1
|
Isabella AJ, Moens CB. Development and regeneration of the vagus nerve. Semin Cell Dev Biol 2024; 156:219-227. [PMID: 37537116 PMCID: PMC10830892 DOI: 10.1016/j.semcdb.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
The vagus nerve, with its myriad constituent axon branches and innervation targets, has long been a model of anatomical complexity in the nervous system. The branched architecture of the vagus nerve is now appreciated to be highly organized around the topographic and/or molecular identities of the neurons that innervate each target tissue. However, we are only just beginning to understand the developmental mechanisms by which heterogeneous vagus neuron identity is specified, patterned, and used to guide the axons of particular neurons to particular targets. Here, we summarize our current understanding of the complex topographic and molecular organization of the vagus nerve, the developmental basis of neuron specification and patterned axon guidance that supports this organization, and the regenerative mechanisms that promote, or inhibit, the restoration of vagus nerve organization after nerve damage. Finally, we highlight key unanswered questions in these areas and discuss potential strategies to address these questions.
Collapse
Affiliation(s)
- Adam J Isabella
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Cecilia B Moens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
Kamitakahara AK, Ali Marandi Ghoddousi R, Lanjewar AL, Magalong VM, Wu HH, Levitt P. MET Receptor Tyrosine Kinase Regulates Lifespan Ultrasonic Vocalization and Vagal Motor Neuron Development. Front Neurosci 2021; 15:768577. [PMID: 34803597 PMCID: PMC8600253 DOI: 10.3389/fnins.2021.768577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
The intrinsic muscles of the larynx are innervated by the vagal motor nucleus ambiguus (nAmb), which provides direct motor control over vocal production in humans and rodents. Here, we demonstrate in mice using the Phox2b Cre line, that conditional embryonic deletion of the gene encoding the MET receptor tyrosine kinase (MET) in the developing brainstem (cKO) results in highly penetrant, severe deficits in ultrasonic vocalization in early postnatal life. Major deficits and abnormal vocalization patterns persist into adulthood in more than 70% of mice, with the remaining recovering the ability to vocalize, reflecting heterogeneity in circuit restitution. We show that underlying the functional deficits, conditional deletion of Met results in a loss of approximately one-third of MET+ nAmb motor neurons, which begins as early as embryonic day 14.5. The loss of motor neurons is specific to the nAmb, as other brainstem motor and sensory nuclei are unaffected. In the recurrent laryngeal nerve, through which nAmb motor neurons project to innervate the larynx, there is a one-third loss of axons in cKO mice. Together, the data reveal a novel, heterogenous MET-dependence, for which MET differentially affects survival of a subset of nAmb motor neurons necessary for lifespan ultrasonic vocal capacity.
Collapse
Affiliation(s)
- Anna K. Kamitakahara
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Ramin Ali Marandi Ghoddousi
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
| | - Alexandra L. Lanjewar
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
| | - Valerie M. Magalong
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Hsiao-Huei Wu
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Pat Levitt
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Xia B, Wei J, Ma X, Nehme A, Liong K, Cui Y, Chen C, Gallitano A, Ferguson D, Qiu S. Conditional knockout of MET receptor tyrosine kinase in cortical excitatory neurons leads to enhanced learning and memory in young adult mice but early cognitive decline in older adult mice. Neurobiol Learn Mem 2021; 179:107397. [PMID: 33524570 DOI: 10.1016/j.nlm.2021.107397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/22/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
Human genetic studies established MET gene as a risk factor for autism spectrum disorders. We have previously shown that signaling mediated by MET receptor tyrosine kinase, expressed in early postnatal developing forebrain circuits, controls glutamatergic neuron morphological development, synapse maturation, and cortical critical period plasticity. Here we investigated how MET signaling affects synaptic plasticity, learning and memory behavior, and whether these effects are age-dependent. We found that in young adult (postnatal 2-3 months) Met conditional knockout (Metfx/fx:emx1cre, cKO) mice, the hippocampus exhibits elevated plasticity, measured by increased magnitude of long-term potentiation (LTP) and depression (LTD) in hippocampal slices. Surprisingly, in older adult cKO mice (10-12 months), LTP and LTD magnitudes were diminished. We further conducted a battery of behavioral tests to assess learning and memory function in cKO mice and littermate controls. Consistent with age-dependent LTP/LTD findings, we observed enhanced spatial memory learning in 2-3 months old young adult mice, assessed by hippocampus-dependent Morris water maze test, but impaired spatial learning in 10-12 months mice. Contextual and cued learning were further assessed using a Pavlovian fear conditioning test, which also revealed enhanced associative fear acquisition and extinction in young adult mice, but impaired fear learning in older adult mice. Lastly, young cKO mice also exhibited enhanced motor learning. Our results suggest that a shift in the window of synaptic plasticity and an age-dependent early cognitive decline may be novel circuit pathophysiology for a well-established autism genetic risk factor.
Collapse
Affiliation(s)
- Baomei Xia
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Antoine Nehme
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Katerina Liong
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Chang Chen
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Amelia Gallitano
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Deveroux Ferguson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States.
| |
Collapse
|
4
|
Dorsal raphe organization. J Chem Neuroanat 2020; 110:101868. [PMID: 33031916 DOI: 10.1016/j.jchemneu.2020.101868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/11/2023]
Abstract
A recent cluster of reports have considerably deepened our understanding of the transcriptional diversity of serotonin neurons of the dorsal raphe nucleus (DR). In this commentary a subset of implications from these studies is highlighted such as: serotonin neurons in the lateral wings have a newly discovered close relationship with those in rostral and dorsal locations and that cre-lines may be just as likely to cut across several transcriptional subtypes as to define a single subtype. To evolve understanding of DR organization, it may be prudent to correlate transcriptional snapshots in time with other known features of DR neurons. Here we bring together new and old information on serotonin neuron diversity with the goal of developing increasingly useful schemes of DR organization.
