1
|
Nordbø OP, Eikrem Ø, Kalra PA, Marti HP, Furriol J. Longitudinal serum proteomics identifies inflammatory and metabolic pathways in hypertensive nephrosclerosis progression. Clin Proteomics 2025; 22:17. [PMID: 40325372 DOI: 10.1186/s12014-025-09537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 04/07/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Hypertensive nephrosclerosis (HN) is a major cause of end-stage renal disease; however, few longitudinal studies have employed serum proteomics to document its progression. This study aimed to identify potential circulating biomarkers indicative of disease progression in HN by performing serum proteomic analysis at two time points in patients with progressive and stable disease. METHODS Forty-one patients diagnosed with HN were recruited from the UK Salford Kidney Study, with serum samples collected at baseline and follow-up (1.5-10 years after baseline). Twenty-five patients experienced stable disease course, while 16 patients experienced progressive disease. Proteomics was performed via tandem mass tag labelling and liquid chromatography-tandem mass-spectrometry (LC-MS). Pathway analysis was performed on all significantly abundant proteins, as was network analysis of circulating proteins that are abundant in the kidney according to the Human Protein Atlas. RESULTS Pathway analysis revealed significant enrichment in pathways related to inflammation and infection, including complement and coagulation cascades, as well as metabolic processes in patients with disease progression. Marker abundance levels related to adhesion and the ECM were also altered in progresssive disease follow-up, compared to stable disease follow-up. CONCLUSION The observed changes in inflammatory and adhesion-related pathways may offer valuable insights into the mechanisms driving HN progression and potential targets for intervention.
Collapse
Affiliation(s)
- Ole Petter Nordbø
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- Department of Medicine, Haugesund Hospital, Helse Fonna, Haugesund, Norway.
| | - Øystein Eikrem
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Philip A Kalra
- Department of Nephrology, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Bucci T, Menichelli D, Palumbo IM, Pastori D, Ames PRJ, Lip GYH, Pignatelli P. Statins as an Adjunctive Antithrombotic Agent in Thrombotic Antiphospholipid Syndrome: Mechanisms and Clinical Implications. Cells 2025; 14:353. [PMID: 40072082 PMCID: PMC11899080 DOI: 10.3390/cells14050353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
The thrombotic physiopathology of antiphospholipid syndrome (APS) is complex, heterogeneous, and dynamic. While venous thromboembolism (VTE) is the most common initial presentation, arterial thrombotic events (ATE) become more frequent in advanced stages and are associated with high morbidity and mortality. Despite the use of oral anticoagulants (OACs), thrombotic APS remains associated with a high risk of recurrent thrombosis. Given their potential antithrombotic effects capable of reducing the risk of both VTE and ATE, statins have been proposed as an adjunctive therapy to OACs for patients with APS and recurrent thrombosis. However, this recommendation is primarily based on studies not specifically conducted in APS populations, with only preclinical data or evidence from retrospective observational studies available from APS patients cohorts. For these reasons, this narrative review aims to synthesise the studies evaluating the potential antithrombotic effects of statins in patients with APS, highlighting the progress made and identifying areas for future research.
Collapse
Affiliation(s)
- Tommaso Bucci
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool and Heart and Chest Hospital, Liverpool, L7 8TX, UK; (T.B.); (D.P.); (G.Y.H.L.)
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.M.); (I.M.P.)
| | - Danilo Menichelli
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.M.); (I.M.P.)
- Department of General and Specialized Surgery “Paride Stefanini”, Sapienza University of Rome, 00185 Rome, Italy
| | - Ilaria Maria Palumbo
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.M.); (I.M.P.)
- Department of General and Specialized Surgery “Paride Stefanini”, Sapienza University of Rome, 00185 Rome, Italy
| | - Daniele Pastori
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool and Heart and Chest Hospital, Liverpool, L7 8TX, UK; (T.B.); (D.P.); (G.Y.H.L.)
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.M.); (I.M.P.)
- IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Italy
| | - Paul R. J. Ames
- Immune Response and Vascular Disease, iNOVA, 4Health, Nova Medical School, Nova University Lisbon, 1099-085 Lisbon, Portugal;
- Department of Haematology, Dumfries Royal Infirmary, Cargenbridge, Dumfries DG2 8RX, UK
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool and Heart and Chest Hospital, Liverpool, L7 8TX, UK; (T.B.); (D.P.); (G.Y.H.L.)
