1
|
Böhm M, Parekh M, Deshpande N, Cheung Q, Shatz N, Kumar V, Jurkunas UV. Mitochondria-Targeted Antioxidant (MitoQ) and Nontargeted Antioxidant (Idebenone) Mitigate Mitochondrial Dysfunction in Corneal Endothelial Cells. Cornea 2025; 44:492-503. [PMID: 39819808 DOI: 10.1097/ico.0000000000003801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/07/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE To investigate the effectiveness of mitochondrial-targeted antioxidant mitoquinone (MitoQ) and nontargeted antioxidant idebenone (Idb) in alleviating mitochondrial dysfunction in corneal endothelial cells (CEnCs). METHODS In vitro experiments were conducted using immortalized normal human corneal endothelial cells (HCEnC-21T; SVN1-67F) and Fuchs endothelial corneal dystrophy (FECD) cells (SVF5-54F; SVF3-76M). Cells were pretreated with MitoQ or Idb and then exposed to menadione (MN) with simultaneous antioxidant treatment. Mitochondrial parameters were evaluated through adenosine triphosphate viability assays, JC-1 staining for mitochondrial membrane potential, and Tom-20 antibody staining for fragmentation, with analysis performed using ImageJ software. HCEnC-21T cells were additionally exposed to ultraviolet-A (25 J/cm 2 ) to assess drug effects under physiological stress. Mitochondrial fragmentation in FECD specimens was analyzed pre- and post-treatment with the drugs. Statistical analysis was conducted using 1-/2-way analysis of variance with post-hoc Tukey test. RESULTS MitoQ and Idb enhanced cell viability and mitochondrial membrane potential in both normal and FECD cells under MN-induced stress. Idb reduced MN-induced mitochondrial fragmentation by 32% more than MitoQ in HCEnC-21T cells and by 13% more in SVF5-54F cells. Under ultraviolet-A stress, Idb and MitoQ improved mitochondrial function by 31% and 25%, respectively, with MitoQ increasing mitochondrial function by 42% in FECD specimens. CONCLUSIONS Differential responses in mitochondrial dysfunction across cell lines highlight disease heterogeneity. MitoQ and Idb protected CEnCs from oxidative stress and improved mitochondrial bioenergetics, suggesting that mitochondrial-targeted antioxidants could be considered for mitochondrial dysfunction in CEnCs.
Collapse
Affiliation(s)
- Myriam Böhm
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA; and
- Department of Ophthalmology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Mohit Parekh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA; and
| | - Neha Deshpande
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA; and
| | - Queenie Cheung
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA; and
| | - Nathan Shatz
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA; and
| | - Varun Kumar
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA; and
| | - Ula V Jurkunas
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA; and
| |
Collapse
|
2
|
Wang S, Ji F, Gao X, Li Z, Lv S, Zhang J, Luo J, Li D, Yan J, Zhang H, Fang K, Wu L, Li M. Tyrosine Kinase Inhibitor Lenvatinib Causes Cardiotoxicity by Inducing Endoplasmic Reticulum Stress and Apoptosis through Activating ATF6, IRE1α and PERK Signaling Pathways. Recent Pat Anticancer Drug Discov 2025; 20:168-184. [PMID: 38994620 DOI: 10.2174/0115748928265981231204044653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 07/13/2024]
Abstract
BACKGROUND Lenvatinib is a tyrosine kinase inhibitor that can improve progression-free survival in patients with thyroid cancer and hepatocellular carcinoma. However, it is limited by adverse cardiovascular events, including hypertension and cardiac dysfunction. Activation of endoplasmic reticulum stress is involved in cardiomyocyte apoptosis. OBJECTIVE This study aimed to confirm whether the cardiotoxicity of lenvatinib is associated with endoplasmic reticulum stress by targeting the activating transcription factor 6 (ATF6), inositol- requiring enzyme 1α (IRE1α) and protein kinase RNA-like ER kinase (PERK) signaling pathways. METHODS Male C57/BL6 mice were intragastric administration with 30 mg/kg/day lenvatinib. Electrocardiography (ECG) and echocardiography were used to detect arrhythmias and cardiac function. Neonatal rat cardiomyocytes were treated with lenvatinib for 48h. Cell counting kit (CCK8), 2´,7´-dichlorodihydrofluoresceine diacetate (H2DCFHDA), Hoechst 33258 and dihydrorhodamine 123 were respectively used for evaluating cell viability, the level of reactive oxygen species (ROS), nuclear morphological changes and mitochondrial membrane potential (MMP) level. RESULTS Lenvatinib remarkably decreased the posterior wall thickness of left ventricle during diastole and systole but caused little decrease to the left ventricular ejection fraction (LVEF, %). Furthermore, lenvatinib greatly prolonged the corrected QT interval (QTc) and altered the morphology of cardiomyocytes. No significant difference in fibrosis was found in mouse cardiac slices. Lenvatinib upregulates apoptosis-related protein expression. In addition, lenvatinib increased ERS-related proteins expression (GRP78, CHOP, and ATF6) and enhanced PERK phosphorylation. In neonatal rat cardiac myocytes, lenvatinib markedly decreased the viability of cardiomyocytes and induced apoptosis. Furthermore, ROS production increased and MMP decreased. Similar to the mice experiment, lenvatinib caused upregulation of apoptosis-related and ERS-related proteins and increased the phosphorylation levels of PERK and IRE1α. CONCLUSION Lenvatinib-induced cardiotoxicity is associated with ERS-induced apoptosis by targeting the ATF6, IRE1α, and PERK signaling pathways.
Collapse
Affiliation(s)
- Siqi Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Fang Ji
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaoli Gao
- Department of General Surgery (Breast Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhiyi Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Si Lv
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Juan Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jiarui Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dan Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jie Yan
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Huayang Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Kaicheng Fang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
3
|
Godoy JA, Mira RG, Inestrosa NC. Intracellular effects of lithium in aging neurons. Ageing Res Rev 2024; 99:102396. [PMID: 38942199 DOI: 10.1016/j.arr.2024.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Lithium therapy received approval during the 1970s, and it has been used for its antidepressant, antimanic, and anti-suicidal effects for acute and long-term prophylaxis and treatment of bipolar disorder (BPD). These properties have been well established; however, the molecular and cellular mechanisms remain controversial. In the past few years, many studies demonstrated that at the cellular level, lithium acts as a regulator of neurogenesis, aging, and Ca2+ homeostasis. At the molecular level, lithium modulates aging by inhibiting glycogen synthase kinase-3β (GSK-3β), and the phosphatidylinositol (PI) cycle; latter, lithium specifically inhibits inositol production, acting as a non-competitive inhibitor of inositol monophosphatase (IMPase). Mitochondria and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) have been related to lithium activity, and its regulation is mediated by GSK-3β degradation and inhibition. Lithium also impacts Ca2+ homeostasis in the mitochondria modulating the function of the lithium-permeable mitochondrial Na+-Ca2+exchanger (NCLX), affecting Ca2+ efflux from the mitochondrial matrix to the endoplasmic reticulum (ER). A close relationship between the protease Omi, GSK-3β, and PGC-1α has also been established. The purpose of this review is to summarize some of the intracellular mechanisms related to lithium activity and how, through them, neuronal aging could be controlled.
