1
|
Luty RS, Al-Zubaidy AA, Malik AS, Ridha-Salman H, Abbas AH. Protective effect of orientin on diabetic nephropathy in rat models of high-fat diet and streptozotocin-induced diabetes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03949-8. [PMID: 40035824 DOI: 10.1007/s00210-025-03949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Diabetic nephropathy (DN) represents the primary cause of chronic kidney disease (CKD) worldwide. Orientin is a natural bioactive flavonoid with profound immunomodulatory, anti-inflammatory, and antioxidative effects. This study aimed to investigate the nephroprotective effect of orientin on rat prototypes of high-fat diet (HFD) and streptozotocin (STZ)-induced DN. 75 male rats were divided into 5 groups of 15 rats each. Rats were fed a HFD for 4 weeks, injected with a single dose of STZ 30 mg/kg, and continued on HFD for 15 weeks. Orientin was administered daily at 40 mg/kg for 15 weeks. The diabetic group reported substantially greater fasting blood glucose, HbA1c, and renal function measures than normal controls, as well as notable kidney histological abnormalities such as interstitial inflammation, glomerular shrinkage, and tubular necrosis. Additionally, the diabetic group showed dramatically greater amounts of IL-1β, IL-6, TNF-α, TGF-β1, MDA, and a much lower level of GSH than the control group. However, orientin had no effect on the glycaemic parameters, but it dramatically reduced blood creatinine levels, prevented the development of histopathological irregularities, and minimized the renal concentrations of inflammatory and oxidative markers. Orientin may be a promising natural medication for improving diabetic nephropathy thanks to its robust anti-inflammatory and anti-proliferative properties.
Collapse
Affiliation(s)
- Raad Saad Luty
- Department of Dental Surgery, College of Dentistry, University of Basrah, Basrah, Iraq
- Department of Pharmacology, College of Medicine, Al Nahrain University, Baghdad, Iraq
| | - Adeeb Ahmed Al-Zubaidy
- College of Medicine, Department of Pharmacology, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Arif Sami Malik
- College of Medicine, Department of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Hayder Ridha-Salman
- College of Pharmacy, Department of Pharmacology, Al-Mustaqbal University, Hillah, 5001, Babylon, Iraq.
| | - Alaa Hamza Abbas
- College of Pharmacy, Al-Mustaqbal University, Hillah, 51001, Babylon, Iraq
| |
Collapse
|
2
|
Gupta H, Bhandari U. Molecular Insight into Obesity-Associated Nephropathy: Clinical Implications and Possible Strategies for its Management. Curr Drug Targets 2025; 26:188-202. [PMID: 39411934 DOI: 10.2174/0113894501314788241008115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 04/11/2025]
Abstract
Obesity is a significant health concern due to its rapid increase worldwide. It has been linked to the pathogenic factors of renal diseases, cancer, cardiovascular diseases, hypertension, dyslipidemia, and type 2 diabetes. Notably, obesity raises the likelihood of developing chronic kidney disease (CKD), leading to higher adult mortality and morbidity rates. This study explores the molecular mechanisms that underlie obesity-associated nephropathy and its clinical implications. Obesity-Associated Nephropathy (OAN) develops and worsens due to insulin resistance and hyperinsulinemia, which promote renal sodium reabsorption, glomerular hyperfiltration, and hypertension, leading to progressive kidney damage. Renal damage is further aggravated by persistent inflammation and redox damage, mediated by adipokines and proinflammatory cytokines, such as TNF-α and IL-6. Furthermore, stimulation of the sympathetic nervous system and the renin-angiotensin- aldosterone system (RAAS) intensifies glomerular hypertension and fibrosis. These elements cause glomerular hyperfiltration, renal hypertrophy, and progressive kidney damage. Clinical manifestations of obesity-associated nephropathy include proteinuria, reduced glomerular filtration rate (GFR), and ultimately, CKD. Management strategies currently focus on lifestyle modifications, such as weight loss through diet and exercise, which have been effective in reducing proteinuria and improving GFR. Pharmacological treatments targeting metabolic pathways, including GLP-1 receptor agonists and SGLT2 inhibitors, have shown renoprotective properties. Additionally, traditional RAAS inhibitors offer therapeutic benefits. Early detection and comprehensive management of OAN are essential to prevent its progression and lessen the burden of CKD.
Collapse
Affiliation(s)
- Himani Gupta
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Uma Bhandari
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
3
|
Sun X, Zhu J, Qian Z, Chen X, Zhang J, Ji C, Zhao L. A Population-Based Study of the Mediating Role of WBC, NEUT and PLT in the Relationship Between Triglyceride-Glucose Index and Urinary Albumin Excretion. J Inflamm Res 2024; 17:10613-10626. [PMID: 39664170 PMCID: PMC11633290 DOI: 10.2147/jir.s491694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Aim To assess the potential association between the TyG index and the risk of abnormal UACR. Additionally, we aimed to determine the role and degree of influence of inflammatory biomarkers between the TyG index and abnormal UACR. Materials and Methods A cross-sectional study recruited 1021 participants from a health management center between 2021 and 2022. Logistic or linear regression models, as well as mediation analysis, were employed to investigate the associations between the TyG index, inflammatory biomarkers (total and differential white blood cell counts, platelet, mean platelet volume(MPV), C-reactive protein(CRP)), and the risk of abnormal UACR. Results The study included 1021 participants, of whom 55.0% were men. The median age (interquartile range [IQR]) was 61.0 (53, 70) years. In multivariable-adjusted logistic regression models, both with and without the inclusion of smoking, alcohol drinking, BMI, Lipid-lowering drugs using, TC, SUA, ALT, and AST as potential covariates, the TyG index was associated with the risk of UACR, both with the odds ratios (ORs) per 1-standard deviation (SD) increase were 1.32 (95% CI, 1.08-1.62) and 1.27 (95% CI, 1.05-1.52), respectively. This study also demonstrated a significant indirect effect of the TyG index on the risk of abnormal UACR through total white blood cell counts, neutrophil counts and platelet (P values < 0.05); The proportions mediated was 11.2%, 3.5% and 29.6% for each respective variable. Conclusion Insulin resistance and inflammation are associated with an increased risk of kidney insufficiency. And indicators of inflammation weakly mediate insulin resistance and risk of kidney insufficiency.
Collapse
Affiliation(s)
- Xu Sun
- China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
- Department of Pharmacy, Nanjing Luhe People’s Hospital, Nanjing, 211500, People’s Republic of China
- Department of Pharmacy, Nanjing Luhe People’s Hospital, Yangzhou University, Nanjing, 211500, People’s Republic of China
| | - Jun Zhu
- Department of Pharmacy, Nanjing Luhe People’s Hospital, Nanjing, 211500, People’s Republic of China
- Department of Pharmacy, Nanjing Luhe People’s Hospital, Yangzhou University, Nanjing, 211500, People’s Republic of China
| | - Zhuyin Qian
- Department of General Surgery, Nanjing Luhe People’s Hospital, Yangzhou University, Nanjing, 211500, People’s Republic of China
| | - Xiaowei Chen
- Department of Central Laboratory, Nanjing Luhe People’s Hospital, Yangzhou University, Nanjing, 211500, People’s Republic of China
| | - Jie Zhang
- Department of Endocrinology, Nanjing Luhe People’s Hospital, Yangzhou University, Nanjing, 211500, People’s Republic of China
| | - Cheng Ji
- Department of Pharmacy, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu, 210000, People’s Republic of China
| | - Li Zhao
- China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| |
Collapse
|
4
|
Cumaoglu MO, Makav M, Dag S, Uysal AY, Baser L, LeBaron TW, Alwazeer D. Combating oxidative stress and inflammation in gentamicin-induced nephrotoxicity using hydrogen-rich water. Tissue Cell 2024; 91:102604. [PMID: 39531856 DOI: 10.1016/j.tice.2024.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Gentamicin-induced nephrotoxicity primarily results from renal inflammatory cascades and increased oxidative stress. This study aims to examine the effects of hydrogen-rich water (HRW) on gentamicin-induced renal damage in rats. Thirty-two rats were equally divided into four groups, including control (no treatment), hydrogen, gentamicin, and gentamicin+hydrogen. At the end of one week, all animals were euthanized following ethical rules, and blood and tissue samples were analyzed for examining Malondialdehyde (MDA), glutathione (GSH), Tumor Necrosis Factor-Alfa (TNF-α), Tumor Necrosis Factor-Beta (TNF-β), Interleukin 6 (IL-6), endoglin, endocan, urea, creatinine, Na+, and K+ parameters. Levels of 8-Hydroxyguanosine (8-OHdG), MDA, and Bax were immunohistochemically analyzed. Data showed that while MDA (control P<0.0001, H2P<0.0001, Genta+H2P<0.0007), TNF-α (control P<0.0002, H2P<0.0040, Genta+H2P<0.0381), IL-6 (control P<0.0044, H2P<0.0070, Genta+H2P<0.0109), endocan (control P<0.0460, H2P<0.0286, Genta+H2P<0.0452), and endoglin (control P<0.0131, H2P<0.0164, Genta+H2P<0.0397), urea (control P<0.0024, H2P<0.0001, Genta+H2P<0.0180), and creatinine parameters (control P<0.0017, H2P<0.0178, Genta+H2P<0.0011) increased in the gentamicin group compared to the other groups, a decrease in these parameters was observed in the gentamicin+hydrogen group compared to the gentamicin group. The Genta group had greater levels of TNF-β than the control (P<0.0042) and H2 groups (P<0.0268). GSH content was higher in the hydrogen group compared to the gentamicin group. Immunohistochemically, 8-OHdG, MDA, and Bax expressions increased in the gentamicin group compared to the control group, whereas they decreased in the gentamicin+hydrogen group compared to the gentamicin group. Hydrogen may be an alternative treatment for oxidative stress-induced nephrotoxicity.
Collapse
Affiliation(s)
- Mustafa Oguz Cumaoglu
- Niğde Ömer Halisdemir University, Faculty of Medicine, Department of Emergency Medicine, Niğde, Türkiye.
| | - Mustafa Makav
- Kafkas University, Faculty of Veterinary Medicine, Department of Physiology, Kars, Türkiye
| | - Serpil Dag
- Kafkas University, Faculty of Veterinary Medicine, Department of Pathology, Kars, Türkiye
| | - Ayfer Yildiz Uysal
- Kafkas University, Faculty of Veterinary Medicine, Department of Pathology, Kars, Türkiye
| | - Lale Baser
- Kafkas University, Faculty of Veterinary Medicine, Department of Medical Biochemistry, Kars, Türkiye
| | - Tyler W LeBaron
- Molecular Hydrogen Institute, Cedar City, UT 84721, USA; Southern Utah University, Department of Kinesiology and Outdoor Recreation, Cedar City, UT 84720, USA
| | - Duried Alwazeer
- Iğdır University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Iğdır, Türkiye; Innovative Food Technologies Development, Application, and Research Center, Igdir University, Igdir 76000, Türkiye.
| |
Collapse
|
5
|
Okuma H, Tsuchiya K. Tissue-specific activation of insulin signaling as a potential target for obesity-related metabolic disorders. Pharmacol Ther 2024; 262:108699. [PMID: 39111411 DOI: 10.1016/j.pharmthera.2024.108699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024]
Abstract
The incidence of obesity is rapidly increasing worldwide. Obesity-associated insulin resistance has long been established as a significant risk factor for obesity-related disorders such as type 2 diabetes and atherosclerosis. Insulin plays a key role in systemic glucose metabolism, with the liver, skeletal muscle, and adipose tissue as the major acting tissues. Insulin receptors and the downstream insulin signaling-related molecules are expressed in various tissues, including vascular endothelial cells, vascular smooth muscle cells, and monocytes/macrophages. In obesity, decreased insulin action is considered a driver for associated disorders. However, whether insulin action has a positive or negative effect on obesity-related disorders depends on the tissue in which it acts. While an enhancement of insulin signaling in the liver increases hepatic fat accumulation and exacerbates dyslipidemia, enhancement of insulin signaling in adipose tissue protects against obesity-related dysfunction of various organs by increasing the capacity for fat accumulation in the adipose tissue and inhibiting ectopic fat accumulation. Thus, this "healthy adipose tissue expansion" by enhancing insulin sensitivity in adipose tissue, but not in the liver, may be an effective therapeutic strategy for obesity-related disorders. To effectively address obesity-related metabolic disorders, the mechanisms of insulin resistance in various tissues of obese patients must be understood and drugs that enhance insulin action must be developed. In this article, we review the potential of interventions that enhance insulin signaling as a therapeutic strategy for obesity-related disorders, focusing on the molecular mechanisms of insulin action in each tissue.
