1
|
Quigley BL, Wellington N, Levenstein JM, Dutton M, Bouças AP, Forsyth G, Gallay CC, Hajishafiee M, Treacy C, Lagopoulos J, Andrews SC, Can AT, Hermens DF. Circulating biomarkers and neuroanatomical brain structures differ in older adults with and without post-traumatic stress disorder. Sci Rep 2025; 15:7176. [PMID: 40021745 PMCID: PMC11871017 DOI: 10.1038/s41598-025-91840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
The aim of this study was to advance post-traumatic stress disorder (PTSD) understanding in older adults (48-77 years) by determining if circulating cytokines (IL-1β, IL-2, IL-4, IL-6, IL-12p70, IL17A and TNFα), brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF-A) and neuroanatomical brain volumes (grey and white matter, hippocampus, and amygdala) significantly differed in those with versus without PTSD. While none of the tested cytokines showed a significant difference, serum BDNF and VEGF-A levels were found to be significantly higher in the PTSD cohort. The assay used for BDNF quantification was important, with differences in general BDNF detected, but not when pro- and mature BDNF were measured specifically. Additionally, BDNF genotyping revealed a significant difference in Val66Met genotype distribution by PTSD diagnosis, with Val66Met carriers generally having lower circulating levels of BDNF compared to their Val66Val counterparts, regardless of PTSD diagnosis. Neuroanatomically, an all-female subset was examined to find total grey and white matter volumes and left and right hippocampal volumes were significantly smaller in those with PTSD. Collectively, these results show that both novel (VEGF-A) and established targets (BDNF and neuroimaging) may serve as useful biomarkers for older adults with PTSD.
Collapse
Affiliation(s)
- Bonnie L Quigley
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia.
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, 4575, Australia.
| | - Nathan Wellington
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, 4575, Australia
| | - Jacob M Levenstein
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Megan Dutton
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Ana P Bouças
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Grace Forsyth
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Cyrana C Gallay
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Maryam Hajishafiee
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Ciara Treacy
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Sunshine Plaza, Box 1544, Maroochydore, QLD, 4558, Australia
| | - Sophie C Andrews
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Adem T Can
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| | - Daniel F Hermens
- National PTSD Research Centre at the Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, QLD, 4575, Australia
| |
Collapse
|
2
|
Allsopp RC, Hernández LM, Taylor MK. The Val66Met variant of brain-derived neurotrophic factor is linked to reduced telomere length in a military population: a pilot study. Sci Rep 2024; 14:27013. [PMID: 39506036 PMCID: PMC11542005 DOI: 10.1038/s41598-024-78033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
In military populations, gene-environment interactions can influence performance and health outcomes. Brain-derived neurotrophic factor (BDNF) is a central nervous system protein that is important for neuronal function and synaptic plasticity. A BDNF single nucleotide polymorphism, rs6265, leads to an amino acid substitution of valine (Val) with methionine (Met) at codon 66 (Val66Met), which may influence an individual's response to occupational stress, and predispose military members to psychological disorders. Telomere length (TL), a novel measure of biological aging, can be used as a biomarker of stress. Accordingly, telomere shortening may be a surrogate indicator of physiological weathering due to chronic disease and stressful life events. To increase our understanding about the potential effect of the Val66Met mutation on the human stress response, we evaluated the relationships between Val66Met, TL, and mental health symptoms in a military population. In this pilot study (N = 164), we observed an association between Val66Met and reduced TL (p = 0.048). There was no relationship between Val66Met and mental health symptoms. These results support the investigation of gene-environment interactions, and their potential influence on TL due to occupational stress such as military service.
Collapse
Affiliation(s)
- Richard C Allsopp
- Yanagimachi Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Biomed Sciences Building, Honolulu, HI, 96813, USA
| | - Lisa M Hernández
- Leidos, Inc., 10260 Campus Point Drive, San Diego, CA, 92121, USA.
- Naval Health Research Center, 140 Sylvester Road, San Diego, CA, 92106, USA.
| | - Marcus K Taylor
- Naval Health Research Center, 140 Sylvester Road, San Diego, CA, 92106, USA
| |
Collapse
|
3
|
Guzman-Castillo A, Vicente B, Schmidt K, Moraga-Escobar E, Rojas-Ponce R, Lagos P, Macaya X, Castillo-Navarrete JL. Interaction of Val66Met Brain-Derived Neurotrophic Factor and 5-HTTLPR Serotonin Transporter Gene Polymorphisms with Lifetime Prevalence of Post-Traumatic Stress Disorder in Primary Care Patients. Genes (Basel) 2024; 15:1355. [PMID: 39596555 PMCID: PMC11593576 DOI: 10.3390/genes15111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Post-traumatic stress disorder (PTSD) is a complex condition influenced by both genetic and environmental factors. This longitudinal study aimed to explore the connection between two specific genetic polymorphisms, Val66Met and 5-HTTLPR, and the lifetime prevalence of PTSD in patients from primary care settings. We also examined the role of sociodemographic and psychosocial factors to provide a more comprehensive view of PTSD risk. Methods: We recruited a cohort of primary care patients and diagnosed PTSD using a standardized diagnostic interview. Genetic analyses focused on Val66Met and 5-HTTLPR polymorphisms. We applied logistic regression to assess the association between these genetic markers and PTSD, considering factors such as gender, family history of depression, and experiences of childhood maltreatment. Results: Our findings show that women, individuals with a family history of depression, and those exposed to childhood maltreatment have a higher risk of developing PTSD. While the Val66Met polymorphism was not significantly associated with PTSD, the 5-HTTLPR polymorphism showed a marginal relationship. No significant interaction was found between the two polymorphisms in relation to PTSD. Conclusions: This study underscores the multifactorial nature of PTSD, influenced by both genetic and environmental factors. The findings point to the importance of further research on genetic predispositions and highlight the value of early interventions for high-risk populations in primary care settings.