- Danish Centre for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
- Department of Cardiology, Lipidology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.M.); (I.M.P.)
| |
Collapse
|
3
|
Ronen D, Rokach Y, Abedat S, Qadan A, Daana S, Amir O, Asleh R. Human Gut Microbiota in Cardiovascular Disease. Compr Physiol 2024; 14:5449-5490. [PMID: 39109979 DOI: 10.1002/cphy.c230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut ecosystem, termed microbiota, is composed of bacteria, archaea, viruses, protozoa, and fungi and is estimated to outnumber human cells. Microbiota can affect the host by multiple mechanisms, including the synthesis of metabolites and toxins, modulating inflammation and interaction with other organisms. Advances in understanding commensal organisms' effect on human conditions have also elucidated the importance of this community for cardiovascular disease (CVD). This effect is driven by both direct CV effects and conditions known to increase CV risk, such as obesity, diabetes mellitus (DM), hypertension, and renal and liver diseases. Cardioactive metabolites, such as trimethylamine N -oxide (TMAO), short-chain fatty acids (SCFA), lipopolysaccharides, bile acids, and uremic toxins, can affect atherosclerosis, platelet activation, and inflammation, resulting in increased CV incidence. Interestingly, this interaction is bidirectional with microbiota affected by multiple host conditions including diet, bile acid secretion, and multiple diseases affecting the gut barrier. This interdependence makes manipulating microbiota an attractive option to reduce CV risk. Indeed, evolving data suggest that the benefits observed from low red meat and Mediterranean diet consumption can be explained, at least partially, by the changes that these diets may have on the gut microbiota. In this article, we depict the current epidemiological and mechanistic understanding of the role of microbiota and CVD. Finally, we discuss the potential therapeutic approaches aimed at manipulating gut microbiota to improve CV outcomes. © 2024 American Physiological Society. Compr Physiol 14:5449-5490, 2024.
Collapse
Affiliation(s)
- Daniel Ronen
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Rokach
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abed Qadan
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samar Daana
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Nihei W, Kato A, Himeno T, Kondo M, Nakamura J, Kamiya H, Sango K, Kato K. Hyperglycaemia Aggravates Oxidised Low-Density Lipoprotein-Induced Schwann Cell Death via Hyperactivation of Toll-like Receptor 4. Neurol Int 2024; 16:370-379. [PMID: 38525707 PMCID: PMC10961767 DOI: 10.3390/neurolint16020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Increased low-density lipoprotein levels are risk factors for diabetic neuropathy. Diabetes mellitus is associated with elevated metabolic stress, leading to oxidised low-density lipoprotein formation. Therefore, it is important to investigate the mechanisms underlying the pathogenesis of diabetic neuropathy in diabetes complicated by dyslipidaemia with increased levels of oxidised low-density lipoprotein. Here, we examined the effects of hyperglycaemia and oxidised low-density lipoprotein treatment on Schwann cell death and its underlying mechanisms. Immortalised mouse Schwann cells were treated with oxidised low-density lipoprotein under normo- or hyperglycaemic conditions. We observed that oxidised low-density lipoprotein-induced cell death increased under hyperglycaemic conditions compared with normoglycaemic conditions. Moreover, hyperglycaemia and oxidised low-density lipoprotein treatment synergistically upregulated the gene and protein expression of toll-like receptor 4. Pre-treatment with TAK-242, a selective toll-like receptor 4 signalling inhibitor, attenuated hyperglycaemia- and oxidised low-density lipoprotein-induced cell death and apoptotic caspase-3 pathway. Our findings suggest that the hyperactivation of toll-like receptor 4 signalling by hyperglycaemia and elevated oxidised low-density lipoprotein levels synergistically exacerbated diabetic neuropathy; thus, it can be a potential therapeutic target for diabetic neuropathy.
Collapse
Affiliation(s)
- Wataru Nihei
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, Nagoya 464-8650, Japan; (W.N.); (A.K.)
| | - Ayako Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, Nagoya 464-8650, Japan; (W.N.); (A.K.)
| | - Tatsuhito Himeno
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan (M.K.); (H.K.)
| | - Masaki Kondo
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan (M.K.); (H.K.)
| | - Jiro Nakamura
- Department of Innovative Diabetes Therapy, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan;
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan (M.K.); (H.K.)