Collapse
|
5
|
Serova OV, Gantsova EA, Deyev IE, Petrenko AG. The Value of pH Sensors in Maintaining Homeostasis of the Nervous System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Okaty BW, Sturrock N, Escobedo Lozoya Y, Chang Y, Senft RA, Lyon KA, Alekseyenko OV, Dymecki SM. A single-cell transcriptomic and anatomic atlas of mouse dorsal raphe Pet1 neurons. eLife 2020; 9:e55523. [PMID: 32568072 PMCID: PMC7308082 DOI: 10.7554/elife.55523] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Among the brainstem raphe nuclei, the dorsal raphe nucleus (DR) contains the greatest number of Pet1-lineage neurons, a predominantly serotonergic group distributed throughout DR subdomains. These neurons collectively regulate diverse physiology and behavior and are often therapeutically targeted to treat affective disorders. Characterizing Pet1 neuron molecular heterogeneity and relating it to anatomy is vital for understanding DR functional organization, with potential to inform therapeutic separability. Here we use high-throughput and DR subdomain-targeted single-cell transcriptomics and intersectional genetic tools to map molecular and anatomical diversity of DR-Pet1 neurons. We describe up to fourteen neuron subtypes, many showing biased cell body distributions across the DR. We further show that P2ry1-Pet1 DR neurons - the most molecularly distinct subtype - possess unique efferent projections and electrophysiological properties. These data complement and extend previous DR characterizations, combining intersectional genetics with multiple transcriptomic modalities to achieve fine-scale molecular and anatomic identification of Pet1 neuron subtypes.
Collapse
Affiliation(s)
- Benjamin W Okaty
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Nikita Sturrock
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | | | - YoonJeung Chang
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Rebecca A Senft
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Krissy A Lyon
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | | | - Susan M Dymecki
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
7
|
Isabella AJ, Barsh GR, Stonick JA, Dubrulle J, Moens CB. Retinoic Acid Organizes the Zebrafish Vagus Motor Topographic Map via Spatiotemporal Coordination of Hgf/Met Signaling. Dev Cell 2020; 53:344-357.e5. [PMID: 32302545 PMCID: PMC7237105 DOI: 10.1016/j.devcel.2020.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/14/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Information flow through neural circuits often requires their organization into topographic maps in which the positions of cell bodies and synaptic targets correspond. To understand how topographic map development is controlled, we examine the mechanism underlying targeting of vagus motor axons to the pharyngeal arches in zebrafish. We reveal that retinoic acid organizes topography by specifying anterior-posterior identity in vagus motor neurons. We then show that chemoattractant signaling between Hgf and Met is required for vagus innervation of the pharyngeal arches. Finally, we find that retinoic acid controls the spatiotemporal dynamics of Hgf/Met signaling to coordinate axon targeting with the developmental progression of the pharyngeal arches and show that experimentally altering the timing of Hgf/Met signaling is sufficient to redirect axon targeting and disrupt the topographic map. These findings establish a mechanism of topographic map development in which the regulation of chemoattractant signaling in space and time guides axon targeting.
Collapse
Affiliation(s)
- Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gabrielle R Barsh
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jason A Stonick
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julien Dubrulle
- Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Ma X, Qiu S. Control of cortical synapse development and plasticity by MET receptor tyrosine kinase, a genetic risk factor for autism. J Neurosci Res 2019; 98:2115-2129. [PMID: 31746037 DOI: 10.1002/jnr.24542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/27/2022]
Abstract
The key developmental milestone events of the human brain, such as neurogenesis, synapse formation, maturation, and plasticity, are determined by a myriad of molecular signaling events, including those mediated by a number of receptor tyrosine kinases (RTKs) and their cognate ligands. Aberrant or mistimed brain development and plasticity can lead to maladaptive changes, such as dysregulated synaptic connectivity and breakdown of circuit functions necessary for cognition and adaptive behaviors, which are hypothesized pathophysiologies of many neurodevelopmental and neuropsychiatric disorders. Here we review recent literature that supports autism spectrum disorder as a likely result of aberrant synapse development due to mistimed maturation and plasticity. We focus on MET RTK, a prominent genetic risk factor for autism, and discuss how a pleiotropic molecular signaling system engaged by MET exemplifies a genetic program that controls cortical circuit development and plasticity by modulating the anatomical and functional connectivity of cortical circuits, thus conferring genetic risk for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiaokuang Ma
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| |
Collapse
|
9
|
Nan L, Qin T, Xiao Y, Qian W, Li J, Wang Z, Ma J, Ma Q, Wu Z. Pancreatic Stellate Cells Facilitate Perineural Invasion of Pancreatic Cancer via HGF/c-Met Pathway. Cell Transplant 2019; 28:1289-1298. [PMID: 31161784 PMCID: PMC6767883 DOI: 10.1177/0963689719851772] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC) is a highly lethal cancer that has a strong ability for invasion
and metastasis, poor prognosis, and a stubbornly high death rate due to late diagnosis and
early metastasis. Therefore, a better understanding of the mechanisms of metastasis should
provide novel opportunities for therapeutic purposes. As a route of metastasis in PC,
perineural invasion (PNI) occurs frequently; however, the molecular mechanism of PNI is
still poorly understood. In this study, we show that the hepatocyte growth factor
(HGF)/c-Met pathway plays a vital role in the PNI of PC. We found that HGF promotes PC
cell migration and invasion by activating the HGF/c-Met pathway, and enhances the
expression of nerve growth factor (NGF) and matrix metalloproteinase-9 (MMP9) in vitro.
