST and ALT levels. GOH reduced liver TNF-α and IL-1β levels through inhibiting NF-κB signaling pathway activation. Furthermore, GOH increased PPARγ expression in FHF induced by LPS/D-GalN. In conclusion, the present study proved that GOH protects against LPS/D-GalN-induced FHF through inhibiting inflammatory response and increasing PPARγ expression.
Collapse
Affiliation(s)
- Yi Li
- Department of Infectious Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science Central South University, Changsha, Hunan, 410083, China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
32
|
Ding Y, Liu P, Chen ZL, Zhang SJ, Wang YQ, Cai X, Luo L, Zhou X, Zhao L. Emodin Attenuates Lipopolysaccharide-Induced Acute Liver Injury via Inhibiting the TLR4 Signaling Pathway in vitro and in vivo. Front Pharmacol 2018; 9:962. [PMID: 30186181 PMCID: PMC6113398 DOI: 10.3389/fphar.2018.00962] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Aims: Emodin is an anthraquinone with potential anti-inflammatory properties. However, the possible molecular mechanisms and protective effects of emodin are not clear. The objective of this study was to investigate the possible molecular mechanisms and protective effects of emodin on lipopolysaccharide (LPS)-induced acute liver injury (ALI) via the Toll-like receptor 4 (TLR4) signaling pathway in the Raw264.7 cell line and in Balb/c mice. Methods: This study established an inflammatory cellular model and induced an ALI animal model. TLR4 was overexpressed by lentivirus and downregulated by small interfering RNA (siRNA) technology. The mRNA and protein levels of TLR4 and downstream molecules were detected in cells and liver tissue. The tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 levels in supernatant and serum were determined by ELISA. The distribution and expression of mannose receptor C type 1 (CD206) and arginase 1 (ARG1) in the liver were tested by immunofluorescence. Mouse liver function and histopathological observations were assessed. Results: Administration of emodin reduced the protein and/or mRNA levels of TLR4 and its downstream molecules following LPS challenge in Raw264.7 cells and in an animal model. Additionally, emodin suppressed the expression of TNF-α and IL-6 in cell culture supernatant and serum. The inhibitory effect of emodin was also confirmed in RAW264.7 cells, in which TLR4 was overexpressed or knocked down. Additionally, ARG1 and CD206 were elevated in the emodin groups. Emodin also decreased serum ALT and AST levels and alleviated the liver histopathological damage induced by LPS. Conclusion: Emodin showed excellent hepatoprotective effects against LPS-induced ALI, possibly by inhibiting TLR4 signaling pathways.
Collapse
Affiliation(s)
- Yan Ding
- Department of Infectious Diseases and Immunology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Liu
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Jun Zhang
- National and Local Joint Engineering Research Center for High-throughput Drug Screening Technology, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei University, Wuhan, China
| | - You-Qin Wang
- Graduate School of Jinzhou Medical University, Department of Pediatrics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xin Cai
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Luo
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuan Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Kim SJ, Lee SM. Necrostatin-1 Protects Against D-Galactosamine and Lipopolysaccharide-Induced Hepatic Injury by Preventing TLR4 and RAGE Signaling. Inflammation 2018; 40:1912-1923. [PMID: 28752362 DOI: 10.1007/s10753-017-0632-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fulminant hepatic failure (FHF) is a life-threatening clinical syndrome results in massive inflammation and hepatocyte death. Necroptosis is a regulated form of necrotic cell death that is emerging as a crucial control point for inflammatory diseases. The kinases receptor interacting protein (RIP) 1 and RIP3 are known as key modulators of necroptosis. In this study, we investigated the impact of necroptosis in the pathogenesis of FHF and molecular mechanisms, particularly its linkage to damage-associated molecular pattern (DAMP)-mediated pattern recognition receptor (PRR) signaling pathways. Male C57BL/6 mice were given an intraperitoneal injection of necrostatin-1 (Nec-1, RIP1 inhibitor; 1.8 mg/kg; dissolved in 2% dimethyl sulfoxide in phosphate-buffered saline) 1 h before receiving D-galactosamine (GalN; 800 mg/kg)/lipopolysaccharide (LPS; 40 μg/kg). Hepatic RIP1, RIP3 protein expression, their phosphorylation, and RIP1/RIP3 complex formation upregulated in the GalN/LPS group were attenuated by Nec-1. Nec-1 markedly reduced the increases in mortality and serum alanine aminotransferase activity induced by GalN/LPS. Increased serum high mobility group box 1 (HMGB1) and interleukin (IL)-33 release, HMGB1-toll-like receptor 4 and HMGB1-receptor for advanced glycation end products (RAGE) interaction, and nuclear protein expressions of NF-κB and early growth response protein-1 (egr-1) were attenuated by Nec-1. Our finding suggests that necroptosis is responsible for GalN/LPS-induced liver injury through DAMP-activated PRR signaling.
