1
|
Lim SY, Toh TS, Hor JW, Lim JL, Lit LC, Ahmad-Annuar A, Tay YW, Foo JN, Ng EY, Muthusamy KA, Mohamed Ibrahim N, Ibrahim KA, Tan LCS, Zulkefli J, Khairul Anuar AN, Black K, Lis P, Xie F, Cen Z, Lim KS, Lohmann K, Padmanabhan S, Alessi DR, Luo W, Tan EK, Sammler E, Tan AH. Clinical and functional evidence for the pathogenicity of the LRRK2 p.Arg1067Gln variant. NPJ Parkinsons Dis 2025; 11:34. [PMID: 39988587 PMCID: PMC11847920 DOI: 10.1038/s41531-025-00884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/01/2025] [Indexed: 02/25/2025] Open
Abstract
LRRK2-related Parkinson's disease (LRRK2-PD) is the most frequent form of monogenic PD worldwide, with important therapeutic opportunities, exemplified by the advancement in LRRK2 kinase inhibition studies/trials. However, many LRRK2 variants, especially those found in underrepresented populations, remain classified as variants of uncertain significance (VUS). Leveraging on Malaysian, Singaporean, and mainland Chinese PD datasets (n = 4901), we describe 12 Chinese-ancestry patients harboring the LRRK2 p.Arg1067Gln variant, more than doubling the number of previously reported cases (total n = 23, 87% East Asian, mean age of onset: 53.9 years). We determine that this variant is enriched in East Asian PD patients compared to population controls (OR = 8.0, 95% CI: 3.0-20.9), and provide supportive data for its co-segregation with PD, albeit with incomplete penetrance. Utilizing established experimental workflows, this variant showed increased LRRK2 kinase activity, by ~2-fold compared to wildtype and higher than the p.Gly2019Ser variant. Taken together, p.Arg1067Gln should be reclassified from a VUS to pathogenic for causing LRRK2-PD.
Collapse
Affiliation(s)
- Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tzi Shin Toh
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Wei Hor
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lei Cheng Lit
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Laboratory of Neurogenetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Ebonne Yulin Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kalai Arasu Muthusamy
- Division of Neurosurgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairul Azmi Ibrahim
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Terengganu, Malaysia
| | - Louis Chew Seng Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Jannah Zulkefli
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Immunogenetic Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health Complex, Ministry of Health Malaysia, Setia Alam, Malaysia
| | | | - Kirsten Black
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Pawel Lis
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Zhidong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Kai Shi Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | | | - Dario R Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Eng King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Esther Sammler
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
- Division of Neuroscience, School of Medicine, University of Dundee, Dundee, UK.
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Dy Closas AMF, Tan AH, Tay YW, Hor JW, Toh TS, Lim JL, Lew CY, Cham CY, Yim CCW, Chee KY, Ng CG, Lit LC, Anuar ANK, Lange LM, Fang ZH, Ciga SB, Lohmann K, Klein C, Ahmad-Annuar A, Muthusamy KA, Lim SY. New insights from a Malaysian real-world deep brain stimulation cohort. JOURNAL OF PARKINSON'S DISEASE 2025; 15:189-201. [PMID: 39973484 DOI: 10.1177/1877718x241297715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundThe availability of deep brain stimulation (DBS), a highly efficacious treatment for several movement disorders, remains low in developing countries, with scarce data available on utilization and outcomes.ObjectiveWe characterized the DBS cohort and outcomes at a Malaysian quaternary medical center.MethodsA retrospective chart review was done on DBS-related surgery at the University of Malaya, including clinico-demographic, genetics, and outcomes data focusing on post-operative medication reduction and complications.Results149 Parkinson's disease (PD) patients underwent DBS targeting the subthalamic nucleus. Six had globus pallidus internus DBS (primarily for dystonia). Only 16.1% of patients were government-funded. Of the 133 PD patients operated in the past decade (2013-2022), 25 (18.8%) had disease duration <5 years. At 6-12 months post-DBS, median levodopa-equivalent daily dose (LEDD) reduction was 440.5 [418.9] mg/day, corresponding to a reduction of ≥50% and ≥30% in 42.2% and 69.8% of patients, respectively. LEDD reductions were larger in the early-onset and short-duration subgroups. Three patients (1.9% of 155) had symptomatic intracranial hemorrhage, resulting in stroke in two. Pathogenic monogenic or GBA1 variants were detected in 12/76 (16%) of patients tested, mostly comprising the "severe" GBA1 variant p.L483P (12%).ConclusionsThis is the largest report on DBS from Southeast Asia. The procedures were effective, and complication rates on par with international norms. Our study found a high frequency of GBA1-PD; and included a substantial number of patients with short-duration PD, who had good outcomes. It also highlights regional inequities in access to device-aided therapy.