Furthermore, HGF significantly increased PC cell invasion of the dorsal root ganglia (DRG)
and promoted the outgrowth of DRG in cocultured models of PC cells and DRG. In contrast,
the capacity for invasion and the phenomenon of PNI in PC cells were reduced when the
HGF/c-Met pathway was blocked by siRNA. In conclusion, PSCs facilitate PC cell PNI via the
HGF/c-Met pathway. Targeting the HGF/c-Met signaling pathway could be a promising
therapeutic strategy for PC.
Collapse
Affiliation(s)
- Ligang Nan
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China.,Emergency Department, People's Hospital of Shaanxi Province, Xi'an, China.,Both the authors are co-first authors and contributed equally in this article
| | - Tao Qin
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China.,Both the authors are co-first authors and contributed equally in this article
| | - Ying Xiao
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Jie Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Jiguang Ma
- Department of Anesthesiology, First Affiliated Hospital, Xi'an Jiaotong University, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China.,Both the authors are co-senior authors in this article
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, China.,Both the authors are co-senior authors in this article
| |
Collapse
|
10
|
Ma X, Chen K, Lu Z, Piechowicz M, Liu Q, Wu J, Qiu S. Disruption of MET Receptor Tyrosine Kinase, an Autism Risk Factor, Impairs Developmental Synaptic Plasticity in the Hippocampus. Dev Neurobiol 2019; 79:36-50. [PMID: 30304576 PMCID: PMC6397659 DOI: 10.1002/dneu.22645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023]
Abstract
As more genes conferring risks to neurodevelopmental disorders are identified, translating these genetic risk factors into biological mechanisms that impact the trajectory of the developing brain is a critical next step. Here, we report that disrupted signaling mediated MET receptor tyrosine kinase (RTK), an established risk factor for autism spectrum disorders, in the developing hippocampus glutamatergic circuit leads to profound deficits in neural development, synaptic transmission, and plasticity. In cultured hippocampus slices prepared from neonatal mice, pharmacological inhibition of MET kinase activity suppresses dendritic arborization and disrupts normal dendritic spine development. In addition, single-neuron knockdown (RNAi) or overexpression of Met in the developing hippocampal CA1 neurons leads to alterations, opposite in nature, in basal synaptic transmission and long-term plasticity. In forebrain-specific Met conditional knockout mice (Metfx/fx ;emx1cre ), an enhanced long-term potentiation (LTP) and long-term depression (LTD) were observed at early developmental stages (P12-14) at the Schaffer collateral to CA1 synapses compared with wild-type littermates. In contrast, LTP and LTD were markedly reduced at young adult stage (P56-70) during which wild-type mice show robust LTP and LTD. The altered trajectory of synaptic plasticity revealed by this study indicate that temporally regulated MET signaling as an intrinsic, cell autonomous, and pleiotropic mechanism not only critical for neuronal growth and functional maturation, but also for the timing of synaptic plasticity during forebrain glutamatergic circuits development.
Collapse
Affiliation(s)
- Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Ke Chen
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
- MOE Key Laboratory for NeuroInformation, The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zhongming Lu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
| | - Mariel Piechowicz
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
| | - Qiang Liu
- Barrow Neurological Institute, St. Joseph's Hospital Medical Center, Phoenix, Arizona, 85013
| | - Jie Wu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
- Barrow Neurological Institute, St. Joseph's Hospital Medical Center, Phoenix, Arizona, 85013
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
| |
Collapse
|
11
|
Russo AM, Lawther AJ, Prior BM, Isbel L, Somers WG, Lesku JA, Richdale AL, Dissanayake C, Kent S, Lowry CA, Hale MW. Social approach, anxiety, and altered tryptophan hydroxylase 2 activity in juvenile BALB/c and C57BL/6J mice. Behav Brain Res 2018; 359:918-926. [PMID: 29935278 DOI: 10.1016/j.bbr.2018.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/24/2018] [Accepted: 06/19/2018] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous and highly heritable condition with multiple aetiologies. Although the biological mechanisms underlying ASD are not fully understood, evidence suggests that dysregulation of serotonergic systems play an important role in ASD psychopathology. Preclinical models using mice with altered serotonergic neurotransmission may provide insight into the role of serotonin in behaviours relevant to clinical features of ASD. For example, BALB/c mice carry a loss-of-function single nucleotide polymorphism (SNP; C1473 G) in tryptophan hydroxylase 2 (Tph2), which encodes the brain-specific isoform of the rate-limiting enzyme for serotonin synthesis, and these mice frequently have been used to model symptoms of ASD. In this study, juvenile male BALB/c (G/G; loss-of-function variant) and C57BL/6 J (C/C; wild type variant) mice, were exposed to the three-chamber sociability test, and one week later to the elevated plus-maze (EPM). Tryptophan hydroxylase 2 (TPH2) activity was measured following injection of the aromatic amino acid decarboxylase (AADC)-inhibitor, NSD-1015, and subsequent HPLC detection of 5-hydroxytryptophan (5-HTP) within subregions of the dorsal raphe nucleus (DR) and median raphe nucleus (MnR). The BALB/c mice showed reduced social behaviour and increased anxious behaviour, as well as decreased 5-HTP accumulation in the rostral and mid-rostrocaudal DR. In the full cohort of mice, TPH2 activity in the mid-rostrocaudal DR was correlated with anxious behaviour in the EPM, however these correlations were not statistically significant within each strain, suggesting that TPH2 activity was not directly associated with either anxiety or sociability. Further research is therefore required to more fully understand how serotonergic systems are involved in mouse behaviours that resemble some of the clinical features of ASD.
