1
|
Goksen D, Evin F, Isik E, Ozen S, Atik T, Ozkinay F, Akcan N, Ozkan B, Buyukinan M, Nuri Ozbek M, Darcan S, Onay H. Molecular diagnosis in patients with monogenic diabetes mellitus, and detection of a novel candidate gene. Diabetes Res Clin Pract 2023; 205:110953. [PMID: 37838154 DOI: 10.1016/j.diabres.2023.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
AIM We aimed to investigate molecular genetic basis of monogenic diabetes (DM) and novel responsible candidate genes with targeted Next Generation Sequencing (NGS) and Whole Exome Sequencing (WES). METHODS A hundred cases presenting with clinical findings and a family history of monogenic DM were included in the study. Molecular analysis was performed using an NGS panel including 14 genes. Following targeted NGS, WES was planned in cases in whom no variant was detected. RESULTS Thirty different disease-causing variants in seven different genes were detected in thirty-five (35 %) cases with targeted NGS approach. Most common pathogenic variant was found in GCK gene in 25 (25 %) cases. Four different variants were detected in 4 (4 %) patients in ABCC8 gene. In 45 of 65 cases; WES analyses were done. A heterozygous c.2635C > T(p.Gln879Ter) variant was detected in IFIH1 gene in a patient with incidental hyperglycemia. In the segregation analysis affected mother was shown to be heterozygous for the same variant. CONCLUSION Molecular etiology was determined in 35 % cases with the NGS targeted panel. Seventeen novel variants in monogenic DM genes have been identified. A candidate gene determined by WES analysis in a case that could not be diagnosed with NGS panel in this study.
Collapse
Affiliation(s)
- Damla Goksen
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ferda Evin
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Esra Isik
- Department of Pediatric Genetics, Faculty of Medicine, Ege University, Izmir, Turkey.
| | - Samim Ozen
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Tahir Atik
- Department of Pediatric Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ferda Ozkinay
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Nese Akcan
- Department of Pediatric Endocrinology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Behzat Ozkan
- Department of Pediatric Endocrinology, Dr Behçet Uz Çocuk Training and Research Hospital, Izmir, Turkey
| | - Muammer Buyukinan
- Department of Pediatric Endocrinology, Konya Training and Research Hospital, Konya, Turkey
| | - Mehmet Nuri Ozbek
- Department of Pediatric Endocrinology, Mardin Artuklu University, Mardin, Turkey
| | - Sukran Darcan
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Huseyin Onay
- Multigen Genetic Diseases Diagnosis Center, Izmir, Turkey
| |
Collapse
|
2
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
Rafique I, Mir A, Siddiqui S, Saqib MAN, Fawwad A, Marchand L, Adnan M, Naeem M, Basit A, Polychronakos C. Comprehensive genetic screening reveals wide spectrum of genetic variants in monogenic forms of diabetes among Pakistani population. World J Diabetes 2021; 12:1957-1966. [PMID: 34888019 PMCID: PMC8613659 DOI: 10.4239/wjd.v12.i11.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Monogenic forms of diabetes (MFD) are single gene disorders. Their diagnosis is challenging, and symptoms overlap with type 1 and type 2 diabetes.
AIM To identify the genetic variants responsible for MFD in the Pakistani population and their frequencies.
METHODS A total of 184 patients suspected of having MFD were enrolled. The inclusion criterion was diabetes with onset below 25 years of age. Brief demographic and clinical information were taken from the participants. The maturity-onset diabetes of the young (MODY) probability score was calculated, and glutamate decarboxylase ELISA was performed. Antibody negative patients and features resembling MODY were selected (n = 28) for exome sequencing to identify the pathogenic variants.
RESULTS A total of eight missense novel or very low-frequency variants were identified in 7 patients. Three variants were found in genes for MODY, i.e. HNF1A (c.169C>A, p.Leu57Met), KLF11 (c.401G>C, p.Gly134Ala), and HNF1B (c.1058C>T, p.Ser353Leu). Five variants were found in genes other than the 14 known MODY genes, i.e. RFX6 (c.919G>A, p.Glu307Lys), WFS1 (c.478G>A, p.Glu160Lys) and WFS1 (c.517G>A, p.Glu173Lys), RFX6 (c.1212T>A, p.His404Gln) and ZBTB20 (c.1049G>A, p.Arg350His).