Collapse
Affiliation(s)
- Hideyuki Okuma
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 4093898, Japan
| | - Kyoichiro Tsuchiya
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 4093898, Japan.
| |
Collapse
|
6
|
Ren L, Ju F, Liu S, Cai Y, Gang X, Wang G. New Perspectives on Obesity-Associated Nephropathy from Pathophysiology to Therapeutics: Revealing the Promise of GLP-1 RA Therapy. Drug Des Devel Ther 2024; 18:4257-4272. [PMID: 39347536 PMCID: PMC11437658 DOI: 10.2147/dddt.s476815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Obesity represents a substantial risk factor for a multitude of metabolic disorders, which seriously threatens human life and health. As the global obesity epidemic intensifies, obesity-related nephropathy (ORN) has attracted great attention. ORN arises from both physical/mechanical and non-physical insults to the glomerular and tubular structures precipitated by obesity, culminating in structural impairments and functional aberrations within the kidneys. Physical injury factors include changes in renal hemodynamics, renal compression, and mechanical stretching of podocytes. Non-physical injury factors include overactivation of the RAAS system, insulin resistance, lipotoxicity, inflammation, and dysregulation of bile acid metabolism. Exploring molecules that target modulation of physical or nonphysical injury factors is a potential approach to ORN treatment. ORN is characterized clinically by microproteinuria and pathologically by glomerulomegaly, which is atypical and makes early diagnosis difficult. Investigating early diagnostic markers for ORN thus emerges as a critical direction for future research. Additionally, there is no specific drug for ORN in clinical treatment, which mainly focuses on weight reduction, mitigating proteinuria, and preserving renal function. In our review, we delineate a progressive therapeutic approach involving enhancements in lifestyle, pharmacotherapy, and bariatric surgery. Our emphasis underscores glucagon-like peptide-1 receptor agonists (GLP-1 RAs) as poised to emerge as pivotal therapeutic modalities for ORN in forthcoming clinical avenues.
Collapse
Affiliation(s)
- Linan Ren
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Feng Ju
- Department of Orthopedics, Yuci District People’s Hospital, Yuci, Shanxi, 030600, People’s Republic of China
| | - Siyuan Liu
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Yunjia Cai
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| |
Collapse
|
7
|
Li J, Xiang T, Chen X, Fu P. Neutrophil-percentage-to-albumin ratio is associated with chronic kidney disease: Evidence from NHANES 2009-2018. PLoS One 2024; 19:e0307466. [PMID: 39102412 PMCID: PMC11299806 DOI: 10.1371/journal.pone.0307466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION The neutrophil-percentage-to-albumin ratio (NPAR), a novel inflammatory biomarker, has been used to predict the prognosis of patients with cancer and cardiovascular disease. However, the relationship between NPAR and chronic kidney disease (CKD) remains unknown. The purpose of this study was to investigate the possible association between NPAR and CKD. METHODS The cross-sectional study included participants with complete information on NPAR, serum creatinine (Scr), or urinary albumin-to-creatinine ratio (UACR) from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). CKD was defined as the presence of either low estimated glomerular filtration rate (eGFR) or albuminuria. Univariate and multivariate logistic regression and restricted cubic spline regression were used to assess the linear and nonlinear associations between NPAR and renal function. Subgroup and interactive analyses were performed to explore potential interactive effects of covariates. Missing values were imputed using random forest. RESULTS A total of 25,236 participants were enrolled in the study, of whom 4518 (17.9%) were diagnosed with CKD. After adjustment for covariates, the odds ratios (ORs) for prevalent CKD were 1.19 (95% CI = 1.07-1.31, p <0.05) for the Q2 group, 1.53 (95% CI = 1.39-1.69, p < 0.001) for the Q3 group, and 2.78 (95% CI = 2.53-3.05, p < 0.001) for the Q4 group. There was a significant interaction between age and diabetes mellitus on the association between NPAR and CKD (both p for interaction < 0.05). And there was a non-linear association between NPAR levels and CKD in the whole population (p for non-linear < 0.001). All sensitivity analyses supported the positive association between NPAR and CKD. CONCLUSIONS NPAR was positively correlated with increased risk of CKD. The NPAR may serve as an available and cost-effective tool for identifying and intervening the individuals at risk of CKD.
Collapse
Affiliation(s)
- Jinxi Li
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ting Xiang
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xinyun Chen
- Department of Health Management, Health Management Center, General Practice Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ping Fu
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
8
|
Guan Y, Wei X, Li J, Zhu Y, Luo P, Luo M. Obesity-related glomerulopathy: recent advances in inflammatory mechanisms and related treatments. J Leukoc Biol 2024; 115:819-839. [PMID: 38427925 DOI: 10.1093/jleuko/qiae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024] Open
Abstract
Obesity-related glomerulopathy, which is an obesity-triggered kidney damage, has become a significant threat to human health. Several studies have recently highlighted the critical role of inflammation in obesity-related glomerulopathy development. Additionally, excess adipose tissue and adipocytes in patients with obesity produce various inflammatory factors that cause systemic low-grade inflammation with consequent damage to vascular endothelial cells, exacerbating glomerular injury. Therefore, we conducted a comprehensive review of obesity-related glomerulopathy and addressed the critical role of obesity-induced chronic inflammation in obesity-related glomerulopathy pathogenesis and progression, which leads to tubular damage and proteinuria, ultimately impairing renal function. The relationship between obesity and obesity-related glomerulopathy is facilitated by a network of various inflammation-associated cells (including macrophages, lymphocytes, and mast cells) and a series of inflammatory mediators (such as tumor necrosis factor α, interleukin 6, leptin, adiponectin, resistin, chemokines, adhesion molecules, and plasminogen activator inhibitor 1) and their inflammatory pathways. Furthermore, we discuss a recently discovered relationship between micronutrients and obesity-related glomerulopathy inflammation and the important role of micronutrients in the body's anti-inflammatory response. Therefore, assessing these inflammatory molecules and pathways will provide a strong theoretical basis for developing therapeutic strategies based on anti-inflammatory effects to prevent or delay the onset of kidney injury.
Collapse
Affiliation(s)
- Yucan Guan
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| | - Xianping Wei
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| | - Jicui Li
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| | - Yuexin Zhu
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| | - Ping Luo
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| | - Manyu Luo
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China
| |
Collapse
|
9
|
Wrońska A, Kieżun J, Kmieć Z. High-Dose Fenofibrate Stimulates Multiple Cellular Stress Pathways in the Kidney of Old Rats. Int J Mol Sci 2024; 25:3038. [PMID: 38474282 DOI: 10.3390/ijms25053038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
We investigated the age-related effects of the lipid-lowering drug fenofibrate on renal stress-associated effectors. Young and old rats were fed standard chow with 0.1% or 0.5% fenofibrate. The kidney cortex tissue structure showed typical aging-related changes. In old rats, 0.1% fenofibrate reduced the thickening of basement membranes, but 0.5% fenofibrate exacerbated interstitial fibrosis. The PCR array for stress and toxicity-related targets showed that 0.1% fenofibrate mildly downregulated, whereas 0.5% upregulated multiple genes. In young rats, 0.1% fenofibrate increased some antioxidant genes' expression and decreased the immunoreactivity of oxidative stress marker 4-HNE. However, the activation of cellular antioxidant defenses was impaired in old rats. Fenofibrate modulated the expression of factors involved in hypoxia and osmotic stress signaling similarly in both age groups. Inflammatory response genes were variably modulated in the young rats, whereas old animals presented elevated expression of proinflammatory genes and TNFα immunoreactivity after 0.5% fenofibrate. In old rats, 0.1% fenofibrate more prominently than in young animals induced phospho-AMPK and PGC1α levels, and upregulated fatty acid oxidation genes. Our results show divergent effects of fenofibrate in young and old rat kidneys. The activation of multiple stress-associated effectors by high-dose fenofibrate in the aged kidney warrants caution when applying fenofibrate therapy to the elderly.
Collapse
Affiliation(s)
- Agata Wrońska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Jacek Kieżun
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Zbigniew Kmieć
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
10
|
Liu X, Li X, Chen Y, Liu X, Liu Y, Wei H, Li N. Systemic immune-inflammation Index is associated with chronic kidney disease in the U.S. population: insights from NHANES 2007-2018. Front Immunol 2024; 15:1331610. [PMID: 38449859 PMCID: PMC10915063 DOI: 10.3389/fimmu.2024.1331610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
Objectives The systemic immune-inflammation index (SII), a novel and systematic inflammatory biomarker that is associated with chronic kidney disease (CKD), has not received much attention. This study aimed to investigate the relationship between SII and CKD in the United States (U.S.) population. Methods Our study ultimately included a nationally representative sample of 10,787 adults who participated in the 2007-2018 National Health and Nutrition Examination Survey. Weighted multivariate logistic regression was used to assess the correlation between SII and CKD, and a restricted cubic spline (RCS) model was subsequently used to explore the non-linear relationship between SII and CKD. Subgroup analyses were performed to further the effects of other covariates on the relationship between SII and CKD. Results Following confounder adjustment, a higher SII was related to the incidence of CKD (OR =1.36; 95% CI, 1.07-1.73; p =0.01), as validated by multivariable logistic regression. The RCS curve revealed a non-linear positive correlation between SII/1000 and CKD incidence (p for non-linear =0.0206). Additionally, subgroup analysis confirmed a stronger correlation for male participants (OR =2.628; 95% CI, 1.829-3.776) than for female participants (OR =1.733; 95% CI, 1.379-2.178) (p for interaction =0.046). Conclusions SII is positively associated with the incidence of CKD among U.S. adults, especially in males. However, further studies are needed to confirm our findings and explore the causal factors that can contribute to the prevention and treatment of CKD.
Collapse
Affiliation(s)
- Xiaoxin Liu
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyu Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yulin Chen
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haotian Wei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ningxu Li
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Altamura S, Pietropaoli D, Lombardi F, Del Pinto R, Ferri C. An Overview of Chronic Kidney Disease Pathophysiology: The Impact of Gut Dysbiosis and Oral Disease. Biomedicines 2023; 11:3033. [PMID: 38002033 PMCID: PMC10669155 DOI: 10.3390/biomedicines11113033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic kidney disease (CKD) is a severe condition and a significant public health issue worldwide, carrying the burden of an increased risk of cardiovascular events and mortality. The traditional factors that promote the onset and progression of CKD are cardiometabolic risk factors like hypertension and diabetes, but non-traditional contributors are escalating. Moreover, gut dysbiosis, inflammation, and an impaired immune response are emerging as crucial mechanisms in the disease pathology. The gut microbiome and kidney disease exert a reciprocal influence commonly referred to as "the gut-kidney axis" through the induction of metabolic, immunological, and endocrine alterations. Periodontal diseases are strictly involved in the gut-kidney axis for their impact on the gut microbiota composition and for the metabolic and immunological alterations occurring in and reciprocally affecting both conditions. This review aims to provide an overview of the dynamic biological interconnections between oral health status, gut, and renal pathophysiology, spotlighting the dynamic oral-gut-kidney axis and raising whether periodontal diseases and gut microbiota can be disease modifiers in CKD. By doing so, we try to offer new insights into therapeutic strategies that may enhance the clinical trajectory of CKD patients, ultimately advancing our quest for improved patient outcomes and well-being.
Collapse
Affiliation(s)
- Serena Altamura
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (D.P.); (C.F.)
- PhD School in Medicine and Public Health, Center of Oral Diseases, Prevention and Translational Research—Dental Clinic, 67100 L’Aquila, Italy
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), 67100 L’Aquila, Italy
| | - Davide Pietropaoli
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (D.P.); (C.F.)
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), 67100 L’Aquila, Italy
- Center of Oral Diseases, Prevention and Translational Research—Dental Clinic, 67100 L’Aquila, Italy
| | - Francesca Lombardi
- Laboratory of Immunology and Immunopathology, Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Rita Del Pinto
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (D.P.); (C.F.)
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), 67100 L’Aquila, Italy
- Unit of Internal Medicine and Nephrology, Center for Hypertension and Cardiovascular Prevention, San Salvatore Hospital, 67100 L’Aquila, Italy
| | - Claudio Ferri
- Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.A.); (D.P.); (C.F.)