Collapse
Affiliation(s)
- Alejandra Guzman-Castillo
- Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Av. Alonso de Ribera 2850, Concepción 4090541, Chile;
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Barrio Universitario s/n, Casilla 160-C, Concepción 4070386, Chile; (B.V.); (K.S.); (E.M.-E.); (R.R.-P.); (X.M.)
| | - Benjamín Vicente
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Barrio Universitario s/n, Casilla 160-C, Concepción 4070386, Chile; (B.V.); (K.S.); (E.M.-E.); (R.R.-P.); (X.M.)
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Av. Juan Bosco s/n 3er Piso, Box 160-C, Concepción 4070529, Chile
| | - Kristin Schmidt
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Barrio Universitario s/n, Casilla 160-C, Concepción 4070386, Chile; (B.V.); (K.S.); (E.M.-E.); (R.R.-P.); (X.M.)
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Av. Juan Bosco s/n 3er Piso, Box 160-C, Concepción 4070529, Chile
| | - Esteban Moraga-Escobar
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Barrio Universitario s/n, Casilla 160-C, Concepción 4070386, Chile; (B.V.); (K.S.); (E.M.-E.); (R.R.-P.); (X.M.)
| | - Romina Rojas-Ponce
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Barrio Universitario s/n, Casilla 160-C, Concepción 4070386, Chile; (B.V.); (K.S.); (E.M.-E.); (R.R.-P.); (X.M.)
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Box 160-C, Concepción 4070386, Chile;
| | - Paola Lagos
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Box 160-C, Concepción 4070386, Chile;
| | - Ximena Macaya
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Barrio Universitario s/n, Casilla 160-C, Concepción 4070386, Chile; (B.V.); (K.S.); (E.M.-E.); (R.R.-P.); (X.M.)
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Av. Juan Bosco s/n 3er Piso, Box 160-C, Concepción 4070529, Chile
| | - Juan-Luis Castillo-Navarrete
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Barrio Universitario s/n, Casilla 160-C, Concepción 4070386, Chile; (B.V.); (K.S.); (E.M.-E.); (R.R.-P.); (X.M.)
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Concepción, Barrio Universitario s/n, Box 160-C, Concepción 4070386, Chile
| |
Collapse
|
4
|
Hertenstein E, Kuhn M, Landmann N, Maier JG, Schneider CL, Fehér KD, Frase L, Riemann D, Feige B, Nissen C. Brain-derived neurotrophic factor genetic polymorphism rs6265 and creativity. PLoS One 2023; 18:e0291397. [PMID: 37703265 PMCID: PMC10499242 DOI: 10.1371/journal.pone.0291397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
The protein brain-derived neurotrophic factor (BDNF) promotes neural plasticity of the central nervous system and plays an important role for learning and memory. A single nucleotide polymorphism (rs6265) at position 66 in the pro-region of the human BDNF gene, resulting in a substitution of the amino acid valine (val) with methionine (met), leads to attenuated BDNF secretion and has been associated with reduced neurocognitive function. Inhomogeneous results have been found regarding the effect of the BDNF genotype on behavior. We determined the BDNF genotype and performance on the Compound Remote Associate (CRA) task as a common measure of creativity in 76 healthy university students. In our main analyses, we did not find significant differences between met-carriers (n = 30) and non-met carriers (n = 46). In a secondary analysis, we found that met-carriers had a slower solution time (medium effect size) for items of medium difficulty. Our results suggest that met-carriers and non-met-carriers do not generally differ regarding their creativity, but non-met-carriers may have a certain advantage when it comes to moderately difficult problems. The wider literature suggests that both genetic variants come with advantages and disadvantages. Future research needs to sharpen our understanding of the disadvantages and, potentially, advantages met allele carriers may have.
