1
|
Balkrishna A, Pathak N, Singh R, Gohel V, Varshney Y, Dev R, Varshney A. Neurogrit Gold Attenuates 6-OHDA-Induced Dopaminergic Neurodegeneration in Parkinson's Model of Caenorhabditis elegans by Reducing α-Synuclein Accumulation and Pink/Pdr-1 Driven Mitochondrial Dysfunction. CNS Neurosci Ther 2025; 31:e70401. [PMID: 40342222 PMCID: PMC12059624 DOI: 10.1111/cns.70401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 03/27/2025] [Indexed: 05/11/2025] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is a neurodegenerative disorder majorly associated with movement and behavioral disturbances. Pathologically, the loss of dopaminergic (DA) neurons triggered by the deposition of α-synuclein (SNCA) leads to the decrease in dopamine levels affecting motor and cognitive functions of the brain. Current pharmacotherapy for PD only addresses its symptoms but is not able to halt its progression. Traditional medicines are being increasingly used for the treatment of neurodegenerative disorders. AIM The present study investigated the effects of Neurogrit Gold (NG), a herbo-mineral prescription medicine, on a Parkinson's model of Caenorhabditis elegans. METHODS Chemical characterization of NG was performed on HPLC and GC-MS/MS platforms. Evaluation of NG was done in the neurotoxicant 6-OHDA-induced N2, BZ555, and NL5901 strains of C. elegans. RESULTS It was observed that NG treatment did not hamper the lifespan, survival, and progeny development of C. elegans strains. The worms treated with NG were able to resist the deleterious effects of 6-OHDA on survival, progeny development, body bends, and chemotaxis in N2 and DA neuron degeneration in BZ555 worms. In NL5901 worms, NG treatment reduced SNCA aggregation, restored lipid content, as well as improved body bends, chemotaxis, and food uptake. Gene expression studies on 6-OHDA exposed and NG-treated N2 worms suggest that the neuroprotective effects of NG stem from its ability to regulate genes involved in mitochondrial autophagy (pink-1, pdr-1); dopamine synthesis (cat-2); redox (sod-3) and protein folding homeostasis (hsf-1, hsp-12.3). CONCLUSION Neurogrit Gold has robust neuroprotective effects, making it a suitable treatment option against etiologies of Parkinson's disease.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development DivisionPatanjali Research FoundationHaridwarIndia
- Department of Allied and Applied SciencesUniversity of PatanjaliHaridwarIndia
- Patanjali Yog Peeth (UK) TrustGlasgowUK
| | - Nishit Pathak
- Drug Discovery and Development DivisionPatanjali Research FoundationHaridwarIndia
| | - Rani Singh
- Drug Discovery and Development DivisionPatanjali Research FoundationHaridwarIndia
| | - Vivek Gohel
- Drug Discovery and Development DivisionPatanjali Research FoundationHaridwarIndia
| | - Yash Varshney
- Drug Discovery and Development DivisionPatanjali Research FoundationHaridwarIndia
| | - Rishabh Dev
- Drug Discovery and Development DivisionPatanjali Research FoundationHaridwarIndia
| | - Anurag Varshney
- Drug Discovery and Development DivisionPatanjali Research FoundationHaridwarIndia
- Department of Allied and Applied SciencesUniversity of PatanjaliHaridwarIndia
- Special Centre for Systems MedicineJawaharlal Nehru UniversityNew DelhiIndia
| |
Collapse
|
2
|
Salis Torres A, Lee JE, Caporali A, Semple RK, Horrocks MH, MacRae VE. Mitochondrial Dysfunction as a Potential Mechanism Mediating Cardiac Comorbidities in Parkinson's Disease. Int J Mol Sci 2024; 25:10973. [PMID: 39456761 PMCID: PMC11507255 DOI: 10.3390/ijms252010973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Individuals diagnosed with Parkinson's disease (PD) often exhibit heightened susceptibility to cardiac dysfunction, reflecting a complex interaction between these conditions. The involvement of mitochondrial dysfunction in the development and progression of cardiac dysfunction and PD suggests a plausible commonality in some aspects of their molecular pathogenesis, potentially contributing to the prevalence of cardiac issues in PD. Mitochondria, crucial organelles responsible for energy production and cellular regulation, play important roles in tissues with high energetic demands, such as neurons and cardiac cells. Mitochondrial dysfunction can occur in different and non-mutually exclusive ways; however, some mechanisms include alterations in mitochondrial dynamics, compromised bioenergetics, biogenesis deficits, oxidative stress, impaired mitophagy, and disrupted calcium balance. It is plausible that these factors contribute to the increased prevalence of cardiac dysfunction in PD, suggesting mitochondrial health as a potential target for therapeutic intervention. This review provides an overview of the physiological mechanisms underlying mitochondrial quality control systems. It summarises the diverse roles of mitochondria in brain and heart function, highlighting shared pathways potentially exhibiting dysfunction and driving cardiac comorbidities in PD. By highlighting strategies to mitigate dysfunction associated with mitochondrial impairment in cardiac and neural tissues, our review aims to provide new perspectives on therapeutic approaches.
Collapse
Affiliation(s)
- Agustina Salis Torres
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
| | - Ji-Eun Lee
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrea Caporali
- Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (A.C.); (R.K.S.)
| | - Robert K. Semple
- Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (A.C.); (R.K.S.)
| | - Mathew H. Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Vicky E. MacRae
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
| |
Collapse
|
3
|
Alcalá-Zúniga D, Espinoza-Torres E, Das RK, Vargas M, Maldonado O, Benavides O, Manojkumar A, de la Garza R, Davila N, Perez I, Martinez AH, Roy D, López-Juárez A, Zarei MM, Baker KA, Gil M, Rodrigo H, de Erausquin GA, Roy U. Enriched Environment Contributes to the Recovery from Neurotoxin-Induced Parkinson's Disease Pathology. Mol Neurobiol 2024; 61:6734-6753. [PMID: 38349515 PMCID: PMC11339186 DOI: 10.1007/s12035-024-03951-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/02/2024] [Indexed: 08/22/2024]
Abstract
Parkinson's disease (PD) is a neurological disorder that affects dopaminergic neurons. The lack of understanding of the underlying molecular mechanisms of PD pathology makes treating it a challenge. Several pieces of evidence support the protective role of enriched environment (EE) and exercise on dopaminergic neurons. The specific aspect(s) of neuroprotection after exposure to EE have not been identified. Therefore, we have investigated the protective role of EE on dopamine dysregulation and subsequent downregulation of DJ1 protein using in vitro and in vivo models of PD. Our study for the first time demonstrated that DJ1 expression has a direct correlation with dopamine downregulation in PD models and exposure to EE has a significant impact on improving the behavioral changes in PD mice. This research provides evidence that exercise in EE has a positive effect on PD without interfering with the current line of therapy.