- Oral Diseases and Systemic Interactions Study Group (ODISSY Group), 67100 L’Aquila, Italy
- Unit of Internal Medicine and Nephrology, Center for Hypertension and Cardiovascular Prevention, San Salvatore Hospital, 67100 L’Aquila, Italy
| |
Collapse
|
12
|
Zhou Y, Wei C, Gao X, Sun Y, Han X. Positive associations between different circulating trans fatty acids (TFAs) and urinary albumin excretion among adults in the U.S.: a population-based study. Lipids Health Dis 2023; 22:152. [PMID: 37710270 PMCID: PMC10500873 DOI: 10.1186/s12944-023-01917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND It is well established that the consumption of trans-fatty acids (TFAs) can increase the incidence of total mortality, cardiovascular disease, cancer, and diabetes. However, there are still no demographic studies on the effects of circulating TFA isoforms on the albumin-creatinine ratio (ACR), an early marker of chronic kidney disease. Our goal was to explore the possible relationships between TFAs and ACR. METHODS In this study, complete TFAs and urinary ACR data were collected from the National Health and Nutrition Examination Survey (NHANES) (2009-2010 and 1999-2000 cycles). The independent linear relationships between different circulating TFA isoforms and the ACR were examined by performing multivariable linear regression models. Machine learning was used to analyze the contribution of the different TFA isoforms to the ACR. To assess the nonlinearity of the relationship, smooth curve fitting and an analysis of threshold effect were performed, and a stratified analysis was conducted to identify possible susceptible populations. RESULTS Our analysis included a total of 3785 individuals. Elaidic acid, linolelaidic acid, and sum TFAs were shown to be positively associated with the ACR after full adjustment by weighted multivariable regression analysis. In the subgroup analysis, the positive associations were maintained in participants with hypertension and without diabetes. In the XGBoost model of the ACR, Sum TFAs were found to be the most crucial factor. In addition, smooth curve fitting showed that there was a nonlinear relationship between the different TFAs and the ACR, and there was a saturation point. CONCLUSIONS Our study demonstrated that TFA isoforms were positively and independently correlated with urinary albumin excretion, especially in participants with hypertension and without diabetes. This suggested that reducing trans fatty acid intake may reduce the risk of renal events.
Collapse
Affiliation(s)
- Yuancheng Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei Province, China
| | - Chengcheng Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei Province, China
| | - Xincheng Gao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei Province, China
| | - Yi Sun
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei Province, China
| | - Xiaomin Han
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
13
|
Afonso-Alí A, Porrini E, Teixido-Trujillo S, Pérez-Pérez JA, Luis-Lima S, Acosta-González NG, Sosa-Paz I, Díaz-Martín L, Rodríguez-González C, Rodríguez-Rodríguez AE. The Role of Gender Differences and Menopause in Obesity-Related Renal Disease, Renal Inflammation and Lipotoxicity. Int J Mol Sci 2023; 24:12984. [PMID: 37629165 PMCID: PMC10455320 DOI: 10.3390/ijms241612984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The pathogenesis of obesity-related-renal disease is unknown. Menopause can promote renal disease in obese women, but this interaction is unclear. In a previous study, we observed that obese male and female mice developed albuminuria, hyperfiltration, and glomerulomegaly, and these changes were more severe in those obese ovariectomized females. In this study, we also evaluated renal inflammation and lipotoxicity in that animal model. For six months, 43 males and 36 females C57BL6/J mice were randomized to standard diet (SD) or high fat diet (HFD). A group of female animals on SD or HFD was ovariectomized to simulate menopause. We evaluated cytokines: NF-κβ p65, IL-1β, MCP-1, TNF-α, total lipid content, lipid classes, and fatty acid profile in total lipid and individual lipid classes in renal tissue and urine. We found that obese males and females showed higher NF-kβ p-65, TNF-α and MCP-1 in renal tissue, and obese females ovariectomized had higher IL-1β and TNF-α compared with not-ovariectomized. Also, obese animals showed lower proinflammatory and higher anti-inflammatory fatty acids in kidney total lipids, while obese females ovariectomized had a more exacerbated pattern. In brief, obesity induces inflammation and an unbalanced lipidic profile in renal tissue. This pattern seems to be enhanced in obesity after menopause.
Collapse
Affiliation(s)
- Aaron Afonso-Alí
- ITB (Instituto Tecnologías Biomédicas), University of La Laguna, 38200 Tenerife, Spain; (A.A.-A.); (S.T.-T.); (L.D.-M.); (C.R.-G.); (A.E.R.-R.)
| | - Esteban Porrini
- ITB (Instituto Tecnologías Biomédicas), University of La Laguna, 38200 Tenerife, Spain; (A.A.-A.); (S.T.-T.); (L.D.-M.); (C.R.-G.); (A.E.R.-R.)
- Research Unit, Hospital Universitario de Canarias, 38200 Tenerife, Spain
| | - Silvia Teixido-Trujillo
- ITB (Instituto Tecnologías Biomédicas), University of La Laguna, 38200 Tenerife, Spain; (A.A.-A.); (S.T.-T.); (L.D.-M.); (C.R.-G.); (A.E.R.-R.)
- Research Unit, Hospital Universitario de Canarias, 38200 Tenerife, Spain
| | - José Antonio Pérez-Pérez
- Department of Animal Biology, Edaphology and Geology, Faculty of Biology, University of La Laguna, 38204 Tenerife, Spain; (J.A.P.-P.); (N.G.A.-G.); (I.S.-P.)
| | - Sergio Luis-Lima
- Department of Laboratory Medicine, Complejo Hospitalario Universitario de Canarias, 38200 San Cristóbal de La Laguna, Spain;
| | - Nieves Guadalupe Acosta-González
- Department of Animal Biology, Edaphology and Geology, Faculty of Biology, University of La Laguna, 38204 Tenerife, Spain; (J.A.P.-P.); (N.G.A.-G.); (I.S.-P.)
| | - Irene Sosa-Paz
- Department of Animal Biology, Edaphology and Geology, Faculty of Biology, University of La Laguna, 38204 Tenerife, Spain; (J.A.P.-P.); (N.G.A.-G.); (I.S.-P.)
| | - Laura Díaz-Martín
- ITB (Instituto Tecnologías Biomédicas), University of La Laguna, 38200 Tenerife, Spain; (A.A.-A.); (S.T.-T.); (L.D.-M.); (C.R.-G.); (A.E.R.-R.)
- Research Unit, Hospital Universitario de Canarias, 38200 Tenerife, Spain
| | - Covadonga Rodríguez-González
- ITB (Instituto Tecnologías Biomédicas), University of La Laguna, 38200 Tenerife, Spain; (A.A.-A.); (S.T.-T.); (L.D.-M.); (C.R.-G.); (A.E.R.-R.)
- Department of Animal Biology, Edaphology and Geology, Faculty of Biology, University of La Laguna, 38204 Tenerife, Spain; (J.A.P.-P.); (N.G.A.-G.); (I.S.-P.)
| | - Ana Elena Rodríguez-Rodríguez
- ITB (Instituto Tecnologías Biomédicas), University of La Laguna, 38200 Tenerife, Spain; (A.A.-A.); (S.T.-T.); (L.D.-M.); (C.R.-G.); (A.E.R.-R.)
- Research Unit, Hospital Universitario de Canarias, 38200 Tenerife, Spain
| |
Collapse
|
14
|
Alsuliam SM, Albadr NA, Alshammari GM, Almaiman SA, ElGasim Ahmed Yagoub A, Saleh A, Abdo Yahya M. Lepidium sativum alleviates diabetic nephropathy in a rat model by attenuating glucose levels, oxidative stress, and inflammation with concomitant suppression of TGF-β1. Saudi J Biol Sci 2023; 30:103720. [PMID: 37576066 PMCID: PMC10422013 DOI: 10.1016/j.sjbs.2023.103720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 08/15/2023] Open
Abstract
In this research, the treatment of diabetic nephropathy in rats induced by streptozotocin with L. sativium whole-plant aqueous extract was examined, and the mechanism of action was proposed. Adult male rats were grouped into: control, L. sativum, T1DM, and T1DM + L. sativum-treated groups. For 8 weeks, L. sativum S was given to rats at a final dose of 250 mg/kg. Treatment with L. sativum reduced the amount of fasting glucose, increased the amount of fasting insulin, and diminished the increase in hepatic and serum cholesterol, free fatty acid, and triglyceride levels. The level of serum LDL-c was reduced. At the level of the kidney, L. sativum reduced urine volume and albumin excretion and spiked creatinine excretion. It also attenuated the tubular damage in the rats' kidneys and reduced the amounts of major inflammatory markers, including nuclear factor-kappaα (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Interestingly, L. sativium reduced the amount of mRNA transforming growth factor-β1 (TGF-β1), stimulated mRNA superoxide dismutase (SOD) and catalase (CAT), reduced lipid peroxide levels (MDA), and increased the glutathione (GSH), SOD, and CAT in the rat kidneys of the control and T1DM-treated group. In conclusion, L. sativum is a novel therapy against DN owing to its hypoglycemic effect, insulin-releasing, and antioxidant potential.
Collapse
Affiliation(s)
- Sarah M. Alsuliam
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawal A. Albadr
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salah A. Almaiman
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abu ElGasim Ahmed Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Saleh
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Adebayo OC, Nkoy AB, van den Heuvel LP, Labarque V, Levtchenko E, Delanaye P, Pottel H. Glomerular hyperfiltration: part 2-clinical significance in children. Pediatr Nephrol 2023; 38:2529-2547. [PMID: 36472656 DOI: 10.1007/s00467-022-05826-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
Glomerular hyperfiltration (GHF) is a phenomenon that can occur in various clinical conditions affecting the kidneys such as sickle cell disease, diabetes mellitus, autosomal dominant polycystic kidney disease, and solitary functioning kidney. Yet, the pathophysiological mechanisms vary from one disease to another and are not well understood. More so, it has been demonstrated that GHF may occur at the single-nephron in some clinical conditions while in others at the whole-kidney level. In this review, we explore the pathophysiological mechanisms of GHF in relation to various clinical conditions in the pediatric population. In addition, we discuss the role and mechanism of action of important factors such as gender, low birth weight, and race in the pathogenesis of GHF. Finally, in this current review, we further highlight the consequences of GHF in the progression of kidney disease.
Collapse
Affiliation(s)
- Oyindamola C Adebayo
- Center of Vascular and Molecular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Campus Gasthiusberg, 3000 Leuven, Belgium
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, Katholieke Universiteit Leuven, Campus Gasthiusberg, 3000 Leuven, Belgium
| | - Agathe B Nkoy
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, Katholieke Universiteit Leuven, Campus Gasthiusberg, 3000 Leuven, Belgium
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, University Hospital of Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Lambertus P van den Heuvel
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, Katholieke Universiteit Leuven, Campus Gasthiusberg, 3000 Leuven, Belgium
- Department of Pediatric Nephrology, Radboud University Medical Centre, 6500 Nijmegen, The Netherlands
| | - Veerle Labarque
- Center of Vascular and Molecular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Campus Gasthiusberg, 3000 Leuven, Belgium
- Department of Pediatric Hematology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Elena Levtchenko
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, Katholieke Universiteit Leuven, Campus Gasthiusberg, 3000 Leuven, Belgium
- Department of Pediatric Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Pierre Delanaye
- Department of Nephrology-Dialysis-Transplantation, University of Liège, CHU Sart Tilman, Liège, Belgium
- Department of Nephrology-Dialysis-Apheresis, Hôpital Universitaire Carémeau, Nîmes, France
| | - Hans Pottel
- Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Campus Kulak, 8500 Kortrijk, Belgium.
| |
Collapse
|
16
|
Yang Y, Zhang D, Song M, Wang C, Lv J, Zhou J, Chen M, Ma L, Mei C. Macrophages promote heat stress nephropathy in mice via the C3a-C3aR-TNF pathway. Immunobiology 2023; 228:152337. [PMID: 36689826 DOI: 10.1016/j.imbio.2023.152337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Heat-stress nephropathy (HSN) is associated with recurrent dehydration. However, the mechanisms underlying HSN remain largely unknown. In this study, we evaluated the role of dehydration in HSN and kidney injury in mice. Firstly, we found that complement was strongly activated in the mice that were exposed to dehydration; and among complement components, the interaction between C3a and its receptor, C3aR, was more closely associated with kidney injury. Then two-month-old mice were intraperitoneally injected with 2% dimethyl sulfoxide (DMSO) or the C3aR inhibitor SB290157 during dehydration. DMSO-treated mice exhibited excessive macrophage infiltration, renal cell apoptosis, and kidney fibrosis. In contrast, SB290157-treated mice had no apparent kidney injury. By fluorescence-activated cell sorting (FACS), we found that SB290157 treatment in mice remarkably inhibited macrophage infiltration and suppressed CCR2 expression in macrophages. In addition, C3a binding to C3aR promoted macrophage polarization toward the M1 phenotype and increased the production of TNF-α, which induced renal tubular epithelial cell (RTEC) apoptosis in vivo and in vitro. Interestingly, C3a treatment failed to directly induce TNF-α production and apoptosis in RTECs. However, TNF-α production in response to C3a treatment was significantly elevated when RTECs were cocultured with macrophages, suggesting that macrophages rather than RTECs are the target of C3a-C3aR interaction. At last, we proved that infusion of macrophages which highly expressed TNF-α would significantly deteriorate HSN in TNF-KO mice when they were exposed to recurrent dehydration. This study uncovers a novel mechanism underlying the pathogenesis of HSN, and a potential pathway to prevent kidney injury during dehydration.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nephrology, The 981(th) Hospital of Joint Logistic Support Force, Chengde, China; Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, The Navy Military Medical University, Shanghai, China.