Collapse
Affiliation(s)
- Seok-Joo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
34
|
Duan C, Zhao Y, Huang C, Zhao Z, Gao L, Niu C, Wang C, Liu X, Zhang C, Li S. Hepatoprotective effects of Lactobacillus plantarum C88 on LPS/D-GalN–induced acute liver injury in mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
35
|
Protective effects of zingerone on lipopolysaccharide-induced hepatic failure through the modulation of inflammatory pathways. Chem Biol Interact 2018; 281:106-110. [DOI: 10.1016/j.cbi.2017.12.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/02/2017] [Accepted: 12/26/2017] [Indexed: 01/24/2023]
|
36
|
Lee Y, Jeong GS, Kim KM, Lee W, Bae JS. Cudratricusxanthone A attenuates sepsis-induced liver injury via SIRT1 signaling. J Cell Physiol 2018; 233:5441-5446. [PMID: 29226969 DOI: 10.1002/jcp.26390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022]
Abstract
Cudratricusxanthone A (CTXA), a natural bioactive compound extracted from the roots of Cudraniatricuspidata Bureau, is known to possess antithrombotic, antiproliferative, and antiinflammatory activities. It remains unclear that CTXA can improve hepatoprotective activity in vivo. The objective of this study was to investigate the effect of CTXA on lipopolysaccharide (LPS)-induced liver failure in mice, and to elucidate its underlying molecular mechanisms. Liver failure was induced by LPS (15 mg/kg, i.p.) in mice, and 12 hr later, they were treated intravenously with CTXA. Administration of LPS significantly increased mortality, serum levels of alanine transaminase (ALT), aspartate transaminase (AST), and serum inflammatory cytokines. CTXA treatment effectively countered these effects of LPS. Further, LPS treatment markedly increased the expression of myeloperoxidase, phosphorylation of p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), and expressions of nuclear proteins, such as nuclear factor (NF)-κB and phosphorylated c-Jun. Additionally, LPS increased the serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6. All these effects of LPS were attenuated by CTXA. Moreover, CTXA increased the expression of sirtuin-1 (SIRT1) and reduced the expression of acetylated forkhead box O1 box O1 (Ac-FoxO1), acetylated Ac-p53, and acetylated nuclear factor-kappa beta (Ac-NF-κB). In conclusion, CTXA alleviates LPS-induced liver injury by reducing inflammatory responses and the potential mechanism is associated with SIRT1 signaling activation and finally could be used to treat liver diseases.