Collapse
Affiliation(s)
- Daphne Alcalá-Zúniga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Erika Espinoza-Torres
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Ranjit Kumar Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Magaly Vargas
- Department of Psychological Science, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Oscar Maldonado
- Institute of Neuroscience, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA
| | - Omar Benavides
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
- Institute of Neuroscience, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA
| | - Arvind Manojkumar
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Roberto de la Garza
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Natalia Davila
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Isaac Perez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Alejandro Hernandez Martinez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Deepa Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Alejandro López-Juárez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Masoud M Zarei
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Kelsey A Baker
- Institute of Neuroscience, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA
| | - Mario Gil
- Department of Psychological Science, University of Texas Rio Grande Valley, Brownsville, TX, USA
- Institute of Neuroscience, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA
| | - Hansapani Rodrigo
- School of Mathematical and Statistical Sciences, University of Rio Grande Valley, Edinburg, TX, USA
| | - Gabriel A de Erausquin
- The Glenn Biggs Institute of Alzheimer's and Neurodegenerative Disorders, Joe and Teresa Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Upal Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA.
| |
Collapse
|
4
|
Skou LD, Johansen SK, Okarmus J, Meyer M. Pathogenesis of DJ-1/PARK7-Mediated Parkinson's Disease. Cells 2024; 13:296. [PMID: 38391909 PMCID: PMC10887164 DOI: 10.3390/cells13040296] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Parkinson's disease (PD) is a common movement disorder associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Mutations in the PD-associated gene PARK7 alter the structure and function of the encoded protein DJ-1, and the resulting autosomal recessively inherited disease increases the risk of developing PD. DJ-1 was first discovered in 1997 as an oncogene and was associated with early-onset PD in 2003. Mutations in DJ-1 account for approximately 1% of all recessively inherited early-onset PD occurrences, and the functions of the protein have been studied extensively. In healthy subjects, DJ-1 acts as an antioxidant and oxidative stress sensor in several neuroprotective mechanisms. It is also involved in mitochondrial homeostasis, regulation of apoptosis, chaperone-mediated autophagy (CMA), and dopamine homeostasis by regulating various signaling pathways, transcription factors, and molecular chaperone functions. While DJ-1 protects neurons against damaging reactive oxygen species, neurotoxins, and mutant α-synuclein, mutations in the protein may lead to inefficient neuroprotection and the progression of PD. As current therapies treat only the symptoms of PD, the development of therapies that directly inhibit oxidative stress-induced neuronal cell death is critical. DJ-1 has been proposed as a potential therapeutic target, while oxidized DJ-1 could operate as a biomarker for PD. In this paper, we review the role of DJ-1 in the pathogenesis of PD by highlighting some of its key neuroprotective functions and the consequences of its dysfunction.
Collapse
Affiliation(s)
- Line Duborg Skou
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
| | - Steffi Krudt Johansen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
5
|
Sarkar A, Singh MP. A Complex Interplay of DJ-1, LRRK2, and Nrf2 in the Regulation of Mitochondrial Function in Cypermethrin-Induced Parkinsonism. Mol Neurobiol 2024; 61:953-970. [PMID: 37674036 DOI: 10.1007/s12035-023-03591-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Cypermethrin impairs mitochondrial function, induces redox imbalance, and leads to Parkinsonism in experimental animals. Knockdown of deglycase-1 (DJ-1) gene, which encodes a redox-sensitive antioxidant protein, aggravates cypermethrin-mediated α-synuclein overexpression and oxidative alteration of proteins. DJ-1 is also reported to be essential for maintaining stability of nuclear factor erythroid 2-related factor 2 (Nrf2), shielding cells against oxidative insult. Leucine-rich repeat kinase 2 (LRRK2), another protein associated with Parkinson's disease, is also involved in regulating mitochondrial function. However, underlying molecular mechanisms remain elusive. The study intended to explore an interaction of DJ-1, LRRK2, and Nrf2 in the regulation of mitochondrial function in cypermethrin-induced Parkinsonism. Small interfering RNA-mediated knockdown of DJ-1 and LRRK2 gene and pharmacological activation of Nrf2 were performed in rats and/or human neuroblastoma cells with or without cypermethrin. Indexes of oxidative stress, mitochondrial impairment, and Parkinsonism along with α-synuclein expression, post-translational modification, and aggregation were measured. DJ-1 gene knockdown exacerbated cypermethrin-induced increase in oxidative stress and intrinsic apoptosis and reduction in expression of mitochondrial antioxidant proteins via inhibiting nuclear translocation of Nrf2. Additionally, cypermethrin-induced oxidative stress, mitochondrial impairment, and α-synuclein expression and aggregation were found to be suppressed by LRRK2 gene knockdown, by promoting Nrf2 nuclear translocation and expression of mitochondrial antioxidant proteins. Furthermore, Nrf2 activator, sulforaphane, ameliorated cypermethrin-induced mitochondrial impairment and oxidative stress and provided protection against dopaminergic neuronal death. The findings indicate that DJ-1 and LRRK2 independently alter Nrf2-mediated changes and a complex interplay among DJ-1, LRRK2, and Nrf2 exists in the regulation of mitochondrial function in cypermethrin-induced Parkinsonism.