CONCLUSION The study showed wide spectrum of genetic variants potentially causing MFD in the Pakistani population. The MODY genes prevalent in European population (GCK, HNF1A, and HNF4a) were not found to be common in our population. Identification of novel variants will further help to understand the role of different genes causing the pathogenicity in MODY patient and their proper management and diagnosis.
Collapse
Affiliation(s)
- Ibrar Rafique
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
- Research Development and Coordination, Pakistan Health Research Council, Islamabad 44000, Pakistan
| | - Asif Mir
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Shajee Siddiqui
- Department of Medicine, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan, Pakistan
| | | | - Asher Fawwad
- Department of Biochemistry, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi 74600, Sindh, Pakistan
| | - Luc Marchand
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
| | - Muhammad Adnan
- PHRC Research Centre, FJMU, Pakistan Health Research Council, Lahore 54000, Pakistan
| | - Muhammad Naeem
- Department of Biotechnology, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Abdul Basit
- Department of Medicine, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi 74600, Sindh, Pakistan
| | - Constantin Polychronakos
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
| |
Collapse
|
4
|
Heller S, Melzer MK, Azoitei N, Julier C, Kleger A. Human Pluripotent Stem Cells Go Diabetic: A Glimpse on Monogenic Variants. Front Endocrinol (Lausanne) 2021; 12:648284. [PMID: 34079523 PMCID: PMC8166226 DOI: 10.3389/fendo.2021.648284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes, as one of the major diseases in industrial countries, affects over 350 million people worldwide. Type 1 (T1D) and type 2 diabetes (T2D) are the most common forms with both types having invariable genetic influence. It is accepted that a subset of all diabetes patients, generally estimated to account for 1-2% of all diabetic cases, is attributed to mutations in single genes. As only a subset of these genes has been identified and fully characterized, there is a dramatic need to understand the pathophysiological impact of genetic determinants on β-cell function and pancreatic development but also on cell replacement therapies. Pluripotent stem cells differentiated along the pancreatic lineage provide a valuable research platform to study such genes. This review summarizes current perspectives in applying this platform to study monogenic diabetes variants.
Collapse
Affiliation(s)
- Sandra Heller
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Michael Karl Melzer
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
- Department of Urology, Ulm University Hospital, Ulm, Germany
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Cécile Julier
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
5
|
Jönsson J, Renault KM, García-Calzón S, Perfilyev A, Estampador AC, Nørgaard K, Lind MV, Vaag A, Hjort L, Michaelsen KF, Carlsen EM, Franks PW, Ling C. Lifestyle Intervention in Pregnant Women With Obesity Impacts Cord Blood DNA Methylation, Which Associates With Body Composition in the Offspring. Diabetes 2021; 70:854-866. [PMID: 33431374 PMCID: PMC7980200 DOI: 10.2337/db20-0487] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023]
Abstract
Maternal obesity may lead to epigenetic alterations in the offspring and might thereby contribute to disease later in life. We investigated whether a lifestyle intervention in pregnant women with obesity is associated with epigenetic variation in cord blood and body composition in the offspring. Genome-wide DNA methylation was analyzed in cord blood from 208 offspring from the Treatment of Obese Pregnant women (TOP)-study, which includes pregnant women with obesity randomized to lifestyle interventions comprised of physical activity with or without dietary advice versus control subjects (standard of care). DNA methylation was altered at 379 sites, annotated to 370 genes, in cord blood from offspring of mothers following a lifestyle intervention versus control subjects (false discovery rate [FDR] <5%) when using the Houseman reference-free method to correct for cell composition, and three of these sites were significant based on Bonferroni correction. These 370 genes are overrepresented in gene ontology terms, including response to fatty acids and adipose tissue development. Offspring of mothers included in a lifestyle intervention were born with more lean mass compared with control subjects. Methylation at 17 sites, annotated to, for example, DISC1, GBX2, HERC2, and HUWE1, partially mediates the effect of the lifestyle intervention on lean mass in the offspring (FDR <5%). Moreover, 22 methylation sites were associated with offspring BMI z scores during the first 3 years of life (P < 0.05). Overall, lifestyle interventions in pregnant women with obesity are associated with epigenetic changes in offspring, potentially influencing the offspring's lean mass and early growth.