Collapse
Affiliation(s)
- Yuri Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied BioSciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, Republic of Korea.,Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Deajeon, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
37
|
Yang X, Fujisawa M, Yoshimura T, Ohara T, Sato M, Mino M, San TH, Gao T, Kunkel SL, Matsukawa A. Spred2 Deficiency Exacerbates D-Galactosamine/Lipopolysaccharide -induced Acute Liver Injury in Mice via Increased Production of TNFα. Sci Rep 2018; 8:188. [PMID: 29317674 PMCID: PMC5760641 DOI: 10.1038/s41598-017-18380-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022] Open
Abstract
Acute liver injury (ALI) is characterized by hepatocyte damage and inflammation. In the present study, we examined whether the absence of Sprouty-related EVH1-domain-containing protein 2 (Spred2), a negative regulator of the Ras/Raf/ERK/MAPK pathway, influences ALI induced by D-galactosamine (D-GalN) and lipopolysaccharide (LPS). Compared to wild-type mice, Spred2−/− mice developed exacerbated liver injury represented by enhanced hepatocyte damage and inflammation. Enhanced ERK activation was observed in Spred2−/−-livers, and the MEK/ERK inhibitor U0126 ameliorated ALI. Hepatic tumour necrosis factor α (TNFα) and interleukin (IL)-1β levels were increased in Spred-2−/−-livers, and the neutralization of TNFα dramatically ameliorated ALI, which was associated with decreased levels of endogenous TNFα and IL-1β. When mice were challenged with D-GalN and TNFα, much severer ALI was observed in Spred2−/− mice with significant increases in endogenous TNFα and IL-1β in the livers. Immunohistochemically, Kupffer cells were found to produce TNFα, and isolated Kupffer cells from Spred2−/− mice produced significantly higher levels of TNFα than those from wild-type mice after LPS stimulation, which was significantly decreased by U0126. These results suggest that Spred2 negatively regulates D-GalN/LPS-induced ALI under the control of TNFα in Kupffer cells. Spred2 may present a therapeutic target for the treatment of ALI.
Collapse
Affiliation(s)
- Xu Yang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Miwa Sato
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Megumi Mino
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Thar Htet San
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tong Gao
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Steven L Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
38
|
Lee W, Lee Y, Kim J, Bae JS. Protective Effects of Pelargonidin on Lipopolysaccharide-induced Hepatic Failure. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pelargonidin (PEL) is a well-known red pigment found in plants and has important biological activities that are potentially beneficial for human health. The aim of this study was to investigate the effect of PEL on lipopolysaccharide (LPS)-induced liver failure in mice, and to elucidate its underlying molecular mechanisms. Liver failure was induced by LPS (15 mg/kg, i.p) in mice, and 12 h later, they were treated intravenously with PEL. Administration of LPS significantly increased mortality, serum levels of alanine transaminase (ALT), aspartate transaminase (AST), and inflammatory cytokines, and expression of toll-like receptor 4 (TLR4) protein; PEL treatment effectively countered these effects of LPS. Further, LPS treatment markedly increased the expression of myeloid differentiation primary response gene 88 (MyD88), phosphorylation of p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), and expressions of nuclear proteins, such as nuclear factor (NF)-κB and phosphorylated c-Jun. Additionally, LPS increased the serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6. All these effects of LPS were attenuated by PEL. In addition, the LPS-mediated increase in the level of serum interferon (IFN)-β expression of the TLR-associated activator of IFN (TRIF) protein, and phosphorylation of IFN regulator factor 3 (IRF3) were reduced by PEL. Our results suggest that PEL attenuates LPS-induced liver damage by inhibition of the TLR-mediated inflammatory pathway and could be used to treat liver diseases.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141 Republic of Korea
| | - Yuri Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, School of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
39
|
Zhao D, Wu T, Yi D, Wang L, Li P, Zhang J, Hou Y, Wu G. Dietary Supplementation with Lactobacillus casei Alleviates Lipopolysaccharide-Induced Liver Injury in a Porcine Model. Int J Mol Sci 2017; 18:ijms18122535. [PMID: 29186870 PMCID: PMC5751138 DOI: 10.3390/ijms18122535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 01/19/2023] Open
Abstract
This study aims to determine whether Lactobacillus casei (L. casei) could relieve liver injury in piglets challenged with lipopolysaccharide (LPS). Piglets were randomly allocated into one of the three groups: control, LPS, and L. casei. The control and LPS groups were fed a corn- and soybean meal-based diet, whereas the L. casei group was fed the basal diet supplemented with 6 × 10⁶ cfu/g L. casei. On Day 31 of the trial, piglets in the LPS and L. casei groups received intraperitoneal administration of LPS (100 µg/kg body weight), while the control group received the same volume of saline. Blood and liver samples were collected for analysis. Results showed that L. casei supplementation decreased the feed/gain ratio (p = 0.027) and diarrhea incidence (p < 0.001), and attenuated LPS-induced liver histomorphological abnormalities. Compared with the control group, LPS challenge dramatically increased glutamyl transpeptidase activity (p = 0.001) in plasma as well as the concentrations of Interleukin 6 (IL-6) (p = 0.048), Tumor necrosis factor-alpha (TNF-α) (p = 0.041), and Malondialdehyde (MDA) (p = 0.001) in the liver, while decreasing the hepatic SOD activity. LPS also increased (p < 0.05) the mRNA levels for IL-6, IL-8, TNF-α, Toll-like receptors 4 (TLR4), Nuclear factor κB (NF-κB) and Heat shock protein 70 (HSP70) in the liver. The adverse effects of LPS challenge were ameliorated by L. casei supplementation. In conclusion, dietary L. casei alleviates LPS-induced liver injury via reducing pro-inflammatory cytokines and increasing anti-oxidative capacity.