Collapse
Affiliation(s)
- Juan A Godoy
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo G Mira
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Li N, Liu G, Gao H, Wu Q, Meng J, Wang F, Jiang S, Chen M, Xu W, Zhang Y, Wang Y, Feng Y, Liu J, Xu C, Lu H. Geriatric syndromes, chronic inflammation, and advances in the management of frailty: A review with new insights. Biosci Trends 2023; 17:262-270. [PMID: 37612125 DOI: 10.5582/bst.2023.01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
As people age, geriatric syndromes characterized by frailty significantly impact both clinical practice and public health. Aging weakens people's immune functions, leading to chronic low-grade inflammation that ultimately contributes to the development of frailty. Effectively managing geriatric syndromes and frailty can help alleviate the economic burden of an aging population. This review delves into the intricate relationship among aging, infection-induced inflammation, chronic inflammation, and frailty. In addition, it analyzes various approaches and interventions to address frailty, such as smart rehabilitation programs and stem-cell treatments, offering promising solutions in this new era. Given the importance of this topic, further research into the mechanisms of frailty is crucial. Equally essential is the devising of relevant measures to delay its onset and the formulation of comprehensive clinical, research, and public health strategies to enhance the quality of life for elderly individuals.
Collapse
Affiliation(s)
- Niuniu Li
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Gaolin Liu
- Washington University in St. Louis, St. Louis, United States
| | - Hong Gao
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Qiang Wu
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Juan Meng
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Fei Wang
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Siwei Jiang
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Meixia Chen
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Wenhui Xu
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Yifan Zhang
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Yanjun Wang
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Yingqian Feng
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Juncai Liu
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Cheng Xu
- Department of Geriatric Medicine, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Hongzhou Lu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Arora A, Behl T, Sehgal A, Singh S, Sharma N, Mathew B, Bungau S. Targeting cellular batteries for the therapy of neurological diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41517-41532. [PMID: 34080116 DOI: 10.1007/s11356-021-14665-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The mitochondria, apart from being known as the cell's "powerhouse," are crucial in the viability of nerve cells. Any damage to these cellular organelles can result in their cellular level dysfunction which includes rapidly multiplying reactive oxygen species (ROS) from the mitochondrial membrane, impaired calcium ion homeostasis, and disturbed mitochondrial dynamics by the formation of permeability transition pore in mitochondria. All these impaired biochemical changes lead to various neurological disorders such as progressive supranuclear palsy (PSP), Parkinson's disease (PD), and Alzheimer's disease (AD). Moreover, impaired mitochondrial functions are particularly prone to damage owing to prolonged lifespan and stretched length of the neurons. At the same time, neurons are highly dependent on ATP, and thus, the mitochondria play a central role in the pathogenesis pertaining to neuronal disorders. Dysfunction in the mitochondria is an early pathological hallmark of neurological disorders, and its early detection with the help of suitable biomarkers can lead to promising treatment in this area. Thus, the drugs which are targeting mitochondrial dysfunctions are the emerging area of research in connection with neurological disorders. This can be evidenced by the great opportunities for mitigation, diagnosis, and treatment of numerous human disorders that entail mitochondrial dysfunction at the nexus of their pathogenesis. Here, we throw light at the mitochondrial pathologies and indications of dysfunctional mitochondria in PD, AD, and PSP. There is also an insight into the possible therapeutic strategies highlighting the need for mitochondria-based medicine and made an attempt for claiming the prerequisite for the therapy of neurological diseases.
Collapse
Affiliation(s)
- Arpita Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
6
|
Cavinato M, Madreiter-Sokolowski CT, Büttner S, Schosserer M, Zwerschke W, Wedel S, Grillari J, Graier WF, Jansen-Dürr P. Targeting cellular senescence based on interorganelle communication, multilevel proteostasis, and metabolic control. FEBS J 2020; 288:3834-3854. [PMID: 33200494 PMCID: PMC7611050 DOI: 10.1111/febs.15631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Cellular senescence, a stable cell division arrest caused by severe damage and stress, is a hallmark of aging in vertebrates including humans. With progressing age, senescent cells accumulate in a variety of mammalian tissues, where they contribute to tissue aging, identifying cellular senescence as a major target to delay or prevent aging. There is an increasing demand for the discovery of new classes of small molecules that would either avoid or postpone cellular senescence by selectively eliminating senescent cells from the body (i.e., ‘senolytics’) or inactivating/switching damage‐inducing properties of senescent cells (i.e., ‘senostatics/senomorphics’), such as the senescence‐associated secretory phenotype. Whereas compounds with senolytic or senostatic activity have already been described, their efficacy and specificity has not been fully established for clinical use yet. Here, we review mechanisms of senescence that are related to mitochondria and their interorganelle communication, and the involvement of proteostasis networks and metabolic control in the senescent phenotype. These cellular functions are associated with cellular senescence in in vitro and in vivo models but have not been fully exploited for the search of new compounds to counteract senescence yet. Therefore, we explore possibilities to target these mechanisms as new opportunities to selectively eliminate and/or disable senescent cells with the aim of tissue rejuvenation. We assume that this research will provide new compounds from the chemical space which act as mimetics of caloric restriction, modulators of calcium signaling and mitochondrial physiology, or as proteostasis optimizers, bearing the potential to counteract cellular senescence, thereby allowing healthy aging.
Collapse
Affiliation(s)
- Maria Cavinato
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| | - Corina T Madreiter-Sokolowski
- Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Austria.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Austria
| | - Werner Zwerschke
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| | - Sophia Wedel
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Austria.,BioTechMed Graz, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| |
Collapse
|
7
|
Kwon I, Jang Y, Lee Y. Endurance Exercise-Induced Autophagy/Mitophagy Coincides with a Reinforced Anabolic State and Increased Mitochondrial Turnover in the Cortex of Young Male Mouse Brain. J Mol Neurosci 2020; 71:42-54. [PMID: 32535714 DOI: 10.1007/s12031-020-01624-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/08/2020] [Indexed: 01/07/2023]
Abstract
Autophagy/mitophagy, a cellular catabolic process necessary for sustaining normal cellular function, has emerged as a potential therapeutic strategy against numerous obstinate diseases. In this regard, endurance exercise (EXE)-induced autophagy/mitophagy (EIAM) has been considered as a potential health-enriching factor in various tissues including the brain; however, underlying mechanisms of EIAM in the brain has not been fully defined yet. This study investigated the molecular signaling nexus of EIAM pathways in the cortex of the brain. C57BL/6 young male mice were randomly assigned to a control group (CON, n = 12) and an endurance exercise group (EXE, n = 12). Our data demonstrated that exercise-induced autophagy coincided with an enhanced anabolic state (p-AKT, p-mTOR, and p-p70S6K); furthermore, mitophagy concurred with enhanced mitochondrial turnover: increases in both fission (DRP1, BNIP3, and PINK1) and fusion (OPA1 and MFN2) proteins. In addition, neither oxidative stress nor sirtuins (SIRT) 1 and 3 were associated with EIAM; instead, the activation of AMPK as well as a JNK-BCL2 axis was linked to EIAM promotion. Collectively, our results demonstrated that EXE-induced anabolic enrichment did not hinder autophagy/mitophagy and that the concurrent augmentation of mitochondrial fusion and fusion process contributed to sustaining mitophagy in the cortex of the brain. Our findings suggest that the EXE-induced concomitant potentiation of the catabolic and anabolic state is a unique molecular mechanism that simultaneously contributes to recycling and rebuilding the cellular structure, leading to upholding healthy cellular environment. Thus, the current study provides a novel autophagy/mitophagy mechanism, from which groundbreaking pharmacological strategies of autophagy can be developed.
