1
|
Sindzingre L, Bouaziz‐Amar E, Mouton‐Liger F, Cognat E, Dumurgier J, Götze K, Martinet M, Vrillon A, Paquet C, Lilamand M. Plasma adiponectin and biomarker-confirmed Alzheimer's disease in a tertiary memory clinic. J Neuroendocrinol 2025; 37:e13493. [PMID: 39842780 PMCID: PMC11975797 DOI: 10.1111/jne.13493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Alzheimer's disease (AD) is associated with early metabolic dysfunction and adiponectin, which may play a pathophysiological role. Adiponectin is implicated in the regulation of energy homeostasis, carbohydrate, and lipid metabolism, as well as in inflammation modulation. The aim of this study was to study whether plasma adiponectin levels were different between patients with AD confirmed by biomarkers and neurological control subjects. We performed a monocentric, retrospective, cross-sectional, observational study in AD patients and neurological controls recruited from daily clinical practice in a tertiary memory clinic. Plasma adiponectin levels were measured using a chemiluminescent enzyme immunoassay. We analyzed the relationship between adiponectin and AD using linear regression models including age, gender, and BMI. We also described the distribution of adiponectin concentrations, across age, and gender categories. Two hundred and six patients (142 AD patients and 64 neurological controls) were included, with mean age = 68.8 ± 10.0 years, and 56% were women. Higher adiponectin concentrations were observed in females and in older adults. Plasma adiponectin levels were significantly higher in AD patients (mean = 6.45 ± 3.42 μg/mL) than neurological controls (4.85 ± 3.54 μg/mL) (p < .001). This association was mediated by age, gender, and BMI, which were significantly and independently associated with plasma adiponectin levels (p < .01 for each), while adiponectin was no longer associated with AD in multivariate models. Patients with AD showed higher adiponectin levels, but this association was driven by older age, female gender, and lower BMI in the AD group. Further studies are needed to better characterize the hormonal signature of AD.
Collapse
Affiliation(s)
- Louise Sindzingre
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Centre de Neurologie Cognitive, AP‐HP.Nord, Site Lariboisière Fernand‐WidalParisFrance
| | - Elodie Bouaziz‐Amar
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Service de Biochimie, AP‐HP.Nord, Site Lariboisière Fernand‐WidalParisFrance
| | | | - Emmanuel Cognat
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Centre de Neurologie Cognitive, AP‐HP.Nord, Site Lariboisière Fernand‐WidalParisFrance
| | - Julien Dumurgier
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Centre de Neurologie Cognitive, AP‐HP.Nord, Site Lariboisière Fernand‐WidalParisFrance
| | - Karl Götze
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Département de Gériatrie, AP‐HP.Nord, Site BichatParisFrance
| | | | - Agathe Vrillon
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Centre de Neurologie Cognitive, AP‐HP.Nord, Site Lariboisière Fernand‐WidalParisFrance
| | - Claire Paquet
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Centre de Neurologie Cognitive, AP‐HP.Nord, Site Lariboisière Fernand‐WidalParisFrance
| | - Matthieu Lilamand
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Service de Gériatrie, AP‐HP.Nord, Site Lariboisière Fernand‐WidalParisFrance
| |
Collapse
|
2
|
Neamah AS, Wadan AHS, Lafta FM, Elakwa DES. The potential role of targeting the leptin receptor as a treatment for breast cancer in the context of hyperleptinemia: a literature review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3451-3466. [PMID: 39565396 DOI: 10.1007/s00210-024-03592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
Since cancer is becoming a leading cause of death worldwide, efforts should be concentrated on understanding its underlying biological alterations that would be utilized in disease management, especially prevention strategies. Within this context, multiple bodies of evidence have highlighted leptin's practical and promising role, a peptide hormone extracted from adipose and fatty tissues with other adipokines, in promoting the proliferation, migration, and metastatic invasion of breast carcinoma cells. Excessive blood leptin levels and hyperleptinemia increase body fat content and stimulate appetite. Also, high leptin level is believed to be associated with several conditions, including overeating, emotional stress, inflammation, obesity, and gestational diabetes. It has been noted that when leptin has impaired signaling in CNS, causing the lack of its normal function in energy balance, it results in leptin resistance, leading to a rise in its concentration in peripheral tissues. Our research paper will shed highlighting on potentially targeting the leptin receptor and its cellular signaling in suppressing breast cancer progression.