Collapse
Affiliation(s)
- Di Zhao
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Tao Wu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Dan Yi
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Lei Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Peng Li
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Junmei Zhang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yongqing Hou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Guoyao Wu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Department of Animal Science, Texas A & M University, College Station, TX 77843, USA.
| |
Collapse
|
40
|
Piperidylmethyloxychalcone improves immune-mediated acute liver failure via inhibiting TAK1 activity. Exp Mol Med 2017; 49:e392. [PMID: 29147012 PMCID: PMC5704185 DOI: 10.1038/emm.2017.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 01/22/2023] Open
Abstract
Mice deficient in the toll-like receptor (TLR) or the myeloid differentiation factor 88 (MyD88) are resistant to acute liver failure (ALF) with sudden death of hepatocytes. Chalcone derivatives from medicinal plants protect from hepatic damages including ALF, but their mechanisms remain to be clarified. Here, we focused on molecular basis of piperidylmethyloxychalcone (PMOC) in the treatment of TLR/MyD88-associated ALF. C57BL/6J mice were sensitized with D-galactosamine (GalN) and challenged with Escherichia coli lipopolysaccharide (LPS, TLR4 agonist) or oligodeoxynucleotide containing unmethylated CpG motif (CpG ODN, TLR9 agonist) for induction of ALF. Post treatment with PMOC sequentially ameliorated hepatic inflammation, apoptosis of hepatocytes, severe liver injury and shock-mediated death in ALF-induced mice. As a mechanism, PMOC inhibited the catalytic activity of TGF-β-activated kinase 1 (TAK1) in a competitive manner with respect to ATP, displaced fluorescent ATP probe from the complex with TAK1, and docked at the ATP-binding active site on the crystal structure of TAK1. Moreover, PMOC inhibited TAK1 auto-phosphorylation, which is an axis in the activating pathways of nuclear factor-κB (NF-κB) or activating protein 1 (AP1), in the liver with ALF in vivo or in primary liver cells stimulated with TLR agonists in vitro. PMOC consequently suppressed TAK1-inducible NF-κB or AP1 activity in the inflammatory injury, an early pathogenesis leading to ALF. The results suggested that PMOC could contribute to the treatment of TLR/MyD88-associated ALF with the ATP-binding site of TAK1 as a potential therapeutic target.