Collapse
Affiliation(s)
- Alika Sarkar
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
6
|
Ratan Y, Rajput A, Pareek A, Pareek A, Jain V, Sonia S, Farooqui Z, Kaur R, Singh G. Advancements in Genetic and Biochemical Insights: Unraveling the Etiopathogenesis of Neurodegeneration in Parkinson's Disease. Biomolecules 2024; 14:73. [PMID: 38254673 PMCID: PMC10813470 DOI: 10.3390/biom14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative movement disorder worldwide, which is primarily characterized by motor impairments. Even though multiple hypotheses have been proposed over the decades that explain the pathogenesis of PD, presently, there are no cures or promising preventive therapies for PD. This could be attributed to the intricate pathophysiology of PD and the poorly understood molecular mechanism. To address these challenges comprehensively, a thorough disease model is imperative for a nuanced understanding of PD's underlying pathogenic mechanisms. This review offers a detailed analysis of the current state of knowledge regarding the molecular mechanisms underlying the pathogenesis of PD, with a particular emphasis on the roles played by gene-based factors in the disease's development and progression. This study includes an extensive discussion of the proteins and mutations of primary genes that are linked to PD, including α-synuclein, GBA1, LRRK2, VPS35, PINK1, DJ-1, and Parkin. Further, this review explores plausible mechanisms for DAergic neural loss, non-motor and non-dopaminergic pathologies, and the risk factors associated with PD. The present study will encourage the related research fields to understand better and analyze the current status of the biochemical mechanisms of PD, which might contribute to the design and development of efficacious and safe treatment strategies for PD in future endeavors.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Zeba Farooqui
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
7
|
Sandrelli F, Bisaglia M. Molecular and Physiological Determinants of Amyotrophic Lateral Sclerosis: What the DJ-1 Protein Teaches Us. Int J Mol Sci 2023; 24:ijms24087674. [PMID: 37108835 PMCID: PMC10144135 DOI: 10.3390/ijms24087674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset disease which causes the progressive degeneration of cortical and spinal motoneurons, leading to death a few years after the first symptom onset. ALS is mainly a sporadic disorder, and its causative mechanisms are mostly unclear. About 5-10% of cases have a genetic inheritance, and the study of ALS-associated genes has been fundamental in defining the pathological pathways likely also involved in the sporadic forms of the disease. Mutations affecting the DJ-1 gene appear to explain a subset of familial ALS forms. DJ-1 is involved in multiple molecular mechanisms, acting primarily as a protective agent against oxidative stress. Here, we focus on the involvement of DJ-1 in interconnected cellular functions related to mitochondrial homeostasis, reactive oxygen species (ROS) levels, energy metabolism, and hypoxia response, in both physiological and pathological conditions. We discuss the possibility that impairments in one of these pathways may affect the others, contributing to a pathological background in which additional environmental or genetic factors may act in favor of the onset and/or progression of ALS. These pathways may represent potential therapeutic targets to reduce the likelihood of developing ALS and/or slow disease progression.
Collapse
Affiliation(s)
| | - Marco Bisaglia
- Department of Biology, University of Padova, 35131 Padova, Italy
- Study Center for Neurodegeneration (CESNE), 35100 Padova, Italy
| |
Collapse
|
8
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
9
|
Dhinesh Kumar M, Karthikeyan M, Sharma N, Raju V, Vatsalarani J, Kalivendi SV, Karunakaran C. Molecular imprinting synthetic receptor based sensor for determination of Parkinson's disease biomarker DJ-1. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Kim J, Daadi EW, Oh T, Daadi ES, Daadi MM. Human Induced Pluripotent Stem Cell Phenotyping and Preclinical Modeling of Familial Parkinson's Disease. Genes (Basel) 2022; 13:1937. [PMID: 36360174 PMCID: PMC9689743 DOI: 10.3390/genes13111937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Parkinson's disease (PD) is primarily idiopathic and a highly heterogenous neurodegenerative disease with patients experiencing a wide array of motor and non-motor symptoms. A major challenge for understanding susceptibility to PD is to determine the genetic and environmental factors that influence the mechanisms underlying the variations in disease-associated traits. The pathological hallmark of PD is the degeneration of dopaminergic neurons in the substantia nigra pars compacta region of the brain and post-mortem Lewy pathology, which leads to the loss of projecting axons innervating the striatum and to impaired motor and cognitive functions. While the cause of PD is still largely unknown, genome-wide association studies provide evidence that numerous polymorphic variants in various genes contribute to sporadic PD, and 10 to 15% of all cases are linked to some form of hereditary mutations, either autosomal dominant or recessive. Among the most common mutations observed in PD patients are in the genes LRRK2, SNCA, GBA1, PINK1, PRKN, and PARK7/DJ-1. In this review, we cover these PD-related mutations, the use of induced pluripotent stem cells as a disease in a dish model, and genetic animal models to better understand the diversity in the pathogenesis and long-term outcomes seen in PD patients.
Collapse
Affiliation(s)
- Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elyas S. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Marcel M. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
- Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Deng J, Chen X, Chen A, Zheng X. m6A RNA methylation in brain injury and neurodegenerative disease. Front Neurol 2022; 13:995747. [PMID: 36158961 PMCID: PMC9493472 DOI: 10.3389/fneur.2022.995747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenosine (m6A), the most prevalent post-transcriptional RNA modification throughout the eukaryotic transcriptome, participates in diverse biophysiological processes including cell fates, embryonic development and stress responses. Accumulating evidence suggests that m6A modification in neural development and differentiation are highly regulated processes. As RNA m6A is crucial to protein translation and various bioprocesses, its modification dysregulation may also be associated with brain injury. This review highlights the biological significance of m6A modification in neurodegenerative disease and brain injury, including cerebrovascular disorders, is highlighted. Emphasis is placed on recent findings that elucidate the relevant molecular functional mechanism of m6A modification after brain injury and neurodegenerative disease. Finally, a neurobiological basis for further investigation of potential treatments is described.
Collapse
Affiliation(s)
- Jianhui Deng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiaohui Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Andi Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Co-Constructed Laboratory of “Belt and Road,” Fujian Emergency Medical Center, Fuzhou, China
- *Correspondence: Xiaochun Zheng
| |
Collapse
|
12
|
Haver HN, Scaglione KM. Dictyostelium discoideum as a Model for Investigating Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:759532. [PMID: 34776869 PMCID: PMC8578527 DOI: 10.3389/fncel.2021.759532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
The social amoeba Dictyostelium discoideum is a model organism that is used to investigate many cellular processes including chemotaxis, cell motility, cell differentiation, and human disease pathogenesis. While many single-cellular model systems lack homologs of human disease genes, Dictyostelium's genome encodes for many genes that are implicated in human diseases including neurodegenerative diseases. Due to its short doubling time along with the powerful genetic tools that enable rapid genetic screening, and the ease of creating knockout cell lines, Dictyostelium is an attractive model organism for both interrogating the normal function of genes implicated in neurodegeneration and for determining pathogenic mechanisms that cause disease. Here we review the literature involving the use of Dictyostelium to interrogate genes implicated in neurodegeneration and highlight key questions that can be addressed using Dictyostelium as a model organism.