Collapse
Affiliation(s)
- Abbas S Neamah
- Department of Biology, College of Sciences, University of Baghdad, Baghdad, Iraq.
| | - Al-Hassan Soliman Wadan
- Oral Biology Department, Faculty of Dentistry, Galala University, Galala Plateau, Attaka, Suez Governorate, 15888, Egypt
| | - Fadhel M Lafta
- Department of Biology, College of Sciences, University of Baghdad, Baghdad, Iraq
| | - Doha El-Sayed Elakwa
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt
| |
Collapse
|
3
|
Pearce A, Redfern-Nichols T, Wills E, Rosa M, Manulak I, Sisk C, Huang X, Atakpa-Adaji P, Prole DL, Ladds G. Quantitative approaches for studying G protein-coupled receptor signalling and pharmacology. J Cell Sci 2025; 138:JCS263434. [PMID: 39810711 PMCID: PMC11828474 DOI: 10.1242/jcs.263434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
G protein-coupled receptor (GPCR) signalling pathways underlie numerous physiological processes, are implicated in many diseases and are major targets for therapeutics. There are more than 800 GPCRs, which together transduce a vast array of extracellular stimuli into a variety of intracellular signals via heterotrimeric G protein activation and multiple downstream effectors. A key challenge in cell biology research and the pharmaceutical industry is developing tools that enable the quantitative investigation of GPCR signalling pathways to gain mechanistic insights into the varied cellular functions and pharmacology of GPCRs. Recent progress in this area has been rapid and extensive. In this Review, we provide a critical overview of these new, state-of-the-art approaches to investigate GPCR signalling pathways. These include novel sensors, Förster or bioluminescence resonance energy transfer assays, libraries of tagged G proteins and transcriptional reporters. These approaches enable improved quantitative studies of different stages of GPCR signalling, including GPCR activation, G protein activation, second messenger (cAMP and Ca2+) signalling, β-arrestin recruitment and the internalisation and intracellular trafficking of GPCRs.
Collapse
Affiliation(s)
- Abigail Pearce
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Theo Redfern-Nichols
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Edward Wills
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Matthew Rosa
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Iga Manulak
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Claudia Sisk
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Xianglin Huang
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Peace Atakpa-Adaji
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - David L. Prole
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
4
|
Singh R, Jain S, Paliwal V, Verma K, Paliwal S, Sharma S. Does Metabolic Manager Show Encouraging Outcomes in Alzheimer's?: Challenges and Opportunity for Protein Tyrosine Phosphatase 1b Inhibitors. Drug Dev Res 2024; 85:e70026. [PMID: 39655712 DOI: 10.1002/ddr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Protein tyrosine phosphatase 1b (PTP1b) is a member of the protein tyrosine phosphatase (PTP) enzyme group and encoded as PTP1N gene. Studies have evidenced an overexpression of the PTP1b enzyme in metabolic syndrome, anxiety, schizophrenia, neurodegeneration, and neuroinflammation. PTP1b inhibitor negatively regulates insulin and leptin pathways and has been explored as an antidiabetic agent in various clinical trials. Notably, the preclinical studies have shown that recuperating metabolic dysfunction and dyshomeostasis can reverse cognition and could be a possible approach to mitigate multifaceted Alzheimer's disease (AD). PTP1b inhibitor thus has attracted attention in neuroscience, though the development is limited to the preclinical stage, and its exploration in large clinical trials is warranted. This review provides an insight on the development of PTP1b inhibitors from different sources in diabesity. The crosstalk between metabolic dysfunction and insulin insensitivity in AD and type-2 diabetes has also been highlighted. Furthermore, this review presents the significance of PTP1b inhibition in AD based on pathophysiological facets, and recent evidences from preclinical and clinical studies.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Vartika Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Internal Medicine, Division of Cardiology, LSU Health Sciences Center Shreveport, Louisiana, USA
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
5
|
