1
|
Kumar M, Jalota A, Sahu SK, Haque S. Therapeutic antibodies for the prevention and treatment of cancer. J Biomed Sci 2024; 31:6. [PMID: 38216921 PMCID: PMC10787459 DOI: 10.1186/s12929-024-00996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
The developments of antibodies for cancer therapeutics have made remarkable success in recent years. There are multiple factors contributing to the success of the biological molecule including origin of the antibody, isotype, affinity, avidity and mechanism of action. With better understanding of mechanism of cancer progression and immune manipulation, recombinant formats of antibodies are used to develop therapeutic modalities for manipulating the immune cells of patients by targeting specific molecules to control the disease. These molecules have been successful in minimizing the side effects instead caused by small molecules or systemic chemotherapy but because of the developing therapeutic resistance against these antibodies, combination therapy is thought to be the best bet for patient care. Here, in this review, we have discussed different aspects of antibodies in cancer therapy affecting their efficacy and mechanism of resistance with some relevant examples of the most studied molecules approved by the US FDA.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Akansha Jalota
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, USA
| | - Sushil Kumar Sahu
- Department of Zoology, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India
| | - Shabirul Haque
- Center of Autoimmune Musculoskeletal and Hematopoietic Disease, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
2
|
Liao B, Tumanut C, Li L, Corper A, Challa D, Chang A, Begum H, Farokhi E, Woods C, Fan X. Identification of novel anti-CD16a antibody clones for the development of effective natural killer cell engagers. MAbs 2024; 16:2381261. [PMID: 39048914 PMCID: PMC11271076 DOI: 10.1080/19420862.2024.2381261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Natural killer (NK) cells are key players in human innate immunity. Cell engager antibody formats that recruit and activate NK cells more effectively have emerged as a promising immunotherapy approach to target cancer cells through more effective antibody-dependent cell-mediated cytotoxicity (ADCC). Monoclonal antibody drugs with ADCC activity have shown clinical benefit and improved outcomes for patients with certain types of cancer. CD16a, a Fc gamma III receptor, is the major component that is responsible for the ADCC activity of NK cells. Screening AvantGen's yeast displayed human antibody libraries led to the isolation of 2 antibody clones, #1A2 and #2-2A2, that selectively recognize both isoforms (F and V) of CD16a on primary NK cells with high affinity, yet minimally (#1A2) or do not (#2-2A2) cross-react with both allelotypes of CD16b (NA1 and NA2) expressed by neutrophils. Epitope mapping studies revealed that they bind to an epitope dependent on residue Y158 of CD16a, since mutation of Y158 to the corresponding CD16b residue H158 completely abolishes binding to CD16a. When formatted as bispecific antibodies targeting CD16a and a tumor-associated antigen (TAA, e.g. CD19), they exhibit specific binding to NK cells and induce potent NK cell activation upon encountering tumor cells, resulting in effective tumor cell killing. Notably, these bispecific antibody engagers stimulate NK cell cytokine release during co-culture with target cells, resulting in target cell cytotoxicity. These anti-CD16a antibody clones are promising candidates for combination with any TAA of interest, offering the potential for novel NK cell engager-based cancer therapeutics that are minimally affected by the high concentrations of human IgG in the circulation.
Collapse
Affiliation(s)
| | | | - Lin Li
- AvantGen, Inc, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Lipinski B, Arras P, Pekar L, Klewinghaus D, Boje AS, Krah S, Zimmermann J, Klausz K, Peipp M, Siegmund V, Evers A, Zielonka S. NKp46-specific single domain antibodies enable facile engineering of various potent NK cell engager formats. Protein Sci 2023; 32:e4593. [PMID: 36775946 PMCID: PMC9951198 DOI: 10.1002/pro.4593] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Herein, we describe the generation of potent NK cell engagers (NKCEs) based on single domain antibodies (sdAbs) specific for NKp46 harboring the humanized Fab version of Cetuximab for tumor targeting. After immunization of camelids, a plethora of different VHH domains were retrieved by yeast surface display. Upon reformatting into Fc effector-silenced NKCEs targeting NKp46 and EGFR in a strictly monovalent fashion, the resulting bispecific antibodies elicited potent NK cell-mediated killing of EGFR-overexpressing tumor cells with potencies (EC50 killing) in the picomolar range. This was further augmented via co-engagement of Fcγ receptor IIIa (FcγRIIIa). Importantly, NKp46-specific sdAbs enabled the construction of various NKCE formats with different geometries and valencies which displayed favorable biophysical and biochemical properties without further optimization. By this means, killing capacities were further improved significantly. Hence, NKp46-specific sdAbs are versatile building blocks for the construction of different NKCE formats.