Collapse
Affiliation(s)
- Insu Kwon
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, 11000 University Pkwy, Bldg.72, Pensacola, FL, 32514, USA
| | - Yongchul Jang
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, 11000 University Pkwy, Bldg.72, Pensacola, FL, 32514, USA
| | - Youngil Lee
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, 11000 University Pkwy, Bldg.72, Pensacola, FL, 32514, USA.
| |
Collapse
|
8
|
Liu S, Wei Y, Zhang SH. The C3HC type zinc-finger protein (ZFC3) interacting with Lon/MAP1 is important for mitochondrial gene regulation, infection hypha development and longevity of Magnaporthe oryzae. BMC Microbiol 2020; 20:23. [PMID: 32000669 PMCID: PMC6993355 DOI: 10.1186/s12866-020-1711-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background The rice blast is a typical fungal disease caused by Magnaporthe oryzae, and the mitochondrial ATP-dependent Lon protease (MAP1) has been proven to be involved in blast development. We previously screened a C3HC type Zinc-finger domain protein (ZFC3), which is interacted with MAP1. The purpose of this research was to study the biological function of ZFC3 protein in M. oryzae. Results We first confirmed that the ZFC3-RFP fusion protein is localized within the mitochondria. The deleted mutant strains of ZFC3 (∆ZFC3) showed the enhanced expression level of mtATP6, particularly mtATP8, and almost unchanged nATP9. ΔZFC3 produces more conidia and more tolerance to multiple stressors. The knock-out strain shows more melanin accumulation suggests the susceptibility to aging. ΔZFC3 displays faster early-stage hypha infiltration involved in MAP1-mediated pathogenicity in host rice. Conclusion These results support the view that ZFC3 is a key regulator involved in gene regulation, stress response, cell wall integrity, longevity, conidiation, infection hypha development and MAP1-mediated pathogenicity in M. oryzae.
Collapse
Affiliation(s)
- Shaoshuai Liu
- College of Plant Sciences, Jilin University, Changchun, China.,Present address: Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich Buff-Ring 26-32, D-35392, Giessen, Germany
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China.
| |
Collapse
|
9
|
The mitochondrial translocase of the inner membrane PaTim54 is involved in defense response and longevity in Podospora anserina. Fungal Genet Biol 2019; 132:103257. [PMID: 31351193 DOI: 10.1016/j.fgb.2019.103257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 11/20/2022]
Abstract
Fungi are very successful microorganisms capable of colonizing virtually any ecological niche where they must constantly cope with competitors including fungi, bacteria and nematodes. We have shown previously that the ascomycete Podopora anserina exhibits Hyphal Interference (HI), an antagonistic response triggered by direct contact of competing fungal hyphae. When challenged with Penicillium chrysogenum, P. anserina produces hydrogen peroxide at the confrontation and kills the hyphae of P. chrysogenum. Here, we report the characterization of the PDC2218 mutant affected in HI. When challenged with P. chrysogenum, the PDC2218 mutant produces a massive oxidative burst at the confrontation. However, this increased production of hydrogen peroxide is not correlated to increased cell death in P. chrysogenum. Hence, the oxidative burst and cell death in the challenger are uncoupled in PDC2218. The gene affected in PDC2218 is PaTim54, encoding the homologue of the budding yeast mitochondrial inner membrane import machinery component Tim54p. We show that PaTim54 is essential in P. anserina and that the phenotypes displayed by the PDC2218 mutant, renamed PaTim542218, are the consequence of a drastic reduction in the expression of PaTim54. Among these pleiotropic phenotypes, PDC2218-PaTim542218- displays increased lifespan, a phenotype in line with the observed mitochondrial defects in the mutant.
Collapse
|
10
|
NME4/nucleoside diphosphate kinase D in cardiolipin signaling and mitophagy. J Transl Med 2018; 98:228-232. [PMID: 29035377 DOI: 10.1038/labinvest.2017.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/12/2023] Open
Abstract
Mitophagy is an emerging paradigm for mitochondrial quality control and cell homeostasis. Dysregulation of mitophagy can lead to human pathologies such as neurodegenerative disorders and contributes to the aging process. Complex protein signaling cascades have been described that regulate mitophagy. We have identified a novel lipid signaling pathway that involves the phospholipid cardiolipin (CL). CL is synthesized and normally confined at the inner mitochondrial membrane. However, upon a mitophagic trigger, ie, collapse of the inner membrane potential, CL is rapidly externalized to the mitochondrial surface with the assistance of the hexameric nucleoside diphosphate kinase D (NME4, NDPK-D, or NM23-H4). In addition to its NDP kinase activity, NME4/NDPK-D shows intermembrane phospholipid transfer activity in vitro and in cellular systems, which relies on NME4/NDPK-D interaction with CL, CL-dependent crosslinking of inner and outer mitochondrial membranes by symmetrical, hexameric NME4/NDPK-D, and a putative NME4/NDPK-D-based CL-transfer pathway. CL exposed at the mitochondrial surface then serves as an 'eat me' signal for the mitophagic machinery; it is recognized by the LC3 receptor of autophagosomes, targeting the dysfunctional mitochondrion to lysosomal degradation. Similar NME4-supported CL externalization is likely also involved in apoptosis and inflammatory reactions.
Collapse
|
11
|
Rampello NG, Stenger M, Westermann B, Osiewacz HD. Impact of F1Fo-ATP-synthase dimer assembly factors on mitochondrial function and organismic aging. MICROBIAL CELL 2018; 5:198-207. [PMID: 29610761 PMCID: PMC5878687 DOI: 10.15698/mic2018.04.625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In aerobic organisms, mitochondrial F1Fo-ATP-synthase is the major site of ATP production. Beside this fundamental role, the protein complex is involved in shaping and maintenance of cristae. Previous electron microscopic studies identified the dissociation of F1Fo-ATP-synthase dimers and oligomers during organismic aging correlating with a massive remodeling of the mitochondrial inner membrane. Here we report results aimed to experimentally proof this impact and to obtain further insights into the control of these processes. We focused on the role of the two dimer assembly factors PaATPE and PaATPG of the aging model Podospora anserina. Ablation of either protein strongly affects mitochondrial function and leads to an accumulation of senescence markers demonstrating that the inhibition of dimer formation negatively influences vital functions and accelerates organismic aging. Our data validate a model that links mitochondrial membrane remodeling to aging and identify specific molecular components triggering this process.
Collapse
Affiliation(s)
- Nadia G Rampello
- Department of Biosciences, Molecular Developmental Biology, Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, J. W. Goethe University, 60438 Frankfurt, Germany
| | - Maria Stenger
- Cell Biology and Electron Microscopy, University of Bayreuth, 95440 Bayreuth, Germany
| | - Benedikt Westermann
- Cell Biology and Electron Microscopy, University of Bayreuth, 95440 Bayreuth, Germany
| | - Heinz D Osiewacz
- Department of Biosciences, Molecular Developmental Biology, Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, J. W. Goethe University, 60438 Frankfurt, Germany
| |
Collapse
|
12
|
Soundararajan R, Stearns TM, Czachor A, Fukumoto J, Turn C, Westermann-Clark E, Breitzig M, Tan L, Lockey RF, King BL, Kolliputi N. Global gene profiling of aging lungs in Atp8b1 mutant mice. Aging (Albany NY) 2017; 8:2232-2252. [PMID: 27689529 PMCID: PMC5076460 DOI: 10.18632/aging.101056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/10/2016] [Indexed: 12/18/2022]
Abstract
Objective Recent studies implicate cardiolipin oxidation in several age-related diseases. Atp8b1 encoding Type 4 P-type ATPases is a cardiolipin transporter. Mutation in Atp8b1 gene or inflammation of the lungs impairs the capacity of Atp8b1 to clear cardiolipin from lung fluid. However, the link between Atp8b1 mutation and age-related gene alteration is unknown. Therefore, we investigated how Atp8b1 mutation alters age-related genes. Methods We performed Affymetrix gene profiling of lungs isolated from young (7-9 wks, n=6) and aged (14 months, 14 M, n=6) C57BL/6 and Atp8b1 mutant mice. In addition, Ingenuity Pathway Analysis (IPA) was performed. Differentially expressed genes were validated by quantitative real-time PCR (qRT-PCR). Results Global transcriptome analysis revealed 532 differentially expressed genes in Atp8b1 lungs, 157 differentially expressed genes in C57BL/6 lungs, and 37 overlapping genes. IPA of age-related genes in Atp8b1 lungs showed enrichment of Xenobiotic metabolism and Nrf2-mediated signaling pathways. The increase in Adamts2 and Mmp13 transcripts in aged Atp8b1 lungs was validated by qRT-PCR. Similarly, the decrease in Col1a1 and increase in Cxcr6 transcripts was confirmed in both Atp8b1 mutant and C57BL/6 lungs. Conclusion Based on transcriptome profiling, our study indicates that Atp8b1 mutant mice may be susceptible to age-related lung diseases.