Charisis S, Short MI, Bernal R, Kautz TF, Treviño HA, Mathews J, Dediós AGV, Muhammad JAS, Luckey AM, Aslam A, Himali JJ, Shipp EL, Habes M, Beiser AS, DeCarli C, Scarmeas N, Ramachandran VS, Seshadri S, Maillard P, Satizabal CL. Leptin bioavailability and markers of brain atrophy and vascular injury in the middle age. Alzheimers Dement 2024; 20:5849-5860. [PMID: 39132759 PMCID: PMC11497668 DOI: 10.1002/alz.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION We investigated the associations of leptin markers with cognitive function and magnetic resonance imaging (MRI) measures of brain atrophy and vascular injury in healthy middle-aged adults. METHODS We included 2262 cognitively healthy participants from the Framingham Heart Study with neuropsychological evaluation; of these, 2028 also had available brain MRI. Concentrations of leptin, soluble leptin receptor (sOB-R), and their ratio (free leptin index [FLI]), indicating leptin bioavailability, were measured using enzyme-linked immunosorbent assays. Cognitive and MRI measures were derived using standardized protocols. RESULTS Higher sOB-R was associated with lower fractional anisotropy (FA, β = -0.114 ± 0.02, p < 0.001), and higher free water (FW, β = 0.091 ± 0.022, p < 0.001) and peak-width skeletonized mean diffusivity (PSMD, β = 0.078 ± 0.021, p < 0.001). Correspondingly, higher FLI was associated with higher FA (β = 0.115 ± 0.027, p < 0.001) and lower FW (β = -0.096 ± 0.029, p = 0.001) and PSMD (β = -0.085 ± 0.028, p = 0.002). DISCUSSION Higher leptin bioavailability was associated with better white matter (WM) integrity in healthy middle-aged adults, supporting the putative neuroprotective role of leptin in late-life dementia risk. HIGHLIGHTS Higher leptin bioavailability was related to better preservation of white matter microstructure. Higher leptin bioavailability during midlife might confer protection against dementia. Potential benefits might be even stronger for individuals with visceral obesity. DTI measures might be sensitive surrogate markers of subclinical neuropathology.
Collapse
Affiliation(s)
- Sokratis Charisis
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Meghan I. Short
- Institute for Clinical Research and Health Policy StudiesTufts Medical CenterBostonMassachusettsUSA
| | - Rebecca Bernal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Tiffany F. Kautz
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Hector A. Treviño
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Julia Mathews
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | | | - Jazmyn A. S. Muhammad
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Alison M. Luckey
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Asra Aslam
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Jayandra J. Himali
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Eric L. Shipp
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Mohamad Habes
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Alexa S. Beiser
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Charles DeCarli
- Department of NeurologyUniversity of California, DavisSacramentoCaliforniaUSA
| | - Nikolaos Scarmeas
- 1st Department of NeurologyNational and Kapodistrian University of AthensAthensGreece
- Taub Institute for Research in Alzheimer's Disease and the Aging Brainthe Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | - Vasan S. Ramachandran
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Pauline Maillard
- Department of NeurologyUniversity of California, DavisSacramentoCaliforniaUSA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| |
Collapse
|
6
|
Frago LM, Burgos-Ramos E, Rodríguez-Pérez M, Canelles S, Arilla-Ferreiro E, Argente J, López MG, Barrios V. Reduction in Hippocampal Amyloid-β Peptide (Aβ) Content during Glycine-Proline-Glutamate (Gly-Pro-Glu) Co-Administration Is Associated with Changes in Inflammation and Insulin-like Growth Factor (IGF)-I Signaling. Int J Mol Sci 2024; 25:5716. [PMID: 38891902 PMCID: PMC11172028 DOI: 10.3390/ijms25115716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the deposition in the brain of senile plaques composed of amyloid-β peptides (Aβs) that increase inflammation. An endogenous peptide derived from the insulin-like growth factor (IGF)-I, glycine-proline-glutamate (GPE), has IGF-I-sensitizing and neuroprotective actions. Here, we examined the effects of GPE on Aβ levels and hippocampal inflammation generated by the intracerebroventricular infusion of Aβ25-35 for 2 weeks (300 pmol/day) in ovariectomized rats and the signaling-related pathways and levels of Aβ-degrading enzymes associated with these GPE-related effects. GPE prevented the Aβ-induced increase in the phosphorylation of p38 mitogen-activated protein kinase and the reduction in activation of signal transducer and activator of transcription 3, insulin receptor substrate-1, and Akt, as well as on interleukin (IL)-2 and IL-13 levels in the hippocampus. The functionality of somatostatin, measured as the percentage of inhibition of adenylate cyclase activity and the levels of insulin-degrading enzyme, was also preserved by GPE co-treatment. These findings indicate that GPE co-administration may protect from Aβ insult by changing hippocampal cytokine content and somatostatin functionality through regulation of leptin- and IGF-I-signaling pathways that could influence the reduction in Aβ levels through modulation of levels and/or activity of Aβ proteases.