| | - Dongjuan Zhang
- Department of Nephrology, The 981(th) Hospital of Joint Logistic Support Force, Chengde, China
| | - Minghui Song
- Clinical Laboratory, Hainan Hospital of General Hospital of Chinese People's Liberation Army, Sanya, China
| | - Chao Wang
- Kidney Diagnostic and Therapeutic Center of the Chinese People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Jiayi Lv
- Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, The Navy Military Medical University, Shanghai, China
| | - Jie Zhou
- Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, The Navy Military Medical University, Shanghai, China; Department of Nephrology, Affiliated ShuGuang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meihan Chen
- Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, The Navy Military Medical University, Shanghai, China; Department of Nephrology, Shanghai Tenth People's Hospital, TongJi University, Shanghai, China
| | - Lu Ma
- Kidney Diagnostic and Therapeutic Center of the Chinese People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Changlin Mei
- Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, The Navy Military Medical University, Shanghai, China.
| |
Collapse
|
17
|
Martín-Nares E, Hernández-Molina G, Priego-Ranero ÁA, Chan-Campos I, Herrera-Noguera GS, López-Verdugo F, Furuzawa-Carballeda J. Peripheral Immunophenotype in IgG4-Related Disease and Its Association with Clinical Phenotypes and Disease Activity. Cells 2023; 12:670. [PMID: 36831337 PMCID: PMC9954418 DOI: 10.3390/cells12040670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Diverse immune cell subsets have been described in IgG4-related disease (IgG4-RD). If there is a different immunophenotype according to clinical phenotype and activity status is not known. Levels of IL-4-, IL-13-, IL-5-, and IL-21-producing CD4+ T cells (Th2 subsets), CD4+ cytotoxic T lymphocytes (CD4+CTLs), T helper 9 cells, T follicular helper cells (Tfh; Tfh1/Tfh2/Tfh17/Tf regulatory [Tfr]), Foxp3+ regulatory T cells, Type 1 regulatory T cells (Tr1), T helper 3 regulatory cells (Th3), IL-10-producing regulatory B cells (Bregs), IL-10-expressing regulatory plasmacytoid dendritic (pDC IL-10+) cells, and M1 and M2 monocytes were determined by flow cytometry in 43 IgG4-RD patients and 12 controls. All immune subsets were higher in patients vs. controls. CD4+/IL-4+, CD4+/IL-5+, CD4+CTLs, Tfh2, Tfh17, Tfr, and M1 monocyte cell number was different among IgG4-RD clinical phenotypes. The pancreato-hepato-biliary phenotype was characterized by a higher CD4+CTLs, Tfh17, Tfh2, and Tfr and lower M1 cell number. An increased CD4+CTLs and Th3 cell number distinguished the head and neck-limited phenotype, while the retroperitoneal/aortic and Mikulicz/systemic phenotypes were characterized by increased Th2 subsets. Tfh17, Tr1, Th3, pDC, M1, and M2 monocytes were augmented in active patients. In summary, the clinical heterogeneity of IgG4-RD might be driven by the participation of different immunophenotypes and, consequently, by a different fibroinflammatory process.
Collapse
Affiliation(s)
- Eduardo Martín-Nares
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Col. Belisario Dominguez Sección XVI, Mexico City 14080, Mexico
| | - Gabriela Hernández-Molina
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Col. Belisario Dominguez Sección XVI, Mexico City 14080, Mexico
| | - Ángel A. Priego-Ranero
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Col. Belisario Dominguez Sección XVI, Mexico City 14080, Mexico
| | - Isela Chan-Campos
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Col. Belisario Dominguez Sección XVI, Mexico City 14080, Mexico
| | - Gladys S. Herrera-Noguera
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Col. Belisario Dominguez Sección XVI, Mexico City 14080, Mexico
| | - Fidel López-Verdugo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Col. Belisario Dominguez Sección XVI, Mexico City 14080, Mexico
| | - Janette Furuzawa-Carballeda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Col. Belisario Dominguez Sección XVI, Mexico City 14080, Mexico
- Department of Experimental Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Col. Belisario Dominguez Sección XVI, Mexico City 14080, Mexico
| |
Collapse
|
18
|
Abstract
The prevalence of obesity has increased dramatically during the past decades, which has been a major health problem. Since 1975, the number of people with obesity worldwide has nearly tripled. An increasing number of studies find obesity as a driver of chronic kidney disease (CKD) progression, and the mechanisms are complex and include hemodynamic changes, inflammation, oxidative stress, and activation of the renin-angiotensin-aldosterone system (RAAS). Obesity-related kidney disease is characterized by glomerulomegaly, which is often accompanied by localized and segmental glomerulosclerosis lesions. In these patients, the early symptoms are atypical, with microproteinuria being the main clinical manifestation and nephrotic syndrome being rare. Weight loss and RAAS blockers have a protective effect on obesity-related CKD, but even so, a significant proportion of patients eventually progress to end-stage renal disease despite treatment. Thus, it is critical to comprehend the mechanisms underlying obesity-related CKD to create new tactics for slowing or stopping disease progression. In this review, we summarize current knowledge on the mechanisms of obesity-related kidney disease, its pathological changes, and future perspectives on its treatment.
Collapse
Affiliation(s)
- Zongmiao Jiang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital Jilin University, Changchun, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Haiying Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Han
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xinhua Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Saleh Aldayel T. Apigenin attenuates high-fat diet-induced nephropathy in rats by hypoglycemic and hypolipidemic effects, and concomitant activation of the Nrf2/antioxidant axis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
20
|
Alsawaf S, Alnuaimi F, Afzal S, Thomas RM, Chelakkot AL, Ramadan WS, Hodeify R, Matar R, Merheb M, Siddiqui SS, Vazhappilly CG. Plant Flavonoids on Oxidative Stress-Mediated Kidney Inflammation. BIOLOGY 2022; 11:biology11121717. [PMID: 36552226 PMCID: PMC9774981 DOI: 10.3390/biology11121717] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The kidney is susceptible to reactive oxygen species-mediated cellular injury resulting in glomerulosclerosis, tubulointerstitial fibrosis, tubular cell apoptosis, and senescence, leading to renal failure, and is a significant cause of death worldwide. Oxidative stress-mediated inflammation is a key player in the pathophysiology of various renal injuries and diseases. Recently, flavonoids' role in alleviating kidney diseases has been reported with an inverse correlation between dietary flavonoids and kidney injuries. Flavonoids are plant polyphenols possessing several health benefits and are distributed in plants from roots to leaves, flowers, and fruits. Dietary flavonoids have potent antioxidant and free-radical scavenging properties and play essential roles in disease prevention. Flavonoids exert a nephroprotective effect by improving antioxidant status, ameliorating excessive reactive oxygen species (ROS) levels, and reducing oxidative stress, by acting as Nrf2 antioxidant response mediators. Moreover, flavonoids play essential roles in reducing chemical toxicity. Several studies have demonstrated the effects of flavonoids in reducing oxidative stress, preventing DNA damage, reducing inflammatory cytokines, and inhibiting apoptosis-mediated cell death, thereby preventing or improving kidney injuries/diseases. This review covers the recent nephroprotective effects of flavonoids against oxidative stress-mediated inflammation in the kidney and their clinical advancements in renal therapy.
Collapse
Affiliation(s)
- Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Fatema Alnuaimi
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Saba Afzal
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Rinku Mariam Thomas
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | | | - Wafaa S. Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Rachel Matar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Maxime Merheb
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, UK
| | - Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
- Correspondence: ; Tel.: +971-7-246-8842
| |
Collapse
|
21
|
Eleazu C, Suleiman JB, Othman ZA, Zakaria Z, Nna VU, Hussain NHN, Mohamed M. Bee bread attenuates high fat diet induced renal pathology in obese rats via modulation of oxidative stress, downregulation of NF-kB mediated inflammation and Bax signalling. Arch Physiol Biochem 2022; 128:1088-1104. [PMID: 32319823 DOI: 10.1080/13813455.2020.1752258] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/21/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Global prevalence of obesity is increasing. OBJECTIVE To study the effect of bee bread (BB) on serum renal function parameters, oxidative stress, inflammatory and B-cell associated protein X (Bax) in the kidneys of high fat diet (HFD) obese rats. METHODS Thirty-six male Sprague Dawley rats were used. Control: received rat diet and water (1 mL/kg); HFD group: received HFD and water (1 mL/kg): bee bread (BB) preventive or orlistat preventive: received HFD and BB (0.5 g/kg) or HFD and orlistat (10 mg/kg); BB or orlistat treatment: received BB (0.5 g/kg) or orlistat (10 mg/kg). RESULTS HFD group had increased body weight, Body Mass Index, Lee Obesity Indices, kidney weights, malondialdehyde, inflammatory markers, Bax; decreased glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, total antioxidant activity, no differences (p > .05) in food intakes, serum creatinine, sodium, potassium, chloride, catalase compared to control. CONCLUSION BB modulated most of these parameters, as corroborated by histology.
Collapse
Affiliation(s)
- Chinedum Eleazu
- Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Joseph Bagi Suleiman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Science Laboratory Technology, Akanu Ibiam Federal Polytechnic, Unwana, Ebonyi State, Nigeria
| | - Zaidatul Akmal Othman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
| | - Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Victor Udo Nna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Nik Hazlina Nik Hussain
- Women's Health Development Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
22
|
Köktürk M, Yıldırım S, Eser G, Bulut M, Alwazeer D. Hydrogen-Rich Water Alleviates the Nickel-Induced Toxic Responses (Inflammatory Responses, Oxidative Stress, DNA Damage) and Ameliorates Cocoon Production in Earthworm. Biol Trace Elem Res 2022; 200:3442-3452. [PMID: 34482505 DOI: 10.1007/s12011-021-02908-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
In recent years, studies investigating the protective effect of hydrogen-rich water (HRW) against different diseases and the toxicity of some substances have attracted increasing attention. Here, we assessed the effects of hydrogen-rich water on different nickel-induced toxic responses (reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) of stress responses, histopathological changes) and cocoon production in earthworm model. Earthworms were randomly divided into two main groups: water (W) group including control (CW: ultrapure water), 10 (10W), 200 (200W), and 500 (500W), and hydrogen-rich ultrapure water (HRW) group including control (CHRW: hydrogen-rich ultrapure water), 10 (10HRW), 200 (200HRW), and 500 (500HRW) mg of nickel chloride kg-1 soil for 14 days. We found that cocoon production was less affected by the nickel exposure of earthworms in the 500HRW group compared to the 500W group. The ROS levels in 200HRW and 500HRW groups were less than that of 200W and 500W, respectively. The epithelial degeneration, epithelial necrosis, and necrosis in muscle fibers in tissues of earthworm were less damaged in 200HRW and 500HRW groups compared to 200W and 500W, respectively. HRW groups significantly reduced the expression of 8-OHdG induced by nickel exposure and inflammatory cytokine response including TNF-α. The study showed that hydrogen-rich water could alleviate the toxic effects of nickel-induced oxidative and inflammatory damages in earthworms. The HRW treatment known for its cheap and eco-friendly propertıes without any negative effects on the ecosystem can be used as a green method for alleviating the toxification effects of heavy metals in contaminated soil and increasing cocoon production of earthworms.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Agriculture Management, College of Applied Sciences, Igdir University, Igdir, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Gizem Eser
- Tuzluca Vocational School, Laboratory and Veterinary Health Programs, Igdir University, 76000 , Igdir, Turkey
| | - Menekşe Bulut
- Department of Food Engineering, Faculty of Engineering, Igdir University, 76000, Igdir, Turkey
- Research Center for Redox Applications in Foods (RCRAF), Igdir University, 76000 , Igdir, Turkey
- Innovative Food Technologies Development, Application, and Research Center, Igdir University, 76000, Igdir, Turkey
| | - Duried Alwazeer
- Research Center for Redox Applications in Foods (RCRAF), Igdir University, 76000 , Igdir, Turkey.
- Innovative Food Technologies Development, Application, and Research Center, Igdir University, 76000, Igdir, Turkey.