Collapse
Affiliation(s)
- Britta Lipinski
- Protein Engineering and Antibody TechnologiesMerck Healthcare KGaADarmstadtGermany
- Institute for Organic Chemistry and BiochemistryTechnical University of DarmstadtDarmstadtGermany
| | - Paul Arras
- Protein Engineering and Antibody TechnologiesMerck Healthcare KGaADarmstadtGermany
| | - Lukas Pekar
- Protein Engineering and Antibody TechnologiesMerck Healthcare KGaADarmstadtGermany
| | - Daniel Klewinghaus
- Protein Engineering and Antibody TechnologiesMerck Healthcare KGaADarmstadtGermany
| | - Ammelie Svea Boje
- Division of Antibody‐Based Immunotherapy, Department of Internal Medicine IIUniversity Hospital Schleswig‐Holstein and Christian‐Albrechts‐University KielKielGermany
| | - Simon Krah
- Protein Engineering and Antibody TechnologiesMerck Healthcare KGaADarmstadtGermany
| | - Jasmin Zimmermann
- Protein Engineering and Antibody TechnologiesMerck Healthcare KGaADarmstadtGermany
- Institute for Organic Chemistry and BiochemistryTechnical University of DarmstadtDarmstadtGermany
| | - Katja Klausz
- Division of Antibody‐Based Immunotherapy, Department of Internal Medicine IIUniversity Hospital Schleswig‐Holstein and Christian‐Albrechts‐University KielKielGermany
| | - Matthias Peipp
- Division of Antibody‐Based Immunotherapy, Department of Internal Medicine IIUniversity Hospital Schleswig‐Holstein and Christian‐Albrechts‐University KielKielGermany
| | | | - Andreas Evers
- Computational Chemistry and BiologyMerck Healthcare KGaADarmstadtGermany
| | - Stefan Zielonka
- Protein Engineering and Antibody TechnologiesMerck Healthcare KGaADarmstadtGermany
- Institute for Organic Chemistry and BiochemistryTechnical University of DarmstadtDarmstadtGermany
| |
Collapse
|
4
|
Klausz K, Pekar L, Boje AS, Gehlert CL, Krohn S, Gupta T, Xiao Y, Krah S, Zaynagetdinov R, Lipinski B, Toleikis L, Poetzsch S, Rabinovich B, Peipp M, Zielonka S. Multifunctional NK Cell–Engaging Antibodies Targeting EGFR and NKp30 Elicit Efficient Tumor Cell Killing and Proinflammatory Cytokine Release. THE JOURNAL OF IMMUNOLOGY 2022; 209:1724-1735. [DOI: 10.4049/jimmunol.2100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 08/23/2022] [Indexed: 01/04/2023]
Abstract
Abstract
In this work, we have generated novel Fc-comprising NK cell engagers (NKCEs) that bridge human NKp30 on NK cells to human epidermal growth factor receptor (EGFR) on tumor cells. Camelid-derived VHH single-domain Abs specific for human NKp30 and a humanized Fab derived from the EGFR-specific therapeutic Ab cetuximab were used as binding arms. By combining camelid immunization with yeast surface display, we were able to isolate a diverse panel of NKp30-specific VHHs against different epitopes on NKp30. Intriguingly, NKCEs built with VHHs that compete for binding to NKp30 with B7-H6, the natural ligand of NKp30, were significantly more potent in eliciting tumor cell lysis of EGFR-positive tumor cells than NKCEs harboring VHHs that target different epitopes on NKp30 from B7-H6. We demonstrate that the NKCEs can be further improved with respect to killing capabilities by concomitant engagement of FcγRIIIa and that soluble B7-H6 does not impede cytolytic capacities of all scrutinized NKCEs at significantly higher B7-H6 concentrations than observed in cancer patients. Moreover, we show that physiological processes requiring interactions between membrane-bound B7-H6 and NKp30 on NK cells are unaffected by noncompeting NKCEs still eliciting tumor cell killing at low picomolar concentrations. Ultimately, the NKCEs generated in this study were significantly more potent in eliciting NK cell–mediated tumor cell lysis than cetuximab and elicited a robust release of proinflammatory cytokines, both features which might be beneficial for antitumor therapy.