Collapse
Affiliation(s)
- Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | - Alexander Czachor
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Jutaro Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Christina Turn
- University of Florida College of Medicine, Gainesville, FL 32608, USA
| | - Emma Westermann-Clark
- Division of Allergy and Immunology, Department of Internal Medicine, James A Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Mason Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Lee Tan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
13
|
Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL. Regulated Forms of Cell Death in Fungi. Front Microbiol 2017; 8:1837. [PMID: 28983298 PMCID: PMC5613156 DOI: 10.3389/fmicb.2017.01837] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Cell death occurs in all domains of life. While some cells die in an uncontrolled way due to exposure to external cues, other cells die in a regulated manner as part of a genetically encoded developmental program. Like other eukaryotic species, fungi undergo programmed cell death (PCD) in response to various triggers. For example, exposure to external stress conditions can activate PCD pathways in fungi. Calcium redistribution between the extracellular space, the cytoplasm and intracellular storage organelles appears to be pivotal for this kind of cell death. PCD is also part of the fungal life cycle, in which it occurs during sexual and asexual reproduction, aging, and as part of development associated with infection in phytopathogenic fungi. Additionally, a fungal non-self-recognition mechanism termed heterokaryon incompatibility (HI) also involves PCD. Some of the molecular players mediating PCD during HI show remarkable similarities to major constituents involved in innate immunity in metazoans and plants. In this review we discuss recent research on fungal PCD mechanisms in comparison to more characterized mechanisms in metazoans. We highlight the role of PCD in fungi in response to exogenic compounds, fungal development and non-self-recognition processes and discuss identified intracellular signaling pathways and molecules that regulate fungal PCD.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Jens Heller
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Asen Daskalov
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Arnaldo Videira
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoPorto, Portugal.,I3S - Instituto de Investigação e Inovação em SaúdePorto, Portugal
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
14
|
Phenotypic analysis of newly isolated short-lifespan Neurospora crassa mutant deficient in a high mobility group box protein. Fungal Genet Biol 2017; 105:28-36. [DOI: 10.1016/j.fgb.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
|
15
|
Activation of mitophagy leads to decline in Mfn2 and loss of mitochondrial mass in Fuchs endothelial corneal dystrophy. Sci Rep 2017; 7:6656. [PMID: 28751712 PMCID: PMC5532298 DOI: 10.1038/s41598-017-06523-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022] Open
Abstract
Human corneal endothelial cells (HCEnCs) are terminally differentiated cells that have limited regenerative potential. The large numbers of mitochondria in HCEnCs are critical for pump and barrier function required for corneal hydration and transparency. Fuchs Endothelial Corneal Dystrophy (FECD) is a highly prevalent late-onset oxidative stress disorder characterized by progressive loss of HCEnCs. We previously reported increased mitochondrial fragmentation and reduced ATP and mtDNA copy number in FECD. Herein, carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced mitochondrial depolarization decreased mitochondrial mass and Mfn2 levels, which were rescued with mitophagy blocker, bafilomycin, in FECD. Moreover, electron transport chain complex (I, V) decrease in FECD indicated deficient mitochondrial bioenergetics. Transmission electron microscopy of FECD tissues displayed an increased number of autophagic vacuoles containing degenerated and swollen mitochondria with cristolysis. An elevation of LC3-II and LAMP1 and downregulation of Mfn2 in mitochondrial fractions suggested that loss of fusion capacity targets fragmented mitochondria to the pre-autophagic pool and upregulates mitophagy. CCCP-induced mitochondrial fragmentation leads to Mfn2 and LC3 co-localization without activation of proteosome, suggesting a novel Mfn2 degradation pathway via mitophagy. These data indicate constitutive activation of mitophagy results in reduction of mitochondrial mass and abrogates cellular bioenergetics during degeneration of post-mitotic cells of ocular tissue.
Collapse
|
16
|
Theunissen TEJ, Szklarczyk R, Gerards M, Hellebrekers DMEI, Mulder-Den Hartog ENM, Vanoevelen J, Kamps R, de Koning B, Rutledge SL, Schmitt-Mechelke T, van Berkel CGM, van der Knaap MS, de Coo IFM, Smeets HJM. Specific MRI Abnormalities Reveal Severe Perrault Syndrome due to CLPP Defects. Front Neurol 2016; 7:203. [PMID: 27899912 PMCID: PMC5110515 DOI: 10.3389/fneur.2016.00203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022] Open
Abstract
In establishing a genetic diagnosis in heterogeneous neurological disease, clinical characterization and whole exome sequencing (WES) go hand-in-hand. Clinical data are essential, not only to guide WES variant selection and define the clinical severity of a genetic defect but also to identify other patients with defects in the same gene. In an infant patient with sensorineural hearing loss, psychomotor retardation, and epilepsy, WES resulted in identification of a novel homozygous CLPP frameshift mutation (c.21delA). Based on the gene defect and clinical symptoms, the diagnosis Perrault syndrome type 3 (PRLTS3) was established. The patient’s brain-MRI revealed specific abnormalities of the subcortical and deep cerebral white matter and the middle blade of the corpus callosum, which was used to identify similar patients in the Amsterdam brain-MRI database, containing over 3000 unclassified leukoencephalopathy cases. In three unrelated patients with similar MRI abnormalities the CLPP gene was sequenced, and in two of them novel missense mutations were identified together with a large deletion that covered part of the CLPP gene on the other allele. The severe neurological and MRI abnormalities in these young patients were due to the drastic impact of the CLPP mutations, correlating with the variation in clinical manifestations among previously reported patients. Our data show that similarity in brain-MRI patterns can be used to identify novel PRLTS3 patients, especially during early disease stages, when only part of the disease manifestations are present. This seems especially applicable to the severely affected cases in which CLPP function is drastically affected and MRI abnormalities are pronounced.