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, 76000, Igdir, Turkey.
| |
Collapse
|
23
|
Yang L, Liu Y, Bi C, Zhang B. Effects of Nostoc sphaeroids Kütz polysaccharide on renal fibrosis in high-fat mice. Food Sci Nutr 2022; 10:1357-1367. [PMID: 35592290 PMCID: PMC9094462 DOI: 10.1002/fsn3.2703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022] Open
Abstract
In this study, we investigated the effects of Nostoc sphaeroids Kütz polysaccharide (NSKP) on renal fibrosis in high‐fat mice. ApoE−/− male mice were randomly divided into four groups: control (Cont) group, high‐fat diet (HFD) group, HFD+0.4 g/kg BW NSKP, and HFD+0.8 g/kg BW NSKP (NSKP groups). The Cont was fed a standard diet. The HFD group was fed HFD. Every day, NSKP groups were fed HFD, as well as given 0.4 g/kg BW or 0.8 g/kg BW NSKP. After 22 weeks, the serum biochemical indices (TC, TG, LDL‐C, HDL‐C, GLU, BUN, and SCR) were measured. For the kidney, the histopathological sections were observed and analyzed, and inflammatory factors and markers of renal fibrosis were measured. For the NSKP groups, the serum TC, TG, LDL‐C, BUN, and SCR were decreased, HDL‐C significantly increased compared with the HFD group. The protein expressions of TNF‐α, IL‐1β, and TGF‐β1 were significantly downregulated. The α‐SMA in renal cortex was decreased, and the mRNA expression of Col‐I and Col‐IV in renal collagen fibers was downregulated. To sum up, NSKP reduced the blood lipid of HFD mice, downregulated the inflammation of kidney, inhibited the expression of collagen fiber, and improved the renal fibrosis caused by long‐term lipid metabolism disorder.
Collapse
Affiliation(s)
- Litao Yang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods Beijing Union University College of Biochemical Engineering Beijing China
| | - Yinlu Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods Beijing Union University College of Biochemical Engineering Beijing China
| | - Cuicui Bi
- Beijing Key Laboratory of Bioactive Substances and Functional Foods Beijing Union University College of Biochemical Engineering Beijing China
| | - Bo Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods Beijing Union University College of Biochemical Engineering Beijing China
| |
Collapse
|
24
|
Qin Z, Li H, Wang L, Geng J, Yang Q, Su B, Liao R. Systemic Immune-Inflammation Index Is Associated With Increased Urinary Albumin Excretion: A Population-Based Study. Front Immunol 2022; 13:863640. [PMID: 35386695 PMCID: PMC8977553 DOI: 10.3389/fimmu.2022.863640] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Background Systemic immune-inflammation index (SII) is a novel inflammatory marker, and inflammation has been reported to be related with renal damage. We aimed to investigate the possible relationship between SII and albuminuria. Methods The present cross-sectional study was conducted among adults with complete data about SII and urinary albumin-to-creatinine ratio (ACR) in 2005–2018 National Health and Nutrition Examination Survey (NHANES). SII was calculated as the platelet count × neutrophil count/lymphocyte count. Albuminuria was defined as ACR >30mg/g. Weighted multivariable regression analysis and subgroup analysis were conducted to explore the independent relationship between SII and albuminuria. Results A total of 36,463 individuals were included in our analysis; 9.56% participants were categorized as having albuminuria overall and increased with the higher SII tertiles (tertile 1, 7.83%; tertile 2, 8.49%; tertile 3, 12.13%; p for trend <0.0001). Multivariable logistic regression showed that a higher SII level was associated with increased likelihood of albuminuria independently (OR = 1.31; 95% CI, 1.17–1.48, p<0.0001) after full adjustment. Subgroup analysis and interaction test showed that there was no significant dependence of gender, age, body mass index, hypertension, diabetes, non‐alcoholic fatty liver disease, and estimated glomerular filtration rate (eGFR) on this positive association (all p for interaction >0.05). Conclusions SII was positively associated with increased urinary albumin excretion in US adults. Further large-scale prospective studies are still needed to analyze the role of SII in albuminuria.
Collapse
Affiliation(s)
- Zheng Qin
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med+ Biomaterial Institute of West China Hospital/West China School of Medicine of Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Hancong Li
- West China School of Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Liya Wang
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med+ Biomaterial Institute of West China Hospital/West China School of Medicine of Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Jiwen Geng
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med+ Biomaterial Institute of West China Hospital/West China School of Medicine of Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Qinbo Yang
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med+ Biomaterial Institute of West China Hospital/West China School of Medicine of Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Baihai Su
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med+ Biomaterial Institute of West China Hospital/West China School of Medicine of Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Ruoxi Liao
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med+ Biomaterial Institute of West China Hospital/West China School of Medicine of Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Han C, Zheng J, Wang F, Lu Q, Chen Q, Hu A, Visentin M, Kullak-Ublick GA, Gai Z, Chu L. The Role of NF-kB in the Downregulation of Organic Cation Transporter 2 Expression and Renal Cation Secretion in Kidney Disease. Front Med (Lausanne) 2022; 8:800421. [PMID: 35059420 PMCID: PMC8763702 DOI: 10.3389/fmed.2021.800421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Organic cation transporter 2 (OCT2), encoded by the SLC22A2 gene, is the main cation transporter on the basolateral membrane of proximal tubular cells. OCT2 facilitates the entry step of the vectorial transport of most cations from the peritubular space into the urine. OCT2 downregulation in kidney disease models is apparent, yet not clear from a mechanistic vantage point. The aim of this study was to explore the role of inflammation, a common thread in kidney disease, and NF-kB in OCT2 modulation and tubular secretion. Among the OCTs, OCT2 was found consistently downregulated in the kidney of rats with chronic kidney disease (CKD) or acute kidney injury (AKI) and in patients diagnosed with CKD, and it was associated with the upregulation of TNFα renal expression. Exposure to TNFα reduced the expression and function of OCT2 in primary renal proximal tubule epithelial cells (RPTEC). Silencing or pharmacological inhibition of NF-kB rescued the expression of OCT2 in the presence of TNFα, indicating that OCT2 repression was NF-kB-dependent. In silico prediction coupled to gene reporter assay demonstrated the presence of at least one functional NF-kB cis-element upstream the transcription starting site of the SLC22A2 gene. Acute inflammation triggered by lipopolysaccharide injection induced TNFα expression and the downregulation of OCT2 in rat kidney. The inflammation did reduce the active secretion of the cation Rhodamine 123, with no impairment of the glomerular filtration. In conclusion, the NF-kB pathway plays a major role in the transcriptional regulation of OCT2 and, in turn, in the overall renal secretory capacity.
Collapse
Affiliation(s)
- Chao Han
- Department of Nephrology, Tengzhou Central People's Hospital, Zaozhuang, China
| | - Juan Zheng
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Fengyi Wang
- Department of Urology, Tengzhou Central People's Hospital, Zaozhuang, China
| | - Qingyang Lu
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, China
| | - Qingfa Chen
- Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Ankang Hu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou, China
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Chu
- Department of Urology, The Affiliated Tengzhou Hospital of Xuzhou Medical University, Zaozhuang, China.,Department of Urology, Affiliated Tengzhou Hospital of Jining Medical University, Zaozhuang, China
| |
Collapse
|
26
|
Kidney Damage Caused by Obesity and Its Feasible Treatment Drugs. Int J Mol Sci 2022; 23:ijms23020747. [PMID: 35054932 PMCID: PMC8775419 DOI: 10.3390/ijms23020747] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 02/07/2023] Open
Abstract
The rapid growth of obesity worldwide has made it a major health problem, while the dramatic increase in the prevalence of obesity has had a significant impact on the magnitude of chronic kidney disease (CKD), especially in developing countries. A vast amount of researchers have reported a strong relationship between obesity and chronic kidney disease, and obesity can serve as an independent risk factor for kidney disease. The histological changes of kidneys in obesity-induced renal injury include glomerular or tubular hypertrophy, focal segmental glomerulosclerosis or bulbous sclerosis. Furthermore, inflammation, renal hemodynamic changes, insulin resistance and lipid metabolism disorders are all involved in the development and progression of obesity-induced nephropathy. However, there is no targeted treatment for obesity-related kidney disease. In this review, RAS inhibitors, SGLT2 inhibitors and melatonin would be presented to treat obesity-induced kidney injury. Furthermore, we concluded that melatonin can protect the kidney damage caused by obesity by inhibiting inflammation and oxidative stress, revealing its therapeutic potential.
Collapse
|
27
|
Chen S, Chen J, Li S, Guo F, Li A, Wu H, Chen J, Pan Q, Liao S, Liu HF, Pan Q. High-Fat Diet-Induced Renal Proximal Tubular Inflammatory Injury: Emerging Risk Factor of Chronic Kidney Disease. Front Physiol 2021; 12:786599. [PMID: 34950058 PMCID: PMC8688947 DOI: 10.3389/fphys.2021.786599] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Nowadays, with the improvements in living standards and changes in living habits, high-fat diet (HFD) has become much more common in the populations worldwide. Recent studies have shown that HFD could induce lipid accumulation, and structural and functional abnormalities, accompanied by the release of large amounts of pro-inflammatory cytokines, in proximal tubular epithelial cells (PTECs). These findings indicate that, as an emerging risk factor, PTEC injury-induced by HFD may be closely related to inflammation; however, the potential mechanisms underlying this phenomenon is still not well-known, but may involve the several inflammatory pathways, including oxidative stress-related signaling pathways, mitochondrial dysfunction, the myeloid differentiation factor 2/Toll like receptor 4 (MD2/TLR4) signaling pathway, the ERK1/2-kidney injury molecule 1 (KIM-1)-related pathway, and nuclear factor-κB (NF-κB) activation, etc., and the detailed molecular mechanisms underlying these pathways still need further investigated in the future. Based on lipid abnormalities-induced inflammation is closely related to the development and progression of chronic kidney disease (CKD), to summarize the potential mechanisms underlying HFD-induced renal proximal tubular inflammatory injury, may provide novel approaches for CKD treatment.
Collapse
Affiliation(s)
- Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinxia Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shangmei Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Han Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
28
|
Palau V, Villanueva S, Jarrín J, Benito D, Márquez E, Rodríguez E, Soler MJ, Oliveras A, Gimeno J, Sans L, Crespo M, Pascual J, Barrios C, Riera M. Redefining the Role of ADAM17 in Renal Proximal Tubular Cells and Its Implications in an Obese Mouse Model of Pre-Diabetes. Int J Mol Sci 2021; 22:ijms222313093. [PMID: 34884897 PMCID: PMC8657896 DOI: 10.3390/ijms222313093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Acute and chronic kidney lesions induce an increase in A Disintegrin And Metalloproteinase domain 17 (ADAM17) that cleaves several transmembrane proteins related to inflammatory and fibrotic pathways. Our group has demonstrated that renal ADAM17 is upregulated in diabetic mice and its inhibition decreases renal inflammation and fibrosis. The purpose of the present study was to analyze how Adam17 deletion in proximal tubules affects different renal structures in an obese mice model. Tubular Adam17 knockout male mice and their controls were fed a high-fat diet (HFD) for 22 weeks. Glucose tolerance, urinary albumin-to-creatinine ratio, renal histology, and pro-inflammatory and pro-fibrotic markers were evaluated. Results showed that wild-type mice fed an HFD became obese with glucose intolerance and renal histological alterations mimicking a pre-diabetic condition; consequently, greater glomerular size and mesangial expansion were observed. Adam17 tubular deletion improved glucose tolerance and protected animals against glomerular injury and prevented podocyte loss in HFD mice. In addition, HFD mice showed more glomerular macrophages and collagen accumulation, which was prevented by Adam17 deletion. Galectin-3 expression increased in the proximal tubules and glomeruli of HFD mice and ameliorated with Adam17 deletion. In conclusion, Adam17 in proximal tubules influences glucose tolerance and participates in the kidney injury in an obese pre-diabetic murine model. The role of ADAM17 in the tubule impacts on glomerular inflammation and fibrosis.
Collapse
Affiliation(s)
- Vanesa Palau
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Sofia Villanueva
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Josué Jarrín
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - David Benito
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Eva Márquez
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Eva Rodríguez
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - María José Soler
- Nephrology Research Group, Vall d’Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Anna Oliveras
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Javier Gimeno
- Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain;
| | - Laia Sans
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Julio Pascual
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
| | - Clara Barrios
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
- Correspondence: (C.B.); (M.R.); Tel.: +34-65-004-2149 (C.B.); +34-93-316-0626 (M.R.)
| | - Marta Riera
- Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; (V.P.); (S.V.); (J.J.); (D.B.); (E.M.); (E.R.); (A.O.); (L.S.); (M.C.); (J.P.)