Collapse
Affiliation(s)
- Katja Klausz
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Lukas Pekar
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Ammelie Svea Boje
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Carina Lynn Gehlert
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Steffen Krohn
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Tushar Gupta
- ‡Protein Engineering and Antibody Technologies, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Yanping Xiao
- §Department of Oncology and Immuno-oncology, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Simon Krah
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rinat Zaynagetdinov
- §Department of Oncology and Immuno-oncology, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Britta Lipinski
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
- ¶Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany; and
| | - Lars Toleikis
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Sven Poetzsch
- ‖Strategic Innovation, Merck Healthcare KGaA, Darmstadt, Germany
| | - Brian Rabinovich
- §Department of Oncology and Immuno-oncology, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Matthias Peipp
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Stefan Zielonka
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
- ¶Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany; and
| |
Collapse
|
5
|
Peipp M, Klausz K, Boje AS, Zeller T, Zielonka S, Kellner C. Immunotherapeutic targeting of activating natural killer cell receptors and their ligands in cancer. Clin Exp Immunol 2022; 209:22-32. [PMID: 35325068 PMCID: PMC9307233 DOI: 10.1093/cei/uxac028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells exert an important role in cancer immune surveillance. Recognition of malignant cells and controlled activation of effector functions are facilitated by the expression of activating and inhibitory receptors, which is a complex interplay that allows NK cells to discriminate malignant cells from healthy tissues. Due to their unique profile of effector functions, the recruitment of NK cells is attractive in cancer treatment and a key function of NK cells in antibody therapy is widely appreciated. In recent years, besides the low-affinity fragment crystallizable receptor for immunoglobulin G (FcγRIIIA), the activating natural killer receptors p30 (NKp30) and p46 (NKp46), as well as natural killer group 2 member D (NKG2D), have gained increasing attention as potential targets for bispecific antibody-derivatives to redirect NK cell cytotoxicity against tumors. Beyond modulation of the receptor activity on NK cells, therapeutic targeting of the respective ligands represents an attractive approach. Here, novel therapeutic approaches to unleash NK cells by engagement of activating NK-cell receptors and alternative strategies targeting their tumor-expressed ligands in cancer therapy are summarized.
Collapse
Affiliation(s)
- Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ammelie Svea Boje
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Christian Kellner
- Correspondence: Christian Kellner, Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
6
|
Velichinskii RA, Streltsova MA, Kust SA, Sapozhnikov AM, Kovalenko EI. The Biological Role and Therapeutic Potential of NK Cells in Hematological and Solid Tumors. Int J Mol Sci 2021; 22:ijms222111385. [PMID: 34768814 PMCID: PMC8584101 DOI: 10.3390/ijms222111385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022] Open
Abstract
NK cells are an attractive target for cancer immunotherapy due to their potent antitumor activity. The main advantage of using NK cells as cytotoxic effectors over T cells is a reduced risk of graft versus host disease. At present, several variants of NK-cell-based therapies are undergoing clinical trials and show considerable effectiveness for hematological tumors. In these types of cancers, the immune cells themselves often undergo malignant transformation, which determines the features of the disease. In contrast, the current use of NK cells as therapeutic agents for the treatment of solid tumors is much less promising. Most studies are at the stage of preclinical investigation, but few progress to clinical trials. Low efficiency of NK cell migration and functional activity in the tumor environment are currently considered the major barriers to NK cell anti-tumor therapies. Various therapeutic combinations, genetic engineering methods, alternative sources for obtaining NK cells, and other techniques are aiming at the development of promising NK cell anticancer therapies, regardless of tumorigenesis. In this review, we compare the role of NK cells in the pathogenesis of hematological and solid tumors and discuss current prospects of NK-cell-based therapy for hematological and solid tumors.
Collapse
|
7
|
Wingert S, Reusch U, Knackmuss S, Kluge M, Damrat M, Pahl J, Schniegler-Mattox U, Mueller T, Fucek I, Ellwanger K, Tesar M, Haneke T, Koch J, Treder M, Fischer W, Rajkovic E. Preclinical evaluation of AFM24, a novel CD16A-specific innate immune cell engager targeting EGFR-positive tumors. MAbs 2021; 13:1950264. [PMID: 34325617 PMCID: PMC8331026 DOI: 10.1080/19420862.2021.1950264] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epidermal growth factor receptor (EGFR)-targeted cancer therapy such as anti-EGFR monoclonal antibodies and tyrosine kinase inhibitors have demonstrated clinical efficacy. However, there remains a medical need addressing limitations of these therapies, which include a narrow therapeutic window mainly due to skin and organ toxicity, and primary and secondary resistance mechanisms of the EGFR-signaling cascade (e.g., RAS-mutated colorectal cancer). Using the redirected optimized cell killing (ROCK®) antibody platform, we have developed AFM24, a novel bispecific, IgG1-scFv fusion antibody targeting CD16A on innate immune cells, and EGFR on tumor cells. We herein demonstrate binding of AFM24 to CD16A on natural killer (NK) cells and macrophages with KD values in the low nanomolar range and to various EGFR-expressing tumor cells. AFM24 was highly potent and effective for antibody-dependent cell-mediated cytotoxicity via NK cells, and also mediated antibody-dependent cellular phagocytosis via macrophages in vitro. Importantly, AFM24 was effective toward a variety of