Collapse
Affiliation(s)
- Alfand Marl F Dy Closas
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Wei Hor
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tzi Shin Toh
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choey Yee Lew
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chun Yoong Cham
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Carolyn Chue Wai Yim
- Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Yoon Chee
- Department of Psychiatry and Mental Health, Hospital Kuala Lumpur, Ministry of Health, Malaysia
| | - Chong Guan Ng
- Department of Psychological Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lei Cheng Lit
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Lara M Lange
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Zih-Hua Fang
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Tübingen, Germany
| | - Sara Bandres Ciga
- Center for Alzheimer's Disease and Related Dementias (CARD), National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Katja Lohmann
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Christine Klein
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kalai Arasu Muthusamy
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Lim SY, Klein C. Parkinson's Disease is Predominantly a Genetic Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:467-482. [PMID: 38552119 PMCID: PMC11091652 DOI: 10.3233/jpd-230376] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/10/2024] [Indexed: 04/06/2024]
Abstract
The discovery of a pathogenic variant in the alpha-synuclein (SNCA) gene in the Contursi kindred in 1997 indisputably confirmed a genetic cause in a subset of Parkinson's disease (PD) patients. Currently, pathogenic variants in one of the seven established PD genes or the strongest known risk factor gene, GBA1, are identified in ∼15% of PD patients unselected for age at onset and family history. In this Debate article, we highlight multiple avenues of research that suggest an important - and in some cases even predominant - role for genetics in PD aetiology, including familial clustering, high rates of monogenic PD in selected populations, and complete penetrance with certain forms. At first sight, the steep increase in PD prevalence exceeding that of other neurodegenerative diseases may argue against a predominant genetic etiology. Notably, the principal genetic contribution in PD is conferred by pathogenic variants in LRRK2 and GBA1 and, in both cases, characterized by an overall late age of onset and age-related penetrance. In addition, polygenic risk plays a considerable role in PD. However, it is likely that, in the majority of PD patients, a complex interplay of aging, genetic, environmental, and epigenetic factors leads to disease development.
Collapse
Affiliation(s)
- Shen-Yang Lim
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, Division of Neurology, University of Malaya, Kuala Lumpur, Malaysia
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| |
Collapse
|
4
|
Jagota P, Lim S, Pal PK, Lee J, Kukkle PL, Fujioka S, Shang H, Phokaewvarangkul O, Bhidayasiri R, Mohamed Ibrahim N, Ugawa Y, Aldaajani Z, Jeon B, Diesta C, Shambetova C, Lin C. Genetic Movement Disorders Commonly Seen in Asians. Mov Disord Clin Pract 2023; 10:878-895. [PMID: 37332644 PMCID: PMC10272919 DOI: 10.1002/mdc3.13737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 11/21/2023] Open
Abstract
The increasing availability of molecular genetic testing has changed the landscape of both genetic research and clinical practice. Not only is the pace of discovery of novel disease-causing genes accelerating but also the phenotypic spectra associated with previously known genes are expanding. These advancements lead to the awareness that some genetic movement disorders may cluster in certain ethnic populations and genetic pleiotropy may result in unique clinical presentations in specific ethnic groups. Thus, the characteristics, genetics and risk factors of movement disorders may differ between populations. Recognition of a particular clinical phenotype, combined with information about the ethnic origin of patients could lead to early and correct diagnosis and assist the development of future personalized medicine for patients with these disorders. Here, the Movement Disorders in Asia Task Force sought to review genetic movement disorders that are commonly seen in Asia, including Wilson's disease, spinocerebellar ataxias (SCA) types 12, 31, and 36, Gerstmann-Sträussler-Scheinker disease, PLA2G6-related parkinsonism, adult-onset neuronal intranuclear inclusion disease (NIID), and paroxysmal kinesigenic dyskinesia. We also review common disorders seen worldwide with specific mutations or presentations that occur frequently in Asians.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Shen‐Yang Lim
- Division of Neurology, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Pramod Kumar Pal
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government‐Seoul National University Boramae Medical Center & Seoul National University College of MedicineSeoulRepublic of Korea
