1
|
Schifino AG, Cooley MA, Zhong RX, Heo J, Hoffman DB, Warren GL, Greising SM, Call JA. Tibial bone strength is negatively affected by volumetric muscle loss injury to the adjacent muscle in male mice. J Orthop Res 2024; 42:123-133. [PMID: 37337074 PMCID: PMC10728344 DOI: 10.1002/jor.25643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023]
Abstract
This study's objective was to investigate how contractile strength loss associated with a volumetric muscle loss (VML) injury affects the adjacent tibial bone structural and functional properties in male C57BL/6J mice. Mice were randomized into one of two experimental groups: VML-injured mice that were injured at age 12 weeks and aged to 20 weeks (8 weeks postinjury, VML) and 20-week-old age-matched uninjured mice (Uninjured-20). Tibial bone strength, mid-diaphysis cortical geometry, intrinsic material properties, and metaphyseal trabecular bone structure were assessed by three-point bending and microcomputed tomography (µCT). The plantar flexor muscle group (gastrocnemius, soleus, plantaris) was analyzed for its functional capacities, that is, peak-isometric torque and peak-isokinetic power. VML-injured limbs had 25% less peak-isometric torque and 31% less peak-isokinetic power compared to those of Uninjured-20 mice (p < 0.001). Ultimate load, but not stiffness, was significantly less (10%) in tibias of VML-injured limbs compared to those from Uninjured-20 (p = 0.014). µCT analyses showed cortical bone thickness was 6% less in tibias of VML-injured limbs compared to Uninjured-20 (p = 0.001). Importantly, tibial bone cross-section moment of inertia, the primary determinant of bone ultimate load, was 16% smaller in bones of VML-injured limbs compared to bones from Uninjured-20 (p = 0.046). Metaphyseal trabecular bone structure was also altered up to 23% in tibias of VML-injured limbs (p < 0.010). These changes in tibial bone structure and function after a VML injury occur during a natural maturation phase between the age of 12 and 20 weeks, as evidenced by Uninjured-20 mice having greater tibial bone size and strength compared to uninjured-aged 12-week mice.
Collapse
Affiliation(s)
| | - Marion A. Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, August University, Augusta, GA USA
| | - Roger X. Zhong
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA USA
| | - Junwon Heo
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA USA
| | | | - Gordon L. Warren
- Department of Physical Therapy, Georgia State University, Atlanta, GA USA
| | | | - Jarrod A. Call
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA USA
| |
Collapse
|
2
|
Raymond-Pope CJ, Basten AM, Bruzina AS, McFaline-Figueroa J, Lillquist TJ, Call JA, Greising SM. Restricted physical activity after volumetric muscle loss alters whole-body and local muscle metabolism. J Physiol 2023; 601:743-761. [PMID: 36536512 PMCID: PMC9931639 DOI: 10.1113/jp283959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Volumetric muscle loss (VML) is the traumatic loss of skeletal muscle, resulting in chronic functional deficits and pathological comorbidities, including altered whole-body metabolic rate and respiratory exchange ratio (RER), despite no change in physical activity in animal models. In other injury models, treatment with β2 receptor agonists (e.g. formoterol) improves metabolic and skeletal muscle function. We aimed first to examine if restricting physical activity following injury affects metabolic and skeletal muscle function, and second, to enhance the metabolic and contractile function of the muscle remaining following VML injury through treatment with formoterol. Adult male C57Bl/6J mice (n = 32) underwent VML injury to the posterior hindlimb compartment and were randomly assigned to unrestricted or restricted activity and formoterol treatment or no treatment; age-matched injury naïve mice (n = 4) were controls for biochemical analyses. Longitudinal 24 h evaluations of physical activity and whole-body metabolism were conducted following VML. In vivo muscle function was assessed terminally, and muscles were biochemically evaluated for protein expression, mitochondrial enzyme activity and untargeted metabolomics. Restricting activity chronically after VML had the greatest effect on physical activity and RER, reflected in reduced lipid oxidation, although changes were attenuated by formoterol treatment. Formoterol enhanced injured muscle mass, while mitigating functional deficits. These novel findings indicate physical activity restriction may recapitulate following VML clinically, and adjunctive oxidative treatment may create a metabolically beneficial intramuscular environment while enhancing the injured muscle's mass and force-producing capacity. Further investigation is needed to evaluate adjunctive oxidative treatment with rehabilitation, which may augment the muscle's regenerative and functional capacity following VML. KEY POINTS: The natural ability of skeletal muscle to regenerate and recover function is lost following complex traumatic musculoskeletal injury, such as volumetric muscle loss (VML), and physical inactivity following VML may incur additional deleterious consequences for muscle and metabolic health. Modelling VML injury-induced physical activity restriction altered whole-body metabolism, primarily by decreasing lipid oxidation, while preserving local skeletal muscle metabolic activity. The β2 adrenergic receptor agonist formoterol has shown promise in other severe injury models to improve regeneration, recover function and enhance metabolism. Treatment with formoterol enhanced mass of the injured muscle and whole-body metabolism while mitigating functional deficits resulting from injury. Understanding of chronic effects of the clinically available and FDA-approved pharmaceutical formoterol could be a translational option to support muscle function after VML injury.