Collapse
Affiliation(s)
- Elisabeth Hertenstein
- Faculty of Medicine, Department of Psychiatry, University of Geneva, Geneva, Switzerland
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Marion Kuhn
- Faculty of Medicine, Department of Psychiatry and Psychotherapy, Medical Center–University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Nina Landmann
- Faculty of Medicine, Department of Psychiatry and Psychotherapy, Medical Center–University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Jonathan-Gabriel Maier
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | | | | | - Lukas Frase
- Faculty of Medicine, Department of Psychiatry and Psychotherapy, Medical Center–University of Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Department of Psychosomatic Medicine and Psychotherapy, Medical Center–University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Dieter Riemann
- Faculty of Medicine, Department of Psychiatry and Psychotherapy, Medical Center–University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- Faculty of Medicine, Department of Psychiatry and Psychotherapy, Medical Center–University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Christoph Nissen
- Faculty of Medicine, Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Division of Psychiatric Specialties, Department of Psychiatry, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
5
|
Castillo-Navarrete JL, Vicente B, Schmidt K, Moraga-Escobar E, Rojas-Ponce R, Lagos P, Macaya X, Guzman-Castillo A. Interaction of Val66Met BDNF and 5-HTTLPR polymorphisms with prevalence of post-earthquake 27-F PTSD in Chilean population. PeerJ 2023; 11:e15870. [PMID: 37692110 PMCID: PMC10484206 DOI: 10.7717/peerj.15870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/18/2023] [Indexed: 09/12/2023] Open
Abstract
Post-traumatic stress (PTSD) disorder is a mental health condition that can occur after experiencing or witnessing a traumatic event. The 27-F earthquake that struck Chile in 2010 was one such event that had a significant impact on the mental health of the population. A study was conducted to investigate the prevalence of PTSD and its associated factors among survivors of this earthquake. The study was a longitudinal design, involving a sample of 913 patients aged 18 to 75 years who attended 10 Primary Care Centers in Concepción, Chile. The Composite International Diagnostic Interview (CIDI) was used to assess both depressive episodes (DE) and PTSD before and after the earthquake. The study also involved genotyping studies using saliva samples from the participants, specifically focusing on the Val66Met and 5-HTTLPR polymorphisms. Statistical analysis was performed to examine the association between different variables and the presence of PTSD. These variables included demographic factors, family history of psychiatric disorders, DE, childhood maltreatment experiences, and critical traumatic events related to the earthquake. The results showed that the incidence of post-earthquake PTSD was 11.06%. No significant differences were found between the groups of participants who developed post-earthquake PTSD regarding the Val66Met or 5-HTTLPR polymorphisms. However, a significant association was found between the concomitant diagnosis of DE and the development of post-earthquake PTSD. The presence of DE doubled the risk of developing post-earthquake PTSD. The number of traumatic events experienced also had a statistically significant association with an increased risk of developing post-earthquake PTSD. The study's limitations include the potential interference of different DE subtypes, the complexity of quantifying the degree of earthquake exposure experienced by each individual, and events entailing social disruption, such as looting, that can profoundly influence distress. In conclusion, the study found that PTSD following the 27-F earthquake in Chile was associated with a concomitant diagnosis of DE and the number of traumatic events experienced. The study did not find a significant association between PTSD and the Val66Met or 5-HTTLPR polymorphisms. The researchers recommend that mental health professionals should prioritize the detection and treatment of concomitant depressive episodes and exposure to critical traumatic events in survivors of disasters. They also suggest that further research is needed to better understand the relationship between genetic factors and post-disaster PTSD.
Collapse
Affiliation(s)
- Juan-Luis Castillo-Navarrete
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Programa Doctorado Salud Mental, Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Benjamin Vicente
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Kristin Schmidt
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Programa Doctorado Salud Mental, Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Esteban Moraga-Escobar
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
| | - Romina Rojas-Ponce
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Programa Doctorado Salud Mental, Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paola Lagos
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ximena Macaya
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Facultad de Odontología, Universidad de Concepción, Concepción, Chile
| | - Alejandra Guzman-Castillo
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Programa Doctorado Salud Mental, Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
6
|
Nicholson EL, Garry MI, Ney LJ, Hsu CMK, Zuj DV, Felmingham KL. The influence of the BDNF Val66Met genotype on emotional recognition memory in post-traumatic stress disorder. Sci Rep 2023; 13:5033. [PMID: 36977737 PMCID: PMC10050310 DOI: 10.1038/s41598-023-30787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Dysregulated consolidation of emotional memories is a core feature of posttraumatic stress disorder (PTSD). Brain Derived Neurotrophic Factor (BDNF) influences synaptic plasticity and emotional memory consolidation. The BDNF Val66Met polymorphism has been associated with PTSD risk and memory deficits respectively, although findings have been inconsistent, potentially due to a failure to control for important confounds such as sex, ethnicity, and the timing/extent of previous trauma experiences. Furthermore, very little research has examined the impact of BDNF genotypes on emotional memory in PTSD populations. This study investigated the interaction effects of Val66Met and PTSD symptomatology in an emotional recognition memory task in 234 participants divided into healthy control (n = 85), trauma exposed (TE: n = 105) and PTSD (n = 44) groups. Key findings revealed impaired negative recognition memory in PTSD compared to control and TE groups and in participants with the Val/Met compared to the Val/Val genotype. There was a group × genotype interaction showing no Met effect in the TE group despite significant effects in PTSD and controls. Results suggest that people previously exposed to trauma who do not develop PTSD may be protected from the BDNF Met effect, however more research is needed to replicate findings and to explore the epigenetic and neural processes involved.
Collapse
Affiliation(s)
- Emma Louise Nicholson
- Melbourne School of Psychological Sciences, University of Melbourne, Redmond Barry Building, Parkville, VIC, 3010, Australia.