Collapse
Affiliation(s)
- Tom E J Theunissen
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands; Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Radek Szklarczyk
- Department of Clinical Genetics, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Mike Gerards
- Maastricht Centre for Systems Biology (MaCSBio) , Maastricht , Netherlands
| | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Centre , Maastricht , Netherlands
| | | | - Jo Vanoevelen
- Department of Clinical Genetics, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Rick Kamps
- Department of Clinical Genetics, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Bart de Koning
- Department of Clinical Genetics, Maastricht University Medical Centre , Maastricht , Netherlands
| | - S Lane Rutledge
- Department of Neurology and Genetics, University of Alabama at Birmingham , Birmingham, AL , USA
| | | | - Carola G M van Berkel
- Department of Child Neurology, Neuroscience Campus Amsterdam, VU University Medical Center , Amsterdam , Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Neuroscience Campus Amsterdam, VU University Medical Center , Amsterdam , Netherlands
| | | | - Hubert J M Smeets
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands; Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands; Maastricht Centre for Systems Biology (MaCSBio), Maastricht, Netherlands
| |
Collapse
|
17
|
Burke C, Trinh K, Nadar V, Sanyal S. AxGxE: Using Flies to Interrogate the Complex Etiology of Neurodegenerative Disease. Curr Top Dev Biol 2016; 121:225-251. [PMID: 28057301 DOI: 10.1016/bs.ctdb.2016.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Progressive and late-onset neurological disorders such as Parkinson's disease and Alzheimer's disease affect up to 50 million people globally-a number postulated to double every 20 years in a continually aging population. While predisposing allelic variants in several genes clearly confer risk, individual age and specific environmental influences are equally important discriminators of disease onset age and progression. However, none of these factors can independently predict disease with significant precision. Therefore, we must actively develop models that accommodate contributions from all factors, potentially resulting in an A × G × E (age-gene-environment) metric that reflects individual cumulative risk and reliably forecasts disease outcomes. This effort can only be enabled by a deep quantitative understanding of the contribution of these factors to neurodegenerative disease, both individually and in combination. This is also an important consideration because neuronal loss typically precedes clinical presentation and disease-modifying therapies are contingent on early diagnosis that is likely to be informed by an accurate estimation of individual risk. Although epidemiological studies continue to make strong advances in these areas with the advent of powerful "omics"-based approaches, systematic phenotypic modeling of AxGxE interactions is currently more feasible in model organisms such as Drosophila melanogaster where all three parameters can be manipulated with manageable experimental burden. Here, we outline the advantages of using fruit flies for investigating these complex interactions and highlight potential approaches that might help synthesize existing information from diverse fields into a cogent description of age-dependent, environmental, and genetic risk factors in the pathophysiology of neurological disorders.
Collapse
Affiliation(s)
- C Burke
- Neurology Research, Biogen, Cambridge, MA United States
| | - K Trinh
- Neurology Research, Biogen, Cambridge, MA United States
| | - V Nadar
- Neurology Research, Biogen, Cambridge, MA United States
| | - S Sanyal
- Neurology Research, Biogen, Cambridge, MA United States.
| |
Collapse
|
18
|
Leiter É, Park HS, Kwon NJ, Han KH, Emri T, Oláh V, Mészáros I, Dienes B, Vincze J, Csernoch L, Yu JH, Pócsi I. Characterization of the aodA, dnmA, mnSOD and pimA genes in Aspergillus nidulans. Sci Rep 2016; 6:20523. [PMID: 26846452 PMCID: PMC4742808 DOI: 10.1038/srep20523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/05/2016] [Indexed: 01/02/2023] Open
Abstract
Mitochondria play key roles in cellular energy generation and lifespan of most eukaryotes. To understand the functions of four nuclear-encoded genes predicted to be related to the maintenance of mitochondrial morphology and function in Aspergillus nidulans, systematic characterization was carried out. The deletion and overexpression mutants of aodA, dnmA, mnSOD and pimA encoding alternative oxidase, dynamin related protein, manganese superoxide dismutase and Lon protease, respectively, were generated and examined for their growth, stress tolerances, respiration, autolysis, cell death, sterigmatocystin production, hyphal morphology and size, and mitochondrial superoxide production as well as development. Overall, genetic manipulation of these genes had less effect on cellular physiology and ageing in A. nidulans than that of their homologs in another fungus Podospora anserina with a well-characterized senescence. The observed interspecial phenotypic differences can be explained by the dissimilar intrinsic stabilities of the mitochondrial genomes in A. nidulans and P. anserina. Furthermore, the marginally altered phenotypes observed in A. nidulans mutants indicate the presence of effective compensatory mechanisms for the complex networks of mitochondrial defense and quality control. Importantly, these findings can be useful for developing novel platforms for heterologous protein production, or on new biocontrol and bioremediation technologies based on Aspergillus species.
Collapse
Affiliation(s)
- Éva Leiter
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Hee-Soo Park
- Departments of Bacteriology and Genetics, The University of Wisconsin-Madison, Wisconsin, USA
| | - Nak-Jung Kwon
- Departments of Bacteriology and Genetics, The University of Wisconsin-Madison, Wisconsin, USA
| | - Kap-Hoon Han
- Departments of Bacteriology and Genetics, The University of Wisconsin-Madison, Wisconsin, USA.,Department of Pharmaceutical Engineering, Woosuk University, Wanju, Republic of Korea
| | - Tamás Emri
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Viktor Oláh
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Ilona Mészáros
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jae-Hyuk Yu
- Departments of Bacteriology and Genetics, The University of Wisconsin-Madison, Wisconsin, USA
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
19
|
Knuppertz L, Osiewacz HD. Orchestrating the network of molecular pathways affecting aging: Role of nonselective autophagy and mitophagy. Mech Ageing Dev 2016; 153:30-40. [PMID: 26814678 DOI: 10.1016/j.mad.2016.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 12/28/2022]
Abstract
Autophagy is best known as a mechanism involved in cellular recycling of biomolecules during periods of nutritional starvation. More recently, an additional function of autophagy emerged: the selective degradation of functionally impaired or surplus proteins, organelles and invading bacteria. With this function autophagy is integrated in a network of pathways involved in molecular and cellular quality control with a key impact on development and aging. Impairments in the autophagic machinery lead to accelerated aging and the development of diseases. Here we focus on the role of nonselective autophagy and mitophagy, the selective autophagic degradation of mitochondria, on aging and lifespan of biological systems.
Collapse
Affiliation(s)
- Laura Knuppertz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J. W. Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J. W. Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
20
|
Fischer F, Langer JD, Osiewacz HD. Identification of potential mitochondrial CLPXP protease interactors and substrates suggests its central role in energy metabolism. Sci Rep 2015; 5:18375. [PMID: 26679294 PMCID: PMC4683621 DOI: 10.1038/srep18375] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022] Open
Abstract
Maintenance of mitochondria is achieved by several mechanisms, including the regulation of mitochondrial proteostasis. The matrix protease CLPXP, involved in protein quality control, has been implicated in ageing and disease. However, particularly due to the lack of knowledge of CLPXP’s substrate spectrum, only little is known about the pathways and mechanisms controlled by this protease. Here we report the first comprehensive identification of potential mitochondrial CLPXP in vivo interaction partners and substrates using a combination of tandem affinity purification and differential proteomics. This analysis reveals that CLPXP in the fungal ageing model Podospora anserina is mainly associated with metabolic pathways in mitochondria, e.g. components of the pyruvate dehydrogenase complex and the tricarboxylic acid cycle as well as subunits of electron transport chain complex I. These data suggest a possible function of mitochondrial CLPXP in the control and/or maintenance of energy metabolism. Since bioenergetic alterations are a common feature of neurodegenerative diseases, cancer, and ageing, our data comprise an important resource for specific studies addressing the role of CLPXP in these adverse processes.