EGFR-expressing tumor cells, regardless of EGFR expression level and KRAS/BRAF mutational status. In vivo, AFM24 was well tolerated up to the highest dose (75 mg/kg) when administered to cynomolgus monkeys once weekly for 28 days. Notably, skin and other toxicities were not observed. A transient elevation of interleukin-6 levels was detected at all dose levels, 2-4 hours post-dose, which returned to baseline levels after 24 hours. These results emphasize the promise of bispecific innate cell engagers as an alternative cancer therapy and demonstrate the potential for AFM24 to effectively target tumors expressing varying levels of EGFR, regardless of their mutational status.Abbreviations: ADA: antidrug antibody; ADCC: antibody-dependent cell-mediated cytotoxicity; ADCP: antibody-dependent cellular phagocytosis; AUC: area under the curve; CAR: chimeric-antigen receptor; CD: Cluster of differentiation; CRC :colorectal cancer; ECD: extracellular domain; EGF: epidermal growth factorEGFR epidermal growth factor receptor; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell sorting; Fc: fragment, crystallizableFv variable fragment; HNSCC: head and neck squamous carcinomaIL interleukinm; Ab monoclonal antibody; MOA: mechanism of action; NK :natural killer; NSCLC: non-small cell lung cancer; PBMC: peripheral blood mononuclear cell; PBS: phosphate-buffered saline; PD: pharmacodynamic; ROCK: redirected optimized cell killing; RSV: respiratory syncytial virus; SABC: specific antibody binding capacity; SD: standard deviation; TAM: tumor-associated macrophage; TKI: tyrosine kinase inhibitor; WT: wildtype.
Collapse
Affiliation(s)
| | - Uwe Reusch
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | | | - Michael Kluge
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Michael Damrat
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Jens Pahl
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | | | - Thomas Mueller
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Ivica Fucek
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | | | - Michael Tesar
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Torsten Haneke
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Joachim Koch
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Martin Treder
- Formerly Affimed GmbH, Heidelberg, Germany. Now: Arjuna Therapeutics, Santiago De Compostela, Spain
| | | | - Erich Rajkovic
- Research & Development, Affimed GmbH, Heidelberg, Germany
| |
Collapse
|
8
|
Demaria O, Gauthier L, Debroas G, Vivier E. Natural killer cell engagers in cancer immunotherapy: Next generation of immuno-oncology treatments. Eur J Immunol 2021; 51:1934-1942. [PMID: 34145579 DOI: 10.1002/eji.202048953] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/01/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022]
Abstract
Immuno-oncology is revolutionizing the treatment of cancers, by inducing the recognition and elimination of tumor cells by the immune system. Recent advances have focused on generating or unleashing tumor antigen-specific T-cell responses, leading to alternative treatment paradigms for many cancers. Despite these successes, the clinical benefit has been limited to a subset of patients and certain tumor types, highlighting the need for alternative strategies. One innovative approach is to broaden and amplify antitumoral immune responses by targeting innate immunity. Particularly, the aim has been to develop new antibody formats capable of stimulating the antitumor activity of innate immune cells, boosting not only their direct role in tumor elimination, but also their function in eliciting multicellular immune responses ultimately resulting in long-lasting tumor control by adaptive immunity. This review covers the development of a new class of synthetic molecules, natural killer cell engagers (NKCEs), which are built from fragments of monoclonal antibodies (mAbs) and are designed to harness the immune functions of NK cells in cancer. As currently shown in preclinical studies and clinical trials, NKCEs are promising candidates for the next generation of tumor immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Eric Vivier
- Innate Pharma, Marseille, France.,Aix Marseille University, CNRS, INSERM, CIML, Marseille, France.,APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| |
Collapse
|
9
|
A phase 1b study of AFM13 in combination with pembrolizumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 2021; 136:2401-2409. [PMID: 32730586 DOI: 10.1182/blood.2019004701] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/01/2020] [Indexed: 12/26/2022] Open
Abstract
In relapsed/refractory Hodgkin lymphoma (R/R HL), immunotherapies such as the anti-programmed death-1 inhibitor pembrolizumab have demonstrated efficacy as monotherapy and are playing an increasingly prominent role in treatment. The CD30/CD16A-bispecific antibody AFM13 is an innate immune cell engager, a first-in-class, tetravalent antibody, designed to create a bridge between CD30 on HL cells and the CD16A receptor on natural killer cells and macrophages, to induce tumor cell killing. Early studies of AFM13 have demonstrated signs of efficacy as monotherapy for patients with R/R HL and the combination of AFM13 with pembrolizumab represents a rational new treatment modality. Here, we describe a phase 1b, dose-escalation study to assess the safety and preliminary efficacy of AFM13 in combination with pembrolizumab in patients with R/R HL. The primary objective was estimating the maximum tolerated dose; the secondary objectives were to assess safety, tolerability, antitumor efficacy, pharmacokinetics, and pharmacodynamics. In this heavily pretreated patient population, treatment with the combination of AFM13 and pembrolizumab was generally well tolerated, with similar safety profiles compared to the known profiles of each agent alone. The combination of AFM13 with pembrolizumab demonstrated an objective response rate of 88% at the highest treatment dose, with an 83% overall response rate for the overall population. Pharmacokinetic assessment of AFM13 in the combination setting revealed a half-life of up to 20.6 hours. This proof-of-concept study holds promise as a novel immunotherapy combination worthy of further investigation. This phase 1b study was registered at www.clinicaltrials.gov as NCT02665650.