| | - Michael I Garry
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
| | - Luke J Ney
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
- Faculty of Health, School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Chia-Ming K Hsu
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
| | - Daniel V Zuj
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
- Experimental Psychopathology Lab, Department of Psychology, Swansea University, Swansea, UK
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, University of Melbourne, Redmond Barry Building, Parkville, VIC, 3010, Australia
| |
Collapse
|
7
|
Al Jowf GI, Ahmed ZT, Reijnders RA, de Nijs L, Eijssen LMT. To Predict, Prevent, and Manage Post-Traumatic Stress Disorder (PTSD): A Review of Pathophysiology, Treatment, and Biomarkers. Int J Mol Sci 2023; 24:ijms24065238. [PMID: 36982313 PMCID: PMC10049301 DOI: 10.3390/ijms24065238] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) can become a chronic and severely disabling condition resulting in a reduced quality of life and increased economic burden. The disorder is directly related to exposure to a traumatic event, e.g., a real or threatened injury, death, or sexual assault. Extensive research has been done on the neurobiological alterations underlying the disorder and its related phenotypes, revealing brain circuit disruption, neurotransmitter dysregulation, and hypothalamic–pituitary–adrenal (HPA) axis dysfunction. Psychotherapy remains the first-line treatment option for PTSD given its good efficacy, although pharmacotherapy can also be used as a stand-alone or in combination with psychotherapy. In order to reduce the prevalence and burden of the disorder, multilevel models of prevention have been developed to detect the disorder as early as possible and to reduce morbidity in those with established diseases. Despite the clinical grounds of diagnosis, attention is increasing to the discovery of reliable biomarkers that can predict susceptibility, aid diagnosis, or monitor treatment. Several potential biomarkers have been linked with pathophysiological changes related to PTSD, encouraging further research to identify actionable targets. This review highlights the current literature regarding the pathophysiology, disease development models, treatment modalities, and preventive models from a public health perspective, and discusses the current state of biomarker research.
Collapse
Affiliation(s)
- Ghazi I. Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: (G.I.A.J.); (L.M.T.E.)
| | - Ziyad T. Ahmed
- College of Medicine, Sulaiman Al Rajhi University, Al-Bukairyah 52726, Saudi Arabia
| | - Rick A. Reijnders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Lars M. T. Eijssen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Bioinformatics—BiGCaT, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: (G.I.A.J.); (L.M.T.E.)
| |
Collapse
|
8
|
Raju S, Notaras M, Grech AM, Schroeder A, van den Buuse M, Hill RA. BDNF Val66Met genotype and adolescent glucocorticoid treatment induce sex-specific disruptions to fear extinction and amygdala GABAergic interneuron expression in mice. Horm Behav 2022; 144:105231. [PMID: 35779519 DOI: 10.1016/j.yhbeh.2022.105231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The BDNF Val66Met single nucleotide polymorphism has been implicated in stress sensitivity and Post-Traumatic Stress Disorder (PTSD) risk. We previously reported that chronic young-adult stress hormone treatment enhanced fear memory in adult BDNFVal66Met mice with the Met/Met genotype. This study aimed to extend this work to fear extinction learning, spontaneous recovery of fear, and neurobiological correlates in the amygdala. METHODS Male and female Val/Val and Met/Met mice received corticosterone in their drinking water during late adolescence to model chronic stress. Following a 2-week recovery period, the mice underwent fear conditioning and extinction training. Immunofluorescent labelling was used to assess density of three interneuron subtypes; somatostatin, parvalbumin and calretinin, within distinct amygdala nuclei. RESULTS No significant effects of genotype, treatment or sex were found for fear learning. However, adolescent CORT treatment selectively abolished fear extinction of female Met/Met mice. No effect of genotype, sex, or treatment was observed for spontaneous recovery of fear. Significant main effects of genotype and CORT emerged for somatostatin and calretinin cell density, again in females only, further supporting sex-specific effects of the Met/Met genotype and chronic CORT exposure. CONCLUSION BDNF Val66Met genotype interacts with chronic adolescent stress hormone exposure to abolish fear extinction in female Met/Met mice in adulthood. This effect was associated with female-specific interneuron dysfunction induced by either genotype or stress hormone exposure, depending on the interneuron subtype. These data provide biological insight into the role of BDNF in sex differences in sensitivity to stress and vulnerability to stress-related disorders in adulthood.
Collapse
Affiliation(s)
- Sharvada Raju
- Behavioural Neuroscience Laboratory, Department of Psychiatry, Monash University, Melbourne, Victoria, Australia
| | - Michael Notaras
- Behavioural Neuroscience Laboratory, Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Centre for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medical College, Cornell University, NY, New York, USA
| | - Adrienne M Grech
- Behavioural Neuroscience Laboratory, Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Anna Schroeder
- Behavioural Neuroscience Laboratory, Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Behavioural Neuroscience Laboratory, Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia; Department of Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel A Hill
- Behavioural Neuroscience Laboratory, Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Behavioural Neuroscience Laboratory, Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Guo JC, Li X, Guo M, Gao YS, Fu LQ, Jiang XL, Fu LM, Huang T. Association of BDNF gene polymorphism with endophenotypes in posttraumatic stress disorder. ACTA ACUST UNITED AC 2020; 66:615-622. [PMID: 32638952 DOI: 10.1590/1806-9282.66.5.615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To explore the association of brain-derived neurotrophic factor gene (BDNF) polymorphism with the latent cognitive endophenotype of posttraumatic stress disorder (PTSD) after major natural disasters in Hainan Province, China. METHODS A total of 300 patients with PTSD and 150 healthy controls (HC) were surveyed by psychoanalysis scale to assess their cognitive functions. Polymerase chain reaction (PCR) and polyacrylamide gel electrophoresis (PAGE) were used to detect the BDNF gene polymorphism. RESULTS In terms of the cognitive function, the scores in the PTSD group were worse than those of the HC group (P < 0.05 or P < 0.01). There was a significant difference in the distribution of BDNF genotype and allele frequency between the two groups (P < 0.05). PTSD endophenotypes were significantly different among the BDNF genotypes in the PTSD group (P ≤ 0.01). CONCLUSION There is a statistically significant difference in the polymorphism of BDNF gene between PTSD and HC groups, and the alleles are associated with the incidence of PTSD. Thus, it may be a risk factor for PTSD.