Collapse
|
41
|
Zhang WB, Zhang HY, Jiao FZ, Wang LW, Zhang H, Gong ZJ. Histone deacetylase 6 inhibitor ACY-1215 protects against experimental acute liver failure by regulating the TLR4-MAPK/NF-κB pathway. Biomed Pharmacother 2017; 97:818-824. [PMID: 29112935 DOI: 10.1016/j.biopha.2017.10.103] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is considered a new target for anticancer, anti-inflammatory, and neurodegenerative treatment. ACY-1215 is a selective histone deacetylase 6 inhibitor, and it has been recognized as a potential anticancer and anti-inflammation drug. The aim of our study was to investigate whether ACY-1215 has protective effects on acute liver failure (ALF) in mice and explore its potential mechanism. Male C57/BL6 mice were divided into normal, model, and ACY-1215 groups. ACY-1215 (25mg/kg) and same amounts of saline were given to mice. After 2h, the ALF models were induced by lipopolysaccharide (LPS, 100μg/kg) combined with D-galactosamine (D-gal, 400mg/kg). All animals were killed after 24h. The expressions of HDAC6 were determined by western blotting and RT-PCR assay. The expression levels of inflammatory cytokines were detected by ELISA and RT-PCR. The protein expression of Toll-like receptor 4 (TLR4), mitogen-activated protein kinase (MAPK), and nuclear factor κB (NF-κB) species were determined by western blot. The mortality of mice with ALF induced by LPS and D-gal was significantly decreased by ACY-1215 pretreatment. Procedures to manage ALF caused adversely affected liver histology and function; this damage was repaired by pretreatment of ACY-1215. ACY-1215 treatment also attenuated the serum and messenger RNA levels of the proinflammatory cytokines. Pretreatment of ACY-1215 significantly decreased the protein expression of TLR4 and the activation of MAPK and NF-κB signalling pathways. ACY-1215 has potential therapeutic value in mice with ALF by directly inhibiting inflammatory response via regulation of the TLR4-MAPK/NF-kB pathway.
Collapse
Affiliation(s)
- Wen-Bin Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hai-Yue Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Fang-Zhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hong Zhang
- Department of Pharmaceutical, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zuo-Jiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
42
|
Hepatoprotective Effects of Kaempferol-3-O-α-l-Arabinopyranosyl-7-O-α-l-Rhamnopyranoside on d-Galactosamine and Lipopolysaccharide Caused Hepatic Failure in Mice. Molecules 2017; 22:molecules22101755. [PMID: 29057809 PMCID: PMC6151520 DOI: 10.3390/molecules22101755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/30/2022] Open
Abstract
Fulminant hepatic failure (FHF), associated with high mortality, is characterized by extensive death of hepatocytes and hepatic dysfunction. There is no effective treatment for FHF. Several studies have indicated that flavonoids can protect the liver from different factor-induced injury. Previously, we found that the extracts of Elaeagnus mollis leaves had favorable protective effects on acute liver injury. However, the role and mechanisms behind that was elusive. This study examined the hepatoprotective mechanisms of kaempferol-3-O-α-l-arabinopyranosyl-7-O-α-l-rhamnopyra-noside (KAR), a major flavonol glycoside of E. mollis, against d-galactosamine (GalN) and lipopolysaccharide (LPS)-induced hepatic failure. KAR reduces the mouse mortality, protects the normal liver structure, inhibits the serum aspartate aminotransferase (AST) and alamine aminotransferase (ALT) activity and decreases the production of malondialdehyde (MDA) and reactive oxygen species (ROS) and inflammatory cytokines, TNF-α, IL-6, and IL-1β. Furthermore, KAR inhibits the apoptosis of hepatocytes and reduces the expression of TLR4 and NF-κB signaling pathway-related proteins induced by GalN/LPS treatment. These findings suggest that the anti-oxidative, anti-inflammatory, and anti-apoptotic effects of KAR on GalN/LPS-induced acute liver injury were performed through down-regulating the activity of the TLR4 and NF-κB signaling pathways.
Collapse
|
43
|
Interleukin-1α and Interleukin-1β play a central role in the pathogenesis of fulminant hepatic failure in mice. PLoS One 2017; 12:e0184084. [PMID: 28953903 PMCID: PMC5617151 DOI: 10.1371/journal.pone.0184084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Background and aims Fulminant hepatitis failure (FHF) is marked by the sudden loss of hepatic function, with a severe life-threatening course in persons with no prior history of liver disease. Interleukin (IL)-1α and IL-1β are key inflammatory cytokines but little is known about their role in the development of FHF. The aim of this study was to assess the involvement of IL-1α and IL-1β in the progression of LPS/GalN-induced FHF. Methods WT, IL-1α or IL-1β deficient mice were injected with LPS/GalN. Blood and liver tissue were collected at different time points, FHF related pathways were examined. Results After FHF induction the survival of both IL-1α and IL-1β KO mice was longer than that of WT mice. Lower serum liver enzyme levels, demonstrated reduced hepatic injury in the IL-1α and IL-1βKO mice. Histologically detected liver injury and apoptotic hepatocytes were significantly reduced in the IL-1αand IL-1βKO mice compared to WT mice. Reduced hepatic IkB levels and upregulated NFκB activity in WT mice remained inhibited in IL-1α and IL-1β KO mice. Hepatic expression levels of TNFα and IL-6 were significantly increased in WT mice but not in IL-1α and IL-1β KO mice. Conclusions IL-1α and IL-1β play a central role in the pathogenesis of LPS/GalN-induced FHF. These interleukins are associated with the activation of NFκB signaling, upregulation of the pro-inflammatory cytokines and liver damage and apoptosis. Since neither IL-1α nor IL-1β depletions completely rescued the phenotype, we believe that IL-1α and IL-1β have a similar and probably complementary role in FHF progression.