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Koichi Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, Nagoya 464-8650, Japan; (W.N.); (A.K.)
| |
Collapse
|
5
|
Shu YY, Hu LL, Yang L, Chu HK, Ye J, Jin Y. Rifaximin Prevents Intestinal Barrier Dysfunction and Alleviates Liver Injury in MCT-induced HSOS Mice. Curr Med Sci 2023; 43:1183-1194. [PMID: 37950130 DOI: 10.1007/s11596-023-2801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/22/2022] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Rifaximin is an effective component of treatment strategies for liver and intestinal diseases. However, the efficacy of rifaximin in hepatic sinusoidal obstruction syndrome (HSOS) has not been explored. The present study aimed to investigate the efficacy and mechanism of rifaximin in HSOS. METHODS An HSOS model was established in mice through the administration of monocrotaline (MCT, 800 mg/kg), and part of the HSOS mice were intragastrically administered with rifaximin. Then, the efficacy of rifaximin in HSOS was evaluated based on the liver pathological findings, liver proinflammatory cytokines, and alanine aminotransferase and aspartate aminotransferase levels. The Ussing chamber was used to evaluate the intestinal permeability, and tight junction (TJ) proteins were measured by Western blotting and real-time polymerase chain reaction to evaluate the intestinal barrier integrity. Then, the serum proinflammatory cytokine levels were evaluated by enzyme-linked immunosorbent assay. Afterwards, an in vitro experiment was performed to determine the relationship between rifaximin and TJ proteins. RESULTS Rifaximin effectively alleviated the MCT-induced HSOS liver injury, suppressed the expression of liver proinflammatory cytokines, and reduced the serum levels of tumor necrosis factor-alpha and interleukin-6. Furthermore, rifaximin reduced the intestinal permeability, improved the intestinal barrier integrity, and promoted the expression of TJ proteins. CONCLUSION The results revealed that the intestinal barrier integrity was destroyed in MCT-induced HSOS. The significant alleviation of MCT-induced HSOS induced by rifaximin might be correlated to the repairment of intestinal barrier integrity via the regulation of the TJ protein expression.
Collapse
Affiliation(s)
- Yan-Yun Shu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Li-Lin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Kuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin Ye
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Abstract
Systemic inflammation has been suggested to have a pivotal role in atherothrombosis, but the factors that trigger systemic inflammation have not been fully elucidated. Lipopolysaccharide (LPS) is a component of the membrane of Gram-negative bacteria present in the gut that can translocate into the systemic circulation, causing non-septic, low-grade endotoxaemia. Gut dysbiosis is a major determinant of low-grade endotoxaemia via dysfunction of the intestinal barrier scaffold, which is a prerequisite for LPS translocation into the systemic circulation. Experimental studies have demonstrated that LPS is present in atherosclerotic arteries but not in normal arteries. In atherosclerotic plaques, LPS promotes a pro-inflammatory status that can lead to plaque instability and thrombus formation. Low-grade endotoxaemia affects several cell types, including leukocytes, platelets and endothelial cells, leading to inflammation and clot formation. Low-grade endotoxaemia has been described in patients at risk of or with overt cardiovascular disease, in whom low-grade endotoxaemia was associated with atherosclerotic burden and its clinical sequelae. In this Review, we describe the mechanisms favouring the development of low-grade endotoxaemia, focusing on gut dysbiosis and changes in gut permeability; the plausible biological mechanisms linking low-grade endotoxaemia and atherothrombosis; the clinical studies suggesting that low-grade endotoxaemia is a risk factor for cardiovascular events; and the potential therapeutic tools to improve gut permeability and eventually eliminate low-grade endotoxaemia.