Collapse
Affiliation(s)
- Josefine Jönsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Kristina M Renault
- Department of Obstetrics and Gynecology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sonia García-Calzón
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Angela C Estampador
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | | | - Mads Vendelbo Lind
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Line Hjort
- Department of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark
| | - Kim F Michaelsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Emma Malchau Carlsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Pediatrics, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Paul W Franks
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
6
|
Kim JH, Lee Y, Choi Y, Kim GH, Yoo HW, Choi JH. Etiologic distribution and clinical characteristics of pediatric diabetes in 276 children and adolescents with diabetes at a single academic center. BMC Pediatr 2021; 21:108. [PMID: 33663443 PMCID: PMC7931559 DOI: 10.1186/s12887-021-02575-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Background The prevalence of monogenic diabetes is estimated to be 1.1–6.3% of patients with diabetes mellitus (DM) in Europe. The overlapping clinical features of various forms of diabetes make differential diagnosis challenging. Therefore, this study investigated the etiologic distribution and clinical characteristics of pediatric diabetes, including monogenic diabetes, who presented at a single tertiary center over the last 20 years. Methods This study included 276 consecutive patients with DM diagnosed before 18 years of age from January 2000 to December 2019 in Korea. Clinical features, biochemical findings, β-cell autoantibodies, and molecular characteristics were reviewed retrospectively. Results Of the 276 patients, 206 patients (74.6%), 49 patients (17.8%), and 21 patients (7.6%) were diagnosed with type 1 DM, type 2 DM, and clinically suspected monogenic diabetes, respectively. Among 21 patients suspected to have monogenic diabetes, 8 patients had clinical maturity-onset diabetes of the young (MODY), and the remaining 13 patients had other types of monogenic diabetes. Among them, genetic etiologies were identified in 14 patients (5.1%) from 13 families, which included MODY 5, transient neonatal DM, developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome, Wolfram syndrome, Donohue syndrome, immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, Fanconi-Bickel syndrome, Wolcott-Rallison syndrome, cystic fibrosis-related diabetes, and maternally inherited diabetes and deafness. Conclusions Genetically confirmed monogenic diabetes accounted for 5.1% of patients evaluated at a single tertiary center over 20-year period. Based on the findings for our sample, the frequency of mutations in the major genes of MODY appears to be low among pediatric patients in Korea. It is critical to identify the genetic cause of DM to provide appropriate therapeutic options and genetic counseling. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02575-6.
Collapse
Affiliation(s)
- Ja Hye Kim
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Yena Lee
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Yunha Choi
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
7
|
Zhang H, Colclough K, Gloyn AL, Pollin TI. Monogenic diabetes: a gateway to precision medicine in diabetes. J Clin Invest 2021; 131:142244. [PMID: 33529164 PMCID: PMC7843214 DOI: 10.1172/jci142244] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Monogenic diabetes refers to diabetes mellitus (DM) caused by a mutation in a single gene and accounts for approximately 1%-5% of diabetes. Correct diagnosis is clinically critical for certain types of monogenic diabetes, since the appropriate treatment is determined by the etiology of the disease (e.g., oral sulfonylurea treatment of HNF1A/HNF4A-diabetes vs. insulin injections in type 1 diabetes). However, achieving a correct diagnosis requires genetic testing, and the overlapping of the clinical features of monogenic diabetes with those of type 1 and type 2 diabetes has frequently led to misdiagnosis. Improvements in sequencing technology are increasing opportunities to diagnose monogenic diabetes, but challenges remain. In this Review, we describe the types of monogenic diabetes, including common and uncommon types of maturity-onset diabetes of the young, multiple causes of neonatal DM, and syndromic diabetes such as Wolfram syndrome and lipodystrophy. We also review methods of prioritizing patients undergoing genetic testing, and highlight existing challenges facing sequence data interpretation that can be addressed by forming collaborations of expertise and by pooling cases.