Collapse
Affiliation(s)
- Adrian M Russo
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Adam J Lawther
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Benjamin M Prior
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Luke Isbel
- School of Molecular Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - W Gregory Somers
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC, 3086, Australia
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Amanda L Richdale
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia; Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Cheryl Dissanayake
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia; Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Stephen Kent
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
12
|
Chleilat E, Skatulla L, Rahhal B, Hussein MT, Feuerstein M, Krieglstein K, Roussa E. TGF-β Signaling Regulates Development of Midbrain Dopaminergic and Hindbrain Serotonergic Neuron Subgroups. Neuroscience 2018; 381:124-137. [PMID: 29689292 DOI: 10.1016/j.neuroscience.2018.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/27/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
Abstract
Molecular and functional diversity within midbrain dopaminergic (mDA) and hindbrain serotonergic (5-HT) neurons has emerged as a relevant feature that could underlie selective vulnerability of neurons in clinical disorders. We have investigated the role of transforming growth factor beta (TGF-β) during development of mDA and 5-HT subgroups. We have generated TβRIIflox/flox::En1cre/+ mice where type II TGF-β receptor is conditionally deleted from engrailed 1-expressing cells and have investigated the hindbrain serotonergic system of these mice together with Tgf-β2-/- mice. The results show a significant decrease in the number of 5-HT neurons in TGF-β2-deficient mice at embryonic day (E) 12 and a selective significant decrease in the hindbrain paramedian raphe 5-HT neurons at E18, compared to wild type. Moreover, conditional deletion of TGF-β signaling from midbrain and rhombomere 1 leads to inactive TGF-β signaling in cre-expressing cells, impaired development of mouse mDA neuron subgroups and of dorsal raphe 5-HT neuron subgroups in a temporal manner. These results highlight a selective growth factor dependency of individual rostral hindbrain serotonergic subpopulations, emphasize the impact of TGF-β signaling during development of mDA and 5-HT subgroups, and suggest TGF-βs as potent candidates to establish diversity within the hindbrain serotonergic system. Thus, the data contribute to a better understanding of development and degeneration of mDA neurons and 5-HT-associated clinical disorders.
Collapse
Affiliation(s)
- Enaam Chleilat
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Lena Skatulla
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Belal Rahhal
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; School of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Manal T Hussein
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Melanie Feuerstein
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Kerstin Krieglstein
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Eleni Roussa
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Kamitakahara A, Wu HH, Levitt P. Distinct projection targets define subpopulations of mouse brainstem vagal neurons that express the autism-associated MET receptor tyrosine kinase. J Comp Neurol 2017; 525:3787-3808. [PMID: 28758209 DOI: 10.1002/cne.24294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
Detailed anatomical tracing and mapping of the viscerotopic organization of the vagal motor nuclei has provided insight into autonomic function in health and disease. To further define specific cellular identities, we paired information based on visceral connectivity with a cell-type specific marker of a subpopulation of neurons in the dorsal motor nucleus of the vagus (DMV) and nucleus ambiguus (nAmb) that express the autism-associated MET receptor tyrosine kinase. As gastrointestinal disturbances are common in children with autism spectrum disorder (ASD), we sought to define the relationship between MET-expressing (MET+) neurons in the DMV and nAmb, and the gastrointestinal tract. Using wholemount tissue staining and clearing, or retrograde tracing in a METEGFP transgenic mouse, we identify three novel subpopulations of EGFP+ vagal brainstem neurons: (a) EGFP+ neurons in the nAmb projecting to the esophagus or laryngeal muscles, (b) EGFP+ neurons in the medial DMV projecting to the stomach, and (b) EGFP+ neurons in the lateral DMV projecting to the cecum and/or proximal colon. Expression of the MET ligand, hepatocyte growth factor (HGF), by tissues innervated by vagal motor neurons during fetal development reveal potential sites of HGF-MET interaction. Furthermore, similar cellular expression patterns of MET in the brainstem of both the mouse and nonhuman primate suggests that MET expression at these sites is evolutionarily conserved. Together, the data suggest that MET+ neurons in the brainstem vagal motor nuclei are anatomically positioned to regulate distinct portions of the gastrointestinal tract, with implications for the pathophysiology of gastrointestinal comorbidities of ASD.
Collapse
Affiliation(s)
- Anna Kamitakahara
- Program in Developmental Neurogenetics, Institute for the Developing Mind, The Saban Resarch Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Hsiao-Huei Wu
- Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Pat Levitt
- Program in Developmental Neurogenetics, Institute for the Developing Mind, The Saban Resarch Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, California.,University of Southern California Program in Neuroscience, Los Angeles, California
| |
Collapse
|
14
|
Hepatocyte Growth Factor-c-MET Signaling Mediates the Development of Nonsensory Structures of the Mammalian Cochlea and Hearing. J Neurosci 2017; 36:8200-9. [PMID: 27488639 DOI: 10.1523/jneurosci.4410-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/28/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED The stria vascularis is a nonsensory structure that is essential for auditory hair cell function by maintaining potassium concentration of the scala media. During mouse embryonic development, a subpopulation of neural crest cell-derived melanocytes migrates and incorporates into a subregion of the cochlear epithelium, forming the intermediate cell layer of the stria vascularis. The relation of this developmental process to stria vascularis function is currently unknown. In characterizing the molecular differentiation of developing peripheral auditory structures, we discovered that hepatocyte growth factor (Hgf) is expressed in the future stria vascularis of the cochlear epithelium. Its receptor tyrosine kinase, c-Met, is expressed in the cochlear epithelium and melanocyte-derived intermediate cells in the stria vascularis. Genetic dissection of HGF signaling via c-MET reveals that the incorporation of the melanocytes into the future stria vascularis of the cochlear duct requires c-MET signaling. In addition, inactivation of either the ligand or receptor developmentally resulted in a profound hearing loss at young adult stages. These results suggest a novel connection between HGF signaling and deafness via melanocyte deficiencies. SIGNIFICANCE STATEMENT We found the roles of hepatocyte growth factor (HGF) signaling in stria vascularis development for the first time and that lack of HGF signaling in the inner ear leads to profound hearing loss in the mouse. Our findings reveal a novel mechanism that may underlie human deafness DFNB39 and DFNB97. Our findings reveal an additional example of context-dependent c-MET signaling diversity, required here for proper cellular invasion developmentally that is essential for specific aspects of auditory-related organogenesis.