Collapse
Affiliation(s)
- Laura M. Frago
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute “La Princesa”, E-28009 Madrid, Spain; (L.M.F.); (S.C.); (J.A.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Emma Burgos-Ramos
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, Universidad de Castilla-La Mancha, E-45071 Toledo, Spain; (E.B.-R.); (M.R.-P.)
| | - María Rodríguez-Pérez
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, Universidad de Castilla-La Mancha, E-45071 Toledo, Spain; (E.B.-R.); (M.R.-P.)
| | - Sandra Canelles
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute “La Princesa”, E-28009 Madrid, Spain; (L.M.F.); (S.C.); (J.A.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
| | - Eduardo Arilla-Ferreiro
- Department of Biological Systems, Faculty of Medicine, Universidad de Alcalá, E-28871 Alcala de Henares, Spain;
| | - Jesús Argente
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute “La Princesa”, E-28009 Madrid, Spain; (L.M.F.); (S.C.); (J.A.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, E-28049 Madrid, Spain
| | - Manuela G. López
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Research Institute “La Princesa”, E-28029 Madrid, Spain;
| | - Vicente Barrios
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute “La Princesa”, E-28009 Madrid, Spain; (L.M.F.); (S.C.); (J.A.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
| |
Collapse
|
7
|
Lee S, Byun MS, Yi D, Ahn H, Jung G, Jung JH, Chang YY, Kim K, Choi H, Choi J, Lee JY, Kang KM, Sohn CH, Lee YS, Kim YK, Lee DY. Plasma Leptin and Alzheimer Protein Pathologies Among Older Adults. JAMA Netw Open 2024; 7:e249539. [PMID: 38700863 PMCID: PMC11069086 DOI: 10.1001/jamanetworkopen.2024.9539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/01/2024] [Indexed: 05/06/2024] Open
Abstract
Importance Many epidemiologic studies have suggested that low levels of plasma leptin, a major adipokine, are associated with increased risk of Alzheimer disease (AD) dementia and cognitive decline. Nevertheless, the mechanistic pathway linking plasma leptin and AD-related cognitive decline is not yet fully understood. Objective To examine the association of plasma leptin levels with in vivo AD pathologies, including amyloid-beta (Aβ) and tau deposition, through both cross-sectional and longitudinal approaches among cognitively unimpaired older adults. Design, Setting, and Participants This was a longitudinal cohort study from the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer Disease. Data were collected from January 1, 2014, to December 31, 2020, and data were analyzed from July 11 to September 6, 2022. The study included a total of 208 cognitively unimpaired participants who underwent baseline positron emission tomography (PET) scans for brain Aβ deposition. For longitudinal analyses, 192 participants who completed both baseline and 2-year follow-up PET scans for brain Aβ deposition were included. Exposure Plasma leptin levels as assessed by enzyme-linked immunosorbent assay. Main Outcomes and Measures Baseline levels and longitudinal changes of global Aβ and AD-signature region tau deposition measured by PET scans. Results Among the 208 participants, the mean (SD) age was 66.0 (11.3) years, 114 were women (54.8%), and 37 were apolipoprotein E ε4 carriers (17.8%). Lower plasma leptin levels had a significant cross-sectional association with greater brain Aβ deposition (β = -0.04; 95% CI, -0.09 to 0.00; P = .046), while there was no significant association between plasma leptin levels and tau deposition (β = -0.02; 95% CI, -0.05 to 0.02; P = .41). In contrast, longitudinal analyses revealed that there was a significant association between lower baseline leptin levels and greater increase of tau deposition over 2 years (β = -0.06; 95% CI, -0.11 to -0.01; P = .03), whereas plasma leptin levels did not have a significant association with longitudinal change of Aβ deposition (β = 0.006; 95% CI, 0.00-0.02; P = .27). Conclusions and Relevance The present findings suggest that plasma leptin may be protective for the development or progression of AD pathology, including both Aβ and tau deposition.