Collapse
|
44
|
Shikonin protects against D-Galactosamine and lipopolysaccharide-induced acute hepatic injury by inhibiting TLR4 signaling pathway. Oncotarget 2017; 8:91542-91550. [PMID: 29207664 PMCID: PMC5710944 DOI: 10.18632/oncotarget.21070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
Shikonin, a naphthoquinone isolated from the root of medical herb Lithospermum erythrorhizon, has been reported to have anti-inflammatory effect. However, there is no related research for the treatment of shikonin on hepaic injury. The purpose of this study was to investigate the effects of shikonin on D-Galactosamine and Lipopolysaccharide-induced hepatic injury in mice. Male BALB/c mice were pretreated with shikonin 1 h before LPS/D-GalN treatment. The pathological changes of hepatic injury were detected by H&E staining. The levels of TNF-α and IL-1β in hepatic tissues were detected by ELISA. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were also measured in this study. In addition, the expression of TLR4 and NF-κB were determined by western blot analysis. These results suggest that shikonin effectively prevents LPS/D-GalN-induced liver injury by inhibiting AST and ALT levels, as well as inflammatory cytokines TNF-α and IL-1β production. The expression of TLR4 and NF-κB activation induced by LPS/D-GalN were also inhibited by treatment of shikonin. In vitro, shikonin significantly inhibited LPS-induced TNF-α and IL-1β production, as well as TLR4 expression and NF-κB activation. In conclusion, the results of the present study suggest that shikonin attenuates LPS/D-GalN-induced hepatic injury by inhibiting TLR4 signaling pathway.
Collapse
|
45
|
Filliol A, Piquet-Pellorce C, Raguénès-Nicol C, Dion S, Farooq M, Lucas-Clerc C, Vandenabeele P, Bertrand MJM, Le Seyec J, Samson M. RIPK1 protects hepatocytes from Kupffer cells-mediated TNF-induced apoptosis in mouse models of PAMP-induced hepatitis. J Hepatol 2017; 66:1205-1213. [PMID: 28088582 DOI: 10.1016/j.jhep.2017.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS The severity of liver diseases is exacerbated by the death of hepatocytes, which can be induced by the sensing of pathogen associated molecular patterns (PAMPs) derived from the gut microbiota. The molecular mechanisms regulating these cell death pathways are poorly documented. In this study, we investigated the role of the receptor interacting protein kinase 1 (RIPK1), a protein known to regulate cell fate decisions, in the death of hepatocytes using two in vivo models of PAMP-induced hepatitis. METHODS Hepatitis was induced in mice by independent injections of two different bacterial PAMPs: lipopolysaccharide (LPS) and unmethylated CpG oligodeoxynucleotide (CpG-DNA) motifs. The role of RIPK1 was evaluated by using mice specifically lacking RIPK1 in liver parenchymal cells (Ripk1LPC-KO). Administration of liposome-encapsulated clodronate served to investigate the role of Kupffer cells in the establishment of the disease. Etanercept, a tumor necrosis factor (TNF)-decoy receptor, was used to study the contribution of TNF-α during LPS-mediated liver injury. RESULTS Whereas RIPK1 deficiency in liver parenchymal cells did not trigger basal hepatolysis, it greatly sensitized hepatocytes to apoptosis and liver damage following a single injection of LPS or CpG-DNA. Importantly, hepatocyte death was prevented by previous macrophage depletion or by TNF inhibition. CONCLUSIONS Our data highlight the pivotal function of RIPK1 in maintaining liver homeostasis in conditions of macrophage-induced TNF burst in response to PAMPs sensing. LAY SUMMARY Excessive death of hepatocytes is a characteristic of liver injury. A new programmed cell death pathway has been described involving upstream death ligands such as TNF and downstream kinases such as RIPK1. Here, we show that in the presence of LPS liver induced hepatic injury was due to secretion of TNF by liver macrophages, and that RIPK1 acts as a powerful protector of hepatocyte death. This newly identified pathway in the liver may be helpful in the management of patients to predict their risk of developing acute liver failure.