Collapse
Affiliation(s)
| | - Alec M. Basten
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| | - Angela S. Bruzina
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| | | | | | - Jarrod A. Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| |
Collapse
|
3
|
Vascularization of Poly-ε-Caprolactone-Collagen I-Nanofibers with or without Sacrificial Fibers in the Neurotized Arteriovenous Loop Model. Cells 2022; 11:cells11233774. [PMID: 36497034 PMCID: PMC9736129 DOI: 10.3390/cells11233774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Electrospun nanofibers represent an ideal matrix for the purpose of skeletal muscle tissue engineering due to their highly aligned structure in the nanoscale, mimicking the extracellular matrix of skeletal muscle. However, they often consist of high-density packed fibers, which might impair vascularization. The integration of polyethylene oxide (PEO) sacrificial fibers, which dissolve in water, enables the creation of less dense structures. This study examines potential benefits of poly-ε-caprolactone-collagen I-PEO-nanoscaffolds (PCP) in terms of neovascularization and distribution of newly formed vessels compared to poly-ε-caprolactone -collagen I-nanoscaffolds (PC) in a modified arteriovenous loop model in the rat. For this purpose, the superficial inferior epigastric artery and vein as well as a motor nerve branch were integrated into a multilayer three-dimensional nanofiber scaffold construct, which was enclosed by an isolation chamber. Numbers and spatial distribution of sprouting vessels as well as macrophages were analyzed via immunohistochemistry after two and four weeks of implantation. After four weeks, aligned PC showed a higher number of newly formed vessels, regardless of the compartments formed in PCP by the removal of sacrificial fibers. Both groups showed cell influx and no difference in macrophage invasion. In this study, a model of combined axial vascularization and neurotization of a PCL-collagen I-nanofiber construct could be established for the first time. These results provide a foundation for the in vivo implantation of cells, taking a major step towards the generation of functional skeletal muscle tissue.
Collapse
|
4
|
Leiva-Cepas F, Benito-Ysamat A, Jimena I, Jimenez-Diaz F, Gil-Belmonte MJ, Ruz-Caracuel I, Villalba R, Peña-Amaro J. Ultrasonographic and Histological Correlation after Experimental Reconstruction of a Volumetric Muscle Loss Injury with Adipose Tissue. Int J Mol Sci 2021; 22:6689. [PMID: 34206557 PMCID: PMC8268690 DOI: 10.3390/ijms22136689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/05/2023] Open
Abstract
Different types of scaffolds are used to reconstruct muscle volume loss injuries. In this experimental study, we correlated ultrasound observations with histological findings in a muscle volume loss injury reconstructed with autologous adipose tissue. The outcome is compared with decellularized and porous matrix implants. Autologous adipose tissue, decellularized matrix, and a porous collagen matrix were implanted in volumetric muscle loss (VML) injuries generated on the anterior tibial muscles of Wistar rats. Sixty days after implantation, ultrasound findings were compared with histological and histomorphometric analysis. The muscles with an autologous adipose tissue implant exhibited an ultrasound pattern that was quite similar to that of the regenerative control muscles. From a histological point of view, the defects had been occupied by newly formed muscle tissue with certain structural abnormalities that would explain the differences between the ultrasound patterns of the normal control muscles and the regenerated ones. While the decellularized muscle matrix implant resulted in fibrosis and an inflammatory response, the porous collagen matrix implant was replaced by regenerative muscle fibers with neurogenic atrophy and fibrosis. In both cases, the ultrasound images reflected echogenic, echotextural, and vascular changes compatible with the histological findings of failed muscle regeneration. The ultrasound analysis confirmed the histological findings observed in the VML injuries reconstructed by autologous adipose tissue implantation. Ultrasound can be a useful tool for evaluating the structure of muscles reconstructed through tissue engineering.