Collapse
Affiliation(s)
- Haichen Zhang
- University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Anna L. Gloyn
- Department of Pediatrics, Division of Endocrinology, and,Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, California, USA
| | - Toni I. Pollin
- University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Yalçın Çapan Ö, Aydın N, Yılmaz T, Berber E. Whole exome sequencing reveals novel candidate gene variants for MODY. Clin Chim Acta 2020; 510:97-104. [DOI: 10.1016/j.cca.2020.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022]
|
9
|
Abstract
Monogenic diabetes, including maturity-onset diabetes of the young, neonatal diabetes, and other rare forms of diabetes, results from a single gene mutation. It has been estimated to represent around 1% to 6% of all diabetes. With the advances in genome sequencing technology, it is possible to diagnose more monogenic diabetes cases than ever before. In Korea, 11 studies have identified several monogenic diabetes cases, using Sanger sequencing and whole exome sequencing since 2001. The recent largest study, using targeted exome panel sequencing, found a molecular diagnosis rate of 21.1% for monogenic diabetes in clinically suspected patients. Mutations in glucokinase (GCK), hepatocyte nuclear factor 1α (HNF1A), and HNF4A were most commonly found. Genetic diagnosis of monogenic diabetes is important as it determines the therapeutic approach required for patients and helps to identify affected family members. However, there are still many challenges, which include a lack of simple clinical criterion for selecting patients for genetic testing, difficulties in interpreting the genetic test results, and high costs for genetic testing. In this review, we will discuss the latest updates on monogenic diabetes in Korea, and suggest an algorithm to screen patients for genetic testing. The genetic tests and non-genetic markers for accurate diagnosis of monogenic diabetes will be also reviewed.
Collapse
Affiliation(s)
- Ye Seul Yang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Korea
- Corresponding author: Kyong Soo Park Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea E-mail:
| |
Collapse
|
10
|
Liang H, Zhang Y, Li M, Yan J, Yang D, Luo S, Zheng X, Yang G, Li Z, Xu W, Groop L, Weng J. Recognition of maturity-onset diabetes of the young in China. J Diabetes Investig 2020; 12:501-509. [PMID: 32741144 PMCID: PMC8015824 DOI: 10.1111/jdi.13378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Aims/Introduction Given that mutations related to maturity‐onset diabetes of the young (MODY) are rarely found in Chinese populations, we aim to characterize the mutation spectrum of MODY pedigrees. Materials and Methods Maturity‐onset diabetes of the young candidate gene‐ or exome‐targeted capture sequencing was carried out in 76 probands from unrelated families fulfilling the clinical diagnostic criteria for MODY. MAF <0.01 in the GnomAD or ExAC database was used to filter significant variants. Sanger sequencing was then carried out to validate findings. Function prediction by SIFT, PolyPhen‐2 and PROVEAN or CADD was carried out in missense mutations. Results A total of 32 mutations in six genes were identified in 31 families, accounting for 40.79% of the potential MODY families. The MODY subtype detection rate was 18.42% for GCK, 15.79% for HNF1A, 2.63% for HNF4A, and 1.32% for KLF11, PAX4 and NEUROG3. Seven nonsense/frameshift mutations and four missense mutations with damaging prediction were newly identified novel mutations. The clinical features of MODY2, MODY3/1 and MODYX are similar to previous reports. Clinical phenotype of NEUROG3 p.Arg55Glufs*23 is characterized by hyperglycemia and mild intermittent abdominal pain. Conclusions This study adds to the emerging pattern of MODY epidemiology that the proportion of MODY explained by known pathogenic genes is higher than that previously reported, and found NEUROG3 as a new causative gene for MODY.