- Correspondence: (C.B.); (M.R.); Tel.: +34-65-004-2149 (C.B.); +34-93-316-0626 (M.R.)
| |
Collapse
|
29
|
Zhu B, Liu Y, Qi D, Zhao L, Yang X, Su E, Zhu Z, Zhang Y, Gao C. Renal interstitial fibrosis is reduced in high-fat diet-induced obese pigs following renal denervation from the intima and adventitia of the renal artery. Kidney Blood Press Res 2021; 47:135-146. [PMID: 34852339 DOI: 10.1159/000521100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022] Open
Abstract
Background This study aims to compare whether two different routes of Renal denervation (RDN) from the intima and adventitia of the renal artery can reduce renal fibrosis in a pig model of hypertension induced by a high-fat diet and to explore possible molecular mechanisms. Methods Twenty-four Bama miniature pigs were randomly divided into a control group (normal diet, n=6) or a hypertension model group (high-fat diet, n=18). The model group was randomly divided into the intima-RDN group (n=6), the adventitia-RDN group (n=6), or the renal arteriography only group (sham group, n=6). All animals were fed separately. The model group was fed a high-fat diet after the operation, and the control group was fed conventionally for 6 months. After 6 months, renal artery angiography was performed again to observe the condition of the renal arteries, after which all animals were euthanized. The blood pressure (BP) and blood biochemical results of each group were evaluated 6 months after the operation; kidney tissue morphology and collagen fiber content were examined by hematoxylin-eosin (HE) staining and Masson staining; Superoxide dismutase (SOD) activity and the malondialdehyde (MDA) content of kidney tissue were assessed by a biochemical enzyme method; the protein expression level of transforming growth factor-β 1 (TGF-β1), α smooth muscle actin (αSMA) and Smad3 were assessed by Western blot; and electron microscopy was used to examine changes in kidney microstructure. Results After 6 months of a high-fat diet, the blood lipid levels of the model group were significantly higher compared to baseline and to that of the control group during the same period (all showed P<0.05); the blood lipid levels of the control group did not change significantly from baseline (P>0.05). The degree of glomerular damage caused by hyperlipidemia in the intima-RDN group and the adventitia-RDN group was significantly lower than that of the sham and control groups, and the renal fibrosis area percentage was also significantly lower (P<0.05). Electron microscopy showed that both the intima-RDN group and the adventitia-RDN group had a more even distribution of chromosomes and less mitochondrial swelling compared with the sham group. Conclusion RDN from the adventitia of the renal artery and RDN from the intima of the renal artery have the similar advantages of delaying high fat-induced renal fibrosis. The anti-fibrotic effect of RDN may be related to inhibition of the TGF-β1/smad3 pathway.
Collapse
Affiliation(s)
- Binbin Zhu
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Central China Fuwai Hospital, Zhengzhou, China
| | - Yahui Liu
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Central China Fuwai Hospital, Zhengzhou, China
| | - Datun Qi
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Central China Fuwai Hospital, Zhengzhou, China
| | - Linwei Zhao
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Central China Fuwai Hospital, Zhengzhou, China
| | - Xiaohang Yang
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Central China Fuwai Hospital, Zhengzhou, China
| | - Enyong Su
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Central China Fuwai Hospital, Zhengzhou, China
| | - Zhongyu Zhu
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Central China Fuwai Hospital, Zhengzhou, China
| | - You Zhang
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Central China Fuwai Hospital, Zhengzhou, China
| | - Chuanyu Gao
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Central China Fuwai Hospital, Zhengzhou, China
| |
Collapse
|
30
|
Akhter N, Wilson A, Thomas R, Al-Rashed F, Kochumon S, Al-Roub A, Arefanian H, Al-Madhoun A, Al-Mulla F, Ahmad R, Sindhu S. ROS/TNF-α Crosstalk Triggers the Expression of IL-8 and MCP-1 in Human Monocytic THP-1 Cells via the NF-κB and ERK1/2 Mediated Signaling. Int J Mol Sci 2021; 22:10519. [PMID: 34638857 PMCID: PMC8508672 DOI: 10.3390/ijms221910519] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/01/2023] Open
Abstract
IL-8/MCP-1 act as neutrophil/monocyte chemoattractants, respectively. Oxidative stress emerges as a key player in the pathophysiology of obesity. However, it remains unclear whether the TNF-α/oxidative stress interplay can trigger IL-8/MCP-1 expression and, if so, by which mechanism(s). IL-8/MCP-1 adipose expression was detected in lean, overweight, and obese individuals, 15 each, using immunohistochemistry. To detect the role of reactive oxygen species (ROS)/TNF-α synergy as a chemokine driver, THP-1 cells were stimulated with TNF-α, with/without H2O2 or hypoxia. Target gene expression was measured by qRT-PCR, proteins by flow cytometry/confocal microscopy, ROS by DCFH-DA assay, and signaling pathways by immunoblotting. IL-8/MCP-1 adipose expression was significantly higher in obese/overweight. Furthermore, IL-8/MCP-1 mRNA/protein was amplified in monocytic cells following stimulation with TNF-α in the presence of H2O2 or hypoxia (p ˂ 0.0001). Synergistic chemokine upregulation was related to the ROS levels, while pre-treatments with NAC suppressed this chemokine elevation (p ≤ 0.01). The ROS/TNF-α crosstalk involved upregulation of CHOP, ERN1, HIF1A, and NF-κB/ERK-1,2 mediated signaling. In conclusion, IL-8/MCP-1 adipose expression is elevated in obesity. Mechanistically, ROS/TNF-α crosstalk may drive expression of these chemokines in monocytic cells by inducing ER stress, HIF1A stabilization, and signaling via NF-κB/ERK-1,2. NAC had inhibitory effect on oxidative stress-driven IL-8/MCP-1 expression, which may have therapeutic significance regarding meta-inflammation.
Collapse
Affiliation(s)
- Nadeem Akhter
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Ajit Wilson
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Reeby Thomas
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Shihab Kochumon
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Areej Al-Roub
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Hossein Arefanian
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Ashraf Al-Madhoun
- Department of Genetics & Bioinformatics, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (A.A.-M.); (F.A.-M.)
- Animal & Imaging Core Facility, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics & Bioinformatics, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (A.A.-M.); (F.A.-M.)
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait; (N.A.); (A.W.); (R.T.); (F.A.-R.); (S.K.); (A.A.-R.); (H.A.); (R.A.)
| | - Sardar Sindhu
- Animal & Imaging Core Facility, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
31
|
Lindfors S, Polianskyte-Prause Z, Bouslama R, Lehtonen E, Mannerla M, Nisen H, Tienari J, Salmenkari H, Forsgård R, Mirtti T, Lehto M, Groop PH, Lehtonen S. Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo. Diabetologia 2021; 64:1866-1879. [PMID: 33987714 PMCID: PMC8245393 DOI: 10.1007/s00125-021-05473-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/01/2021] [Indexed: 11/10/2022]
Abstract
AIMS/HYPOTHESIS Chronic low-grade inflammation with local upregulation of proinflammatory molecules plays a role in the progression of obesity-related renal injury. Reduced serum concentration of anti-inflammatory adiponectin may promote chronic inflammation. Here, we investigated the potential anti-inflammatory and renoprotective effects and mechanisms of action of AdipoRon, an adiponectin receptor agonist. METHODS Wild-type DBA/2J mice were fed with high-fat diet (HFD) supplemented or not with AdipoRon to model obesity-induced metabolic endotoxaemia and chronic low-grade inflammation and we assessed changes in the glomerular morphology and expression of proinflammatory markers. We also treated human glomeruli ex vivo and human podocytes in vitro with AdipoRon and bacterial lipopolysaccharide (LPS), an endotoxin upregulated in obesity and diabetes, and analysed the secretion of inflammatory cytokines, activation of inflammatory signal transduction pathways, apoptosis and migration. RESULTS In HFD-fed mice, AdipoRon attenuated renal inflammation, as demonstrated by reduced expression of glomerular activated NF-κB p65 subunit (NF-κB-p65) (70%, p < 0.001), TNFα (48%, p < 0.01), IL-1β (51%, p < 0.001) and TGFβ (46%, p < 0.001), renal IL-6 and IL-4 (21% and 20%, p < 0.05), and lowered glomerular F4/80-positive macrophage infiltration (31%, p < 0.001). In addition, AdipoRon ameliorated HFD-induced glomerular hypertrophy (12%, p < 0.001), fibronectin accumulation (50%, p < 0.01) and podocyte loss (12%, p < 0.001), and reduced podocyte foot process effacement (15%, p < 0.001) and thickening of the glomerular basement membrane (18%, p < 0.001). In cultured podocytes, AdipoRon attenuated the LPS-induced activation of the central inflammatory signalling pathways NF-κB-p65, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38-MAPK) (30%, 36% and 22%, respectively, p < 0.001), reduced the secretion of TNFα (32%, p < 0.01), and protected against podocyte apoptosis and migration. In human glomeruli ex vivo, AdipoRon reduced the LPS-induced secretion of inflammatory cytokines IL-1β, IL-18, IL-6 and IL-10. CONCLUSIONS/INTERPRETATION AdipoRon attenuated the renal expression of proinflammatory cytokines in HFD-fed mice and LPS-stimulated human glomeruli, which apparently contributed to the amelioration of glomerular inflammation and injury. Mechanistically, based on assays on cultured podocytes, AdipoRon reduced LPS-induced activation of the NF-κB-p65, JNK and p38-MAPK pathways, thereby impelling the decrease in apoptosis, migration and secretion of TNFα. We conclude that the activation of the adiponectin receptor by AdipoRon is a potent strategy to attenuate endotoxaemia-associated renal inflammation.
Collapse
Affiliation(s)
- Sonja Lindfors
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zydrune Polianskyte-Prause
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rim Bouslama
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Miia Mannerla
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harry Nisen
- Abdominal Center, Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jukka Tienari
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanne Salmenkari
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Richard Forsgård
- Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markku Lehto
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Per-Henrik Groop
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sanna Lehtonen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Pathology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
32
|
Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, Marquez-Exposito L, Marchant V, Santos-Sanchez L, Egido J, Ortiz A, Bellon T, Rodrigues-Diez RR, Ruiz-Ortega M. Role of Macrophages and Related Cytokines in Kidney Disease. Front Med (Lausanne) 2021; 8:688060. [PMID: 34307414 PMCID: PMC8295566 DOI: 10.3389/fmed.2021.688060] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a key characteristic of kidney disease, but this immune response is two-faced. In the acute phase of kidney injury, there is an activation of the immune cells to fight against the insult, contributing to kidney repair and regeneration. However, in chronic kidney diseases (CKD), immune cells that infiltrate the kidney play a deleterious role, actively participating in disease progression, and contributing to nephron loss and fibrosis. Importantly, CKD is a chronic inflammatory disease. In early CKD stages, patients present sub-clinical inflammation, activation of immune circulating cells and therefore, anti-inflammatory strategies have been proposed as a common therapeutic target for renal diseases. Recent studies have highlighted the plasticity of immune cells and the complexity of their functions. Among immune cells, monocytes/macrophages play an important role in all steps of kidney injury. However, the phenotype characterization between human and mice immune cells showed different markers; therefore the extrapolation of experimental studies in mice could not reflect human renal diseases. Here we will review the current information about the characteristics of different macrophage phenotypes, mainly focused on macrophage-related cytokines, with special attention to the chemokine CCL18, and its murine functional homolog CCL8, and the macrophage marker CD163, and their role in kidney pathology.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Lucía Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Sanz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Teresa Bellon
- La Paz Hospital Health Research Institute, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
33
|
Zhao L, Liu Y, Wang X. TNF-α promotes insulin resistance in obstructive sleep apnea-hypopnea syndrome. Exp Ther Med 2021; 21:568. [PMID: 33850540 PMCID: PMC8027756 DOI: 10.3892/etm.2021.10000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/22/2021] [Indexed: 11/06/2022] Open
Abstract
Obstructive sleep apnea hypopnea syndrome (OSAHS) is the most serious among children with sleep disordered breathing. The present study aimed to investigate whether TNF-α could decrease the glucose transporter type 4 insulin-responsive (GLUT-4) expression to promote insulin resistance through the TNF-α/IKKβ/IKβ/NF-κB signaling pathway in OSAHS. In total, 30 obese children with OSAHS and 30 non-OSAHS obese children were enrolled into the present study. TNF-α expression in adenoid tissues was detected by western blot analysis and immunohistochemistry. The expression of inflammatory factors (IL-1β, IL-6 and IFN-γ) and TNF-α/IKKβ/IKβ/NF-κB signaling pathway-associated proteins was also detected by western blot analysis. The expression of insulin resistance-associated factors, insulin receptor substrate 1 (IRS1) and GLUT4, was determined by western blot analysis and immunohistochemistry. TNF-α expression was increased in adenoid tissues of children with OSAHS, which was also confirmed by immunohistochemistry. The expression levels of IL-1β, IL-6 and IFN-γ were all upregulated in adenoid tissues of children with OSAHS. The expression of IRS1 and GLUT4 was decreased in adenoid tissues of obese children with OSAHS and the result of immunohistochemistry was consistent with the result of western blot analysis. The protein level of TNF-α, and ratio of phosphorylated (p-)/total (t)-IKKβ, p/t-IKβ and p/t-NF-κB was increased in adenoid tissues of children with OSAHS. TNF-α could suppress the GLUT4 expression to promote insulin resistance by TNF-α/IKKβ/IKβ/NF-κB signaling pathway in OSAHS.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Endocrinology, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100091, P.R. China
| | - Yang Liu
- Department of Endocrinology, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100091, P.R. China
| | - Xiangrong Wang
- Department of Nursing, Jiangsu Union Technical Institute Nantong Health Branch, Nantong, Jiangsu 226010, P.R. China
| |
Collapse
|
34
|
Farouk SM, Gad FAM, Emam MA. Comparative immuno-modulatory effects of basil and sesame seed oils against diazinon-induced toxicity in rats; a focus on TNF-α immunolocalization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5332-5346. [PMID: 32964385 DOI: 10.1007/s11356-020-10840-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Diazinon (DZN), a common organophosphorus insecticide (OPI), has hazardous effect to human and animals with its ubiquitous use. Considering the implication of reactive oxygen species (ROS) in the OPIs toxicity, the present study was aimed to evaluate the ameliorative properties of basil (BO) and sesame (SO) seed oils against the toxic effect of DZN. Forty adult male albino rats were divided into four experimental groups (n = 10 rats/group); control, DZN (10 mg/kg b.w/day), DZN + BO (5 ml/kg b.w/day), and DZN + SO (8 ml/kg b.w/day) groups, treated for a period of 4 weeks. DZN-exposed animals showed significant elevation in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine (Cr) with a significant decline in testosterone level compared with control. On the other hand, DZN + BO and DZN + SO groups revealed significant decreases in ALT, AST, BUN, and Cr with a significant increase in testosterone level when compared with DZN-exposed animals. Oxidative/antioxidant indices revealed significant increases of malondialdehyde (MDA) levels along with significant decreases of superoxide dismutase (SOD), glutathione peroxidase (Gpx), and catalase (CAT) activities among DZN-treated rats compared with control. Distinctly lower levels of MDA and increased activities of SOD, Gpx, and CAT were evident in both DZN + BO and DZN + SO groups when compared with DZN-exposed animals. Inflammatory and immuno-modulatory markers assessment showed a significant increase in TNF-α with a significant decline in IL-10 level in DZN group; meanwhile, both DZN + BO and DZN + SO groups revealed significant declines in levels of TNF-α with significant increases in IL-10. Corresponds immunohistochemistry, the total scores (TS) of TNF-α immunostainings in hepatorenal, testicular, and epididymal tissues of control, DZN + BO and DZN + SO groups were significantly lower than those values of DZN group. Additionally, the examined tissues of DZN + BO group revealed significant lower TS of TNF-α immunostaining compared with DZN + SO group. The overall data suggested that both BO and SO can be efficiently used as preventive herbal compounds against DZN-induced oxidative stress with special reference to their possible antioxidant, anti-inflammatory, and free radical activities. However, BO has more potent protective effect against DZN-induced tissue injury at both immunohistochemical and molecular levels.