Collapse
Affiliation(s)
- Seunghoon Lee
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, Republic of Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Yoon Young Chang
- Department of Psychiatry, Inje University, Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Kyungtae Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeji Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeongmin Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, Republic of Korea
| |
Collapse
|
8
|
Afsar A, Zhang L. Putative Molecular Mechanisms Underpinning the Inverse Roles of Mitochondrial Respiration and Heme Function in Lung Cancer and Alzheimer's Disease. BIOLOGY 2024; 13:185. [PMID: 38534454 DOI: 10.3390/biology13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of oxidative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed in Alzheimer's disease (AD). Well-balanced mitochondrial respiration is important for the proper functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial respiration underlies the development and therapy resistance of many types of cancer, whereas diminished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration, numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS), and its association with cancer is the subject of increased research in recent years. In neural cells, heme is a key component in mitochondrial respiration and the production of ATP. Here, we review the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme in the development of both AD and cancer, this review also identifies some possible biological connections between the development of the two diseases. This review explores shared biological mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding these mechanisms may help advance treatments for both conditions. This review discusses precise information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
9
|
Sindzingre L, Bouaziz-Amar E, Mouton-Liger F, Cognat E, Dumurgier J, Vrillon A, Paquet C, Lilamand M. The role of adiponectin in Alzheimer's disease: A translational review. J Nutr Health Aging 2024; 28:100166. [PMID: 38280832 DOI: 10.1016/j.jnha.2024.100166] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Adiponectin is an adipokine playing a central role in the regulation of energy homeostasis, carbohydrate and lipid metabolism, as well as immunomodulation. The relationship between Alzheimer's disease (AD) and body composition has highlighted the bidirectional crosstalk between AD's pathophysiology and metabolic disorders. This review aimed to report the current state of knowledge about cellular and molecular mechanisms linking adiponectin and AD, in preclinical studies. Then, we reviewed human studies to assess the relationship between adiponectin levels and AD diagnosis. We also examined the risk of incident AD regarding the participants' baseline adiponectin level, as well as the relationship of adiponectin and cognitive decline in patients with AD. We conducted a systematic review, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses reporting guideline, of studies published over the last decade on MEDLINE and Cochrane databases. Overall, we reviewed 34 original works about adiponectin in AD, including 11 preclinical studies, two both preclinical and human studies and 21 human studies. Preclinical studies brought convincing evidence for the neuroprotective role of adiponectin on several key mechanisms of AD. Human studies showed conflicting results regarding the relationship between AD and adiponectin levels, as well as regarding the cross-sectional association between cognitive function and adiponectin levels. Adiponectin did not appear as a predictor of incident AD, nor as a predictor of cognitive decline in patients with AD. Despite solid preclinical evidence suggesting the protective role of adiponectin in AD, inconsistent results in humans supports the need for further research.
Collapse
Affiliation(s)
- Louise Sindzingre
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France.
| | - Elodie Bouaziz-Amar
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Biochemistry Department, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | | | - Emmanuel Cognat
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Julien Dumurgier
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Agathe Vrillon
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Claire Paquet
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Matthieu Lilamand
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Geriatrics Department, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| |
Collapse
|
10
|