Collapse
Affiliation(s)
- Holly N. Haver
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Neurology, Duke University, Durham, NC, United States
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Nanomedicine for Neurodegenerative Disorders: Focus on Alzheimer's and Parkinson's Diseases. Int J Mol Sci 2021; 22:ijms22169082. [PMID: 34445784 PMCID: PMC8396516 DOI: 10.3390/ijms22169082] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders involve the slow and gradual degeneration of axons and neurons in the central nervous system (CNS), resulting in abnormalities in cellular function and eventual cellular demise. Patients with these disorders succumb to the high medical costs and the disruption of their normal lives. Current therapeutics employed for treating these diseases are deemed palliative. Hence, a treatment strategy that targets the disease's cause, not just the symptoms exhibited, is desired. The synergistic use of nanomedicine and gene therapy to effectively target the causative mutated gene/s in the CNS disease progression could provide the much-needed impetus in this battle against these diseases. This review focuses on Parkinson's and Alzheimer's diseases, the gene/s and proteins responsible for the damage and death of neurons, and the importance of nanomedicine as a potential treatment strategy. Multiple genes were identified in this regard, each presenting with various mutations. Hence, genome-wide sequencing is essential for specific treatment in patients. While a cure is yet to be achieved, genomic studies form the basis for creating a highly efficacious nanotherapeutic that can eradicate these dreaded diseases. Thus, nanomedicine can lead the way in helping millions of people worldwide to eventually lead a better life.
Collapse
|
14
|
Buneeva OA, Medvedev AE. DJ-1 Protein and Its Role in the Development of Parkinson's Disease: Studies on Experimental Models. BIOCHEMISTRY (MOSCOW) 2021; 86:627-640. [PMID: 34225587 DOI: 10.1134/s000629792106002x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DJ-1, also known as Parkinson's disease protein 7, is a multifunctional protein ubiquitously expressed in cells and tissues. Interacting with proteins of various intracellular compartments, DJ-1 plays an important role in maintaining different cellular functions. Mutant DJ-1 forms containing amino acid substitutions (especially L166P), typical of Parkinson's disease, are characterized by impaired dimerization, stability, and folding. DJ-1 exhibits several types of catalytic activity; however, in the enzyme classification it exists as protein deglycase (EC 3.5.1.124). Apparently, in different cell compartments DJ-1 exhibits catalytic and non-catalytic functions, and their ratio still remains unknown. Oxidative stress promotes dissociation of cytoplasmic DJ-1 dimers into monomers, which are translocated to the nucleus, where this protein acts as a coactivator of various signaling pathways, preventing cell death. In mitochondria, DJ-1 is found in the synthasome, where it interacts with the β ATP synthase subunit. Downregulation of the DJ-1 gene under conditions of experimental PD increases sensitivity of the cells to neurotoxins, and introduction of the recombinant DJ-1 protein attenuates manifestation of this pathology. The thirteen-membered fragment of the DJ-1 amino acid sequence attached to the heptapeptide of the TAT protein penetrating into the cells exhibited neuroprotective properties in various PD models both in cell cultures and after administration to animals. Low molecular weight DJ-1 ligands also demonstrate therapeutic potential, providing neuroprotective effects seen during their incubation with cells and administration to animals.
Collapse
Affiliation(s)
- Olga A Buneeva
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | | |
Collapse
|
15
|
Huang M, Chen S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog Neurobiol 2021; 204:102114. [PMID: 34174373 DOI: 10.1016/j.pneurobio.2021.102114] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (NDs) are one of the major health threats to human characterized by selective and progressive neuronal loss. The mechanisms of NDs are still not fully understood. The study of genetic defects and disease-related proteins offers us a window into the mystery of it, and the extension of knowledge indicates that different NDs share similar features, mechanisms, and even genetic or protein abnormalities. Among these findings, PARK7 and its production DJ-1 protein, which was initially found implicated in PD, have also been found altered in other NDs. PARK7 mutations, altered expression and posttranslational modification (PTM) cause DJ-1 abnormalities, which in turn lead to downstream mechanisms shared by most NDs, such as mitochondrial dysfunction, oxidative stress, protein aggregation, autophagy defects, and so on. The knowledge of DJ-1 derived from PD researches might apply to other NDs in both basic research and clinical application, and might yield novel insights into and alternative approaches for dealing with NDs.
Collapse
Affiliation(s)
- Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China; Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
16
|
Acioglu C, Li L, Elkabes S. Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Res 2021; 1758:147291. [PMID: 33516810 DOI: 10.1016/j.brainres.2021.147291] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/10/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
Classically, the loss of vulnerable neuronal populations in neurodegenerative diseases was considered to be the consequence of cell autonomous degeneration of neurons. However, progress in the understanding of glial function, the availability of improved animal models recapitulating the features of the human diseases, and the development of new approaches to derive glia and neurons from induced pluripotent stem cells obtained from patients, provided novel information that altered this view. Current evidence strongly supports the notion that non-cell autonomous mechanisms contribute to the demise of neurons in neurodegenerative disorders, and glia causally participate in the pathogenesis and progression of these diseases. In addition to microglia, astrocytes have emerged as key players in neurodegenerative diseases and will be the focus of the present review. Under the influence of pathological stimuli present in the microenvironment of the diseased CNS, astrocytes undergo morphological, transcriptional, and functional changes and become reactive. Reactive astrocytes are heterogeneous and exhibit neurotoxic (A1) or neuroprotective (A2) phenotypes. In recent years, single-cell or single-nucleus transcriptome analyses unraveled new, disease-specific phenotypes beyond A1/A2. These investigations highlighted the complexity of the astrocytic responses to CNS pathology. The present review will discuss the contribution of astrocytes to neurodegenerative diseases with particular emphasis on Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia. Some of the commonalties and differences in astrocyte-mediated mechanisms that possibly drive the pathogenesis or progression of the diseases will be summarized. The emerging view is that astrocytes are potential new targets for therapeutic interventions. A comprehensive understanding of astrocyte heterogeneity and disease-specific phenotypic complexity could facilitate the design of novel strategies to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Cigdem Acioglu
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| | - Lun Li
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| | - Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
17
|
Martín-Jiménez R, Lurette O, Hebert-Chatelain E. Damage in Mitochondrial DNA Associated with Parkinson's Disease. DNA Cell Biol 2020; 39:1421-1430. [PMID: 32397749 DOI: 10.1089/dna.2020.5398] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the only organelles that contain their own genetic material (mtDNA). Mitochondria are involved in several key physiological functions, including ATP production, Ca2+ homeostasis, and metabolism of neurotransmitters. Since these organelles perform crucial processes to maintain neuronal homeostasis, mitochondrial dysfunctions can lead to various neurodegenerative diseases. Several mitochondrial proteins involved in ATP production are encoded by mtDNA. Thus, any mtDNA alteration can ultimately lead to mitochondrial dysfunction and cell death. Accumulation of mutations, deletions, and rearrangements in mtDNA has been observed in animal models and patients suffering from Parkinson's disease (PD). Also, specific inherited variations associated with mtDNA genetic groups (known as mtDNA haplogroups) are associated with lower or higher risk of developing PD. Consequently, mtDNA alterations should now be considered important hallmarks of this neurodegenerative disease. This review provides an update about the role of mtDNA alterations in the physiopathology of PD.