Collapse
|
15
|
Kast RJ, Wu HH, Williams P, Gaspar P, Levitt P. Specific Connectivity and Unique Molecular Identity of MET Receptor Tyrosine Kinase Expressing Serotonergic Neurons in the Caudal Dorsal Raphe Nuclei. ACS Chem Neurosci 2017; 8:1053-1064. [PMID: 28375615 DOI: 10.1021/acschemneuro.7b00020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Molecular characterization of neurons across brain regions has revealed new taxonomies for understanding functional diversity even among classically defined neuronal populations. Neuronal diversity has become evident within the brain serotonin (5-HT) system, which is far more complex than previously appreciated. However, until now it has been difficult to define subpopulations of 5-HT neurons based on molecular phenotypes. We demonstrate that the MET receptor tyrosine kinase (MET) is specifically expressed in a subset of 5-HT neurons within the caudal part of the dorsal raphe nuclei (DRC) that is encompassed by the classic B6 serotonin cell group. Mapping from embryonic day 16 through adulthood reveals that MET is expressed almost exclusively in the DRC as a condensed, paired nucleus, with an additional sparse set of MET+ neurons scattered within the median raphe. Retrograde tracing experiments reveal that MET-expressing 5-HT neurons provide substantial serotonergic input to the ventricular/subventricular region that contains forebrain stem cells, but do not innervate the dorsal hippocampus or entorhinal cortex. Conditional anterograde tracing experiments show that 5-HT neurons in the DRC/B6 target additional forebrain structures such as the medial and lateral septum and the ventral hippocampus. Molecular neuroanatomical analysis identifies 14 genes that are enriched in DRC neurons, including 4 neurotransmitter/neuropeptide receptors and 2 potassium channels. These analyses will lead to future studies determining the specific roles that 5-HTMET+ neurons contribute to the broader set of functions regulated by the serotonergic system.
Collapse
Affiliation(s)
| | | | | | - Patricia Gaspar
- Inserm, UMRS-839, Université
Pierre et Marie Curie, and Institut du Fer à Moulin, 75005, Paris, France
| | | |
Collapse
|
16
|
Eagleson KL, Xie Z, Levitt P. The Pleiotropic MET Receptor Network: Circuit Development and the Neural-Medical Interface of Autism. Biol Psychiatry 2017; 81:424-433. [PMID: 27837921 PMCID: PMC5285483 DOI: 10.1016/j.biopsych.2016.08.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 08/11/2016] [Accepted: 08/28/2016] [Indexed: 02/07/2023]
Abstract
People with autism spectrum disorder and other neurodevelopmental disorders (NDDs) are behaviorally and medically heterogeneous. The combination of polygenicity and gene pleiotropy-the influence of one gene on distinct phenotypes-raises questions of how specific genes and their protein products interact to contribute to NDDs. A preponderance of evidence supports developmental and pathophysiological roles for the MET receptor tyrosine kinase, a multifunctional receptor that mediates distinct biological responses depending upon cell context. MET influences neuron architecture and synapse maturation in the forebrain and regulates homeostasis in gastrointestinal and immune systems, both commonly disrupted in NDDs. Peak expression of synapse-enriched MET is conserved across rodent and primate forebrain, yet regional differences in primate neocortex are pronounced, with enrichment in circuits that participate in social information processing. A functional risk allele in the MET promoter, enriched in subgroups of children with autism spectrum disorder, reduces transcription and disrupts socially relevant neural circuits structurally and functionally. In mice, circuit-specific deletion of Met causes distinct atypical behaviors. MET activation increases dendritic complexity and nascent synapse number, but synapse maturation requires reductions in MET. MET mediates its specific biological effects through different intracellular signaling pathways and has a complex protein interactome that is enriched in autism spectrum disorder and other NDD candidates. The interactome is coregulated in developing human neocortex. We suggest that a gene as pleiotropic and highly regulated as MET, together with its interactome, is biologically relevant in normal and pathophysiological contexts, affecting central and peripheral phenotypes that contribute to NDD risk and clinical symptoms.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Program in Developmental Neurogenetics, Institute for the Developing Mind Children's Hospital Los Angeles, CA; Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Zhihui Xie
- Program in Developmental Neurogenetics, Institute for the Developing Mind Children's Hospital Los Angeles, CA
| | - Pat Levitt
- Program in Developmental Neurogenetics, Institute for the Developing Mind Children's Hospital Los Angeles, CA; Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA.