Collapse
Affiliation(s)
- Fernando Leiva-Cepas
- Research Group in Muscle Regeneration, Department of Morphological Sciences, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain; (F.L.-C.); (A.B.-Y.); (I.J.); (M.J.G.-B.); (I.R.-C.)
- Department of Pathology, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Alberto Benito-Ysamat
- Research Group in Muscle Regeneration, Department of Morphological Sciences, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain; (F.L.-C.); (A.B.-Y.); (I.J.); (M.J.G.-B.); (I.R.-C.)
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
- Radiology Department, Musculoskeletal Section, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Ignacio Jimena
- Research Group in Muscle Regeneration, Department of Morphological Sciences, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain; (F.L.-C.); (A.B.-Y.); (I.J.); (M.J.G.-B.); (I.R.-C.)
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Fernando Jimenez-Diaz
- Sport Sciences Faculty, Castilla La Mancha University, 45071 Toledo, Spain;
- Department of Health Sciences, Faculty of Medicine, Campus de los Jerónimos, San Antonio Catholic University (UCAM), 30107 Murcia, Spain
| | - Maria Jesus Gil-Belmonte
- Research Group in Muscle Regeneration, Department of Morphological Sciences, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain; (F.L.-C.); (A.B.-Y.); (I.J.); (M.J.G.-B.); (I.R.-C.)
| | - Ignacio Ruz-Caracuel
- Research Group in Muscle Regeneration, Department of Morphological Sciences, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain; (F.L.-C.); (A.B.-Y.); (I.J.); (M.J.G.-B.); (I.R.-C.)
- Department of Pathology, Ramon y Cajal University Hospital, IRYCIS, 28034 Madrid, Spain
| | - Rafael Villalba
- Tissue of Establishment of the Center for Transfusion, Tissues and Cells, 14004 Cordoba, Spain;
| | - Jose Peña-Amaro
- Research Group in Muscle Regeneration, Department of Morphological Sciences, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain; (F.L.-C.); (A.B.-Y.); (I.J.); (M.J.G.-B.); (I.R.-C.)
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| |
Collapse
|
5
|
Motherwell JM, Hendershot BD, Goldman SM, Dearth CL. Gait biomechanics: A clinically relevant outcome measure for preclinical research of musculoskeletal trauma. J Orthop Res 2021; 39:1139-1151. [PMID: 33458856 DOI: 10.1002/jor.24990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023]
Abstract
Traumatic injuries to the musculoskeletal system are the most prevalent of those suffered by United States Military Service members and accounts for two-thirds of initial hospital costs to the Department of Defense. These combat-related wounds often leave survivors with life-long disability and represent a significant impediment to the readiness of the fighting force. There are immense opportunities for the field of tissue engineering and regenerative medicine (TE/RM) to address these musculoskeletal injuries through regeneration of damaged tissues as a means to restore limb functionality and improve quality of life for affected individuals. Indeed, investigators have made promising advancements in the treatment for these injuries by utilizing small and large preclinical animal models to validate therapeutic efficacy of next-generation TE/RM-based technologies. Importantly, utilization of a comprehensive suite of functional outcome measures, particularly those designed to mimic data collected within the clinical setting, is critical for successful translation and implementation of these therapeutics. To that end, the objective of this review is to emphasize the clinical relevance and application of gait biomechanics as a functional outcome measure for preclinical research studies evaluating the efficacy of TE/RM therapies to treat traumatic musculoskeletal injuries. Specifically, common musculoskeletal injuries sustained by service members-including volumetric muscle loss, post-traumatic osteoarthritis, and composite tissue injuries-are examined as case examples to highlight the use of gait biomechanics as an outcome measure using small and large preclinical animal models.