Collapse
Affiliation(s)
- Rebeca Martín-Jiménez
- Department of Biology and Université de Moncton, Moncton, Canada
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, Canada
| | - Olivier Lurette
- Department of Biology and Université de Moncton, Moncton, Canada
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, Canada
| | - Etienne Hebert-Chatelain
- Department of Biology and Université de Moncton, Moncton, Canada
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, Canada
| |
Collapse
|
18
|
DJ-1 in Parkinson's Disease: Clinical Insights and Therapeutic Perspectives. J Clin Med 2019; 8:jcm8091377. [PMID: 31484320 PMCID: PMC6780414 DOI: 10.3390/jcm8091377] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Mutations in the protein DJ-1 cause autosomal recessive forms of Parkinson’s disease (PD) and oxidized DJ-1 is found in the brains of idiopathic PD individuals. While several functions have been ascribed to DJ-1 (most notably protection from oxidative stress), its contribution to PD pathogenesis is not yet clear. Here we provide an overview of the clinical research to date on DJ-1 and the current state of knowledge regarding DJ-1 characterization in the human brain. The relevance of DJ-1 as a PD biomarker is also discussed, as are studies exploring DJ-1 as a possible therapeutic target for PD and neurodegeneration.
Collapse
|
19
|
Yin J, Xu R, Wei J, Zhang S. The protective effect of glutaredoxin 1/DJ-1/HSP70 signaling in renal tubular epithelial cells injury induced by ischemia. Life Sci 2019; 223:88-94. [PMID: 30858124 DOI: 10.1016/j.lfs.2019.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
AIMS Gluaredoxin1 (GRX1) is an important protein of the cellular antioxidant defense system, but its role in renal epithelial cell injury caused by ischemia remains unclear. In this study, we aimed to gain insight into the role of GRX1 in HK-2 cells with oxygen glucose deprivation (OGD) injury, which served as an in vitro cell model of renal epithelial cell ischemic injury. We investigated the underlying regulation of GRX1, DJ-1, and HSP70 as well as the role of the GRX1/DJ-1/HSP70 signaling pathway in this model. MATERIALS AND METHODS The protein and mRNA expressions were measured by Western blot and qRT-PCR assays, respectively. GRX1 was overexpressed by transfection of pcDNA.3.1-GRX1 and DJ-1 was inhibited by transfection with DJ-1 siRNA. Cell apoptosis, caspase-3 activity, lactate dehydrogenase (LDH) leakage, or superoxide dismutase (SOD) content was tested by the related detection kit. Reactive oxygen species (ROS) level was detected via carboxy-H2DCF-DA. KEY FINDINGS We found that GRX1 was distinctly down-regulated in HK-2 cells after incubation under the OGD condition. GRX1 overexpression markedly constrained cell apoptosis, caspase-3 activity, LDH leakage, and the ROS level, while SOD content was elevated. GRX1 up-regulation increased DJ-1 and HSP70 protein expression, while DJ-1 inhibition significantly offset the effect of GRX1 overexpression on HSP70, indicating that GRX1 could regulate HSP70 via control of DJ-1. Moreover, we observed that HSP70 inhibition removed the constraints imposed by GRX1 overexpression on ROS level, LDH leakage, and caspase-3 activity. SIGNIFICANCE Overall, this study showed that GRX1 minimizes cell injury and apoptosis in HK-2 cells under OGD conditions via regulation of DJ-1 and HSP70 expression.
Collapse
Affiliation(s)
- Jian Yin
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Ruisi Xu
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jun Wei
- Department of Pharmacology Base, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Siqi Zhang
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
20
|
Zhao ZH, Chen ZT, Zhou RL, Zhang X, Ye QY, Wang YZ. Increased DJ-1 and α-Synuclein in Plasma Neural-Derived Exosomes as Potential Markers for Parkinson's Disease. Front Aging Neurosci 2019; 10:438. [PMID: 30692923 PMCID: PMC6339871 DOI: 10.3389/fnagi.2018.00438] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/21/2018] [Indexed: 01/12/2023] Open
Abstract
The diagnosis of PD might be in difficulty, especially in the early stages. Therefore, the identification of novel biomarkers is imperative for the diagnosis and monitoring disease progression in PD. DJ-1 and α-synuclein, are two proteins that are critically involved in the pathogenesis of PD, and they have been examined as disease biomarkers in studies. However, no study exists regarding DJ-1 in plasma neural-derived exosomes. In the present study, the levels of DJ-1 and α-synuclein in plasma neural-derived exosomes were studied together in order to investigate novel biomarkers for PD. DJ-1 and α-synuclein in plasma and plasma neural-derived exosomes of the patients with PD and controls were quantified by ELISAs. The data revealed that the levels of DJ-1 and α-synuclein in plasma neural-derived exosomes and the ratio of plasma neural-derived exosomal DJ-1 to total DJ-1 were significantly higher in patients with PD, compared with controls, while levels of the two proteins in plasma exhibited no difference between the patients with PD and controls. However, no relationship was identified between biomarkers and disease progression. In addition, significant positive correlations between DJ-1 and α-synuclein in plasma neural-derived exosomes were found in the patients with PD and in healthy individuals. We hypothesize that DJ-1 in plasma neural-derived exosomes may be used as a potential biomarker as α-synuclein in PD and they might participate in the mechanism of PD together.