Collapse
Affiliation(s)
- Hua Liang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Yanan Zhang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Maixinyue Li
- Department of Clinical Laboratory, Nanning Children's Hospital, Nanning, China
| | - Jinhua Yan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Daizhi Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Sihui Luo
- Division of Life Sciences and Medicine, Department of Endocrinology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Division of Life Sciences and Medicine, Department of Endocrinology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Guoqing Yang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Zhuo Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Leif Groop
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Jianping Weng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China.,Division of Life Sciences and Medicine, Department of Endocrinology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| |
Collapse
|
11
|
Jang KM. Maturity-onset diabetes of the young: update and perspectives on diagnosis and treatment. Yeungnam Univ J Med 2020; 37:13-21. [PMID: 31914718 PMCID: PMC6986955 DOI: 10.12701/yujm.2019.00409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a clinically heterogeneous group of monogenic disorders characterized by ß-cell dysfunction. MODY accounts for between 2% and 5% of all diabetes cases, and distinguishing it from type 1 or type 2 diabetes is a diagnostic challenge. Recently, MODY-causing mutations have been identified in 14 different genes. Sanger DNA sequencing is the gold standard for identifying the mutations in MODY-related genes, and may facilitate the diagnosis. Despite the lower frequency among diabetes mellitus cases, a correct genetic diagnosis of MODY is important for optimizing treatment strategies. There is a discrepancy in the disease-causing locus between the Asian and Caucasian patients with MODY. Furthermore, the prevalence of the disease in Asian populations remains to be studied. In this review, the current understanding of MODY is summarized and the Asian studies of MODY are discussed in detail.
Collapse
Affiliation(s)
- Kyung Mi Jang
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
12
|
Plengvidhya N, Tangjittipokin W, Teerawattanapong N, Narkdontri T, Yenchitsomanus PT. HNF1A mutation in a Thai patient with maturity-onset diabetes of the young: A case report. World J Diabetes 2019; 10:414-420. [PMID: 31363388 PMCID: PMC6656704 DOI: 10.4239/wjd.v10.i7.414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is the most common form of monogenic diabetes. The disease is transmitted in autosomal dominant mode and diabetes is usually diagnosed before age 25 year. MODY 3 is caused by mutation of hepatocyte nuclear factor (HNF) 1A genes and is the most common MODY subtype. Diagnosis of MODY 3 is crucial since glycemic control can be accomplished by very low dose of sulfonylurea. In this report we described a Thai MODY 3 patient who had excellence plasma glucose control by treating with glicazide 20 mg per day and insulin therapy can be discontinued.
CASE SUMMARY A 31-year-old woman was diagnosed diabetes mellitus at 14 years old. The disease was transmitted from her grandmother and mother compatible with autosomal dominant inheritance. Sanger sequencing of proband’s DNA identified mutation of HNF1A at codon 203 which changed amino acid from arginine to cysteine (R203C). This mutation was carried only by family members who have diabetes. The patient has been treated effectively with a combination of oral hypoglycemic agents and must include a very low dose of glicazide (20 mg/d). Insulin therapy was successfully discontinued.
CONCLUSION We demonstrated a first case of pharmacogenetics in Thai MODY 3 patient. Our findings underscore the essential role of molecular genetics in diagnosis and guidance of appropriate treatment of diabetes mellitus in particular patient.