Collapse
|
10
|
Pekar L, Klausz K, Busch M, Valldorf B, Kolmar H, Wesch D, Oberg HH, Krohn S, Boje AS, Gehlert CL, Toleikis L, Krah S, Gupta T, Rabinovich B, Zielonka S, Peipp M. Affinity Maturation of B7-H6 Translates into Enhanced NK Cell-Mediated Tumor Cell Lysis and Improved Proinflammatory Cytokine Release of Bispecific Immunoligands via NKp30 Engagement. THE JOURNAL OF IMMUNOLOGY 2020; 206:225-236. [PMID: 33268483 DOI: 10.4049/jimmunol.2001004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Activating NK cell receptors represent promising target structures to elicit potent antitumor immune responses. In this study, novel immunoligands were generated that bridge the activating NK cell receptor NKp30 on NK cells with epidermal growth factor receptor (EGFR) on tumor cells in a bispecific IgG-like format based on affinity-optimized versions of B7-H6 and the Fab arm derived from cetuximab. To enhance NKp30 binding, the solitary N-terminal IgV domain of B7-H6 (ΔB7-H6) was affinity matured by an evolutionary library approach combined with yeast surface display. Biochemical and functional characterization of 36 of these novel ΔB7-H6-derived NK cell engagers revealed an up to 45-fold-enhanced affinity for NKp30 and significantly improved NK cell-mediated, EGFR-dependent killing of tumor cells compared with the NK cell engager based on the wild-type ΔB7-H6 domain. In this regard, potencies (EC50 killing) of the best immunoligands were substantially improved by up to 87-fold. Moreover, release of IFN-γ and TNF-α was significantly increased. Importantly, equipment of the ΔB7-H6-based NK cell engagers with a human IgG1 Fc part competent in Fc receptor binding resulted in an almost 10-fold superior killing of EGFR-overexpressing tumor cells compared with molecules either triggering FcγRIIIa or NKp30. Additionally, INF-γ and TNF-α release was increased compared with molecules solely triggering FcγRIIIa, including the clinically approved Ab cetuximab. Thus, incorporating affinity-matured ligands for NK cell-activating receptors might represent an effective strategy for the generation of potent novel therapeutic agents with unique effector functions in cancer immunotherapy.
Collapse
Affiliation(s)
- Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany.,Discovery Pharmacology, Merck KGaA, D-64293 Darmstadt, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Michael Busch
- Discovery Pharmacology, Merck KGaA, D-64293 Darmstadt, Germany
| | - Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, D-64293 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany; and
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany; and
| | - Steffen Krohn
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Ammelie Svea Boje
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Carina Lynn Gehlert
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany
| | - Tushar Gupta
- Department of Immuno-oncology, EMD Serono Research & Development Institute Inc., Billerica, MA 01821
| | - Brian Rabinovich
- Department of Immuno-oncology, EMD Serono Research & Development Institute Inc., Billerica, MA 01821
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany;
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany;
| |
Collapse
|
11
|
De Santis M, Mantovani A, Selmi C. The other side of the innate immune system: humoral arms favoring cancer. Cell Mol Immunol 2020; 17:1024-1025. [PMID: 32728201 PMCID: PMC7609556 DOI: 10.1038/s41423-020-0512-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/04/2023] Open
Affiliation(s)
- Maria De Santis
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy. .,Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.