Collapse
Affiliation(s)
- Jun-Cheng Guo
- Affiliated Haikou Hospital, School of Medical, Central South University Xiangya, Haikou, Hainan Province, China
| | - Xiang Li
- The Third People's Hospital of Hubei Province, Wuhan, China
| | - Min Guo
- Psychological Research Center, Hainan General Hospital, Haikou, Hainan Province, China
| | - Yun-Suo Gao
- Department of Equipment, Hainan General Hospital, Haikou, Hainan Province, China
| | - Lin-Qiu Fu
- Department of Psychology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Xiang-Ling Jiang
- Department of Clinical Laboratory, Hainan General Hospital, Haikou, Hainan Province, China
| | - Lin-Mei Fu
- Medical Center, Hainan General Hospital, Haikou, Hainan Province, China
| | - Tao Huang
- Medical Center, Hainan General Hospital, Haikou, Hainan Province, China
| |
Collapse
|
10
|
Jin MJ, Jeon H, Hyun MH, Lee SH. Influence of childhood trauma and brain-derived neurotrophic factor Val66Met polymorphism on posttraumatic stress symptoms and cortical thickness. Sci Rep 2019; 9:6028. [PMID: 30988377 PMCID: PMC6465240 DOI: 10.1038/s41598-019-42563-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Interaction between childhood trauma and genetic factors influences the pathophysiology of posttraumatic stress disorder (PTSD). This study examined the interaction effect of childhood trauma and brain-derived neurotrophic factor (BDNF) Val66Met polymorphism on PTSD symptoms and brain cortical thickness. A total of 216 participants (133 healthy volunteers and 83 PTSD patients) were recruited. T1-weighted structural magnetic resonance imaging, BDNF rs6265 genotyping through blood sampling, and clinical assessments including the childhood trauma questionnaire (CTQ) and posttraumatic stress disorder Checklist (PCL) were performed. A moderated regression analysis, two-way multivariate analysis of covariance, and correlation analysis were conducted. An interaction between the CTQ and the BDNF polymorphism significantly influenced PTSD symptom severity. In fact, people with rs6265 Val/Val genotype and higher CTQ scores showed higher PCL scores. Additionally, this interaction was significant on both left fusiform and transverse temporal gyri thickness. Furthermore, the thickness of both brain regions was significantly correlated with psychological symptoms including depression, anxiety, rumination, and cognitive emotion regulation methods; yet this was mainly observed in people with the Val/Val genotype. The interaction between childhood trauma and BDNF polymorphism significantly influences both PTSD symptoms and cortical thickness and the Val/Val genotype may increase the risk in Korean population.
Collapse
Affiliation(s)
- Min Jin Jin
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
- Department of Psychology, Chung-Ang University, Seoul, Republic of Korea
| | - Hyeonjin Jeon
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
| | - Myoung Ho Hyun
- Department of Psychology, Chung-Ang University, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea.
- Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang, Republic of Korea.
| |
Collapse
|
11
|
Tsai SJ. Critical Issues in BDNF Val66Met Genetic Studies of Neuropsychiatric Disorders. Front Mol Neurosci 2018; 11:156. [PMID: 29867348 PMCID: PMC5962780 DOI: 10.3389/fnmol.2018.00156] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Neurotrophins have been implicated in the pathophysiology of many neuropsychiatric diseases. Brain-derived neurotrophic factor (BDNF) is the most abundant and widely distributed neurotrophin in the brain. Its Val66Met polymorphism (refSNP Cluster Report: rs6265) is a common and functional single-nucleotide polymorphism (SNP) affecting the activity-dependent release of BDNF. BDNF Val66Met transgenic mice have been generated, which may provide further insight into the functional impact of this polymorphism in the brain. Considering the important role of BDNF in brain function, more than 1,100 genetic studies have investigated this polymorphism in the past 15 years. Although these studies have reported some encouraging positive findings initially, most of the findings cannot be replicated in following studies. These inconsistencies in BDNF Val66Met genetic studies may be attributed to many factors such as age, sex, environmental factors, ethnicity, genetic model used for analysis, and gene–gene interaction, which are discussed in this review. We also discuss the results of recent studies that have reported the novel functions of this polymorphism. Because many BDNF polymorphisms and non-genetic factors have been implicated in the complex traits of neuropsychiatric diseases, the conventional genetic association-based method is limited to address these complex interactions. Future studies should apply data mining and machine learning techniques to determine the genetic role of BDNF in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
12
|
Felmingham KL, Zuj DV, Hsu KCM, Nicholson E, Palmer MA, Stuart K, Vickers JC, Malhi GS, Bryant RA. The BDNF Val66Met polymorphism moderates the relationship between Posttraumatic Stress Disorder and fear extinction learning. Psychoneuroendocrinology 2018; 91:142-148. [PMID: 29550677 DOI: 10.1016/j.psyneuen.2018.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/17/2022]
Abstract
The low expression Met allele of the BDNF Val66Met polymorphism is associated with impaired fear extinction in healthy controls, and poorer response to exposure therapy in patients with Posttraumatic Stress Disorder (PTSD). Given that fear extinction underlies exposure therapy, this raises the question of the impact of BDNFVal66Met polymorphism on fear extinction in PTSD, yet this question has not yet been examined. One hundred and six participants (22 PTSD, 46 trauma-exposed controls (TC) and 38 non-trauma exposed controls (NTC)) completed a fear conditioning and extinction task and saliva samples were taken for DNA extraction and genotyped for the BDNF Val66Met polymorphism. Moderation analyses using PROCESS examined whether BDNF genotype (Val-Val vs Met carriers) moderated the relationship between PTSD symptom severity (and diagnostic status) and skin conductance response (SCR) amplitude during fear extinction. The PTSD group displayed significantly slower fear extinction learning compared to TC and NTC in the early extinction phase. The BDNF Val66Met polymorphism moderated the relationship between PTSD and fear extinction learning, such that poorer fear extinction learning was associated with greater PTSD symptom severity (and PTSD diagnostic status) in individuals with the low-expression Met allele, but no relationship was demonstrated in individuals with the Val-Val allele. This study reveals that impaired fear extinction learning is particularly evident in individuals with PTSD who carry the low-expression BDNF Met allele and importantly not in those with the Val-Val allele. This provides novel evidence of a link between BDNF and impaired fear extinction learning in PTSD, which may contribute to poorer response to exposure therapy.