| |
Collapse
|
17
|
Guo YP, Commons KG. Serotonin neuron abnormalities in the BTBR mouse model of autism. Autism Res 2016; 10:66-77. [PMID: 27478061 DOI: 10.1002/aur.1665] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022]
Abstract
The inbred mouse strain BTBR T+ Itpr3tf /J (BTBR) is studied as a model of idiopathic autism because they are less social and more resistant to change than other strains. Forebrain serotonin receptors and the response to serotonin drugs are altered in BTBR mice, yet it remains unknown if serotonin neurons themselves are abnormal. In this study, we found that serotonin tissue content and the density of serotonin axons is reduced in the hippocampus of BTBR mice in comparison to C57BL/6J (C57) mice. This was accompanied by possible compensatory changes in serotonin neurons that were most pronounced in regions known to provide innervation to the hippocampus: the caudal dorsal raphe (B6) and the median raphe. These changes included increased numbers of serotonin neurons and hyperactivation of Fos expression. Metrics of serotonin neurons in the rostral 2/3 of the dorsal raphe and serotonin content of the prefrontal cortex were less impacted. Thus, serotonin neurons exhibit region-dependent abnormalities in the BTBR mouse that may contribute to their altered behavioral profile. Autism Res 2017, 10: 66-77. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yue-Ping Guo
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children's Hospital; Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Kathryn G Commons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children's Hospital; Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Eagleson KL, Lane CJ, McFadyen-Ketchum L, Solak S, Wu HH, Levitt P. Distinct intracellular signaling mediates C-MET regulation of dendritic growth and synaptogenesis. Dev Neurobiol 2016; 76:1160-81. [PMID: 26818605 DOI: 10.1002/dneu.22382] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/11/2015] [Accepted: 01/13/2016] [Indexed: 12/14/2022]
Abstract
Hepatocyte growth factor (HGF) activation of the MET receptor tyrosine kinase influences multiple neurodevelopmental processes. Evidence from human imaging and mouse models shows that, in the forebrain, disruptions in MET signaling alter circuit formation and function. One likely means of modulation is by controlling neuron maturation. Here, we examined the signaling mechanisms through which MET exerts developmental effects in the neocortex. In situ hybridization revealed that hgf is located near MET-expressing neurons, including deep neocortical layers and periventricular zones. Western blot analyses of neocortical crude membranes demonstrated that HGF-induced MET autophosphorylation peaks during synaptogenesis, with a striking reduction in activation between P14 and P17 just before pruning. In vitro analysis of postnatal neocortical neurons assessed the roles of intracellular signaling following MET activation. There is rapid, HGF-induced phosphorylation of MET, ERK1/2, and Akt that is accompanied by two major morphological changes: increases in total dendritic growth and synapse density. Selective inhibition of each signaling pathway altered only one of the two distinct events. MAPK/ERK pathway inhibition significantly reduced the HGF-induced increase in dendritic length, but had no effect on synapse density. In contrast, inhibition of the PI3K/Akt pathway reduced HGF-induced increases in synapse density, with no effect on dendritic length. The data reveal a key role for MET activation during the period of neocortical neuron growth and synaptogenesis, with distinct biological outcomes mediated via discrete MET-linked intracellular signaling pathways in the same neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1160-1181, 2016.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Christianne J Lane
- Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lisa McFadyen-Ketchum
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sara Solak
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hsiao-Huei Wu
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Pat Levitt
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California.,Institute for the Developing Mind, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
19
|
Commons KG. Ascending serotonin neuron diversity under two umbrellas. Brain Struct Funct 2016; 221:3347-60. [PMID: 26740230 DOI: 10.1007/s00429-015-1176-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/19/2015] [Indexed: 12/30/2022]
Abstract
Forebrain serotonin relevant for many psychological disorders arises in the hindbrain, primarily within the dorsal and median raphe nuclei (DR and MR). These nuclei are heterogeneous, containing several distinct groups of serotonin neurons. Here, new insight into the afferent and efferent connectivity of these areas is reviewed in correlation with their developmental origin. These data suggest that the caudal third of the DR, the area originally designated B6, may be misidentified as part of the DR as it shares many features of connectivity with the MR. By considering the rostral DR independently and affiliating the B6 to the MR, the diverse subgroups of serotonin neurons can be arranged with more coherence into two umbrella groups, each with distinctive domains of influence. Serotonin neurons within the rostral DR are uniquely interconnected with brain areas associated with emotion and motivation such as the amygdala, accumbens and ventral pallidum. In contrast serotonin neurons in the B6 and MR are characterized by their dominion over the septum and hippocampus. This distinction between the DR and B6/MR parallels their developmental origin and likely impacts their role in both behavior and psychopathology. Implications and further subdivisions within these areas are discussed.
Collapse
Affiliation(s)
- Kathryn G Commons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA. .,Department of Anaesthesia, Harvard Medical School, Boston, USA.
| |
Collapse
|
20
|
Okaty BW, Freret ME, Rood BD, Brust RD, Hennessy ML, deBairos D, Kim JC, Cook MN, Dymecki SM. Multi-Scale Molecular Deconstruction of the Serotonin Neuron System. Neuron 2015; 88:774-91. [PMID: 26549332 DOI: 10.1016/j.neuron.2015.10.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 08/06/2015] [Accepted: 09/28/2015] [Indexed: 02/01/2023]
Abstract
Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-seq to deconstruct the mouse 5HT system at multiple levels of granularity-from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal principles underlying system organization, 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers sertonergic subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance.