Collapse
|
7
|
Fan L, Yao Q, Wu H, Wen F, Wang J, Li H, Zheng N. Protective effects of recombinant lactoferrin with different iron saturations on enteritis injury in young mice. J Dairy Sci 2022; 105:4791-4803. [DOI: 10.3168/jds.2021-21428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/16/2022] [Indexed: 01/18/2023]
|
8
|
Tian Z, Li Z, Guo T, Li H, Mu Y. Atorvastatin suppresses lipopolysaccharide-induced inflammation in human coronary artery endothelial cells. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-979020200001181092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Zhen Tian
- Northeast Agricultural University, China; Harbin Medical University, China
| | | | - Tian Guo
- Harbin Medical University, China
| | - He Li
- Harbin Medical University, China
| | | |
Collapse
|
9
|
Alshareef GH, Mohammed AE, Abumaree M, Basmaeil YS. Phenotypic and Functional Responses of Human Decidua Basalis Mesenchymal Stem/Stromal Cells to Lipopolysaccharide of Gram-Negative Bacteria. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2021; 14:51-69. [PMID: 34754198 PMCID: PMC8572118 DOI: 10.2147/sccaa.s332952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
Introduction Human decidua basalis mesenchymal stem cells (DBMSCs) are potential therapeutics for the medication to cure inflammatory diseases, like atherosclerosis. The current study investigates the capacity of DBMSCs to stay alive and function in a harmful inflammatory environment induced by high levels of lipopolysaccharide (LPS). Methods DBMSCs were exposed to different levels of LPS, and their viability and functional responses (proliferation, adhesion, and migration) were examined. Furthermore, DBMSCs’ expression of 84 genes associated with their functional activities in the presence of LPS was investigated. Results Results indicated that LPS had no significant effect on DBMSCs’ adhesion, migration, and proliferation (24 h and 72 h) (p > 0.05). However, DBMSCs’ proliferation was significantly reduced at 10 µg/mL of LPS at 48 h (p < 0.05). In addition, inflammatory cytokines and receptors related to adhesion, proliferation, migration, and differentiation were significantly overexpressed when DBMSCs were treated with 10 µg/mL of LPS (p < 0.05). Conclusion These results indicated that DBMSCs maintained their functional activities (proliferation, adhesion, and migration) in the presence of LPS as there was no variation between the treated DBMSCs and the control group. This study will lay the foundation for future preclinical and clinical studies to confirm the appropriateness of DBMSCs as a potential medication to cure inflammatory diseases, like atherosclerosis.
Collapse
Affiliation(s)
- Ghofran Hasan Alshareef
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Afrah E Mohammed
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Mohammed Abumaree
- Stem Cell & Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Yasser S Basmaeil
- Stem Cell & Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Alhajri N, Khursheed R, Ali MT, Abu Izneid T, Al-Kabbani O, Al-Haidar MB, Al-Hemeiri F, Alhashmi M, Pottoo FH. Cardiovascular Health and The Intestinal Microbial Ecosystem: The Impact of Cardiovascular Therapies on The Gut Microbiota. Microorganisms 2021; 9:2013. [PMID: 34683334 PMCID: PMC8541580 DOI: 10.3390/microorganisms9102013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023] Open
Abstract
It has become evident over the past several years that the intestinal microbial ecosystem plays a critical role in the development and prevention of cardiovascular diseases (CVDs) and other metabolic disorders, such as hypertension, obesity, diabetes mellitus, and metabolic syndrome. The intestinal microbiota ecosystem functions as a major virtual endocrine organ that interacts and responds to molecules' signals within the host. Several meta-organismal pathways are involved in the gut-host interaction, including trimethylamine-N-oxide (TMAO) and short-chain fatty acids (SCFA). Host phenotype and cardiovascular diseases (CVDs) varying from hypertension, insulin resistance, and obesity to more specific inflammatory processes, such as atherosclerosis and hypercoagulability, have shown to be affected by the gut-host interaction. Additionally, several studies that involved animals and humans demonstrated a striking connection between the development of new CVDs and an imbalance in the gut microbiota composition along with the presence of their derived metabolites. Through this review article, we aim to evaluate the role of the normal gut microbiota ecosystem, its association with CVDs, effects of the therapies used to control and manage CVDs in the gut microbiota environment and explore potential therapeutic interventions to amplify disease outcomes in patients with CVDs.
Collapse
Affiliation(s)
- Noora Alhajri
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (O.A.-K.); (M.B.A.-H.); (F.A.-H.); (M.A.)