| |
Collapse
|
12
|
Improving Immunotherapy Against B-Cell Malignancies Using γδ T-Cell-specific Stimulation and Therapeutic Monoclonal Antibodies. J Immunother 2020; 42:331-344. [PMID: 31318724 DOI: 10.1097/cji.0000000000000289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor antigen-targeting monoclonal antibodies (mAbs) are an important element of current cancer therapies. Some of these therapeutic mAbs enable antibody-dependent cell mediated cytotoxicity (ADCC) against tumor cells. However, cancer-related functional impairment of immune effector cells may limit the clinical efficacy of antibody treatments. We reckoned that combining mAbs with cell-based immunotherapies would provide a clinically relevant synergism and benefit for cancer patients. Here, we focus on γδ T cells, as earlier studies demonstrated that γδ T-cell-based therapies are safe and promising for several types of malignancies. Similar to natural killer cells, their antitumor effects can be enhanced using antibodies, and they could, therefore, become a versatile effector cell platform for use with a variety of licensed therapeutic mAbs against cancer. In this study, we explore the potential of a combination therapy of activated γδ T cells with rituximab and the more recently developed mAbs (obinutuzumab and daratumumab) in different B-cell malignancies in vitro. Obinutuzumab outperformed the other mAbs with regard to direct target cell lysis and ADCC by γδ T cells in several CD20 cell lines and primary lymphoma specimens. We demonstrate that comparatively few CD16 γδ T cells are sufficient to mediate a strong ADCC. Using Fc-receptor-positive B-cell lymphomas as target cells, ADCC cannot be blocked by high concentrations of immunoglobulins or anti-CD16 antibodies, but both substances can promote cell mediated target cell lysis. This study expands on earlier reports on the therapeutic potential of distinctive tumor antigen-targeting mAbs and facilitates the understanding of the mechanism and potential of ADCC by γδ T-cell subsets.
Collapse
|
13
|
Mechanisms of Resistance to NK Cell Immunotherapy. Cancers (Basel) 2020; 12:cancers12040893. [PMID: 32272610 PMCID: PMC7226138 DOI: 10.3390/cancers12040893] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy has recently been a major breakthrough in cancer treatment. Natural killer (NK) cells are suitable targets for immunotherapy owing to their potent cytotoxic activity that may target cancer cells in a major histocompatibility complex (MHC) and antigen-unrestricted manner. Current therapies targeting NK cells include monoclonal antibodies that promote NK cell antibody-dependent cell-mediated cytotoxicity (ADCC), hematopoietic stem cell transplantation (HSCT), the adoptive transfer of NK cells, the redirection of NK cells using chimeric antigen receptor (CAR)-NK cells and the use of cytokines and immunostimulatory drugs to boost the anti-tumor activity of NK cells. Despite some encouraging clinical results, patients receiving these therapies frequently develop resistance, and a myriad of mechanisms of resistance affecting both the immune system and cancer cells have been reported. A first contributing factor that modulates the efficacy of the NK cell therapy is the genetic profile of the individual, which regulates all aspects of NK cell biology. Additionally, the resistance of cancer cells to apoptosis and the immunoediting of cancer cells, a process that decreases their immunogenicity and promotes immunosuppression, are major determinants of the resistance to NK cell therapy. Consequently, the efficacy of NK cell anti-tumor therapy is specific to each patient and disease. The elucidation of such immunosubversive mechanisms is crucial to developing new procedures and therapeutic strategies to fully harness the anti-tumor potential of NK cells.
Collapse
|
14
|
Peptides, Antibodies, Peptide Antibodies and More. Int J Mol Sci 2019; 20:ijms20246289. [PMID: 31847088 PMCID: PMC6941022 DOI: 10.3390/ijms20246289] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
The applications of peptides and antibodies to multiple targets have emerged as powerful tools in research, diagnostics, vaccine development, and therapeutics. Antibodies are unique since they, in theory, can be directed to any desired target, which illustrates their versatile nature and broad spectrum of use as illustrated by numerous applications of peptide antibodies. In recent years, due to the inherent limitations such as size and physical properties of antibodies, it has been attempted to generate new molecular compounds with equally high specificity and affinity, albeit with relatively low success. Based on this, peptides, antibodies, and peptide antibodies have established their importance and remain crucial reagents in molecular biology.
Collapse
|
15
|
Asadpour O, Rahbarizadeh F. Phospholipase-Cγ1 Signaling Protein Down-Regulation by Oligoclonal-VHHs based Immuno-Liposome: A Potent Metastasis Deterrent in HER2 Positive Breast Cancer Cells. CELL JOURNAL 2019; 22:30-39. [PMID: 31606964 PMCID: PMC6791071 DOI: 10.22074/cellj.2020.6704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/23/2019] [Indexed: 01/01/2023]
Abstract
Objective The purpose of this study was to develop multivalent antibody constructs via grafting anti-HER2 antibodies,
including Herceptin and oligoclonal-variable domain of heavy chain antibodies (VHHs), onto liposome membranes to
enhance antibody activity and compare their effect on phospholipase C (PLC) signaling pathway with control.