Collapse
Affiliation(s)
- Benjamin W Okaty
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Morgan E Freret
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Benjamin D Rood
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Rachael D Brust
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Morgan L Hennessy
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Danielle deBairos
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jun Chul Kim
- Psychology Department, University of Toronto, 100 St. George Street, Toronto ON, M5S 3G3, Canada
| | - Melloni N Cook
- Department of Psychology, University of Memphis, 400 Innovation Drive, Memphis, TN 38152, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Hepatocyte Growth Factor and MET Support Mouse Enteric Nervous System Development, the Peristaltic Response, and Intestinal Epithelial Proliferation in Response to Injury. J Neurosci 2015; 35:11543-58. [PMID: 26290232 DOI: 10.1523/jneurosci.5267-14.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Factors providing trophic support to diverse enteric neuron subtypes remain poorly understood. We tested the hypothesis that hepatocyte growth factor (HGF) and the HGF receptor MET might support some types of enteric neurons. HGF and MET are expressed in fetal and adult enteric nervous system. In vitro, HGF increased enteric neuron differentiation and neurite length, but only if vanishingly small amounts (1 pg/ml) of glial cell line-derived neurotrophic factor were included in culture media. HGF effects were blocked by phosphatidylinositol-3 kinase inhibitor and by MET-blocking antibody. Both of these inhibitors and MEK inhibition reduced neurite length. In adult mice, MET was restricted to a subset of calcitonin gene-related peptide-immunoreactive (IR) myenteric plexus neurons thought to be intrinsic primary afferent neurons (IPANs). Conditional MET kinase domain inactivation (Met(fl/fl); Wnt1Cre+) caused a dramatic loss of myenteric plexus MET-IR neurites and 1-1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyamine perchlorate (DiI) labeling suggested reduced MET-IR neurite length. In vitro, Met(fl/fl); Wnt1Cre+ mouse bowel had markedly reduced peristalsis in response to mucosal deformation, but normal response to radial muscle stretch. However, whole-bowel transit, small-bowel transit, and colonic-bead expulsion were normal in Met(fl/fl); Wnt1Cre+ mice. Finally, Met(fl/fl); Wnt1Cre+ mice had more bowel injury and reduced epithelial cell proliferation compared with WT animals after dextran sodium sulfate treatment. These results suggest that HGF/MET signaling is important for development and function of a subset IPANs and that these cells regulate intestinal motility and epithelial cell proliferation in response to bowel injury. SIGNIFICANCE STATEMENT The enteric nervous system has many neuronal subtypes that coordinate and control intestinal activity. Trophic factors that support these neuron types and enhance neurite growth after fetal development are not well understood. We show that a subset of adult calcitonin gene-related peptide (CGRP)-expressing myenteric neurons produce MET, the receptor for hepatocyte growth factor, and that loss of MET activity affects peristalsis in response to mucosal stroking, reduces MET-immunoreactive neurites, and increases susceptibility to dextran sodium sulfate-induced bowel injury. These observations may be relevant for understanding and treating intestinal motility disorders and also suggest that enhancing the activity of MET-expressing CGRP neurons might be a useful strategy to reduce bowel inflammation.
Collapse
|
22
|
Thompson BL, Levitt P. Complete or partial reduction of the Met receptor tyrosine kinase in distinct circuits differentially impacts mouse behavior. J Neurodev Disord 2015; 7:35. [PMID: 26523156 PMCID: PMC4628780 DOI: 10.1186/s11689-015-9131-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Our laboratory discovered that the gene encoding the receptor tyrosine kinase, MET, contributes to autism risk. Expression of MET is reduced in human postmortem temporal lobe in autism and Rett Syndrome. Subsequent studies revealed a role for MET in human and mouse functional and structural cortical connectivity. To further understand the contribution of Met to brain development and its impact on behavior, we generated two conditional mouse lines in which Met is deleted from select populations of central nervous system neurons. Mice were then tested to determine the consequences of disrupting Met expression. METHODS Mating of Emx1 (cre) and Met (fx/fx) mice eliminates receptor signaling from all cells arising from the dorsal pallium. Met (fx/fx) and Nestin (cre) crosses result in receptor signaling elimination from all neural cells. Behavioral tests were performed to assess cognitive, emotional, and social impairments that are observed in multiple neurodevelopmental disorders and that are in part subserved by circuits that express Met. RESULTS Met (fx/fx) /Emx1 (cre) null mice displayed significant hypoactivity in the activity chamber and in the T-maze despite superior performance on the rotarod. Additionally, these animals showed a deficit in spontaneous alternation. Surprisingly, Met (fx/fx; fx/+) /Nestin (cre) null and heterozygous mice exhibited deficits in contextual fear conditioning, and Met (fx/+) /Nestin (cre) heterozygous mice spent less time in the closed arms of the elevated plus maze. CONCLUSIONS These data suggest a complex contribution of Met in the development of circuits mediating social, emotional, and cognitive behavior. The impact of disrupting developmental Met expression is dependent upon circuit-specific deletion patterns and levels of receptor activity.
Collapse
Affiliation(s)
- Barbara L Thompson
- Chan Division of Occupational Science and Occupational Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089 USA ; Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| | - Pat Levitt
- Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| |
Collapse
|
23
|
Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci 2015; 16:469-86. [PMID: 26189694 DOI: 10.1038/nrn3978] [Citation(s) in RCA: 343] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing evidence points to a central role for immune dysregulation in autism spectrum disorder (ASD). Several ASD risk genes encode components of the immune system and many maternal immune system-related risk factors--including autoimmunity, infection and fetal reactive antibodies--are associated with ASD. In addition, there is evidence of ongoing immune dysregulation in individuals with ASD and in animal models of this disorder. Recently, several molecular signalling pathways--including pathways downstream of cytokines, the receptor MET, major histocompatibility complex class I molecules, microglia and complement factors--have been identified that link immune activation to ASD phenotypes. Together, these findings indicate that the immune system is a point of convergence for multiple ASD-related genetic and environmental risk factors.