Collapse
Affiliation(s)
- Jessica M Motherwell
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Brad D Hendershot
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephen M Goldman
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Christopher L Dearth
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Wu J, Matthias N, Bhalla S, Darabi R. Evaluation of the Therapeutic Potential of Human iPSCs in a Murine Model of VML. Mol Ther 2020; 29:121-131. [PMID: 32966776 DOI: 10.1016/j.ymthe.2020.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023] Open
Abstract
Volumetric muscle loss injury is a common health problem with long-term disabilities. One common treatment is using muscle flaps from donor site, which has limited potentials due to donor site availability and morbidity. Although several stem cell therapies have been evaluated so far, most suffer from limited availability, immune incompatibility, or differentiation potential. Therefore, induced pluripotent stem cells (iPSCs) have a great promise for this purpose due to their unique differentiation, self-renewal, and immunocompatibility. Current study was designed to determine therapeutic potential of human iPSCs (hiPSCs) in a mouse model of volumetric muscle loss. Muscles were subjected to excision to generate 30%-40% muscle loss. Next, hiPSCs were differentiated toward skeletal myogenic progenitors and used with fibrin hydrogel to reconstruct the lost muscle. Histologic evaluation of the treated muscles indicated abundant engraftment of donor-derived mature fibers expressing human markers. Donor-derived fibers were also positive for the presence of neuromuscular junction (NMJ), indicating their proper innervation. Evaluation of the engrafted region indicated the presence of donor-derived satellite cells expressing human markers and Pax7. Finally, in situ muscle function analysis demonstrated significant improvement of the muscle contractility in muscles treated with hiPSCs. These results therefore provide key evidence for the therapeutic potential of human iPSCs in volumetric muscle loss injuries.
Collapse
Affiliation(s)
- Jianbo Wu
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nadine Matthias
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shubhang Bhalla
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Cai A, Hardt M, Schneider P, Schmid R, Lange C, Dippold D, Schubert DW, Boos AM, Weigand A, Arkudas A, Horch RE, Beier JP. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds. BMC Biotechnol 2018; 18:75. [PMID: 30477471 PMCID: PMC6260685 DOI: 10.1186/s12896-018-0482-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/28/2018] [Indexed: 02/07/2023] Open
Abstract
Background The creation of functional skeletal muscle via tissue engineering holds great promise without sacrificing healthy donor tissue. Different cell types have been investigated regarding their myogenic differentiation potential under the influence of various media supplemented with growth factors. Yet, most cell cultures include the use of animal sera, which raises safety concerns and might lead to variances in results. Electrospun nanoscaffolds represent suitable matrices for tissue engineering of skeletal muscle, combining both biocompatibility and stability. We therefore aimed to develop a serum-free myogenic differentiation medium for the co-culture of primary myoblasts (Mb) and mesenchymal stromal cells derived from the bone marrow (BMSC) and adipose tissue (ADSC) on electrospun poly-ε-caprolacton (PCL)-collagen I-nanofibers. Results Rat Mb were co-cultured with rat BMSC (BMSC/Mb) or ADSC (ADSC/Mb) two-dimensionally (2D) as monolayers or three-dimensionally (3D) on aligned PCL-collagen I-nanofibers. Differentiation media contained either AIM V, AIM V and Ultroser® G, DMEM/Ham’s F12 and Ultroser® G, or donor horse serum (DHS) as a conventional differentiation medium. In 2D co-culture groups, highest upregulation of myogenic markers could be induced by serum-free medium containing DMEM/Ham’s F12 and Ultroser® G (group 3) after 7 days. Alpha actinin skeletal muscle 2 (ACTN2) was upregulated 3.3-fold for ADSC/Mb and 1.7-fold for BMSC/Mb after myogenic induction by group 3 serum-free medium when compared to stimulation with DHS. Myogenin (MYOG) was upregulated 5.2-fold in ADSC/Mb and 2.1-fold in BMSC/Mb. On PCL-collagen I-nanoscaffolds, ADSC showed a higher cell viability compared to BMSC in co-culture with Mb. Myosin heavy chain 2, ACTN2, and MYOG as late myogenic markers, showed higher gene expression after long term stimulation with DHS compared to serum-free stimulation, especially in BMSC/Mb co-cultures. Immunocytochemical staining with myosin heavy chain verified the presence of a contractile apparatus under both serum free and standard differentiation conditions. Conclusions In this study, we were able to myogenically differentiate mesenchymal stromal cells with myoblasts on PCL-collagen I-nanoscaffolds in a serum-free medium. Our results show that this setting can be used for skeletal muscle tissue engineering, applicable to future clinical applications since no xenogenous substances were used.