Materials and Methods In this experimental study, SKBR3 and BT-474 cell lines as HER2 positive and MCF10A cell
line as normal cell were screened with anti-HER2 antibodies, including constructs of multivalent liposomal antibody
developed with Herceptin and anti-HER2 oligoclonal-VHHs. To confirm the accuracy of the study, immunofluorescent
assay, migration assay and immuno-liposome binding ability to HER2 were evaluated. Finally, the antibodies effect on
PLCγ1 protein level was measured by an immunoassay method (ELISA).
Results In the present study, by using multivalent form of antibodies, we were able to significantly inhibit the PLCγ1
protein level. Interestingly, the results of migration assay, used for study the motility of different types of cell, shows
correspondingly decreased number of immigrated cells in SKBR3 and BT-474 cell lines. Since MCF10A cells show no
overexpression of HER2, as expected, the result did not show any change in PLCγ1 level. Moreover, immunofluorescent
assay has confirmed high expression of HER2 in SKBR3 and BT-474 cell lines and low HER2 expression on MCF10A
cell line. High binding of immuno-liposome to SKBR3 and BT-474 cells and low binding to MCF10A confirmed that in
this study anti-HER2 antibodies have conserved binding ability to HER2 even after conjugation with liposome.
Conclusion PLCγ1 protein levels did indeed decrease after treatment with immuno-liposome form of compounds in both
two tested cell lines, verifying the inhibition ability of them. Moreover, an elevated antibody activity is associated with liposomes
conjugation suggesting that immuno-liposome may be a potential target for enhancing the antibody activity.
Collapse
Affiliation(s)
- Ommolbanin Asadpour
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic Address: .,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
NK Cells in the Treatment of Hematological Malignancies. J Clin Med 2019; 8:jcm8101557. [PMID: 31569769 PMCID: PMC6832953 DOI: 10.3390/jcm8101557] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells have the innate ability to kill cancer cells, however, tumor cells may acquire the capability of evading the immune response, thereby leading to malignancies. Restoring or potentiation of this natural antitumor activity of NK cells has become a relevant therapeutic approach in cancer and, particularly, in hematological cancers. The use of tumor-specific antibodies that promote antibody-dependent cell-mediated cytotoxicity (ADCC) through the ligation of CD16 receptor on NK cells has become standard for many hematologic malignancies. Hematopoietic stem cell transplantation is another key therapeutic strategy that harnesses the alloreactivity of NK cells against cancer cells. This strategy may be refined by adoptive transfer of NK cells that may be previously expanded, activated, or redirected (chimeric antigen receptor (CAR)-NK cells) against cancer cells. The antitumor activity of NK cells can also be boosted by cytokines or immunostimulatory drugs such as lenalidomide or pomalidomide. Finally, targeting immunosubversive mechanisms developed by hematological cancers and, in particular, using antibodies that block NK cell inhibitory receptors and checkpoint proteins are novel promising therapeutic approaches in these malignant diseases.
Collapse
|
17
|
Strohl WR, Naso M. Bispecific T-Cell Redirection versus Chimeric Antigen Receptor (CAR)-T Cells as Approaches to Kill Cancer Cells. Antibodies (Basel) 2019; 8:E41. [PMID: 31544847 PMCID: PMC6784091 DOI: 10.3390/antib8030041] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
The concepts for T-cell redirecting bispecific antibodies (TRBAs) and chimeric antigen receptor (CAR)-T cells are both at least 30 years old but both platforms are just now coming into age. Two TRBAs and two CAR-T cell products have been approved by major regulatory agencies within the last ten years for the treatment of hematological cancers and an additional 53 TRBAs and 246 CAR cell constructs are in clinical trials today. Two major groups of TRBAs include small, short-half-life bispecific antibodies that include bispecific T-cell engagers (BiTE®s) which require continuous dosing and larger, mostly IgG-like bispecific antibodies with extended pharmacokinetics that can be dosed infrequently. Most CAR-T cells today are autologous, although significant strides are being made to develop off-the-shelf, allogeneic CAR-based products. CAR-Ts form a cytolytic synapse with target cells that is very different from the classical immune synapse both physically and mechanistically, whereas the TRBA-induced synapse is similar to the classic immune synapse. Both TRBAs and CAR-T cells are highly efficacious in clinical trials but both also present safety concerns, particularly with cytokine release syndrome and neurotoxicity. New formats and dosing paradigms for TRBAs and CAR-T cells are being developed in efforts to maximize efficacy and minimize toxicity, as well as to optimize use with both solid and hematologic tumors, both of which present significant challenges such as target heterogeneity and the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- William R Strohl
- BiStro Biotech Consulting, LLC, 1086 Tullo Farm Rd., Bridgewater, NJ 08807, USA.