Collapse
Affiliation(s)
- Nattachet Plengvidhya
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watip Tangjittipokin
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nipaporn Teerawattanapong
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Research Division, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tassanee Narkdontri
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Research Division, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-thai Yenchitsomanus
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence for Molecular Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
13
|
Yorifuji T, Higuchi S, Kawakita R, Hosokawa Y, Aoyama T, Murakami A, Kawae Y, Hatake K, Nagasaka H, Tamagawa N. Genetic basis of early-onset, maturity-onset diabetes of the young-like diabetes in Japan and features of patients without mutations in the major MODY genes: Dominance of maternal inheritance. Pediatr Diabetes 2018; 19:1164-1172. [PMID: 29927023 DOI: 10.1111/pedi.12714] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/05/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Causative mutations cannot be identified in the majority of Asian patients with suspected maturity-onset diabetes of the young (MODY). OBJECTIVES To elucidate the genetic basis of Japanese patients with MODY-like diabetes and gain insight into the etiology of patients without mutations in the major MODY genes. SUBJECTS A total of 263 Japanese patients with early-onset, non-obese, MODY-like diabetes mellitus referred to Osaka City General Hospital for diagnosis. METHODS Mutational analysis of the four major MODY genes (GCK, HNF1A, HNF4A, HNF1B) by Sanger sequencing. Mutation-positive and mutation-negative patients were further analyzed for clinical features. RESULTS Mutations were identified in 103 (39.2%) patients; 57 mutations in GCK; 29, HNF1A; 7, HNF4A; and 10, HNF1B. Contrary to conventional diagnostic criteria, 18.4% of mutation-positive patients did not have affected parents and 8.2% were in the overweight range (body mass index [BMI] >85th percentile). HOMA-IR at diagnosis was elevated (>2) in 15 of 66 (22.7%) mutation-positive patients. Compared with mutation-positive patients, mutation-negative patients were significantly older (P = 0.003), and had higher BMI percentile at diagnosis (P = 0.0006). Interestingly, maternal inheritance of diabetes was significantly more common in mutation-negative patients (P = 0.0332) and these patients had significantly higher BMI percentile as compared with mutation-negative patients with paternal inheritance (P = 0.0106). CONCLUSIONS Contrary to the conventional diagnostic criteria, de novo diabetes, overweight, and insulin-resistance are common in Japanese patients with mutation-positive MODY. A significant fraction of mutation-negative patients had features of early-onset type 2 diabetes common in Japanese, and non-Mendelian inheritance needs to be considered for these patients.
Collapse
Affiliation(s)
- Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan.,Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan.,Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| | - Shinji Higuchi
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Rie Kawakita
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan.,Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| | - Yuki Hosokawa
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Takane Aoyama
- Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| | - Akiko Murakami
- Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| | - Yoshiko Kawae
- Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| | - Kazue Hatake
- Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| | - Hironori Nagasaka
- Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Nobuyoshi Tamagawa
- Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
14
|
Shim YJ, Park SY, Jung N, Kim HS, Ha JS, Jang JH. A case of inherited type 1 and type 2A von Willebrand disease confirmed by diagnostic exome sequencing. Pediatr Blood Cancer 2018; 65:e27279. [PMID: 29893454 DOI: 10.1002/pbc.27279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/14/2018] [Indexed: 11/06/2022]
Abstract
A 10-year-old male and his family members visited a pediatric hematology clinic due to coagulopathy. Laboratory tests indicated von Willebrand disease (vWD) in all the family members. We conducted diagnostic exome sequencing for confirmation. The patient was confirmed to be a compound heterozygote for vWD: c.2574C > G (p.Cys858Trp) from his father (known variant of vWD type 1) and c.3390C > T (p.Pro1127_Gly1180delinsArg) from his mother (variant known to result in exon 26 skipping in vWD type 2A). He was managed with factor VIII and von Willebrand factor complex concentrate during palatoplasty due to bleeding despite pre-operative desmopressin injection. The operation was completed successfully.