Collapse
Affiliation(s)
- Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia.
| | - Daniel V Zuj
- Division of Psychology, School of Medicine, University of Tasmania, Australia; Department of Psychology, Swansea University, UK
| | - Ken Chia Ming Hsu
- Division of Psychology, School of Medicine, University of Tasmania, Australia
| | - Emma Nicholson
- Division of Psychology, School of Medicine, University of Tasmania, Australia
| | - Matthew A Palmer
- Division of Psychology, School of Medicine, University of Tasmania, Australia
| | - Kimberley Stuart
- Wicking Dementia Research Centre, University of Tasmania, Australia
| | - James C Vickers
- Wicking Dementia Research Centre, University of Tasmania, Australia
| | - Gin S Malhi
- Department of Psychiatry, University of Sydney, Sydney, Australia
| | | |
Collapse
|
13
|
Tudor L, Konjevod M, Nikolac Perkovic M, Svob Strac D, Nedic Erjavec G, Uzun S, Kozumplik O, Sagud M, Kovacic Petrovic Z, Pivac N. Genetic Variants of the Brain-Derived Neurotrophic Factor and Metabolic Indices in Veterans With Posttraumatic Stress Disorder. Front Psychiatry 2018; 9:637. [PMID: 30542302 PMCID: PMC6277864 DOI: 10.3389/fpsyt.2018.00637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a trauma and stressor related disorder that may develop after exposure to an event that involved the actual or possible threat of death, violence or serious injury. Its molecular underpinning is still not clear. Brain-derived neurotrophic factor (BDNF) modulates neuronal processes such as the response to stress, but also weight control, energy and glucose homeostasis. Plasma BDNF levels and a functional BDNF Val66Met (rs6265) polymorphism were reported to be associated with PTSD, as well as with increased body mass index (BMI) and dyslipidaemia in healthy subjects and patients with cardio-metabolic diseases, but these results are controversial. The other frequently studied BDNF polymorphism, C270T (rs56164415), has been associated with the development of different neuropsychiatric symptoms/disorders. As far as we are aware, there are no data on the association of BDNF Val66Met and C270T polymorphisms with metabolic indices in PTSD. Due to high rates of obesity and dyslipidaemia in PTSD, the aim of this study was to elucidate the association of BDNF Val66Met and C270T polymorphisms with BMI and lipid levels in veterans with PTSD. We hypothesized that BDNF variants contribute to susceptibility to metabolic disturbances in PTSD. The study included 333 Caucasian males with combat related PTSD, diagnosed according to DSM-5 criteria. Genotyping of the BDNF Val66Met and C270T polymorphisms was performed using the real-time PCR method. Results were analyzed using hierarchical multiple linear regression and the Mann-Whitney test, with p-value corrected to 0.005. The results showed that BDNF Val66Met and BDNF C270T polymorphisms were not significantly associated with BMI, total cholesterol, LDL-cholesterol, HDL-cholesterol or triglycerides. Although the BDNF C270T polymorphism was nominally associated only with HDL-cholesterol in veterans with PTSD, this significance disappeared after controlling for the effect of age. Namely, slightly higher plasma HDL values in T allele carriers, compared to CC homozygotes, were associated with differences in age. Our results, controlled for the critical covariates, revealed that BDNF Val66Met and C270T were not significantly associated with metabolic indices in veterans with PTSD and that these genetic variants do not contribute to susceptibility to metabolic disturbances in PTSD.