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 11001, United Arab Emirates
| | - Rubiya Khursheed
- Department of Pharmaceutical Sciences, Lovely Professional University, Punjab 144403, India;
| | - Mohammad Taher Ali
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia; (M.T.A.); (F.H.P.)
| | - Tareq Abu Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi P.O. Box 112612, United Arab Emirates;
| | - Oumaima Al-Kabbani
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (O.A.-K.); (M.B.A.-H.); (F.A.-H.); (M.A.)
| | - Mahdia B. Al-Haidar
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (O.A.-K.); (M.B.A.-H.); (F.A.-H.); (M.A.)
| | - Fatima Al-Hemeiri
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (O.A.-K.); (M.B.A.-H.); (F.A.-H.); (M.A.)
| | - Mohamed Alhashmi
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (O.A.-K.); (M.B.A.-H.); (F.A.-H.); (M.A.)
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia; (M.T.A.); (F.H.P.)
| |
Collapse
|
11
|
Gorabi AM, Kiaie N, Khosrojerdi A, Jamialahmadi T, Al-Rasadi K, Johnston TP, Sahebkar A. Implications for the role of lipopolysaccharide in the development of atherosclerosis. Trends Cardiovasc Med 2021; 32:525-533. [PMID: 34492295 DOI: 10.1016/j.tcm.2021.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Mounting scientific evidence over decades has established that atherosclerosis is a chronic inflammatory disorder. Among the potentially critical sources of vascular inflammation during atherosclerosis are the components of pathogenic bacteria, especially lipopolysaccharide (LPS). Toll-like receptor (TLR)-4, expressed on different inflammatory cells involved with the recognition of bacterial LPS, has been recognized to have mutations that are prevalent in a number of ethnic groups. Such mutations have been associated with a decreased risk of atherosclerosis. In addition, epidemiological investigations have proposed that LPS confers a risk factor for the development of atherosclerosis. Gram-negative bacteria are the major source of LPS in an individual's serum, which may be generated during subclinical infections. The major cell receptors on inflammatory cells involved in the pathogenesis of atherosclerosis, like macrophages, monocytes, and dendritic cells (DCs), are CD14, MD-2, and LPS binding protein (LBP). These receptors have been blamed for the development of atherosclerosis through dysregulated activation following LPS recognition. Lipoproteins may also play a role in modulating the LPS-induced inflammatory events during atherosclerosis development. In this review article, we attempt to clarify the role of LPS in the initiation and progression of atherosclerotic lesion development.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Department of Medical Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Yadav A, Kossenkov AV, Showe LC, Ratcliffe SJ, Choi GH, Montaner LJ, Tebas P, Shaw PA, Collman RG. Lack of Atorvastatin Effect on Monocyte Gene Expression and Inflammatory Markers in HIV-1-infected ART-suppressed Individuals at Risk of non-AIDS Comorbidities. Pathog Immun 2021; 6:1-26. [PMID: 34447895 PMCID: PMC8382234 DOI: 10.20411/pai.v6i2.461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/17/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Many people living with HIV have persistent monocyte activation despite viral suppression by antiretroviral therapy (ART), which contributes to non-AIDS complications including neurocognitive and other disorders. Statins have immunomodulatory properties that might be beneficial by reducing monocyte activation. METHODS We previously characterized monocyte gene expression and inflammatory markers in 11 HIV-positive individuals on long-term ART (HIV/ART) at risk for non-AIDS complications because of low nadir CD4+ counts (median 129 cells/uL) and elevated hsCRP. Here, these individuals participated in a double-blind, randomized, placebo-controlled crossover study of 12 weeks of atorvastatin treatment. Monocyte surface markers were assessed by flow cytometry, plasma mediators by ELISA and Luminex, and monocyte gene expression by microarray analysis. RESULTS Among primary outcome measures, 12 weeks of atorvastatin treatment led to an unexpected increase in CCR2+ monocytes (P=0.04), but did not affect CD16+ or CD163+ monocytes, nor levels in plasma of CCL2/MCP-1 or sCD14. Among secondary outcomes, atorvastatin treatment was associated with decreased plasma hsCRP (P=0.035) and IL-2R (P=0.012). Treatment was also associated with increased total CD14+ monocytes (P=0.015), and increased plasma CXCL9 (P=0.003) and IL-12 (P<0.001). Comparable results were seen in a subgroup that had inflammatory marker elevations at baseline. Atorvastatin treatment did not significantly alter monocyte gene expression or normalize aberrant baseline transcriptional patterns. CONCLUSIONS In this study of aviremic HIV+ individuals at high risk of non-AIDS events, 12 weeks of atorvastatin did not normalize monocyte gene expression patterns nor lead to significant changes in monocyte surface markers or plasma mediators linked to non-AIDS comorbidities.