Collapse
Affiliation(s)
- Fabian Fischer
- Johann Wolfgang Goethe University, Faculty for Biosciences &Cluster of Excellence 'Macromolecular Complexes' Frankfurt, Institute for Molecular Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Julian D Langer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt, Germany
| | - Heinz D Osiewacz
- Johann Wolfgang Goethe University, Faculty for Biosciences &Cluster of Excellence 'Macromolecular Complexes' Frankfurt, Institute for Molecular Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
21
|
Mitochondrial proteases and protein quality control in ageing and longevity. Ageing Res Rev 2015; 23:56-66. [PMID: 25578288 DOI: 10.1016/j.arr.2014.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/23/2014] [Accepted: 12/27/2014] [Indexed: 11/23/2022]
Abstract
Mitochondria have been implicated in the ageing process and the lifespan modulation of model organisms. Mitochondria are the main providers of energy in eukaryotic cells but also represent both a major source of reactive oxygen species and targets for protein oxidative damage. Since protein damage can impair mitochondrial function, mitochondrial proteases are critically important for protein maintenance and elimination of oxidized protein. In the mitochondrial matrix, protein quality control is mainly achieved by the Lon and Clp proteases which are also key players in damaged mitochondrial proteins degradation. Accumulation of damaged macromolecules resulting from oxidative stress and failure of protein maintenance constitutes a hallmark of cellular and organismal ageing and is believed to participate to the age-related decline of cellular function. Hence, age-related impairment of mitochondrial protein quality control may therefore contribute to the age-associated build-up of oxidized protein and alterations of mitochondrial redox and protein homeostasis.
Collapse
|
22
|
Zabihi Diba L, Mohaddes Ardebili SM, Gharesouran J, Houshmand M. Age-related decrease in mtDNA content as a consequence of mtDNA 4977 bp deletion. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3008-12. [PMID: 26152346 DOI: 10.3109/19401736.2015.1063046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As one of the most frequent somatic mutations accumulated during aging in human mitochondrial DNA, the 4977 bp deletion has intrigued scientific interest in recent years. Although many studies have shown a significant increase in the amount of 4977 bp deletion, the findings with respect to an age-dependent escalate of ΔmtDNA4977 bp in blood are still disputatious. Therefore, we investigated the presence of common deletion and mtDNA deletion level in whole blood samples of 100 old individuals (60-90 years). We detected the accumulation of common deletion in 46 old individuals. Consequently, there was statistically significant difference between the aged and young individuals in mitochondrial content (p = 0.01) and deletion levels ranged from 2% to 17% of the total mtDNA (mean: 10% ± 0.02%). We conclude that common deletion has decreased the mtDNA content; however, it is not clearly detectable in the blood as one of the fast replicating tissues comparing with tissues with low mitotic activity.
Collapse
Affiliation(s)
- Leila Zabihi Diba
- a Department of Biochemistry and Clinical Laboratory , Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran and
| | - Seyed Mojtaba Mohaddes Ardebili
- a Department of Biochemistry and Clinical Laboratory , Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran and
| | - Jalal Gharesouran
- a Department of Biochemistry and Clinical Laboratory , Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran and
| | - Massoud Houshmand
- b Department of Medical Genetics , National Institute for Genetic Engineering and Biotechnology , Tehran , Iran
| |
Collapse
|
23
|
Shalaeva DN, Dibrova DV, Galperin MY, Mulkidjanian AY. Modeling of interaction between cytochrome c and the WD domains of Apaf-1: bifurcated salt bridges underlying apoptosome assembly. Biol Direct 2015. [PMID: 26014357 DOI: 10.1186/s13062-015-0059- 4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Binding of cytochrome c, released from the damaged mitochondria, to the apoptotic protease activating factor 1 (Apaf-1) is a key event in the apoptotic signaling cascade. The binding triggers a major domain rearrangement in Apaf-1, which leads to oligomerization of Apaf-1/cytochrome c complexes into an apoptosome. Despite the availability of crystal structures of cytochrome c and Apaf-1 and cryo-electron microscopy models of the entire apoptosome, the binding mode of cytochrome c to Apaf-1, as well as the nature of the amino acid residues of Apaf-1 involved remain obscure. RESULTS We investigated the interaction between cytochrome c and Apaf-1 by combining several modeling approaches. We have applied protein-protein docking and energy minimization, evaluated the resulting models of the Apaf-1/cytochrome c complex, and carried out a further analysis by means of molecular dynamics simulations. We ended up with a single model structure where all the lysine residues of cytochrome c that are known as functionally-relevant were involved in forming salt bridges with acidic residues of Apaf-1. This model has revealed three distinctive bifurcated salt bridges, each involving a single lysine residue of cytochrome c and two neighboring acidic resides of Apaf-1. Salt bridge-forming amino acids of Apaf-1 showed a clear evolutionary pattern within Metazoa, with pairs of acidic residues of Apaf-1, involved in bifurcated salt bridges, reaching their highest numbers in the sequences of vertebrates, in which the cytochrome c-mediated mechanism of apoptosome formation seems to be typical. CONCLUSIONS The reported model of an Apaf-1/cytochrome c complex provides insights in the nature of protein-protein interactions which are hard to observe in crystallographic or electron microscopy studies. Bifurcated salt bridges can be expected to be stronger than simple salt bridges, and their formation might promote the conformational change of Apaf-1, leading to the formation of an apoptosome. Combination of structural and sequence analyses provides hints on the evolution of the cytochrome c-mediated apoptosis.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrück University, 49069, Osnabrück, Germany. .,School of Bioengineering and Bioinformatics, 117999, Moscow, Russia.
| | - Daria V Dibrova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 117999, Moscow, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrück University, 49069, Osnabrück, Germany. .,School of Bioengineering and Bioinformatics, 117999, Moscow, Russia. .,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 117999, Moscow, Russia.
| |
Collapse
|
24
|
Shalaeva DN, Dibrova DV, Galperin MY, Mulkidjanian AY. Modeling of interaction between cytochrome c and the WD domains of Apaf-1: bifurcated salt bridges underlying apoptosome assembly. Biol Direct 2015; 10:29. [PMID: 26014357 PMCID: PMC4445527 DOI: 10.1186/s13062-015-0059-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 05/13/2015] [Indexed: 12/19/2022] Open
Abstract
Background Binding of cytochrome c, released from the damaged mitochondria, to the apoptotic protease activating factor 1 (Apaf-1) is a key event in the apoptotic signaling cascade. The binding triggers a major domain rearrangement in Apaf-1, which leads to oligomerization of Apaf-1/cytochrome c complexes into an apoptosome. Despite the availability of crystal structures of cytochrome c and Apaf-1 and cryo-electron microscopy models of the entire apoptosome, the binding mode of cytochrome c to Apaf-1, as well as the nature of the amino acid residues of Apaf-1 involved remain obscure. Results We investigated the interaction between cytochrome c and Apaf-1 by combining several modeling approaches. We have applied protein-protein docking and energy minimization, evaluated the resulting models of the Apaf-1/cytochrome c complex, and carried out a further analysis by means of molecular dynamics simulations. We ended up with a single model structure where all the lysine residues of cytochrome c that are known as functionally-relevant were involved in forming salt bridges with acidic residues of Apaf-1. This model has revealed three distinctive bifurcated salt bridges, each involving a single lysine residue of cytochrome c and two neighboring acidic resides of Apaf-1. Salt bridge-forming amino acids of Apaf-1 showed a clear evolutionary pattern within Metazoa, with pairs of acidic residues of Apaf-1, involved in bifurcated salt bridges, reaching their highest numbers in the sequences of vertebrates, in which the cytochrome c-mediated mechanism of apoptosome formation seems to be typical. Conclusions The reported model of an Apaf-1/cytochrome c complex provides insights in the nature of protein-protein interactions which are hard to observe in crystallographic or electron microscopy studies. Bifurcated salt bridges can be expected to be stronger than simple salt bridges, and their formation might promote the conformational change of Apaf-1, leading to the formation of an apoptosome. Combination of structural and sequence analyses provides hints on the evolution of the cytochrome c-mediated apoptosis. Reviewers This article was reviewed by Andrei L. Osterman, Narayanaswamy Srinivasan, Igor N. Berezovsky, and Gerrit Vriend (nominated by Martijn Huynen). Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0059-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrück University, 49069, Osnabrück, Germany. .,School of Bioengineering and Bioinformatics, 117999, Moscow, Russia.
| | - Daria V Dibrova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 117999, Moscow, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrück University, 49069, Osnabrück, Germany. .,School of Bioengineering and Bioinformatics, 117999, Moscow, Russia. .,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 117999, Moscow, Russia.
| |
Collapse
|
25
|
Wiegman CH, Michaeloudes C, Haji G, Narang P, Clarke CJ, Russell KE, Bao W, Pavlidis S, Barnes PJ, Kanerva J, Bittner A, Rao N, Murphy MP, Kirkham PA, Chung KF, Adcock IM. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2015; 136:769-80. [PMID: 25828268 PMCID: PMC4559140 DOI: 10.1016/j.jaci.2015.01.046] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 01/26/2015] [Accepted: 01/30/2015] [Indexed: 01/11/2023]
Abstract
Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell hyperproliferation. Targeting mitochondrial ROS represents a promising therapeutic approach in patients with COPD.