Collapse
Affiliation(s)
- Aijia Cai
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany.
| | - Moritz Hardt
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Paul Schneider
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Rafael Schmid
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Claudia Lange
- Interdisciplinary Clinic for Stem Cell Transplantation, University Cancer Center Hamburg (UCCH), 20246, Hamburg, Germany
| | - Dirk Dippold
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg (FAU), Martensstraße 7, 91058, Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg (FAU), Martensstraße 7, 91058, Erlangen, Germany
| | - Anja M Boos
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Annika Weigand
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Justus P Beier
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany.,Department of Plastic Surgery, Hand Surgery, Burn Center University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
8
|
Li MT, Ruehle MA, Stevens HY, Servies N, Willett NJ, Karthikeyakannan S, Warren GL, Guldberg RE, Krishnan L. * Skeletal Myoblast-Seeded Vascularized Tissue Scaffolds in the Treatment of a Large Volumetric Muscle Defect in the Rat Biceps Femoris Muscle. Tissue Eng Part A 2017; 23:989-1000. [PMID: 28372522 DOI: 10.1089/ten.tea.2016.0523] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High velocity impact injuries can often result in loss of large skeletal muscle mass, creating defects devoid of matrix, cells, and vasculature. Functional regeneration within these regions of large volumetric muscle loss (VML) continues to be a significant clinical challenge. Large cell-seeded, space-filling tissue-engineered constructs that may augment regeneration require adequate vascularization to maintain cell viability. However, the long-term effect of improved vascularization and the effect of addition of myoblasts to vascularized constructs have not been determined in large VMLs. Here, our objective was to create a new VML model, consisting of a full-thickness, single muscle defect, in the rat biceps femoris muscle, and evaluate the ability of myoblast-seeded vascularized collagen hydrogel constructs to augment VML regeneration. Adipose-derived microvessels were cultured with or without myoblasts to form vascular networks within collagen constructs. In the animal model, the VML injury was created in the left hind limb, and treated with the harvested autograft itself, constructs with microvessel fragments (MVF) only, constructs with microvessels and myoblasts (MVF+Myoblasts), or left empty. We evaluated the formation of vascular networks in vitro by light microscopy, and the capacity of vascularized constructs to augment early revascularization and muscle regeneration in the VML using perfusion angiography and creatine kinase activity, respectively. Myoblasts (Pax7+) were able to differentiate into myotubes (sarcomeric myosin MF20+) in vitro. The MVF+Myoblast group showed longer and more branched microvascular networks than the MVF group in vitro, but showed similar overall defect site vascular volumes at 2 weeks postimplantation by microcomputed tomography angiography. However, a larger number of small-diameter vessels were observed in the vascularized construct-treated groups. Yet, both vascularized implant groups showed primarily fibrotic tissue with adipose infiltration, poor maintenance of tissue volume within the VML, and little muscle regeneration. These data suggest that while vascularization may play an important supportive role, other factors besides adequate vascularity may determine the fate of regenerating volumetric muscle defects.
Collapse
Affiliation(s)
- Mon-Tzu Li
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia .,2 Department of Biomedical Engineering, Emory University , Atlanta, Georgia
| | - Marissa A Ruehle
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia .,2 Department of Biomedical Engineering, Emory University , Atlanta, Georgia
| | - Hazel Y Stevens
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia
| | - Nick Servies
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia
| | - Nick J Willett
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia .,2 Department of Biomedical Engineering, Emory University , Atlanta, Georgia .,3 Department of Orthopaedics, Atlanta Veteran's Affairs Medical Center , Decatur, Georgia
| | - Sukhita Karthikeyakannan
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia
| | - Gordon L Warren
- 4 Department of Physical Therapy, Georgia State University , Atlanta, Georgia
| | - Robert E Guldberg
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia
| | - Laxminarayanan Krishnan
- 1 Georgia Institute of Technology, Petit Institute for Bioengineering and Biosciences , Atlanta, Georgia
| |
Collapse
|