Collapse
Affiliation(s)
- Anjana Yadav
- Department of Medicine; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | | | - Sarah J Ratcliffe
- Department of and Biostatistics and Epidemiology; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Grace H Choi
- Department of and Biostatistics and Epidemiology; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Pablo Tebas
- Department of Medicine; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Pamela A Shaw
- Department of and Biostatistics and Epidemiology; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ronald G Collman
- Department of Medicine; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
13
|
Torres MA, Rigo VHB, Leal DF, Pavaneli APP, Muro BBD, de Agostini Losano JD, Kawai GKV, Collado MD, Perecin F, Nichi M, Martins SMMK, de Andrade AFC. The use of resveratrol decreases liquid-extend boar semen fertility, even in concentrations that do not alter semen quality. Res Vet Sci 2021; 136:360-368. [PMID: 33773392 DOI: 10.1016/j.rvsc.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/25/2020] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
In vitro and in vivo assays were conducted to investigate the effects of trans-resveratrol (RVT) on liquid-extended boar semen during 72 h of storage at 17 °C. Thirty-six ejaculates were collected from six boars, evaluated, and extended. RVT was then added at the indicated treatment concentration (0, 0.01, 0.1 or 1 mM), and the ejaculates were cooled to 17 °C and evaluated at 0, 24, 48, and 72 h. Samples were evaluated for sperm motility, kinetics, plasma and acrosome integrity, mitochondrial membrane potential, anion superoxide levels, lipoperoxidation, and antioxidant enzyme activity. In the follow-up experiment, twenty-eight gilts were fixed-time inseminated with 0 or 0.01 mM RVT liquid-extended boar semen. After five days, they were slaughtered, and their reproductive tracts were recovered. The embryos were collected, and the pregnancy, fertility, and viable embryo rates were calculated. In the in vitro assays, total motility, plasma and acrosome membrane integrity, mitochondrial membrane potential, anion superoxide levels, and lipoperoxidation did not change at any of the evaluation times with the use of RVT up to 0.01 mM. RVT decreased SOD activity without changes in GPx. RVT used at 1 mM showed harmful effects for almost all evaluated parameters. For the in vivo assay, the same pregnancy and fertility rates were observed for both groups, while the viable embryo rate was three-fold lower in the 0.01 mM group than in the 0 mM group. The results showed a dichotomous effect of RVT; a low concentration was not harmful in vitro but was catastrophic for embryo viability.
Collapse
Affiliation(s)
- Mariana Andrade Torres
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Victor Henrique Bittar Rigo
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Diego Feitosa Leal
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil.
| | - Ana Paula Pinoti Pavaneli
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil.
| | - Bruno Bracco Donatelli Muro
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil.
| | - João Diego de Agostini Losano
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil.
| | - Giulia Kiyomi Vechiato Kawai
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil.
| | - Maite Del Collado
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil.
| | - Marcílio Nichi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil.
| | | | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil.
| |
Collapse
|
14
|
Kim SM, Song IH. The clinical impact of gut microbiota in chronic kidney disease. Korean J Intern Med 2020; 35:1305-1316. [PMID: 32872729 PMCID: PMC7652652 DOI: 10.3904/kjim.2020.411] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Gut microorganisms play critical roles in both maintaining host homeostasis and the development of diverse diseases. Gut dysbiosis, an alteration of the composition and function of gut microorganisms, is commonly seen in patients with chronic kidney disease (CKD). CKD itself contributes to a disruption of the symbiotic relationship between the gut microbiota and the host, while the resulting gut dysbiosis may play a part in stage progression of CKD. This bidirectional relationship supports the concept that the gut microbiota is considered a novel focus for the pathogenesis and management of CKD. This article examines the interaction between the gut microbiota and the kidney, the mutual effects of dysbiosis and CKD, and possible treatment options to restore gut eubiosis, and reduce CKD progression and its related complications.