Collapse
Affiliation(s)
- Ye Jee Shim
- Department of Pediatrics, Keimyung University School of Medicine and Dongsan Medical Center, Daegu, Republic of Korea
| | - So Yun Park
- Department of Pediatrics, Keimyung University School of Medicine and Dongsan Medical Center, Daegu, Republic of Korea
| | - Nani Jung
- Department of Pediatrics, Keimyung University School of Medicine and Dongsan Medical Center, Daegu, Republic of Korea
| | - Heung Sik Kim
- Department of Pediatrics, Keimyung University School of Medicine and Dongsan Medical Center, Daegu, Republic of Korea
| | - Jung-Sook Ha
- Department of Laboratory Medicine, Keimyung University School of Medicine and Dongsan Medical Center, Daegu, Republic of Korea
| | | |
Collapse
|
15
|
Cho EH, Min JW, Choi SS, Choi HS, Kim SW. Identification of Maturity-Onset Diabetes of the Young Caused by Glucokinase Mutations Detected Using Whole-Exome Sequencing. Endocrinol Metab (Seoul) 2017; 32:296-301. [PMID: 28555465 PMCID: PMC5503876 DOI: 10.3803/enm.2017.32.2.296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/22/2017] [Accepted: 03/30/2017] [Indexed: 11/25/2022] Open
Abstract
Glucokinase maturity-onset diabetes of the young (GCK-MODY) represents a distinct subgroup of MODY that does not require hyperglycemia-lowering treatment and has very few diabetes-related complications. Three patients from two families who presented with clinical signs of GCK-MODY were evaluated. Whole-exome sequencing was performed and the effects of the identified mutations were assessed using bioinformatics tools, such as PolyPhen-2, SIFT, and in silico modeling. We identified two mutations: p.Leu30Pro and p.Ser383Leu. In silico analyses predicted that these mutations result in structural conformational changes, protein destabilization, and thermal instability. Our findings may inform future GCK-MODY diagnosis; furthermore, the two mutations detected in two Korean families with GCK-MODY improve our understanding of the genetic basis of the disease.
Collapse
Affiliation(s)
- Eun Hee Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jae Woong Min
- Department of Medical Biotechnology, Institute of Bioscience and Biotechnology, Kangwon National University College of Biomedical Science, Chuncheon, Korea
| | - Sun Shim Choi
- Department of Medical Biotechnology, Institute of Bioscience and Biotechnology, Kangwon National University College of Biomedical Science, Chuncheon, Korea
| | - Hoon Sung Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Sang Wook Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.
| |
Collapse
|
16
|
Xu J, Jiang L, Yu W, Guo H, Zhang H, Wei D, Liang L, Feng K, Song X, Liu Q, Song B, Hao H, Zhang Y, Zhang C. A novel functional variant in Wilms' Tumor 1 (WT1) is associated with idiopathic non-obstructive azoospermia. Mol Reprod Dev 2017; 84:222-228. [PMID: 27990711 DOI: 10.1002/mrd.22768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
Idiopathic nonobstructive azoospermia (INOA) is one of the most severe forms of male infertility, yet its pathophysiology remains unclear. WT1 (Wilms' tumor 1) regulates the polarity of Sertoli cells, thereby playing a critical, indirect role in spermatogenesis. Here, we evaluated WT1 gene variation associates with INOA by assessing its promoter and coding regions in 200 patients diagnosed with INOA and 200 proven-fertile men. Three novel variants in the WT1 coding region were detected only in INOA patients, including two synonymous variants and one missense variant, p.Phe435Leu (p.F435L), which was predicted to be deleterious to protein function. The results of dual luciferase reporter showed that the WT1 p.F435L variant decreases transcription of COL4A1 and WNT4 promoters through a dominant-negative effect. Furthermore, chromatin immunoprecipitation assays revealed that COL4A1 and WNT4 promoter is directly bound by wild-type WT1 protein, but not the p.F435L WT1 variant. Thus, we identified a novel functional variant of WT1 functionally associated with INOA. Mol. Reprod. Dev. 84: 222-228, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jin Xu
- Reproductive Medical Center, The Henan Province People's Hospital, Zhengzhou, China
| | - Lile Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhu Yu
- Reproductive Medical Center, The Henan Province People's Hospital, Zhengzhou, China
| | - Haibin Guo
- Reproductive Medical Center, The Henan Province People's Hospital, Zhengzhou, China
| | - Helong Zhang
- Reproductive Medical Center, The Henan Province People's Hospital, Zhengzhou, China
| | - Duo Wei