Collapse
Affiliation(s)
- Zhen-Hua Zhao
- Department of Neurology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Zhi-Ting Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rui-Ling Zhou
- Department of Neurology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Xu Zhang
- Department of Neurology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Qin-Yong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yin-Zhou Wang
- Department of Neurology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Cooper JF, Spielbauer KK, Senchuk MM, Nadarajan S, Colaiácovo MP, Van Raamsdonk JM. α-synuclein expression from a single copy transgene increases sensitivity to stress and accelerates neuronal loss in genetic models of Parkinson's disease. Exp Neurol 2018; 310:58-69. [PMID: 30194957 DOI: 10.1016/j.expneurol.2018.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/25/2018] [Accepted: 09/04/2018] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by the formation of α-synuclein-containing protein aggregates called Lewy bodies within the brain. A crucial role for α-synuclein in the pathogenesis of PD is also suggested by the fact that point mutations, increased copy number, or polymorphisms in the α-synuclein gene SNCA all cause or contribute to the development of PD. In addition to SNCA, an increasing number of other genes have been implicated in PD. While mutations in at least some of these genes have been shown to cause the formation of Lewy bodies, the role of α-synuclein in these genetic forms of PD remains poorly defined. Since C. elegans do not have a homolog of α-synuclein, this organism provides the opportunity to identify synergism between α-synuclein and other genes implicated in PD. To do this, we generated a novel C. elegans model in which wild-type α-synuclein is ubiquitously expressed from a single copy transgene, and examined the resulting effect on phenotypic deficits in PD deletion mutants affecting PARK2/pdr-1, PINK1/pink-1, DJ-1/djr-1.1 and ATP13A2/catp-6. While the PD deletion mutants exhibit only mild phenotypic deficits in absence of α-synuclein, expression of wild-type α-synuclein caused increased sensitivity to multiple stresses, induced deficits in dopamine-dependent behavior, and accelerated loss of dopamine neurons. Overall, these results suggest that the recessive loss of function mutations act together with α-synuclein to cause PD, and that α-synuclein lowering strategies may be effective in genetic forms of PD.
Collapse
Affiliation(s)
- Jason F Cooper
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Katie K Spielbauer
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Megan M Senchuk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | | | - Jeremy M Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
22
|
Kamireddy K, Chinnu S, Priyanka PS, Rajini PS, Giridhar P. Neuroprotective effect of Decalepis hamiltonii aqueous root extract and purified 2-hydroxy-4-methoxy benzaldehyde on 6-OHDA induced neurotoxicity in Caenorhabditis elegans. Biomed Pharmacother 2018; 105:997-1005. [PMID: 30021395 DOI: 10.1016/j.biopha.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 01/01/2023] Open
Abstract
In this study, we investigated the possible neuroprotective efficacy of Decalepis hamiltonii tuber extract against 6-Hydroxy dopamine (6-OHDA) induced neurotoxicity and associated effects in Caenorhabditis elegans. The major component of flavour rich extract from D. hamiltonii is 2-hydroxy-4-methoxy benzaldehyde (2H4MB) which is an isomer of vanillin. We have conducted preliminary experiments with different types of extracts and subsequently DHFE (D. hamiltonii Fresh Tuber Extract) and DHPF (D. hamiltonii purified 2H4MB fraction) were used for further studies. Here we attempted to enumerate the neuroprotective efficacy of the above compounds in worms by evaluating behavioural and mitochondrial function, dopamine content and selective degeneration of dopaminergic neurons in BZ555 strains in comparison with control and 6-OHDA treated organisms. The relative expression levels of selected antioxidant genes involved in defence mechanism like SOD-3, GST-2 and GST-4 were evaluated along with those of CAT-2 and DOP-2 at mRNA level. We observed that both DHPF and DHFE exhibited significant levels of neuroprotective property against 6-OHDA induced neurotoxicity, which was evident in mitochondrial/dopaminergic function and antioxidant defence mechanism.
Collapse
Affiliation(s)
- Kiran Kamireddy
- Academy of Scientific and Innovative Research (CSIR-CFTRI Campus), Mysore, India; Plant Cell Biotechnology Department, CSIR-CFTRI, Mysore, 570020, India
| | - Salim Chinnu
- Academy of Scientific and Innovative Research (CSIR-CFTRI Campus), Mysore, India; Food Protectants and Infestation Control Department, CSIR-CFTRI, Mysore, 570020, India
| | - P S Priyanka
- Academy of Scientific and Innovative Research (CSIR-CFTRI Campus), Mysore, India; Plant Cell Biotechnology Department, CSIR-CFTRI, Mysore, 570020, India
| | - P S Rajini
- Academy of Scientific and Innovative Research (CSIR-CFTRI Campus), Mysore, India; Food Protectants and Infestation Control Department, CSIR-CFTRI, Mysore, 570020, India
| | - Parvatam Giridhar
- Academy of Scientific and Innovative Research (CSIR-CFTRI Campus), Mysore, India; Plant Cell Biotechnology Department, CSIR-CFTRI, Mysore, 570020, India.
| |
Collapse
|
23
|
Zeng XS, Geng WS, Jia JJ, Chen L, Zhang PP. Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. Front Aging Neurosci 2018; 10:109. [PMID: 29719505 PMCID: PMC5913322 DOI: 10.3389/fnagi.2018.00109] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
It has been 200 years since Parkinson disease (PD) was described by Dr. Parkinson in 1817. The disease is the second most common neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the pathogenesis of PD is still unknown, the research findings from scientists are conducive to understand the pathological mechanisms. It is well accepted that both genetic and environmental factors contribute to the onset of PD. In this review, we summarize the mutations of main seven genes (α-synuclein, LRRK2, PINK1, Parkin, DJ-1, VPS35 and GBA1) linked to PD, discuss the potential mechanisms for the loss of dopaminergic neurons (dopamine metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, impaired autophagy, and deregulation of immunity) in PD, and expect the development direction for treatment of PD.