Collapse
Affiliation(s)
- Coen H Wiegman
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - Charalambos Michaeloudes
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Gulammehdi Haji
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Priyanka Narang
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Colin J Clarke
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Kirsty E Russell
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Wuping Bao
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | | - Peter J Barnes
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | | - Anton Bittner
- Janssen Research & Development LLC, San Diego, Calif
| | - Navin Rao
- Janssen Research & Development LLC, San Diego, Calif
| | | | - Paul A Kirkham
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
26
|
Simultaneous impairment of mitochondrial fission and fusion reduces mitophagy and shortens replicative lifespan. Sci Rep 2015; 5:7885. [PMID: 25601284 PMCID: PMC4298727 DOI: 10.1038/srep07885] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/18/2014] [Indexed: 12/23/2022] Open
Abstract
Aging of biological systems is accompanied by degeneration of mitochondrial functions. Different pathways are active to counteract the processes which lead to mitochondrial dysfunction. Mitochondrial dynamics, the fission and fusion of mitochondria, is one of these quality control pathways. Mitophagy, the controlled degradation of mitochondria, is another one. Here we show that these pathways are linked. A double deletion mutant of Saccharomyces cerevisiae in which two essential components of the fission and fusion machinery, Dnm1 and Mgm1, are simultaneously ablated, contain wild-type like filamentous mitochondria, but are characterized by impaired respiration, an increased sensitivity to different stressors, increased mitochondrial protein carbonylation, and a decrease in mitophagy and replicative lifespan. These data show that a balanced mitochondrial dynamics and not a filamentous mitochondrial morphotype per se is the key for a long lifespan and demonstrate a cross-talk between two different mitochondrial quality control pathways.
Collapse
|
27
|
Dahl R, Larsen S, Dohlmann TL, Qvortrup K, Helge JW, Dela F, Prats C. Three-dimensional reconstruction of the human skeletal muscle mitochondrial network as a tool to assess mitochondrial content and structural organization. Acta Physiol (Oxf) 2015; 213:145-55. [PMID: 24684826 DOI: 10.1111/apha.12289] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/20/2013] [Accepted: 03/25/2014] [Indexed: 12/20/2022]
Abstract
AIM Mitochondria undergo continuous changes in shape as result of complex fusion and fission processes. The physiological relevance of mitochondrial dynamics is still unclear. In the field of mitochondria bioenergetics, there is a need of tools to assess cell mitochondrial content. To develop a method to visualize mitochondrial networks in high resolution and assess mitochondrial volume. METHODS Confocal fluorescence microscopy imaging of mitochondrial network stains in human vastus lateralis single muscle fibres and focused ion beam/ scanning electron microscopy (FIB/SEM) imaging, combined with 3D reconstruction was used as a tool to analyse mitochondrial morphology and measure mitochondrial fractional volume. RESULTS Most type I and type II muscle fibres have tubular highly interconnected profusion mitochondria, which are thicker and more structured in type I muscle fibres (Fig. 1). In some muscle fibres, profission-isolated ellipsoid-shaped mitochondria were observed. Mitochondrial volume was significantly higher in type I muscle fibres and showed no correlation with any of the investigated molecular and biochemical mitochondrial measurements (Fig. 2). Three-dimensional reconstruction of FIB/SEM data sets shows that some subsarcolemmal mitochondria are physically interconnected with some intermyofibrillar mitochondria (Fig. 3). CONCLUSION Two microscopy methods to visualize skeletal muscle mitochondrial networks in 3D are described and can be used as tools to investigate mitochondrial dynamics in response to life-style interventions and/or in certain pathologies. Our results question the classification of mitochondria into subsarcolemmal and intermyofibrillar pools, as they are physically interconnected.
Collapse
Affiliation(s)
- R. Dahl
- Copenhagen Muscle Research Center; Center for Healthy Aging; Copenhagen Denmark
| | - S. Larsen
- Copenhagen Muscle Research Center; Center for Healthy Aging; Copenhagen Denmark
| | - T. L. Dohlmann
- Copenhagen Muscle Research Center; Center for Healthy Aging; Copenhagen Denmark
| | - K. Qvortrup
- Core Facility for Integrated Microscopy; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - J. W. Helge
- Copenhagen Muscle Research Center; Center for Healthy Aging; Copenhagen Denmark
| | - F. Dela
- Copenhagen Muscle Research Center; Center for Healthy Aging; Copenhagen Denmark
| | - C. Prats
- Copenhagen Muscle Research Center; Center for Healthy Aging; Copenhagen Denmark
- Core Facility for Integrated Microscopy; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
28
|
Plum S, Steinbach S, Abel L, Marcus K, Helling S, May C. Proteomics in neurodegenerative diseases: Methods for obtaining a closer look at the neuronal proteome. Proteomics Clin Appl 2014; 9:848-71. [DOI: 10.1002/prca.201400030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/25/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah Plum
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Simone Steinbach
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Laura Abel
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Stefan Helling
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Caroline May
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| |
Collapse
|
29
|
Grimm C, Böhl L, Osiewacz HD. Overexpression of Pa_1_10620 encoding a mitochondrial Podospora anserina protein with homology to superoxide dismutases and ribosomal proteins leads to lifespan extension. Curr Genet 2014; 61:73-86. [PMID: 25151510 DOI: 10.1007/s00294-014-0446-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/01/2014] [Accepted: 08/17/2014] [Indexed: 11/27/2022]
Abstract
In biological systems, reactive oxygen species (ROS) represent 'double edged swords': as signaling molecules they are essential for proper development, as reactive agents they cause molecular damage and adverse effects like degeneration and aging. A well-coordinated control of ROS is therefore of key importance. Superoxide dismutases (SODs) are enzymes active in the detoxification of superoxide. The number of isoforms of these proteins varies among species. Here we report the characterization of the putative protein encoded by Pa_1_10620 that has been previously annotated to code for a mitochondrial ribosomal protein but shares also sequence domains with SODs. We report that the gene is transcribed in P. anserina cultures of all ages and that the encoded protein localizes to mitochondria. In strains overexpressing Pa_1_10620 in a genetic background in which PaSod3, the mitochondrial MnSOD of P. anserina, is deleted, no SOD activity could be identified in isolated mitochondria. However, overexpression of the gene leads to lifespan extension suggesting a pro-survival function of the protein in P. anserina.