Xin S, Xiaoxuan L, Yixuan Z, Zhikang C. Leptin promotes proliferation of human undifferentiated spermatogonia by activating the PI3K/AKT/mTOR pathway. Am J Reprod Immunol 2024; 91:e13811. [PMID: 38282611 DOI: 10.1111/aji.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Male infertility is a common disease affecting male reproductive health. Leptin is an important hormone that regulates various physiological processes, including reproductive function. However, few experimental studies have been carried out to elucidate the mechanism of leptin's effects on male reproductive function. OBJECTIVE The purpose of this study was to investigate the effects of leptin on testicular spermatogenesis and its mechanism, so as to provide potential targets for the treatment of patients with spermatogenic dysfunction. METHODS Testicular tissues were collected from eight prostate cancer patients undergoing surgical castration. GPR125-positive spermatogonia were isolated by two consecutive magnetic activated cell sorting (MACS), followed by incubation with conditioned medium. To identify the signaling pathway(s) involved in the effects of leptin, undifferentiated spermatogonia were treated with different concentrations of leptin and antagonists of leptin-related pathways. The proliferative effect of leptin was evaluated by cell counting using a hemocytometer. Expressions of p-AKT, p-ERK, p-STAT, and p-S6K were determined by western blotting analysis. RESULTS Leptin promoted the growth of human GPR125-positive spermatogonia in a concentration-dependent manner. The most significant proliferative effect was observed using 100 ng/mL leptin after 6 days of culture. Leptin significantly increased the phosphorylation of STAT3, AKT, and ERK in undifferentiated spermatogonia. Phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 inhibited the leptin-induced activation of AKT, ERK, and downstream S6K. Treatment with the mammalian target of rapamycin (mTOR) inhibitor rapamycin also inhibited S6K phosphorylation. Moreover, both LY294002 and rapamycin were found to inhibit the leptin-induced proliferation of undifferentiated spermatogonia. These results suggested that the leptin-induced proliferation of GPR125-positive spermatogonia was dependent on the PI3K/AKT/mTOR pathway. Further exploration of proliferation and apoptotic markers suggested that leptin may alleviate cell apoptosis by regulating the expression of Bax and FasL. CONCLUSIONS A certain concentration of leptin (25∼100 ng/mL) could promote proliferation of undifferentiated spermatogonia, which was mediated by PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Song Xin
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Li Xiaoxuan
- School of Medicine, Qingdao University, Qingdao, China
| | - Zhang Yixuan
- School of Medicine, Qingdao University, Qingdao, China
| | - Cai Zhikang
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
11
|
Wang HY, Cecon E, Dam J, Pei Z, Jockers R, Burns LH. Simufilam Reverses Aberrant Receptor Interactions of Filamin A in Alzheimer's Disease. Int J Mol Sci 2023; 24:13927. [PMID: 37762230 PMCID: PMC10531384 DOI: 10.3390/ijms241813927] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Simufilam is a novel oral drug candidate in Phase 3 clinical trials for Alzheimer's disease (AD) dementia. This small molecule binds an altered form of filamin A (FLNA) that occurs in AD. This drug action disrupts FLNA's aberrant linkage to the α7 nicotinic acetylcholine receptor (α7nAChR), thereby blocking soluble amyloid beta1-42 (Aβ42)'s signaling via α7nAChR that hyperphosphorylates tau. Here, we aimed to clarify simufilam's mechanism. We now show that simufilam reduced Aβ42 binding to α7nAChR with a 10-picomolar IC50 using time-resolved fluorescence resonance energy transfer (TR-FRET), a robust technology to detect highly sensitive molecular interactions. We also show that FLNA links to multiple inflammatory receptors in addition to Toll-like receptor 4 (TLR4) in postmortem human AD brains and in AD transgenic mice: TLR2, C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 5 (CCR5), and T-cell co-receptor cluster of differentiation 4 (CD4). These aberrant FLNA linkages, which can be induced in a healthy control brain by Aβ42 incubation, were disrupted by simufilam. Simufilam reduced inflammatory cytokine release from Aβ42-stimulated human astrocytes. In the AD transgenic mice, CCR5-G protein coupling was elevated, indicating persistent activation. Oral simufilam reduced both the FLNA-CCR5 linkage and the CCR5-G protein coupling in these mice, while restoring CCR5's responsivity to C-C chemokine ligand 3 (CCL3). By disrupting aberrant FLNA-receptor interactions critical to AD pathogenic pathways, simufilam may promote brain health.
Collapse
Affiliation(s)
- Hoau-Yan Wang
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA; (H.-Y.W.); (Z.P.)
- Department of Biology and Neuroscience, Graduate School, City University of New York, New York, NY 10016, USA
| | - Erika Cecon
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014 Paris, France; (E.C.); (J.D.); (R.J.)
| | - Julie Dam
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014 Paris, France; (E.C.); (J.D.); (R.J.)
| | - Zhe Pei
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA; (H.-Y.W.); (Z.P.)
| | - Ralf Jockers
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014 Paris, France; (E.C.); (J.D.); (R.J.)