| | - Prashanth Lingappa Kukkle
- Center for Parkinson's Disease and Movement DisordersManipal HospitalBangaloreIndia
- Parkinson's Disease and Movement Disorders ClinicBangaloreIndia
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of MedicineFukuokaJapan
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
- The Academy of Science, The Royal Society of ThailandBangkokThailand
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Yoshikazu Ugawa
- Deprtment of Human Neurophysiology, Faculty of MedicineFukushima Medical UniversityFukushimaJapan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical ComplexDhahranSaudi Arabia
| | - Beomseok Jeon
- Department of NeurologySeoul National University College of MedicineSeoulRepublic of Korea
- Movement Disorder CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Cid Diesta
- Section of Neurology, Department of NeuroscienceMakati Medical Center, NCRMakatiPhilippines
| | | | - Chin‐Hsien Lin
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
5
|
Tay YW, Tan AH, Lim JL, Lohmann K, Ibrahim KA, Abdul Aziz Z, Chin YT, Mawardi AS, Lim TT, Looi I, Chia YK, Ooi JCE, Cheah WK, Dy Closas AMF, Lit LC, Hor JW, Toh TS, Muthusamy KA, Bauer P, Skrahin V, Rolfs A, Klein C, Ahmad-Annuar A, Lim SY. Genetic study of early-onset Parkinson's disease in the Malaysian population. Parkinsonism Relat Disord 2023; 111:105399. [PMID: 37209484 DOI: 10.1016/j.parkreldis.2023.105399] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 04/11/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND About 5-10% of Parkinson's disease (PD) cases are early onset (EOPD), with several genes implicated, including GBA1, PRKN, PINK1, and SNCA. The spectrum and frequency of mutations vary across populations and globally diverse studies are crucial to comprehensively understand the genetic architecture of PD. The ancestral diversity of Southeast Asians offers opportunities to uncover a rich PD genetics landscape, and identify common regional mutations and new pathogenic variants. OBJECTIVES This study aimed to investigate the genetic architecture of EOPD in a multi-ethnic Malaysian cohort. METHODS 161 index patients with PD onset ≤50 years were recruited from multiple centers across Malaysia. A two-step approach to genetic testing was used, combining a next-generation sequencing-based PD gene panel and multiplex ligation-dependent probe amplification (MLPA). RESULTS Thirty-five patients (21.7%) carried pathogenic or likely pathogenic variants involving (in decreasing order of frequency): GBA1, PRKN, PINK1, DJ-1, LRRK2, and ATP13A2. Pathogenic/likely pathogenic variants in GBA1 were identified in thirteen patients (8.1%), and were also commonly found in PRKN and PINK1 (11/161 = 6.8% and 6/161 = 3.7%, respectively). The overall detection rate was even higher in those with familial history (48.5%) or age of diagnosis ≤40 years (34.8%). PRKN exon 7 deletion and the PINK1 p.Leu347Pro variant appear to be common among Malay patients. Many novel variants were found across the PD-related genes. CONCLUSIONS This study provides novel insights into the genetic architecture of EOPD in Southeast Asians, expands the genetic spectrum in PD-related genes, and highlights the importance of diversifying PD genetic research to include under-represented populations.
Collapse
Affiliation(s)
- Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ai Huey Tan
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, University of Malaya, Kuala Lumpur, Malaysia; Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Khairul Azmi Ibrahim
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | - Zariah Abdul Aziz
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | - Yen Theng Chin
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | | | | | - Irene Looi
- Department of Neurology, Seberang Jaya Hospital, Penang, Malaysia
| | - Yuen Kang Chia
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Joshua Chin Ern Ooi
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Wee Kooi Cheah
- Department of Geriatrics, Taiping Hospital, Taiping, Malaysia
| | - Alfand Marl F Dy Closas
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, University of Malaya, Kuala Lumpur, Malaysia; Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lei Cheng Lit
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Wei Hor
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, University of Malaya, Kuala Lumpur, Malaysia; Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tzi Shin Toh
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, University of Malaya, Kuala Lumpur, Malaysia; Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kalai Arasu Muthusamy
- Division of Neurosurgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Peter Bauer
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | - Volha Skrahin
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany; Arcensus, Goethestrasse 20, 18055, Rostock, Germany
| | - Arndt Rolfs
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany; Arcensus, Goethestrasse 20, 18055, Rostock, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany.