Collapse
Affiliation(s)
- Xian-Si Zeng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | | | - Jin-Jing Jia
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | | | | |
Collapse
|
24
|
Zeng XS, Geng WS, Jia JJ, Chen L, Zhang PP. Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. Front Aging Neurosci 2018; 10:109. [PMID: 29719505 DOI: 10.3389/fnagi.2018.00109if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2024] Open
Abstract
It has been 200 years since Parkinson disease (PD) was described by Dr. Parkinson in 1817. The disease is the second most common neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the pathogenesis of PD is still unknown, the research findings from scientists are conducive to understand the pathological mechanisms. It is well accepted that both genetic and environmental factors contribute to the onset of PD. In this review, we summarize the mutations of main seven genes (α-synuclein, LRRK2, PINK1, Parkin, DJ-1, VPS35 and GBA1) linked to PD, discuss the potential mechanisms for the loss of dopaminergic neurons (dopamine metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, impaired autophagy, and deregulation of immunity) in PD, and expect the development direction for treatment of PD.
Collapse
Affiliation(s)
- Xian-Si Zeng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Wen-Shuo Geng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Jin-Jing Jia
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lei Chen
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Peng-Peng Zhang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
25
|
Biosa A, Sandrelli F, Beltramini M, Greggio E, Bubacco L, Bisaglia M. Recent findings on the physiological function of DJ-1: Beyond Parkinson's disease. Neurobiol Dis 2017; 108:65-72. [PMID: 28823929 DOI: 10.1016/j.nbd.2017.08.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/26/2017] [Accepted: 08/16/2017] [Indexed: 01/16/2023] Open
Abstract
Several mutations in the gene coding for DJ-1 have been associated with early onset forms of parkinsonism. In spite of the massive effort spent by the scientific community in understanding the physiological role of DJ-1, a consensus on what DJ-1 actually does within the cells has not been reached, with several diverse functions proposed. At present, the most accepted function for DJ-1 is a neuronal protective role against oxidative stress. However, how exactly this function is exerted by DJ-1 is not clear. In recent years, novel molecular mechanisms have been suggested that may account for the antioxidant properties of DJ-1. In this review, we critically analyse the experimental evidence, including some very recent findings, supporting the purported neuroprotective role of DJ-1 through different mechanisms linked to oxidative stress handling, as well as the relevance of these processes in the context of Parkinson's disease.
Collapse
Affiliation(s)
- Alice Biosa
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Federica Sandrelli
- Neurogenetics and Chronobiology Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Mariano Beltramini
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Elisa Greggio
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Luigi Bubacco
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Marco Bisaglia
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
26
|
Han J, Luk B, Lee FJ. Neuroprotective effects of extracellular DJ-1 on reperfusion injury in SH-SY5Y cells. Synapse 2017; 71. [DOI: 10.1002/syn.21963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Jay Han
- Faculty of Health Sciences; Simon Fraser University; Burnaby BC V5A 1S6 Canada
| | - Beryl Luk
- Faculty of Health Sciences; Simon Fraser University; Burnaby BC V5A 1S6 Canada
| | - Frank J.S. Lee
- Faculty of Health Sciences; Simon Fraser University; Burnaby BC V5A 1S6 Canada
| |
Collapse
|
27
|
Tat-DJ-1 enhances cell survival by inhibition of oxidative stress, NF-κB and MAPK activation in HepG2 cells. Biotechnol Lett 2017; 39:511-521. [DOI: 10.1007/s10529-017-2286-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/04/2017] [Indexed: 12/29/2022]
|
28
|
Zhang Y, Gong XG, Wang ZZ, Sun HM, Guo ZY, Gai C, Hu JH, Ma L, Li P, Chen NH. Protective effects of DJ-1 medicated Akt phosphorylation on mitochondrial function are promoted by Da-Bu-Yin-Wan in 1-methyl-4-phenylpyridinium-treated human neuroblastoma SH-SY5Y cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:83-93. [PMID: 27114059 DOI: 10.1016/j.jep.2016.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 11/11/2015] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Da-Bu-Yin-Wan (DBYW), a historically traditional Chinese medicine formula, was originally defined over 600 years ago. In recent decades, DBYW was clinically employed to treat Parkinson's disease (PD). AIM OF THE STUDY To explore the underlying mechanism of DBYW on mitochondrial function, we investigated the effect of DBYW on mitochondrial function from the perspectives of DJ-1 and Akt signaling. MATERIALS AND METHODS Human derived neuroblastoma SH-SY5Y cells were transiently transfected with the plasmid pcDNA3-Flag-DJ-1 aimed to overexpress the DJ-1 protein. Transfected cells were treated with 1-methyl-4-phenylpyridinium (MPP(+)), a PD-related mitochondrial complex I inhibitor, in the absence and presence of DBYW. The cell viability was assessed by Cell Counting Kit-8 assay. The protein expressions of DJ-1 and Akt signaling were examined by western blotting. The mitochondrial mass was evaluated by confocal fluorescence microscopy. The mitochondrial complex I activity and cellular ATP content were measured by commercial kits. RESULTS Transfection with pcDNA3-Flag-DJ-1 decreased the MPP(+)-induced toxicity and overexpressed the DJ-1. In DJ-1 overexpressed cells, the mitochondrial mass was raised, mitochondrial complex I activity was improved, and cellular ATP content was increased. In addition, overexpression of DJ-1 augmented the Akt phosphorylation on threonine 308 and serine 473. Moreover, DBYW promoted the above effects in DJ-1 expressed cells. CONCLUSIONS These data suggest that DJ-1 protects the mitochondrial function by medicating Akt phosphorylation in MPP(+)-treated SH-SY5Y cells. Moreover, DBYW enhances the protective effect of DJ-1 medicated Akt phosphorylation on mitochondrial function.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Xiao-Gang Gong
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; College of Special Education, Beijing Union University, Beijing 100075, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Zhen-Yu Guo
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong Gai
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing-Hong Hu
- Center for Scientific Research, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ling Ma
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing 100029, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
29
|
Pan Z, Niu Y, Liang Y, Zhang X, Dong M. β-Ecdysterone Protects SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Apoptosis via Mitochondria-Dependent Mechanism: Involvement of p38(MAPK)-p53 Signaling Pathway. Neurotox Res 2016; 30:453-66. [PMID: 27229883 DOI: 10.1007/s12640-016-9631-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/24/2016] [Accepted: 05/17/2016] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder pathologically characterized by loss of dopaminergic neurons in the substantia nigra. No curative therapy is available for PD. We recently found that phytoestrogen β-ecdysterone (β-Ecd) is able to reduce MPP(+)-induced apoptosis in PC12 cells. This study investigated the potential of β-Ecd to protect against SH-SY5Y cell apoptosis induced by the PD-related neurotoxin 6-hydroxydopamine (6-OHDA) and the underlying mechanism for this cytoprotection. In the present study, pretreatment with β-Ecd significantly reduced 6-OHDA-induced apoptosis of SH-SY5Y cells by a mitochondria-dependent pathway, as indicated by downregulation of Bax and PUMA (p53 upregulated modulator of apoptosis) expression, suppressing ΔΨm loss, inhibiting cytochrome c release, and attenuating caspase-9 activation. Furthermore, we showed that the inhibition of p38 mitogen-activated protein kinase (p38(MAPK))-dependent p53 promoter activity contributed to the protection of SH-SY5Y cells from apoptosis, which was validated by the use of SB203580 or p38β dominant negative (DN) mutants. Additionally, knock-down apoptosis signal-regulating kinase 1 (ASK1) by specific shRNA and blockade reactive oxygen species (ROS) by pharmacological inhibitor competently prevented β-Ecd-mediated inhibition of p38(MAPK) and ASK1 phosphorylation, respectively. These data provide the first evidence that β-Ecd protects SH-SY5Y cells against 6-OHDA-induced apoptosis, possibly through mitochondria protection and p53 modulation via ROS-dependent ASK1-p38(MAPK) pathways. The neuroprotective effects of β-Ecd make it a promising candidate as a therapeutic agent for PD.