Collapse
Affiliation(s)
- Aveline Filliol
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Structure Fédérative BioSit UMS3480 CNRS-US18 Inserm, F-35043 Rennes, France
| | - Claire Piquet-Pellorce
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Structure Fédérative BioSit UMS3480 CNRS-US18 Inserm, F-35043 Rennes, France
| | - Céline Raguénès-Nicol
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Structure Fédérative BioSit UMS3480 CNRS-US18 Inserm, F-35043 Rennes, France; Centre National de la Recherche Scientifique (CNRS), UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), F-35043 Rennes, France
| | - Sarah Dion
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Structure Fédérative BioSit UMS3480 CNRS-US18 Inserm, F-35043 Rennes, France
| | - Muhammad Farooq
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Structure Fédérative BioSit UMS3480 CNRS-US18 Inserm, F-35043 Rennes, France
| | - Catherine Lucas-Clerc
- Université de Rennes 1, F-35043 Rennes, France; Service de Biochimie CHU Rennes, Université de Rennes 1; F-35043 Rennes, France
| | - Peter Vandenabeele
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
| | - Mathieu J M Bertrand
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
| | - Jacques Le Seyec
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Structure Fédérative BioSit UMS3480 CNRS-US18 Inserm, F-35043 Rennes, France
| | - Michel Samson
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), F-35043 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; Structure Fédérative BioSit UMS3480 CNRS-US18 Inserm, F-35043 Rennes, France
| |
Collapse
|
46
|
Yan L, Hu X, Wu Q, Jiang R, Zhang S, Ling Q, Liu H, Jiang X, Wan J, Liu Y. CQMUH-011, a novel adamantane sulfonamide compound, inhibits lipopolysaccharide- and D-galactosamine-induced fulminant hepatic failure in mice. Int Immunopharmacol 2017; 47:231-243. [PMID: 28433945 DOI: 10.1016/j.intimp.2017.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022]
Abstract
CQMUH-011, a novel adamantane sulfonamide compound, was shown to suppress macrophage activation and proliferation in our previous study. However, it is unknown whether CQMUH-011 has anti-inflammatory and hepatoprotective properties. In this study, we investigated the potential effects and mechanisms of CQMUH-011 on lipopolysaccharide (LPS)-induced RAW264.7 cell activation in vitro and LPS- and D-galactosamine (D-GalN)-induced fulminant hepatic failure (FHF) in vivo. The results showed that in RAW264.7 cells challenged by LPS, CQMUH-011 inhibited cell proliferation and induced cell cycle arrest and apoptosis. Furthermore, CQMUH-011 reduced tumor necrosis factor (TNF)-α and interleukin (IL)-1β production and down-regulated the overexpression of toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB induced by LPS in RAW264.7 cells. In vivo, CQMUH-011 reduced serum levels of aspartic aminotransferase and alanine transaminase and improved the mortality and hepatic pathological damage induced by LPS/D-GalN in mice. Moreover, CQMUH-011 significantly inhibited the serum levels of proinflammatory mediators, including TNF-α, IL-6, IL-1β, nitric oxide (NO), and prostaglandin E2 (PGE2), and down-regulated the protein expression of TLR4, p38 mitogen-activated protein kinases, NF-κB, NF-κB inhibitor α (IκBα), IκB kinase β (IKKβ), cyclooxygenase-2 (COX-2) and inducible NO synthases (iNOS) induced by LPS/D-GalN in mice. In conclusion, these results demonstrated that CQMUH-011 has a notable anti-inflammatory effect and protects mice from LPS/D-GalN-induced FHF and that the molecular mechanisms might be related to the inhibition of the TLR4/NF-κB signaling pathway activation, the subsequent decrease in proinflammatory mediator production, and the inhibition of macrophage activation.