Collapse
Affiliation(s)
- Carolin Grimm
- Faculty for Biosciences and Cluster of Excellence Frankfurt 'Macromolecular Complexes', Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | | | | |
Collapse
|
30
|
Bhilwade HN, Jayakumar S, Chaubey R. Age-dependent changes in spontaneous frequency of micronucleated erythrocytes in bone marrow and DNA damage in peripheral blood of Swiss mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 770:80-4. [DOI: 10.1016/j.mrgentox.2014.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 03/25/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
|
31
|
Knuppertz L, Hamann A, Pampaloni F, Stelzer E, Osiewacz HD. Identification of autophagy as a longevity-assurance mechanism in the aging model Podospora anserina. Autophagy 2014; 10:822-34. [PMID: 24584154 PMCID: PMC5119060 DOI: 10.4161/auto.28148] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 12/28/2022] Open
Abstract
The filamentous ascomycete Podospora anserina is a well-established aging model in which a variety of different pathways, including those involved in the control of respiration, ROS generation and scavenging, DNA maintenance, proteostasis, mitochondrial dynamics, and programmed cell death have previously been demonstrated to affect aging and life span. Here we address a potential role of autophagy. We provide data demonstrating high basal autophagy levels even in strains cultivated under noninduced conditions. By monitoring an N-terminal fusion of EGFP to the fungal LC3 homolog PaATG8 over the lifetime of the fungus on medium with and without nitrogen supplementation, respectively, we identified a significant increase of GFP puncta in older and in nitrogen-starved cultures suggesting an induction of autophagy during aging. This conclusion is supported by the demonstration of an age-related and autophagy-dependent degradation of a PaSOD1-GFP reporter protein. The deletion of Paatg1, which leads to the lack of the PaATG1 serine/threonine kinase active in early stages of autophagy induction, impairs ascospore germination and development and shortens life span. Under nitrogen-depleted conditions, life span of the wild type is increased almost 4-fold. In contrast, this effect is annihilated in the Paatg1 deletion strain, suggesting that the ability to induce autophagy is beneficial for this fungus. Collectively, our data identify autophagy as a longevity-assurance mechanism in P. anserina and as another surveillance pathway in the complex network of pathways affecting aging and development. These findings provide perspectives for the elucidation of the mechanisms involved in the regulation of individual pathways and their interactions.
Collapse
Affiliation(s)
- Laura Knuppertz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Frankfurt, Germany
| | - Andrea Hamann
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Frankfurt, Germany
| | - Francesco Pampaloni
- Physical Biology Group; Buchmann Institute of Molecular Life Sciences; Cluster of Excellence Frankfurt Macromolecular Complexes; Frankfurt, Germany
| | - Ernst Stelzer
- Physical Biology Group; Buchmann Institute of Molecular Life Sciences; Cluster of Excellence Frankfurt Macromolecular Complexes; Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Frankfurt, Germany
| |
Collapse
|
32
|
Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. Mitochondrial aging and age-related dysfunction of mitochondria. BIOMED RESEARCH INTERNATIONAL 2014; 2014:238463. [PMID: 24818134 PMCID: PMC4003832 DOI: 10.1155/2014/238463] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/19/2014] [Indexed: 01/06/2023]
Abstract
Age-related changes in mitochondria are associated with decline in mitochondrial function. With advanced age, mitochondrial DNA volume, integrity and functionality decrease due to accumulation of mutations and oxidative damage induced by reactive oxygen species (ROS). In aged subjects, mitochondria are characterized by impaired function such as lowered oxidative capacity, reduced oxidative phosphorylation, decreased ATP production, significant increase in ROS generation, and diminished antioxidant defense. Mitochondrial biogenesis declines with age due to alterations in mitochondrial dynamics and inhibition of mitophagy, an autophagy process that removes dysfunctional mitochondria. Age-dependent abnormalities in mitochondrial quality control further weaken and impair mitochondrial function. In aged tissues, enhanced mitochondria-mediated apoptosis contributes to an increase in the percentage of apoptotic cells. However, implementation of strategies such as caloric restriction and regular physical training may delay mitochondrial aging and attenuate the age-related phenotype in humans.
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical University, Moscow 117997, Russia
| | - Igor A. Sobenin
- Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex, Moscow 121552, Russia
- Laboratory of Cellular Mechanisms of Atherogenesis, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia
| | - Victor V. Revin
- Biological Faculty, N.P. Ogaryov Mordovian State University, Saransk 430005, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular Mechanisms of Atherogenesis, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 143025, Russia
| | - Yuri V. Bobryshev
- Biological Faculty, N.P. Ogaryov Mordovian State University, Saransk 430005, Russia
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia
| |
Collapse
|
33
|
Dibrova DV, Cherepanov DA, Galperin MY, Skulachev VP, Mulkidjanian AY. Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:1407-27. [PMID: 23871937 PMCID: PMC3839093 DOI: 10.1016/j.bbabio.2013.07.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/30/2022]
Abstract
This review traces the evolution of the cytochrome bc complexes from their early spread among prokaryotic lineages and up to the mitochondrial cytochrome bc1 complex (complex III) and its role in apoptosis. The results of phylogenomic analysis suggest that the bacterial cytochrome b6f-type complexes with short cytochromes b were the ancient form that preceded in evolution the cytochrome bc1-type complexes with long cytochromes b. The common ancestor of the b6f-type and the bc1-type complexes probably resembled the b6f-type complexes found in Heliobacteriaceae and in some Planctomycetes. Lateral transfers of cytochrome bc operons could account for the several instances of acquisition of different types of bacterial cytochrome bc complexes by archaea. The gradual oxygenation of the atmosphere could be the key evolutionary factor that has driven further divergence and spread of the cytochrome bc complexes. On the one hand, oxygen could be used as a very efficient terminal electron acceptor. On the other hand, auto-oxidation of the components of the bc complex results in the generation of reactive oxygen species (ROS), which necessitated diverse adaptations of the b6f-type and bc1-type complexes, as well as other, functionally coupled proteins. A detailed scenario of the gradual involvement of the cardiolipin-containing mitochondrial cytochrome bc1 complex into the intrinsic apoptotic pathway is proposed, where the functioning of the complex as an apoptotic trigger is viewed as a way to accelerate the elimination of the cells with irreparably damaged, ROS-producing mitochondria. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Daria V Dibrova
- School of Physics, University of Osnabrueck, D-49069 Osnabrueck, Germany; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia; Institute of Mitoengineering, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | | | | | | |
Collapse
|
34
|
Adenine nucleotide translocase, mitochondrial stress, and degenerative cell death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:146860. [PMID: 23970947 PMCID: PMC3732615 DOI: 10.1155/2013/146860] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 12/18/2022]
Abstract
Mitochondria are intracellular organelles involved in ATP synthesis, apoptosis, calcium signaling, metabolism, and the synthesis of critical metabolic cofactors. Mitochondrial dysfunction is associated with age-related degenerative diseases. How mitochondrial dysfunction causes cell degeneration is not well understood. Recent studies have shown that mutations in the adenine nucleotide translocase (Ant) cause aging-dependent degenerative cell death (DCD) in yeast, which is sequentially manifested by inner membrane stress, mitochondrial DNA (mtDNA) loss, and progressive loss of cell viability. Ant is an abundant protein primarily involved in ADP/ATP exchange across the mitochondrial inner membrane. It also mediates basal proton leak and regulates the mitochondrial permeability transition pore. Missense mutations in the human Ant1 cause several degenerative diseases which are commonly manifested by fractional mtDNA deletions. Multiple models have been proposed to explain the Ant1-induced pathogenesis. Studies from yeast have suggested that in addition to altered nucleotide transport properties, the mutant proteins cause a global stress on the inner membrane. The mutant proteins likely interfere with general mitochondrial biogenesis in a dominant-negative manner, which secondarily destabilizes mtDNA. More recent work revealed that the Ant-induced DCD is suppressed by reduced cytosolic protein synthesis. This finding suggests a proteostatic crosstalk between mitochondria and the cytosol, which may play an important role for cell survival during aging.
Collapse
|