Collapse
Affiliation(s)
- So Mi Kim
- Division of Nephrology, Department of Internal Medicine, Dankook University Hospital, Cheonan, Korea
| | - Il han Song
- Division of Hepatology, Department of Internal Medicine, Dankook University Hospital, Cheonan, Korea
- Correspondence to Il Han Song, M.D. Division of Hepatology, Department of Internal Medicine, Dankook University Hospital, 201 Manghyang-ro, Dongnam-gu, Cheonan 31116, Korea Tel: +82-41-550-3924 Fax: +82-41-556-3256 E-mail:
| |
Collapse
|
15
|
Effects of different equilibration times at 5 °C on boar sperm cryotolerance. Anim Reprod Sci 2020; 219:106547. [PMID: 32828392 DOI: 10.1016/j.anireprosci.2020.106547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022]
Abstract
Equilibration time (ET) is the period during which sperm cells are in contact with cooling/freezing media components at a temperature of 5 °C, providing a proper osmotic balance between the intra- and extra-cellular milieu. The present study aimed to determine the ET (0, 2, and 4 h) that results in greater post-thaw sperm quality and functions. Based on the post-thaw sperm membrane integrity and motility ratios, 20 ejaculates collected from five boars were classified as having good (GFE, n = 5) or poor (PFE, n = 15) freezing capacity. Ratios of post-thaw sperm with intact plasma membrane and acrosome were similar between ET (0 h: 37.02 % ± 2.85 %; 2 h: 34.59 % ± 7.12 %; 4 h: 37.87 % ± 4.44 %) in GFE samples. In PFE, ratios of sperm with intact plasma membrane and acrosome at post-thaw were greater (P < 0.05) after an ET of 2 h than after an ET of 0 h (2 h: 26.16 % ± 1.54 % and 0 h: 16.74 % ± 1.59 %). Also, ratios of post-thaw sperm with relatively lesser membrane lipids disorder were greater (P < 0.05) after an ET of 2 h than for other ET in both GFE (2 h: 21.97 % ± 4.24 % and 0 h: 16.63 % ± 2.38 %) and PFE (2 h: 16.65 % ± 1.40 % and 0 h: 13.23 % ± 1.25 %) samples. In conclusion, an ET of 2 h results in greater sperm cryotolerance in both GFE and PFE samples, which suggests that modifying the freezing protocol lead to an increase post-thaw sperm function and survival.
Collapse
|
16
|
Sattar AA, Abate W, Fejer G, Bradley G, Jackson SK. Evaluation of the proinflammatory effects of contaminated bathing water. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1076-1087. [PMID: 31797748 DOI: 10.1080/15287394.2019.1694113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Contaminated marine bathing water has been reported to adversely affect human health. Our data demonstrated a correlation between total endotoxin (lipopolysaccharide; LPS) levels and degree of contamination of marine bathing waters. To assess the potential health implications of LPS present in marine bathing waters, the inflammation-inducing potency of water samples collected at different time points at multiple sampling sites were assessed using a cell culture-based assay. The numbers of fecal indicator bacteria (FIB) were also examined in the same samples. Water samples were used to stimulate two cell culture models: (1) a novel non-transformed continuously growing murine cell line Max Plank Institute (MPI) characteristic of alveolar macrophages and (2) human MonoMac 6 monocyte cell line. The inflammatory potential of the samples was assessed by measuring the release of inflammatory cytokines. The presence of high levels of LPS in contaminated bathing water led to induction of inflammatory response from our in vitro cell-based bioassays suggesting its potential health impact. This finding introduces an in vitro culture assay that reflects the level of LPS in water samples. These observations further promote previous finding that LPS is a reliable surrogate biomarker for fecal contamination of bathing water.