Collapse
Affiliation(s)
- Liping Yan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xiangnan Hu
- College of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Qihong Wu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Rong Jiang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Sisi Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Qiao Ling
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Hailin Liu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xuejun Jiang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Yingju Liu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
47
|
Yin X, Gong X, Zhang L, Jiang R, Kuang G, Wang B, Chen X, Wan J. Glycyrrhetinic acid attenuates lipopolysaccharide-induced fulminant hepatic failure in d -galactosamine-sensitized mice by up-regulating expression of interleukin-1 receptor-associated kinase-M. Toxicol Appl Pharmacol 2017; 320:8-16. [DOI: 10.1016/j.taap.2017.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 12/22/2022]
|
48
|
El-Agamy DS, Shebl AM, Shaaban AA. Modulation ofd-galactosamine/lipopolysacharride–induced fulminant hepatic failure by nilotinib. Hum Exp Toxicol 2017; 37:51-60. [DOI: 10.1177/0960327117689910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- DS El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt
| | - AM Shebl
- Faculty of Medicine, Department of Pathology, Mansoura University, Mansoura, Egypt
| | - AA Shaaban
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt
| |
Collapse
|
49
|
Wang M, Shi Q, Zhang R, Qiu H, Mao D, Long F. Herbal Compound "Jiedu Huayu" Reduces Liver Injury in Rats via Regulation of IL-2, TLR4, and PCNA Expression Levels. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:9819350. [PMID: 28197212 PMCID: PMC5288544 DOI: 10.1155/2017/9819350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/21/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
Aim of the Study. To investigate the preventative effects of Jiedu Huayu (JDHY) on D-galactosamine (D-GalN) and lipopolysaccharide-induced acute liver failure (ALF) and to evaluate the possible mechanisms of action. Materials and Methods. ALF was induced in Wistar rats by administrating D-GalN (900 mg/kg) and lipopolysaccharide (10 μg/kg). After treatment with JDHY granules, the levels of blood alanine aminotransferase, aspartate aminotransferase, total bilirubin, and prothrombin time were determined. Proliferating cell nuclear antigen was detected by immunohistochemistry staining. The expression of interleukin-2 (IL-2) and toll-like receptor 4 (TLR4) was examined by fluorescence quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. Results. JDHY treatment dramatically improved liver function and increased survival rates in an ALF model in rats. We observed a decrease in IL-2 and TLR4 expression following treatment with JDHY in liver cells from ALF rats using qRT-PCR and Western blot analysis. Conclusion. We hypothesize that the therapeutic potential of JDHY for treating ALF is due to its modulatory effect on the suppression of inflammation and by promoting hepatocyte regeneration. Our results contribute towards validation of the traditional use of JDHY in the treatment of liver disease.
Collapse
Affiliation(s)
- Minggang Wang
- Department of Liver Disease, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530023, China
| | - Qinglan Shi
- Department of Liver Disease, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530023, China
| | - Rongzhen Zhang
- Department of Liver Disease, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530023, China
| | - Hua Qiu
- Department of Liver Disease, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530023, China
| | - Dewen Mao
- Department of Liver Disease, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530023, China
| | - Fuli Long
- Department of Liver Disease, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530023, China
| |
Collapse
|
50
|
Lou R, Yu W, Song Y, Ren Y, Zheng H, Guo X, Lin Y, Pan G, Wang X, Ma X. Fabrication of stable galactosylated alginate microcapsules via covalent coupling onto hydroxyl groups for hepatocytes applications. Carbohydr Polym 2017; 155:456-465. [DOI: 10.1016/j.carbpol.2016.08.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023]
|