Collapse
Affiliation(s)
- Zhi Pan
- Center for New Medicine Research, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, Jianhua District, Qiqihar, 161006, China
| | - Yini Liang
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, Jianhua District, Qiqihar, 161006, China
| | - Xiaojie Zhang
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, Jianhua District, Qiqihar, 161006, China
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, Jianhua District, Qiqihar, 161006, China.
| |
Collapse
|
30
|
Forloni G, Artuso V, La Vitola P, Balducci C. Oligomeropathies and pathogenesis of Alzheimer and Parkinson's diseases. Mov Disord 2016; 31:771-81. [DOI: 10.1002/mds.26624] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- Gianluigi Forloni
- Departement of Neuroscience; IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri,”; Milano Italy
| | | | - Pietro La Vitola
- Departement of Neuroscience; IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri,”; Milano Italy
| | - Claudia Balducci
- Departement of Neuroscience; IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri,”; Milano Italy
| |
Collapse
|
31
|
Lu L, Zhao S, Gao G, Sun X, Zhao H, Yang H. DJ-1/PARK7, But Not Its L166P Mutant Linked to Autosomal Recessive Parkinsonism, Modulates the Transcriptional Activity of the Orphan Nuclear Receptor Nurr1 In Vitro and In Vivo. Mol Neurobiol 2016; 53:7363-7374. [PMID: 26873851 DOI: 10.1007/s12035-016-9772-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 02/02/2016] [Indexed: 12/16/2022]
Abstract
Although mutations of DJ-1 have been linked to autosomal recessive Parkinsonism for years, its physiological function and the pathological mechanism of its mutants are not well understood. We report for the first time that exogenous application of DJ-1, but not its L166P mutant, enhances the nuclear translocation and the transcriptional activity of Nurr1, a transcription factor essential for dopaminergic neuron development and maturation, both in vitro and in vivo. Knockdown of DJ-1 attenuates Nurr1 activity. Further investigation showed that signaling of Raf/MEK/ERK MAPKs is involved in this regulatory process and that activation induced by exogenous DJ-1 is antagonized by U0126, an ERK pathway inhibitor, indicating that DJ-1 modulates Nurr1 activity via the Raf/MEK/ERK pathway. Our findings shed light on the novel function of DJ-1 to enhance Nurr1 activity and provide the first insight into the molecular mechanism by which DJ-1 enhances Nurr1 activity.
Collapse
Affiliation(s)
- Lingling Lu
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Department of Neurobiology, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Shasha Zhao
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Department of Neurobiology, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Ge Gao
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Department of Neurobiology, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Xiaohong Sun
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Department of Neurobiology, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Huanying Zhao
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Department of Neurobiology, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Hui Yang
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Department of Neurobiology, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China. .,Center of Parkinson's Disease, Beijing Institute of Brain Disorders, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, 10 You an men Wai, Xitoutiao, Beijing, 100069, China.
| |
Collapse
|
32
|
Ashley AK, Hinds AI, Hanneman WH, Tjalkens RB, Legare ME. DJ-1 mutation decreases astroglial release of inflammatory mediators. Neurotoxicology 2015; 52:198-203. [PMID: 26691871 DOI: 10.1016/j.neuro.2015.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/10/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
Mutations in DJ-1, reactive gliosis and concomitant inflammatory processes are implicated in the pathogenesis and progression of Parkinson's disease (PD). To study the physiological consequences of DJ-1 mutation in the context of neuroinflammatory insult, primary cortical astrocytes were isolated from DJ-1 knockout mice. Astrocytes were exposed to 1μg/mL lipopolysaccharide (LPS) for 24h following 2h pre-exposure to inhibitors of MEK (U0126), JNK (JNK inhibitor II) or p38 (SB203580). Real-time PCR was used to assess the LPS-induced expression of pro-inflammatory mediators cyclooxygenase 2 (COX2), inducible nitric oxide synthetase (NOS2), and tumor necrosis factor α (TNFα). LPS-induced expression of COX2 decreased similarly in DJ-1(+/+) and DJ-1(-/-) astrocytes in response to inhibition of p38, but was unaffected by inhibition of MEK or JNK. No significant alterations in NOS2 expression were observed in any inhibitor-treated cells. The inhibitors did not affect expression of TNFα; however, DJ-1(-/-) astrocytes had consistently lower expression compared to DJ-1(+/+) counterparts. Secretion of TNFα and prostaglandin E2 (PGE2) into the culture medium was significantly decreased in DJ-1(-/-) astrocytes, and inhibition of p38 decreased this secretion in both genotypes. In conclusion, DJ-1(-/-) astrocytes may provide decreased neuroprotection to surrounding neurons due to alterations in pro-inflammatory mediator expression.
Collapse
Affiliation(s)
- A K Ashley
- The Center for Environmental Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, United States
| | - A I Hinds
- The Center for Environmental Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, United States
| | - W H Hanneman
- The Center for Environmental Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, United States
| | - R B Tjalkens
- The Center for Environmental Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, United States
| | - M E Legare
- The Center for Environmental Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, United States.
| |
Collapse
|