Collapse
Affiliation(s)
- Sameh Mohamed Farouk
- Cytology and Histology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Fatma Abdel-Monem Gad
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Banha, 13736, Egypt
| | | |
Collapse
|
35
|
Hu L, Chen Y, Chen T, Huang D, Li S, Cui S. A Systematic Study of Mechanism of Sargentodoxa cuneata and Patrinia scabiosifolia Against Pelvic Inflammatory Disease With Dampness-Heat Stasis Syndrome via Network Pharmacology Approach. Front Pharmacol 2020; 11:582520. [PMID: 33424592 PMCID: PMC7789873 DOI: 10.3389/fphar.2020.582520] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/16/2020] [Indexed: 01/21/2023] Open
Abstract
Objective: To investigate the mechanism of Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson (SC) and Patrinia scabiosifolia (PS) against Pelvic Inflammatory Disease with Dampness-Heat Stasis Syndrome via network pharmacological approach and experimental validation. Methods: The active compounds with OB ≥ 30% and DL ≥ 0.18 were obtained from TCMSP database and further confirmed by literature research. The targets of the compounds and disease were acquired from multiple databases, such as GeneCards, CTD and TCMSP database. The intersection targets were identified by Venny software. Cytoscape 3.7.0 was employed to construct the protein-protein interaction (PPI) network and compound-target network. Moreover, GO enrichment and KEGG pathway analysis were analyzed by DAVID database. Finally, CCK-8, Griess assay and a cytometric bead array (CBA) immunoassay were used for experimental validation by detecting the influence of the active compounds on proliferation of macrophage, release of NO and TNF-α after LPS treatment. Results: 9 bioactive compounds were identified from SC and PS. Those compounds corresponded to 134 targets of pelvic inflammatory disease with dampness-heat stasis syndrome. The targets include vascular endothelial growth factor A (VEGFA), von willebrand factor (VWF), interleukin 6 (IL6), tumor necrosis factor (TNF) and nuclear transcription factor 1 (NFκB1). They act on the signaling pathways like advanced glycation end products-receptor of advanced glycation end products (AGE-RAGE), focal adhesion (FA), Toll-like receptor (TLR) and nuclear transcription factor κB (NF-κB). In addition, by in vitro validation, the selected active components of SC and PS such as acacetin, kaempferol, linarin, isovitexin, sinoacutine could significantly inhibit the release of NO induced by LPS, respectively. Moreover, different dose of acacetin, kaempferol, isovitexin and sinoacutine significantly inhibits the TNF-α production. Conclusion: This study provides solid evidence for the anti-inflammatory mechanism of SC and PS against pelvic inflammatory disease with dampness-heat stasis syndrome, which will provide a preliminary evidence and novelty ideas for future research on the two herbs.
Collapse
Affiliation(s)
- Luanqian Hu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
| | - Yuqi Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
| | - Tingting Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
| | - Dan Huang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
| | - Shihua Li
- Department of Gynecology and Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Shuna Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China.,Department of Gynecology and Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou, China
| |
Collapse
|
36
|
Xu Q, Xi H, Chen X, Xu Y, Wang P, Li J, Wei W, Gu F, Qin Y. Milk‑derived hexapeptide PGPIPN prevents and attenuates acute alcoholic liver injury in mice by reducing endoplasmic reticulum stress. Int J Mol Med 2020; 46:1107-1117. [PMID: 32705158 PMCID: PMC7387095 DOI: 10.3892/ijmm.2020.4643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Bioactive peptides are an emerging area of biomedical research in the study of numerous human diseases, including acute alcoholic liver injury (AALI). To study the role and mechanism of the milk-derived hexapeptide Pro-Gly-Pro-Ile-Pro-Asn (PGPIPN) in preventing and reducing AALI, the present study established a mouse model of AALI. PGPIPN was used as a therapeutic drug, and glutathione (GSH) was used as a positive control. The body and liver weights of mice were measured, and the liver indexes were calculated to observe mice health. The pathological morphology of liver tissues stained with hematoxylin and eosin were examined to analyze hepatic injury, and hepatocyte apoptosis was measured with a TUNEL assay. The concentrations or activities of alanine aminotransferase (ALT), aspartate aminotransferase, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, triglyceride, total cholesterol, malondialdehyde, superoxide dismutase and GSH peroxidase (GSH-PX) were detected in serum and/or liver homogenates. The 78 kDa glucose-regulated protein (GRP78), protein kinase R-like (PKR) endoplasmic reticulum kinase (PERK), phosphorylated (p)-PERK, eukaryotic initiation factor 2α (eIF-2α), p-eIF-2α, inositol-requiring enzyme 1α (IRE-1α), spliced X-box binding protein 1 (XBP-1s), C/EBP homologous protein (CHOP), caspase-3 and cleaved caspase-3 proteins associated with endoplasmic reticulum stress in hepatocytes were assessed by western blotting, and RNA levels of XBP-1s, CHOP and caspase-3 genes were assessed by reverse transcription-quantitative PCR. The results suggested that PGPIPN attenuated alcoholic hepatocyte damage in animal models and reduced hepatocyte oxidative stress in a dose-dependent manner. Moreover, PGPIPN reduced endoplasmic reticulum stress by regulating the expression levels of p-PERK, p-eIF-2α, XBP-1s, CHOP, caspase-3 and cleaved caspase-3. Collectively, the present results indicated that PGPIPN, as a potential therapeutic drug for AALI, exerted a protective effect on the liver and could reduce liver damage.
Collapse
Affiliation(s)
- Qia Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hao Xi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xi Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yin Xu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jingwen Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wenmei Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Fang Gu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yide Qin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
37
|
Yang S, Cao C, Deng T, Zhou Z. Obesity-Related Glomerulopathy: A Latent Change in Obesity Requiring More Attention. Kidney Blood Press Res 2020; 45:510-522. [PMID: 32498064 DOI: 10.1159/000507784] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/06/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Obesity has become a major public health problem, and the prevalence of kidney diseases has increased in parallel. Among kidney diseases caused by metabolic disorders, obesity-related glomerulopathy (ORG) is secondary to obesity. SUMMARY ORG is mainly caused by glomerular hyperfiltration, dysregulation of hormone and cytokine secretion in adipose tissues, and ectopic lipid accumulation in renal cells. ORG is pathologically characterized by glomerular hypertrophy, with or without focal and segmental glomerulosclerosis. Patients with ORG usually present with proteinuria concomitant with metabolic disorders such as dyslipidemia and hypertension. Weight loss, RAAS inhibitors, and improved insulin resistance can reduce the progression of ORG. CONCLUSION ORG is a growing renal pathological change in obese individuals, and a comprehensive understanding of the disease is pivotal to avoid its occurrence and improve quality of life for those with obesity. Key Messages:This review comprehensively describes the characteristics of ORG in pathological changes, clinical manifestations, pathogeneses and treatments.
Collapse
Affiliation(s)
- Shuting Yang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, China.,National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Chuqing Cao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, China.,National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Tuo Deng
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, China.,National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China, .,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, China, .,National Clinical Research Center for Metabolic Diseases, Changsha, China,
| |
Collapse
|
38
|
1,4-Disubstituted 1 H-1,2,3-Triazoles for Renal Diseases: Studies of Viability, Anti-Inflammatory, and Antioxidant Activities. Int J Mol Sci 2020; 21:ijms21113823. [PMID: 32481556 PMCID: PMC7312092 DOI: 10.3390/ijms21113823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a hallmark of many metabolic diseases. We previously showed that ferrocene-appended 1H-1,2,3-triazole hybrids inhibit nitric oxide (NO) production in in vitro models of lipopolysaccharide-induced inflammation in the BV-2 cell. In the present study, we explored the viability, anti-inflammatory, and antioxidant potential of ferrocene-1H-1,2,3-triazole hybrids using biochemical assays in rat mesangial cells (RMCs). We found that, among all the ferrocene-1H-1,2,3-triazole hybrids, X2-X4 exhibited an antioxidant effect on mitochondrial free radicals. Among all the studied compounds, X4 demonstrated the best anti-inflammatory effect on RMCs. These results were supplemented by in silico studies including molecular docking with human cytosolic phospholipase A2 (cPLA2) and cyclooxygenase 2 (COX-2) enzymes as well as absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling. Besides, two new crystal structures of the compounds have also been reported. In addition, combining the results from the inducible nitric oxide synthase (iNOS), cPLA2, COX-2, and matrix metalloproteinase-9 (MMP-9) enzymatic activity analysis and NO production also confirmed this argument. Overall, the results of this study will be a valuable addition to the growing body of work on biological activities of triazole-based compounds.
Collapse
|
39
|
Xiao J, Yao R, Xu B, Wen H, Zhong J, Li D, Zhou Z, Xu J, Wang H. Inhibition of PDE4 Attenuates TNF-α-Triggered Cell Death Through Suppressing NF-κB and JNK Activation in HT-22 Neuronal Cells. Cell Mol Neurobiol 2020; 40:421-435. [PMID: 31659561 PMCID: PMC11448866 DOI: 10.1007/s10571-019-00745-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a critical pro-inflammatory cytokine regulating neuroinflammation. At high concentrations, it is toxic to neurons, and such damage is positively correlated with acute and chronic neurological diseases. Our previous studies showed that inhibition of phosphodiesterase 4 (PDE4) attenuated the production of TNF-α induced by lipopolysaccharides in microglial cells. However, whether PDE4 inhibition can block the neurotoxic effects of TNF-α in neuronal cells is unknown. In this study, we investigated the protective effects of FCPR16, a novel PDE4 inhibitor, against TNF-α-induced cellular apoptosis in HT-22 hippocampal neuronal cells. We demonstrated that FCPR16 dose-dependently increased the viability of HT-22 cells exposed to TNF-α insult. Propidium iodide/calcein staining and flow cytometry analysis showed that FCPR16 decreased cell apoptosis triggered by TNF-α. Western blot analysis showed that FCPR16 decreased the level of cleaved caspase 3 and caspase 8, but had no effect on caspase 9. Mechanistically, FCPR16 blocked the TNF-α-induced phosphorylation of c-Jun N-terminal kinase (JNK) in HT-22 cells, and inhibition of JNK showed a similar protective effect as FCPR16. Furthermore, FCPR16 decreased the translocation of nuclear factor-κB (NF-κB) p65 from the cytosol into the nucleus. In addition, FCPR16 decreased the expression of inducible nitric oxide synthase and the production of reactive oxygen species in HT-22 cells exposed to TNF-α. Moreover, knockdown of PDE4B by specific small interfering RNA reduced the apoptosis of HT-22 cells treated with TNF-α. Taken together, our findings suggest that FCPR16 promotes the survival of neuronal cells exposed to TNF-α by suppressing the activation of JNK and NF-κB.