Collapse
Affiliation(s)
- Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Suzana Uzun
- Department of Biological Psychiatry and Psychogeriatry, University Psychiatric Hospital Vrapce, Zagreb, Croatia.,Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Oliver Kozumplik
- Department of Biological Psychiatry and Psychogeriatry, University Psychiatric Hospital Vrapce, Zagreb, Croatia.,Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marina Sagud
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Psychiatry, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Zrnka Kovacic Petrovic
- Department of Biological Psychiatry and Psychogeriatry, University Psychiatric Hospital Vrapce, Zagreb, Croatia.,Department of Psychopharmacology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
14
|
Miller JK, McDougall S, Thomas S, Wiener J. The Impact of the Brain-Derived Neurotrophic Factor Gene on Trauma and Spatial Processing. J Clin Med 2017; 6:E108. [PMID: 29186896 PMCID: PMC5742797 DOI: 10.3390/jcm6120108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
The influence of genes and the environment on the development of Post-Traumatic Stress Disorder (PTSD) continues to motivate neuropsychological research, with one consistent focus being the Brain-Derived Neurotrophic Factor (BDNF) gene, given its impact on the integrity of the hippocampal memory system. Research into human navigation also considers the BDNF gene in relation to hippocampal dependent spatial processing. This speculative paper brings together trauma and spatial processing for the first time and presents exploratory research into their interactions with BDNF. We propose that quantifying the impact of BDNF on trauma and spatial processing is critical and may well explain individual differences in clinical trauma treatment outcomes and in navigation performance. Research has already shown that the BDNF gene influences PTSD severity and prevalence as well as navigation behaviour. However, more data are required to demonstrate the precise hippocampal dependent processing mechanisms behind these influences in different populations and environmental conditions. This paper provides insight from recent studies and calls for further research into the relationship between allocentric processing, trauma processing and BDNF. We argue that research into these neural mechanisms could transform PTSD clinical practice and professional support for individuals in trauma-exposing occupations such as emergency response, law enforcement and the military.
Collapse
Affiliation(s)
- Jessica K Miller
- Faculty of Human, Social & Political Science, University of Cambridge, Cambridge CB2 1TN, UK.
| | - Siné McDougall
- Department of Psychology, Bournemouth University, Poole BH12 5BB, UK.
| | - Sarah Thomas
- Faculty of Health & Social Sciences, Clinical Research Unit, Bournemouth University, Poole BH12 5BB, UK.
| | - Jan Wiener
- Department of Psychology, Ageing and Dementia Research Centre, Bournemouth University, Poole BH12 5BB, UK.
| |
Collapse
|
15
|
Abstract
There is significant variation in the way individuals react and respond to extreme stress and adversity. While some individuals develop psychiatric conditions such as posttraumatic stress disorder or major depressive disorder, others recover from stressful experiences without displaying significant symptoms of psychological ill-health, demonstrating stress-resilience. To understand why some individuals exhibit characteristics of a resilient profile, the interplay between neurochemical, genetic, and epigenetic processes over time needs to be explained. In this review, we examine the hormones, neuropeptides, neurotransmitters, and neural circuits associated with resilience and vulnerability to stress-related disorders. We debate how this increasing body of knowledge could also be useful in the creation of a stress-resilient profile. Additionally, identification of the underlying neurobiological components related to resilience may offer a contribution to improved approaches toward the prevention and treatment of stress-related disorders.
Collapse
|
16
|
Azeredo LA, De Nardi T, Grassi-Oliveira R. BDNF Val66Met polymorphism and memory performance in older adults: the Met carrier effect is more complex than previously thought: Authors’ reply. REVISTA BRASILEIRA DE PSIQUIATRIA 2017; 39:276-277. [PMID: 28813118 PMCID: PMC7111378 DOI: 10.1590/1516-4446-2017-3904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Rodrigo Grassi-Oliveira
- Pontifícia Universidade Católica do Rio Grande do Sul, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Bountress KE, Bacanu SA, Tomko RL, Korte KJ, Hicks T, Sheerin C, Lind MJ, Marraccini M, Nugent N, Amstadter AB. The Effects of a BDNF Val66Met Polymorphism on Posttraumatic Stress Disorder: A Meta-Analysis. Neuropsychobiology 2017; 76:136-142. [PMID: 29874672 PMCID: PMC6057796 DOI: 10.1159/000489407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Given evidence that posttraumatic stress disorder (PTSD) is moderately heritable, a number of studies utilizing candidate gene approaches have attempted to examine the potential contributions of theoretically relevant genetic variation. Some of these studies have found sup port for a brain-derived neurotrophic factor (BDNF) variant, Val66Met, in the risk of developing PTSD, while others have failed to find this link. METHODS This study sought to reconcile these conflicting findings using a meta-analysis framework. Analyses were also used to determine whether there is significant heterogeneity in the link between this variant and PTSD. We conducted a systematic review of the literature on BDNF and PTSD from the PsycINFO and PubMed databases. A total of 11 studies were included in the analysis. RESULTS Findings indicate a marginally significant effect of the BDNF Val66Met variant on PTSD (p < 0.1). However, of the 11 studies included, only 2 suggested an effect with a non-zero confidence interval, one of which showed a z score of 3.31. We did not find any evidence for heterogeneity. CONCLUSIONS Findings from this meta-analytic investigation of the published literature provide little support for the Val66Met variant of BDNF as a predictor of PTSD. Future well-powered agnostic genome-wide association studies with more refined phenotyping are needed to clarify genetic influences on PTSD.