| | | |
Collapse
|
12
|
Balietti M, Casoli T, Giorgetti B, Colangeli R, Nicoletti C, Solazzi M, Pugliese A, Conti F. Generation and Characterization of the First Murine Model of Alzheimer's Disease with Mutated AβPP Inserted in a BALB/c Background (C.B6/J-APPswe). J Alzheimers Dis 2023:JAD230195. [PMID: 37182890 DOI: 10.3233/jad-230195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Numerous mouse models of Alzheimer's disease (AD) are available, but all suffer from certain limitations, thus prompting further attempts. To date, no one model exists with amyloidopathy in a BALB/c strain. OBJECTIVE To generate and characterize the C.B6/J-APPswe mouse, a model of AD with a mutated human gene for the amyloid-β protein precursor (AβPP) inserted in a BALB/c background. METHODS We analyzed five groups at different ages (3, 6, 9, 12, and 16-18 months) of C.B6/J-APPswe and wild-type mice (50% males and 50% females) for the main hallmarks of AD by western blotting, amyloid-β (Aβ) ELISA, immunocytochemistry, electrophysiology, and behavioral tests. RESULTS The C.B6/J-APPswe mouse displays early AβPP and Aβ production, late amyloid plaques formation, high level of tau phosphorylation, synaptic deficits (reduced density and functional impairment due to a reduced post-synaptic responsiveness), neurodegeneration caused by apoptosis and necroptosis/necrosis, microgliosis, astrocytic abnormalities, and sex-related differences in explorative behavior, anxiety-like behavior, and spatial long-term and working memories. Social housing is feasible despite the intra-cage aggressiveness of male animals. CONCLUSION C.B6/J-APPswe mice develop most of the distinctive features of AD and is a suitable model for the study of brain atrophy mechanisms and of the differences between males and females in the onset of cognitive/non-cognitive deficits.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | | | - Roberto Colangeli
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Cristina Nicoletti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Moreno Solazzi
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Arianna Pugliese
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
- Fondazione di Medicina Molecolare e Terapia Cellulare, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
13
|
Recent Advances in the Knowledge of the Mechanisms of Leptin Physiology and Actions in Neurological and Metabolic Pathologies. Int J Mol Sci 2023; 24:ijms24021422. [PMID: 36674935 PMCID: PMC9860943 DOI: 10.3390/ijms24021422] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Excess body weight is frequently associated with low-grade inflammation. Evidence indicates a relationship between obesity and cancer, as well as with other diseases, such as diabetes and non-alcoholic fatty liver disease, in which inflammation and the actions of various adipokines play a role in the pathological mechanisms involved in these disorders. Leptin is mainly produced by adipose tissue in proportion to fat stores, but it is also synthesized in other organs, where leptin receptors are expressed. This hormone performs numerous actions in the brain, mainly related to the control of energy homeostasis. It is also involved in neurogenesis and neuroprotection, and central leptin resistance is related to some neurological disorders, e.g., Parkinson's and Alzheimer's diseases. In peripheral tissues, leptin is implicated in the regulation of metabolism, as well as of bone density and muscle mass. All these actions can be affected by changes in leptin levels and the mechanisms associated with resistance to this hormone. This review will present recent advances in the molecular mechanisms of leptin action and their underlying roles in pathological situations, which may be of interest for revealing new approaches for the treatment of diseases where the actions of this adipokine might be compromised.
Collapse
|
14
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
15
|
Pratap AA, Holsinger RMD. Altered Brain Leptin and Leptin Receptor Expression in the 5XFAD Mouse Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:E401. [PMID: 33218163 PMCID: PMC7698839 DOI: 10.3390/ph13110401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the accumulation of amyloid plaques and neurofibrillary tangles. Interestingly, individuals with metabolic syndromes share some pathologies with those diagnosed with AD including neuroinflammation, insulin resistance and cognitive deficits. Leptin, an adipocyte-derived hormone, regulates metabolism, energy expenditure and satiety via its receptor, LepR. To investigate the possible involvement of leptin in AD, we examined the distribution of leptin and LepR in the brains of the 5XFAD mouse model of AD, utilizing immunofluorescent staining in young (10-12-weeks; n = 6) and old (48-52-weeks; n = 6) transgenic (Tg) mice, together with age-matched wild-type (WT) controls for both age groups (young-WT, n = 6; old-WT, n = 6). We also used double immunofluorescent staining to examine the distribution of leptin and leptin receptor expression in astrocytes. In young 5XFAD, young-WT and old-WT mice, we observed neuronal and endothelial expression of leptin and LepR throughout the brain. However, neuronal leptin and LepR expression in the old 5XFAD brain was significantly diminished. Reduced neuronal leptin and LepR expression was accompanied by plaque loading and neuroinflammation in the AD brain. A marked increase in astrocytic leptin and LepR was also observed in old 5XFAD mice compared to younger 5XFAD mice. We postulate that astrocytes may utilize LepR signalling to mediate and drive their metabolically active state when degrading amyloid in the AD brain. Overall, these findings provide evidence of impaired leptin and LepR signalling in the AD brain, supporting clinical and epidemiological studies performed in AD patients.
Collapse
Affiliation(s)
- Anishchal A. Pratap
- Brain and Mind Centre, Laboratory of Molecular Neuroscience and Dementia, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Brain and Mind Centre, Laboratory of Molecular Neuroscience and Dementia, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|