Collapse
Affiliation(s)
- Jiao Xiao
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rumeng Yao
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingtian Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huizhen Wen
- Central Laboratory, Southern Medical University, Guangzhou, 510515, China
| | - Jiahong Zhong
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dan Li
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhongzhen Zhou
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiangping Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Central Laboratory, Southern Medical University, Guangzhou, 510515, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
| | - Haitao Wang
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
40
|
Pengrattanachot N, Cherngwelling R, Jaikumkao K, Pongchaidecha A, Thongnak L, Swe MT, Chatsudthipong V, Lungkaphin A. Atorvastatin attenuates obese-induced kidney injury and impaired renal organic anion transporter 3 function through inhibition of oxidative stress and inflammation. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165741. [PMID: 32101757 DOI: 10.1016/j.bbadis.2020.165741] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/17/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
Abstract
An excessive consumption of high-fat diet can lead to the alterations of glucose and lipid metabolism, impaired insulin signaling and increased ectopic lipid accumulation resulting in renal lipotoxicity and subsequent renal dysfunction. Atorvastatin is a lipid-lowering drug in clinical treatment. Several studies have reported that atorvastatin has several significant pleiotropic effects including anti-inflammatory, antioxidant, and anti-apoptotic effects. However, the effects of atorvastatin on metabolic disturbance and renal lipotoxicity in obesity are not fully understood. In this study, obesity in rat was developed by high-fat diet (HFD) feeding for 16 weeks. After that, the HFD-fed rats were received either a vehicle (HF), atorvastatin (HFA) or vildagliptin (HFVIL), by oral gavage for 4 weeks. We found that HF rats showed insulin resistance, visceral fat expansion and renal lipid accumulation. Impaired renal function and renal organic anion transporter 3 (Oat3) function and expression were also observed in HF rats. The marked increases in MDA level, renal injury and NF-κB, TGF-β, NOX-4, PKC-α expression were demonstrated in HF rats. Atorvastatin or vildagliptin treatment attenuated insulin resistance and renal lipid accumulation-induced lipotoxicity in HFA and HFVIL rats. Moreover, the proteins involved in renal inflammation, fibrosis, oxidative stress and apoptosis were attenuated leading to improved renal Oat3 function and renal function in the treated groups. Interestingly, atorvastatin showed higher efficacy than vildagliptin in improving insulin resistance, renal lipid accumulation and in exerting renoprotective effects in obesity-induced renal injury and impaired renal Oat3 function.
Collapse
Affiliation(s)
| | - Rada Cherngwelling
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Myat Theingi Swe
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Physiology, University of Medicine, Yangon, Myanmar
| | - Varanuj Chatsudthipong
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
41
|
IL-20 in Acute Kidney Injury: Role in Pathogenesis and Potential as a Therapeutic Target. Int J Mol Sci 2020; 21:ijms21031009. [PMID: 32028746 PMCID: PMC7037658 DOI: 10.3390/ijms21031009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) causes over 1 million deaths worldwide every year. AKI is now recognized as a major risk factor in the development and progression of chronic kidney disease (CKD). Diabetes is the main cause of CKD as well. Renal fibrosis and inflammation are hallmarks in kidney diseases. Various cytokines contribute to the progression of renal diseases; thus, many drugs that specifically block cytokine function are designed for disease amelioration. Numerous studies showed IL-20 functions as a pro-inflammatory mediator to regulate cytokine expression in several inflammation-mediated diseases. In this review, we will outline the effects of pro-inflammatory cytokines in the pathogenesis of AKI and CKD. We also discuss the role of IL-20 in kidney diseases and provide a potential therapeutic approach of IL-20 blockade for treating renal diseases.
Collapse
|
42
|
Resveratrol Protects Against Renal Damage via Attenuation of Inflammation and Oxidative Stress in High-Fat-Diet-Induced Obese Mice. Inflammation 2019; 42:937-945. [PMID: 30554371 DOI: 10.1007/s10753-018-0948-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxidative stress and inflammation play an important role in the chronic kidney disease associated with obesity. Resveratrol (RSV) has been reported to exhibit a wide range of biological activities including antioxidant and anti-inflammatory properties. The objective of the present study was to investigate the effects of RSV on renal inflammation and oxidative stress in obese mice induced by high-fat diet. Male C57BL/6 mice were induced to have nephropathy associated obesity by high-fat diet for 12 weeks. After 8 weeks of feeding, oral supplementation with 100 mg RSV/kg body weight/day was applied with the high-fat-diet feeding for another 4 weeks. The results showed that RSV treatment protected against renal damage induced by high-fat diet, as evidenced by the decreased serum creatinine and urea nitrogen levels, alleviation of glomerular damage, and tubular vacuolization. In addition, RSV enhanced the antioxidant enzyme activity; improved the expression of genes related to inflammation; and decreased the malondialdehyde, tumor necrosis factor-α, and interleukin-6 concentrations in the kidney of high-fat-diet mice. In conclusion, RSV could alleviate renal damage in obese mice induced by high-fat diet via suppressing inflammation and oxidative stress.
Collapse
|
43
|
Zhou S, Zhang L, Feng D, Luo M, Xie R, Yang K, Xu D, Yang K, Fei J, Zhou T. The mTOR-RUNX1 pathway regulates DC-SIGN expression in renal tubular epithelial cells. Biochem Biophys Res Commun 2019; 519:620-625. [DOI: 10.1016/j.bbrc.2019.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
|
44
|
Ding L, Kang Y, Dai HB, Wang FZ, Zhou H, Gao Q, Xiong XQ, Zhang F, Song TR, Yuan Y, Liu M, Zhu GQ, Zhou YB. Adipose afferent reflex is enhanced by TNFα in paraventricular nucleus through NADPH oxidase-dependent ROS generation in obesity-related hypertensive rats. J Transl Med 2019; 17:256. [PMID: 31391086 PMCID: PMC6686415 DOI: 10.1186/s12967-019-2006-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/31/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The adipose afferent reflex (AAR), a sympatho-excitatory reflex, can promote the elevation of sympathetic nerve activity (SNA) and blood pressure (BP). Inflammation in the paraventricular nucleus (PVN) involves sympathetic abnormality in some cardiovascular diseases such as hypertension. This study was designed to explore the effects of tumor necrosis factor alpha (TNFα) in the PVN on the AAR and SNA in rats with obesity-related hypertension (OH) induced by a high-fat diet for 12 weeks. METHODS Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were continuously recorded in anesthetized rats, and their responses to capsaicin (CAP) stimulation of the right inguinal white adipose tissue were used to evaluate the AAR. RESULTS Compared to the control rats, the systolic blood pressure (SBP), plasma norepinephrine (NE, indicating SNA) and TNFα levels, TNFα mRNA and protein levels, reactive oxygen species (ROS) content and NADPH oxidase activity in the PVN were significantly elevated in rats with OH. TNFα in the PVN markedly enhanced sympathoexcitation and AAR. Moreover, the enhancement of AAR caused by TNFα can be significantly strengthened by the pretreatment of diethyldithiocarbamate (DETC), a superoxide dismutase inhibitor, but attenuated by TNF-α receptor antagonist R-7050, superoxide scavenger PEG-SOD and NADPH oxidase inhibitor apocynin (Apo) in rats with OH. Acute microinjection of TNF-α into the PVN significantly increased the activity of NADPH oxidase and ROS levels in rats with OH, which were effectively blocked by R-7050. Furthermore, our results also showed that the increased levels of ROS, TNFα and NADPH oxidase subunits mRNA and protein in the PVN of rats with OH were significantly reversed by pentoxifylline (PTX, 30 mg/kg daily ip; in 10% ethanol) application, a cytokine blocker, for a period of 5 weeks. PTX administration also significantly decreased SBP, AAR and plasma NE levels in rats with OH. CONCLUSIONS TNFα in the PVN modulates AAR and contributes to sympathoexcitation in OH possibly through NADPH oxidase-dependent ROS generation. TNFα blockade attenuates AAR and sympathoexcitation that unveils TNFα in the PVN may be a possible therapeutic target for the intervention of OH.
Collapse
Affiliation(s)
- Lei Ding
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China.,Department of Pathophysiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Kang
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Hang-Bing Dai
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Fang-Zheng Wang
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Hong Zhou
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Qing Gao
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Xiao-Qing Xiong
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Feng Zhang
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Tian-Run Song
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Yan Yuan
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Ming Liu
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Guo-Qing Zhu
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China.
| |
Collapse
|
45
|
Aging renders desynchronization between clock and immune genes in male Wistar rat kidney: chronobiotic role of curcumin. Biogerontology 2019; 20:515-532. [PMID: 31098769 DOI: 10.1007/s10522-019-09813-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/26/2019] [Indexed: 12/29/2022]
Abstract
Suprachiasmatic nucleus (SCN) contains the central clock that orchestrate circadian rhythms in physiology and behavior in mammals. Tightly interlocked transcriptional and translational feedback loops (TTFLs) comprising of various clock genes such as Clock, Bmal1, Periods, Cryptochromes etc. in the SCN, send the timing signals to peripheral clocks that governs local metabolism with similar TTFLs. Peripheral clocks in kidney regulates several circadian rhythms like blood pressure, immunity etc. However, aging leads to circadian and inflammatory disorders in kidney. Though there are increasing evidences on age associated perturbations, studies elucidating the rhythmic expression of clock and immune genes across aging in kidney are obscure. We therefore studied changes in daily rhythms of clock and immune genes in kidney. In this study we measured mRNA expression of clock genes rBmal1, rPer1, rPer2, rCry1, rCry2, rRev-erbα, rRorα, and inflammatory genes rNfκb1, rTnfα, rIl6, rTlr4 and rTlr9 in 3, 12 and 24 months male Wistar rat kidney using qRT-PCR. From our study, we did not observe significant changes in clock genes expression except rRorα, but immune genes showed significant phase alterations as well as increase in mean 24 h levels. Pearson correlation analysis of data showed desynchronization between immune and clock genes expression. We further studied the effect of administration of curcumin which has anti-aging, anti-inflammatory, anti-oxidant etc. properties, and evaluated its chronobiotic properties. We here report differential effects of curcumin administration on daily rhythms of clock and immune genes expression.
Collapse
|
46
|
Probiotic Lactobacillus paracasei HII01 protects rats against obese-insulin resistance-induced kidney injury and impaired renal organic anion transporter 3 function. Clin Sci (Lond) 2018; 132:1545-1563. [DOI: 10.1042/cs20180148] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/24/2023]
Abstract
The relationship between gut dysbiosis and obesity is currently acknowledged to be a health topic which causes low-grade systemic inflammation and insulin resistance and may damage the kidney. Organic anion transporter 3 (Oat3) has been shown as a transporter responsible for renal handling of gut microbiota products which are involved in the progression of metabolic disorder. The present study investigated the effect of probiotic supplementation on kidney function, renal Oat3 function, inflammation, endoplasmic reticulum (ER) stress, and apoptosis in obese, insulin-resistant rats. After 12 weeks of being provided with either a normal or a high-fat diet (HF), rats were divided into normal diet (ND); ND treated with probiotics (NDL); HF; and HF treated with probiotic (HFL). Lactobacillus paracasei HII01 1 × 108 colony forming unit (CFU)/ml was administered to the rats daily by oral gavage for 12 weeks. Obese rats showed significant increases in serum lipopolysaccharide (LPS), plasma lipid profiles, and insulin resistance. Renal Oat 3 function was decreased along with kidney dysfunction in HF-fed rats. Obese rats also demonstrated the increases in inflammation, ER stress, apoptosis, and gluconeogenesis in the kidneys. These alterations were improved by Lactobacillus paracasei HII01 treatment. In conclusion, probiotic supplementation alleviated kidney inflammation, ER stress, and apoptosis, leading to improved kidney function and renal Oat3 function in obese rats. These benefits involve the attenuation of hyperlipidemia, systemic inflammation, and insulin resistance. The present study also suggested the idea of remote sensing and signaling system between gut and kidney by which probiotic might facilitate renal handling of gut microbiota products through the improvement of Oat3 function.
Collapse
|
47
|
Sun G, Yin Z, Liu N, Bian X, Yu R, Su X, Zhang B, Wang Y. Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity. Biochem Biophys Res Commun 2017; 493:964-970. [DOI: 10.1016/j.bbrc.2017.09.108] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
|