Collapse
Affiliation(s)
- Kaitlin E. Bountress
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| | - Rachel L. Tomko
- Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina
| | - Kristina J. Korte
- Department of Psychiatry, Division of Global Psychiatry, Massachusetts General Hospital
| | - Terrell Hicks
- Department of Psychology, Virginia Commonwealth University
| | - Christina Sheerin
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| | - Mackenzie J. Lind
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| | | | - Nicole Nugent
- Departments of Pediatrics and Psychiatry and Human Behavior at the Warren Alpert Medical School of Brown University
| | - Ananda B. Amstadter
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| |
Collapse
|
18
|
Sheerin CM, Lind MJ, Bountress KE, Nugent NR, Amstadter AB. The genetics and epigenetics of PTSD: overview, recent advances, and future directions. Curr Opin Psychol 2016; 14:5-11. [PMID: 28813320 DOI: 10.1016/j.copsyc.2016.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/22/2022]
Abstract
This paper provides a brief summary and commentary on the growing literature and current developments related to the genetic underpinnings of posttraumatic stress disorder (PTSD). We first briefly provide an overview of the behavioral genetic literature on PTSD, followed by a short synopsis of the substantial candidate gene literature with a focus on genes that have been meta-analyzed. We then discuss the genome-wide association studies (GWAS) that have been conducted, followed by an introduction to other molecular platforms used in PTSD genomic studies, such as epigenetic and expression approaches. We close with a discussion of developments in the field that include the creation of the PTSD workgroup of the Psychiatric Genomics Consortium, statistical advances that can be applied to GWAS data to answer questions of heritability and genetic overlap across phenotypes, and bioinformatics techniques such as gene pathway analyses which will further advance our understanding of the etiology of PTSD.
Collapse
Affiliation(s)
- Christina M Sheerin
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA.
| | - Mackenzie J Lind
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Kaitlin E Bountress
- National Crime Victim Research & Treatment Center (NCVC), Medical University of South Carolina, Charleston, SC, USA
| | - Nicole R Nugent
- Bradley/Hasbro Children's Research Center of Rhode Island Hospital, Providence, RI, USA; Department of Pediatrics in Alpert Medical School of Brown University, Providence, RI, USA
| | - Ananda B Amstadter
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
19
|
A Case-Control Study and Meta-Analysis Reveal BDNF Val66Met Is a Possible Risk Factor for PTSD. Neural Plast 2016; 2016:6979435. [PMID: 27413557 PMCID: PMC4928001 DOI: 10.1155/2016/6979435] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/15/2016] [Indexed: 11/25/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating condition that develops in some people after exposure to a traumatic event. Brain-derived neurotrophic factor (BDNF) is highly expressed in the mammalian brain and is thought to be involved in learning and memory processes. A nonsynonymous polymorphism in the BDNF gene, rs6265 (Val66Met), has been hypothesised to be associated with PTSD. Association studies examining the Val66Met polymorphism and PTSD have been inconclusive, likely due to the variability in type of trauma exposure analysed. Vietnam veterans (n = 257) screened for PTSD and controlled for trauma exposure were genotyped for BDNF Val66Met. The association was not significant so we incorporated our data into a meta-analysis to obtain greater statistical power. A comprehensive search of more than 1237 articles revealed eight additional studies suitable for meta-analysis (n = 3625). A random-effects meta-analysis observed a potential protective factor of the Val/Val genotype. After removing two studies with violation of Hardy-Weinberg equilibrium, findings for the Val/Val genotype reached significance. Subgroup analyses confirmed a trend for this finding. Limitations of some studies that inform this meta-analysis include poorly screened controls and a lack of examination of population stratification. Effectively designed studies should inform this line of research in the future.
Collapse
|
20
|
Li RH, Fan M, Hu MS, Ran MS, Fang DZ. Reduced severity of posttraumatic stress disorder associated with Val allele of Val66Met polymorphism at brain-derived neurotrophic factor gene among Chinese adolescents after Wenchuan earthquake. Psychophysiology 2016; 53:705-11. [PMID: 26751724 DOI: 10.1111/psyp.12603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/01/2015] [Indexed: 01/19/2023]
Abstract
The aim of the present study was to longitudinally investigate the association of BDNF Val66Met with PTSD symptoms in Chinese Han adolescents who experienced the 2008 Wenchuan earthquake. Variants of BDNF Val66Met were identified by polymerase chain reaction-restriction fragment length polymorphism analyses and verified by DNA sequencing. PTSD symptoms were assessed by the PTSD Checklist-Civilian Version (PCL-C) among high school students at 6, 12, and 18 months after the earthquake. No differences of PTSD prevalence and PCL-C scores were found between the Val/Val homozygotes and the Met allele carriers at 6, 12, and 18 months after the earthquake regardless of gender. Decreased PTSD prevalence was observed at 12 and 18 months when compared with that at 6 months after the earthquake regardless of gender and the genotype. Meanwhile, PCL-C scores were decreased consecutively in the female subjects regardless of the genotypes. However, the scores at 18 months were lower when compared with those at 12 months in the male Val/Val homozygotes, but not in the male Met allele carriers. In addition, differences were found for the predictors of PCL-C scores and PTSD prevalence between the Val/Val homozygotes and the Met allele carriers during follow-up. These findings suggest that the association of BDNF Val66Met with PTSD is longitudinally different in Chinese Han adolescents after the 2008 Wenchuan earthquake. The Val allele may be associated with reduced PTSD severity in male adolescents in the later stage of PTSD rehabilitation during follow-up.
Collapse
Affiliation(s)
- Rong Hui Li
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Mei Fan
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Min Shan Hu
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Mao Sheng Ran
- Department of Social Work and Social Administration, University of Hong Kong, Hong Kong, P. R. China
| | - Ding Zhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P. R. China
| |
Collapse
|