- Reproductive Medical Center, The Henan Province People's Hospital, Zhengzhou, China
| | - Lingling Liang
- Reproductive Medical Center, The Henan Province People's Hospital, Zhengzhou, China
| | - Ke Feng
- Reproductive Medical Center, The Henan Province People's Hospital, Zhengzhou, China
| | - Xiaobing Song
- Reproductive Medical Center, The Henan Province People's Hospital, Zhengzhou, China
| | - Qi Liu
- Reproductive Medical Center, The Henan Province People's Hospital, Zhengzhou, China
| | - Bingbing Song
- Reproductive Medical Center, The Henan Province People's Hospital, Zhengzhou, China
| | - Haoying Hao
- Reproductive Medical Center, The Henan Province People's Hospital, Zhengzhou, China
| | - Ying Zhang
- Reproductive Medical Center, The Henan Province People's Hospital, Zhengzhou, China
| | - Cuilian Zhang
- Reproductive Medical Center, The Henan Province People's Hospital, Zhengzhou, China
| |
Collapse
|
17
|
Kwak SH, Jung CH, Ahn CH, Park J, Chae J, Jung HS, Cho YM, Lee DH, Kim JI, Park KS. Clinical whole exome sequencing in early onset diabetes patients. Diabetes Res Clin Pract 2016; 122:71-77. [PMID: 27810688 DOI: 10.1016/j.diabres.2016.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/18/2016] [Accepted: 10/08/2016] [Indexed: 12/11/2022]
Abstract
AIMS There could be an overlap of monogenic diabetes and early onset type 2 diabetes in those who are diagnosed before age of 30years. Genetic diagnosis in these patients might improve the quality of care. A limited number of studies have used whole exome sequencing (WES) in Asian patients with early onset diabetes, and the clinical utility of WES is largely unknown. METHODS We performed whole exome capture and massive parallel sequencing in 28 patients with early onset diabetes. Those who had a strong family history of diabetes were preferentially enrolled. Rare and non-silent variants in 29 genes known to cause monogenic diabetes, including 12 maturity-onset diabetes of the young (MODY) genes, were investigated for pathogenicity. RESULTS The average depth of on-target WES reads was 97 X. A total of four pathogenic or likely pathogenic rare missense variants (p.Leu319Pro in HNF4A, p.His103Tyr and p.Arg74Gln in ABCC8, and p.Leu139Val in HNF1A) in MODY genes were identified in three patients. Although four rare non-silent variants in MODY genes (p.Arg183Cys in PAX4, p.Val139Ile and p.Pro740fs in CEL, and p.Val147Ile in HNF4A) and two rare non-silent variants in monogenic diabetes genes (p.Glu169Lys in WFS1, and p.Pro407Gln in GATA4) were identified, their pathogenicity was uncertain or likely benign. CONCLUSIONS WES could be an initial option for genetic testing in patients with early onset diabetes. However, sufficient and universal coverage of genes of interest is required. In addition, it could be difficult to interpret variant pathogenicity, and these cases might require further validation.
Collapse
Affiliation(s)
- Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chan-Hyeon Jung
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang Ho Ahn
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jungsun Park
- New Business Division, SK Telecom, Seongnam, Gyeonggi-Do, Republic of Korea
| | - Jeesoo Chae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Seung Jung
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Kim SH. Maturity-Onset Diabetes of the Young: What Do Clinicians Need to Know? Diabetes Metab J 2015; 39:468-77. [PMID: 26706916 PMCID: PMC4696982 DOI: 10.4093/dmj.2015.39.6.468] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 11/15/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes that is characterized by an early onset, autosomal dominant mode of inheritance and a primary defect in pancreatic β-cell function. MODY represents less than 2% of all diabetes cases and is commonly misdiagnosed as type 1 or type 2 diabetes mellitus. At least 13 MODY subtypes with distinct genetic etiologies have been identified to date. A correct genetic diagnosis is important as it often leads to personalized treatment for those with diabetes and enables predictive genetic testing for their asymptomatic relatives. Next-generation sequencing may provide an efficient method for screening mutations in this form of diabetes as well as identifying new MODY genes. In this review, I discuss a current update on MODY in the literatures and cover the studies that have been performed in Korea.
Collapse
Affiliation(s)
- Sung Hoon Kim
- Division of Endocrinology & Metabolism, Department of Medicine, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea.
| |
Collapse
|