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Shen-Yang Lim
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, University of Malaya, Kuala Lumpur, Malaysia; Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Yan J, Yu W, Wang G, Lu C, Liu C, Jiang L, Jiang Z, Liang Z, Liu D. LRRK2 deficiency mitigates colitis progression by favoring resolution of inflammation and restoring homeostasis of gut microbiota. Genomics 2022; 114:110527. [PMID: 36455749 DOI: 10.1016/j.ygeno.2022.110527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
Leucine rich-repeat kinase 2 (LRRK2) has been considered a susceptibility gene for ulcerative colitis (UC), and its protein abundance was enhanced in the peripheral blood mononuclear cells (PBMCs) from UC cohorts as compared to healthy volunteers. In preclinical models of colitis, Lrrk2 deficiency ameliorated dextran sodium sulfate (DSS)-induced colitis progression, whereas the processes were aggravated by R1441C mutation. While intestinal macrophages (MФs) from Lrrk2 knock-out (Lrrk2-/-) mice exhibited a tendency to transit to alternatively activated MФs, R1441C MФs mutation facilitated the pro-inflammatory phenotype polarization, determined by RNA sequencing and qPCR. Moreover, we characterized their microbiota profiles and found that loss of Lrrk2 increased the bacterial richness and altered bacterial community structure, and this shift contributed to the alleviation of colitis development and progression. We proposed that Lrrk2 deficiency promotes M2 MФ transition and facilitates probiotics colonization, providing a protective role during colitis.
Collapse
Affiliation(s)
- Jing Yan
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China.
| | - Wei Yu
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China
| | - Guoliang Wang
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China
| | - Chang Lu
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China
| | - Zizheng Jiang
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China
| | - Zhenghao Liang
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China
| | - Dong Liu
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining city, Shandong province 272067, China
| |
Collapse
|
7
|
Turski P, Chaberska I, Szukało P, Pyska P, Milanowski Ł, Szlufik S, Figura M, Hoffman-Zacharska D, Siuda J, Koziorowski D. Review of the epidemiology and variability of LRRK2 non-p.Gly2019Ser pathogenic mutations in Parkinson's disease. Front Neurosci 2022; 16:971270. [PMID: 36203807 PMCID: PMC9530194 DOI: 10.3389/fnins.2022.971270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a heterogenous neurodegenerative disorder. Genetic factors play a significant role, especially in early onset and familial cases. Mutations are usually found in the LRRK2 gene, but their importance varies. Some mutations, such as p.Arg1441Cys or other alterations in the 1441 codon, show clear correlation with PD, whereas others are risk factors found also in healthy populations or have neglectable consequences. They also exhibit various prevalence among different populations. The aim of this paper is to sum up the current knowledge regarding the epidemiology and pathogenicity of LRRK2 mutations, other than the well-established p.Gly2019Ser. We performed a review of the literature using PubMed database. 103 publications met our inclusion criteria. p.Arg1441Cys, p.Arg1441Gly, p.Arg1441His, p.Arg1441Ser are the most common pathogenic mutations in European populations, especially Hispanic. p.Asn1437His is pathogenic and occurs mostly in the Scandinavians. p.Asn1437Ser and p.Asn1437Asp have been reported in German and Chinese cohorts respectively. p.Ile2020Thr is a rare pathogenic mutation described only in a Japanese cohort. p.Met1869Thr has only been reported in Caucasians. p.Tyr1699Cys, p.Ile1122Val have only been found in one family each. p.Glu1874Ter has been described in just one patient. We found no references concerning mutation p.Gln416Ter. We also report the first case of a Polish PD family whose members carried p.Asn1437His.
Collapse
Affiliation(s)
- Paweł Turski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Chaberska
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Szukało
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Paulina Pyska
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Milanowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Monika Figura
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | | | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Lim JL, Lohmann K, Tan AH, Tay YW, Ibrahim KA, Abdul Aziz Z, Mawardi AS, Puvanarajah SD, Lim TT, Looi I, Ooi JCE, Chia YK, Muthusamy KA, Bauer P, Rolfs A, Klein C, Ahmad-Annuar A, Lim SY. Glucocerebrosidase (GBA) gene variants in a multi-ethnic Asian cohort with Parkinson's disease: mutational spectrum and clinical features. J Neural Transm (Vienna) 2021; 129:37-48. [PMID: 34779914 DOI: 10.1007/s00702-021-02421-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
GBA variants are associated with increased risk and earlier onset of Parkinson's disease (PD), and more rapid disease progression especially with "severe" variants typified by p.L483P. GBA mutation screening studies from South-East Asia, with > 650 million inhabitants of diverse ancestries, are very limited. We investigated the spectrum of GBA variants, and associated clinico-demographic features, in a multi-ethnic PD cohort in Malaysia. Patients (n = 496) were recruited from seven centres, primarily of Chinese (45%), Malay (37%), and Indian (13%) ethnicities. All GBA coding exons were screened using a next-generation sequencing-based PD gene panel and verified with Sanger sequencing. We identified 14 heterozygous GBA alleles consisting of altogether 17 missense variants (8 classified as pathogenic or likely pathogenic for PD) in 25 (5.0%) patients, with a substantially higher yield among early (< 50 years) vs. late-onset patients across all three ethnicities (9.1-13.2% vs. 1.0-3.2%). The most common variant was p.L483P (including RecNciI, n = 11, 2.2%), detected in all three ethnicities. Three novel variants/recombinant alleles of uncertain significance were found; p.P71L, p.L411P, and p.L15S(;)S16G(;)I20V. The common European risk variants, p.E365K, p.T408M, and p.N409S, were not detected. A severe disease course was noted in the majority of GBA-variant carriers, across a range of detected variants. We report a potentially novel observation of spine posture abnormalities in GBA-variant carriers. This represents the largest study on GBA variation from South-East Asia, and highlights that these populations, especially those with EOPD, would be relevant for studies including clinical trials targeting GBA pathways.