Collapse
|
24
|
Yoshikawa M, Hirabayashi M, Ito R, Ozaki S, Aizawa S, Masuda T, Senzaki K, Shiga T. Contribution of the Runx1 transcription factor to axonal pathfinding and muscle innervation by hypoglossal motoneurons. Dev Neurobiol 2015; 75:1295-314. [PMID: 25762373 DOI: 10.1002/dneu.22285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/18/2015] [Accepted: 03/01/2015] [Indexed: 11/12/2022]
Abstract
The runt-related transcription factor Runx1 contributes to cell type specification and axonal targeting projections of the nociceptive dorsal root ganglion neurons. Runx1 is also expressed in the central nervous system, but little is known of its functions in brain development. At mouse embryonic day (E) 17.5, Runx1-positive neurons were detected in the ventrocaudal subdivision of the hypoglossal nucleus. Runx1-positive neurons lacked calcitonin gene-related peptide (CGRP) expression, whereas Runx1-negative neurons expressed CGRP. Expression of CGRP was not changed in Runx1-deficient mice at E17.5, suggesting that Runx1 alone does not suppress CGRP expression. Hypoglossal axon projections to the intrinsic vertical (V) and transverse (T) tongue muscles were sparser in Runx1-deficient mice at E17.5 compared to age-matched wild-type littermates. Concomitantly, vesicular acetylcholine transporter-positive axon terminals and acetylcholine receptor clusters were less dense in the V and T tongue muscles of Runx1-deficient mice. These abnormalities in axonal projection were not caused by a reduction in the total number hypoglossal neurons, failed synaptogenesis, or tongue muscles deficits. Our results implicate Runx1 in the targeting of ventrocaudal hypoglossal axons to specific tongue muscles. However, Runx1 deficiency did not alter neuronal survival or the expression of multiple motoneuron markers as in other neuronal populations. Thus, Runx1 appears to have distinct developmental functions in different brain regions.
Collapse
Affiliation(s)
- Masaaki Yoshikawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-8610, Japan.,Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Mizuki Hirabayashi
- Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ryota Ito
- Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Shigeru Ozaki
- Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-8610, Japan
| | - Tomoyuki Masuda
- Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kouji Senzaki
- Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takashi Shiga
- Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
25
|
MET receptor tyrosine kinase controls dendritic complexity, spine morphogenesis, and glutamatergic synapse maturation in the hippocampus. J Neurosci 2015; 34:16166-79. [PMID: 25471559 DOI: 10.1523/jneurosci.2580-14.2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The MET receptor tyrosine kinase (RTK), implicated in risk for autism spectrum disorder (ASD) and in functional and structural circuit integrity in humans, is a temporally and spatially regulated receptor enriched in dorsal pallial-derived structures during mouse forebrain development. Here we report that loss or gain of function of MET in vitro or in vivo leads to changes, opposite in nature, in dendritic complexity, spine morphogenesis, and the timing of glutamatergic synapse maturation onto hippocampus CA1 neurons. Consistent with the morphological and biochemical changes, deletion of Met in mutant mice results in precocious maturation of excitatory synapse, as indicated by a reduction of the proportion of silent synapses, a faster GluN2A subunit switch, and an enhanced acquisition of AMPA receptors at synaptic sites. Thus, MET-mediated signaling appears to serve as a mechanism for controlling the timing of neuronal growth and functional maturation. These studies suggest that mistimed maturation of glutamatergic synapses leads to the aberrant neural circuits that may be associated with ASD risk.
Collapse
|
26
|
Lambert N, Wermenbol V, Pichon B, Acosta S, van den Ameele J, Perazzolo C, Messina D, Musumeci MF, Dessars B, De Leener A, Abramowicz M, Vilain C. A familial heterozygous null mutation of MET in autism spectrum disorder. Autism Res 2014; 7:617-22. [PMID: 24909855 DOI: 10.1002/aur.1396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/01/2014] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorder (ASD) results from interactions of genetic and environmental factors. The MET proto-oncogene has been identified as a candidate gene for autism susceptibility, and is implicated in neurodevelopment and social brain circuitry. Here, we describe the first case of a familial mutation of MET, consisting of an interstitial genomic deletion removing exons 12 through 15, causing a frameshift and premature stop codon, with evidence of nonsense-mediated mRNA decay. On the other allele, patients carried the C allele of the MET promoter rs1858830 polymorphism, known to decrease MET expression and previously associated with autism susceptibility. The heterozygous mutation was associated with autism in one patient, and language and social impairment in a sibling. Our observations delineate the phenotypic spectrum associated with a clearly defined, very likely complete loss of function mutation of MET. Incomplete penetrance in this family was consistent with MET as a partial susceptibility gene for ASD. Implication of MET in normal and pathological brain development opens new perspectives for understanding the pathophysiology of autism and for eventual therapeutical clues.
Collapse
Affiliation(s)
- Nelle Lambert
- ULB Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium; Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Peng Y, Huentelman M, Smith C, Qiu S. MET receptor tyrosine kinase as an autism genetic risk factor. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:135-65. [PMID: 24290385 DOI: 10.1016/b978-0-12-418700-9.00005-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this chapter, we will briefly discuss recent literature on the role of MET receptor tyrosine kinase (RTK) in brain development and how perturbation of MET signaling may alter normal neurodevelopmental outcomes. Recent human genetic studies have established MET as a risk factor for autism, and the molecular and cellular underpinnings of this genetic risk are only beginning to emerge from obscurity. Unlike many autism risk genes that encode synaptic proteins, the spatial and temporal expression pattern of MET RTK indicates this signaling system is ideally situated to regulate neuronal growth, functional maturation, and establishment of functional brain circuits, particularly in those brain structures involved in higher levels of cognition, social skills, and executive functions.
Collapse
Affiliation(s)
- Yun Peng
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | | | | | | |
Collapse
|