| | - Michael Naso
- Century Therapeutics, 3675 Market St., Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Ellwanger K, Reusch U, Fucek I, Wingert S, Ross T, Müller T, Schniegler-Mattox U, Haneke T, Rajkovic E, Koch J, Treder M, Tesar M. Redirected optimized cell killing (ROCK®): A highly versatile multispecific fit-for-purpose antibody platform for engaging innate immunity. MAbs 2019; 11:899-918. [PMID: 31172847 PMCID: PMC6601565 DOI: 10.1080/19420862.2019.1616506] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Redirection of immune cells to efficiently eliminate tumor cells holds great promise. Natural killer cells (NK), macrophages, or T cells are specifically engaged with target cells expressing markers after infection or neoplastic transformation, resulting in their activation and subsequent killing of those targets. Multiple strategies to redirect immunity have been developed in the past two decades, but they have technical hurdles or cause undesirable side-effects, as exemplified by the T cell-based chimeric antigen receptor approaches (CAR-T therapies) or bispecific T cell engager platforms. Our first-in-class bispecific antibody redirecting innate immune cells to tumors (AFM13, a CD30/CD16A-specific innate immune cell engager) has shown signs of clinical efficacy in CD30-positive lymphomas and the potential to be safely administered, indicating a wider therapeutic window compared to T cell engaging therapies. AFM13 is the most advanced candidate from our fit-for-purpose redirected optimized cell killing (ROCK®) antibody platform, which comprises a plethora of CD16A-binding innate immune cell engagers with unique properties. Here, we discuss aspects of this modular platform, including the advantages of innate immune cell engagement over classical monoclonal antibodies and other engager concepts. We also present details on its potential to engineer a fit-for-purpose innate immune cell engager format that can be equipped with unique CD16A domains, modules that influence pharmacokinetic properties and molecular architectures that influence the activation of immune effectors, as well as tumor targeting. The ROCK® platform is aimed at the activation of innate immunity for the effective lysis of tumor cells and holds the promise of overcoming limitations of other approaches that redirect immune cells by widening the therapeutic window.
Collapse
Affiliation(s)
| | - Uwe Reusch
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Ivica Fucek
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | | | - Thorsten Ross
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Thomas Müller
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | | | - Torsten Haneke
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Erich Rajkovic
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Joachim Koch
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Martin Treder
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Michael Tesar
- a Affimed GmbH, Research Department , Heidelberg , Germany
| |
Collapse
|
19
|
Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity. Cell 2019; 177:1701-1713.e16. [PMID: 31155232 DOI: 10.1016/j.cell.2019.04.041] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/19/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Over the last decade, various new therapies have been developed to promote anti-tumor immunity. Despite interesting clinical results in hematological malignancies, the development of bispecific killer-cell-engager antibody formats directed against tumor cells and stimulating anti-tumor T cell immunity has proved challenging, mostly due to toxicity problems. We report here the generation of trifunctional natural killer (NK) cell engagers (NKCEs), targeting two activating receptors, NKp46 and CD16, on NK cells and a tumor antigen on cancer cells. Trifunctional NKCEs were more potent in vitro than clinical therapeutic antibodies targeting the same tumor antigen. They had similar in vivo pharmacokinetics to full IgG antibodies and no off-target effects and efficiently controlled tumor growth in mouse models of solid and invasive tumors. Trifunctional NKCEs thus constitute a new generation of molecules for fighting cancer. VIDEO ABSTRACT.
Collapse
|
20
|
Ellerman D. Bispecific T-cell engagers: Towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods 2018; 154:102-117. [PMID: 30395966 DOI: 10.1016/j.ymeth.2018.10.026] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
Bispecific molecules redirecting the cytotoxicity of T-cells are a growing class of therapeutics with numerous molecules being tested in clinical trials. However, it has been a long way since the proof of concept studies in the mid 1980's. In the process we have learnt about the impact of different variables related to the bispecific molecule and the target antigen on the potency of this type of drugs. This work reviews the insights gained and how that knowledge has been used to design more potent bispecific T-cell engagers. The more recent advancement of antibodies with this modality into safety studies in non-human primates and as well as in clinical studies has revealed potential toxicity liabilities for the mode of action. Modifications in existing antibody formats and new experimental molecules designed to mitigate these problems are discussed.
Collapse
|
21
|
Humpe A, Peipp M. Antibody Engineering - Tailor-Made Next Generation Antibodies by Molecular Design. Transfus Med Hemother 2017; 44:290-291. [PMID: 29070973 DOI: 10.1159/000479617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 11/19/2022] Open
Affiliation(s)
- Andreas Humpe
- Institute of Transfusion Medicine and Immune Hematology with Blood Bank, University Hospital Magdeburg. Magdeburg, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|