Collapse
Affiliation(s)
- Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Ai Huey Tan
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia.,Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
| | - Khairul Azmi Ibrahim
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | - Zariah Abdul Aziz
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | | | | | - Thien Thien Lim
- Island Hospital, Penang, Malaysia.,Penang General Hospital, Penang, Malaysia
| | - Irene Looi
- Department of Medicine and Clinical Research Centre, Hospital Seberang Jaya, Penang, Malaysia
| | - Joshua Chin Ern Ooi
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Yuen Kang Chia
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Kalai Arasu Muthusamy
- Division of Neurosurgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Peter Bauer
- Centogene AG, Am Strande 7, 18057, Rostock, Germany
| | - Arndt Rolfs
- Centogene AG, Am Strande 7, 18057, Rostock, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Shen-Yang Lim
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia. .,Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Kaiyrzhanov R, Aitkulova A, Vandrovcova J, Murphy D, Zharkinbekova N, Shashkin C, Akhmetzhanov V, Kaishibayeva G, Karimova A, Myrzayev Z, Murray M, Khaibullin T, Hardy J, Houlden H. A glimpse of the genetics of young-onset Parkinson's disease in Central Asia. Mol Genet Genomic Med 2021; 9:e1671. [PMID: 33818904 PMCID: PMC8222829 DOI: 10.1002/mgg3.1671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 11/24/2022] Open
Abstract
Background Knowledge of the genetic background of many human diseases is currently lacking from genetically undiscovered regions, including Central Asia. Kazakhstan is the first Central Asian country where the genetic studies of Parkinson's disease (PD) have been emerging since it had become a member of the International Parkinson Disease Genomics Consortium. Here we report on the results of whole‐exome sequencing (WES) in 50 young‐onset PD (YOPD) cases from Kazakhstan. Methodology WES was performed on 50 unrelated individuals with YOPD from Kazakhstan. Exome data were screened for novel/ultra‐rare deleterious variants in known and candidate PD genes. Copy number variants and small indels were also called. Results Only three cases (6%) were found to be positive for known PD genes including two unrelated familial PD cases with LRRK2 p.(Arg1441Cys) and one case with a homozygous pathogenic PRKN p.(Arg84Trp) variant. Four cases had novel and ultra‐rare variants of uncertain significance in LRRK2, DNAJC13, and VPS35. Novel deleterious variants were found in candidate Mendelian PD genes including CSMD1, TNR, EIF4G1, and ATP13A3. Eight cases harbored the East Asian‐specific LRRK2 p.(Ala419Val) variant. Conclusions The low diagnostic yield in our study might imply that a significant proportion of YOPD cases in Central Asia remains unresolved. Therefore, a better understanding of the genetic architecture of PD among populations of Central Asian ancestry and the pathogenicity of numerous rare variants should be further investigated. WES is a valuable technique for large‐scale YOPD genetic studies in Central Asia.
Collapse
Affiliation(s)
- Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Akbota Aitkulova
- Department of Molecular Genetics, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Jana Vandrovcova
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Chingiz Shashkin
- Contemporary Neurology and Neurorehabilitation Clinic "Shashkin Clinic", Almaty, Kazakhstan
| | - Vadim Akhmetzhanov
- Department of Neurology, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - Gulnaz Kaishibayeva
- Institute of Neurology and Neurorehabilitation Named After Smagul Kaishibayev, Almaty, Kazakhstan
| | - Altynay Karimova
- Kazakh Medical University of Continuing Study, Almaty, Kazakhstan
| | - Zhanybek Myrzayev
- Contemporary Neurology and Neurorehabilitation Clinic "Shashkin Clinic", Almaty, Kazakhstan
| | - Malgorzata Murray
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Talgat Khaibullin
- Department of Neurology, Semey Medical University, Semey, Kazakhstan
| | - John Hardy
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| |
Collapse
|