Collapse
Affiliation(s)
- Anas A Sattar
- School of Biomedical and Healthcare Science, Plymouth University, Plymouth, UK
| | - Wondwossen Abate
- School of Biomedical and Healthcare Science, Plymouth University, Plymouth, UK
| | - Gyorgy Fejer
- School of Biomedical and Healthcare Science, Plymouth University, Plymouth, UK
| | - Graham Bradley
- School of Biomedical and Healthcare Science, Plymouth University, Plymouth, UK
| | - Simon K Jackson
- School of Biomedical and Healthcare Science, Plymouth University, Plymouth, UK
| |
Collapse
|
17
|
The ideal holding time for boar semen is 24 h at 17 °C prior to short-cryopreservation protocols. Cryobiology 2019; 86:58-64. [DOI: 10.1016/j.cryobiol.2018.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/20/2018] [Accepted: 12/13/2018] [Indexed: 02/04/2023]
|
18
|
Removal of seminal plasma prior to liquid storage of boar spermatozoa: A practice that can improve their fertilizing ability. Theriogenology 2018; 125:79-86. [PMID: 30390482 DOI: 10.1016/j.theriogenology.2018.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/27/2018] [Accepted: 10/25/2018] [Indexed: 11/23/2022]
Abstract
Seminal plasma (SP) plays a vital role in the maintenance of sperm function and integrity along with being involved in their communication with the female reproductive tract. Under in vitro conditions, although it is generally accepted that boar semen is better preserved when SP is diluted (extended) or removed (cryopreserved), its role during storage is not completely elucidated. In this context, the current study sought to determine the role of SP during storage of boar spermatozoa at 17 °C for 72 h. Thus, two treatments were prepared with semen from the sperm-rich fraction (SRF) of boar ejaculate previous to storage in liquid state: 1) PSP: semen directly extended in Beltsville Thawing Solution (BTS), and 2) ASP: semen first centrifuged with subsequent removal of supernatant (containing SP) followed by suspension of sperm in BTS. From this, two experiments were conducted separately in this work: 1) in vitro and 2) in vivo assays. The former aimed to evaluate how sperm capacity responds to in vitro capacitation (IVC) and whether their quality is affected by previous exposure to SP. In the latter, the objective was to understand how important these previous conditions can be for reproductive performance after artificial insemination (AI). According to our results, the previous removal of SP does not affect sperm quality and the response of these cells to IVC (P > 0.05) along with resulting in a lower percentage of acrosome damage in them [12.87 ± 0.76 (ASP) vs. 16.38 ± 0.73 (PSP)] (P < 0.05). This improved preservation of acrosome integrity in the absence of SP can explain the higher fertility rate (%) [63.27 ± 23.47 (ASP) vs. 38.57 ± 16.30 (PSP)] and number of implanted embryos at 28 days after AI (13.71 ± 4.88 (ASP) vs. 7.16 ± 4.02 (PSP)] (P < 0.05) presented by gilts inseminated with seminal doses of ASP. In conclusion, removal of SP prior to liquid storage of boar sperm for 72 h can be beneficial for their fertilizing ability.
Collapse
|
19
|
The association between plasma endotoxin, endotoxin pathway proteins and outcome after ischemic stroke. Atherosclerosis 2018; 269:138-143. [DOI: 10.1016/j.atherosclerosis.2017.12.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 11/21/2022]
|
20
|
Battson ML, Lee DM, Weir TL, Gentile CL. The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem 2017; 56:1-15. [PMID: 29427903 DOI: 10.1016/j.jnutbio.2017.12.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiome has emerged as a critical regulator of human physiology. Deleterious changes to the composition or number of gut bacteria, commonly referred to as gut dysbiosis, has been linked to the development and progression of numerous diet-related diseases, including cardiovascular disease (CVD). Most CVD risk factors, including aging, obesity, certain dietary patterns, and a sedentary lifestyle, have been shown to induce gut dysbiosis. Dysbiosis is associated with intestinal inflammation and reduced integrity of the gut barrier, which in turn increases circulating levels of bacterial structural components and microbial metabolites that may facilitate the development of CVD. The aim of the current review is to summarize the available data regarding the role of the gut microbiome in regulating CVD function and disease processes. Particular emphasis is placed on nutrition-related alterations in the microbiome, as well as the underlying cellular mechanisms by which the microbiome may alter CVD risk.
Collapse
Affiliation(s)
- Micah L Battson
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Dustin M Lee
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Tiffany L Weir
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Christopher L Gentile
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523.
| |
Collapse
|
21
|
Emerging role of various signaling pathways in the pathogenesis and therapeutics of atherosclerosis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.rvm.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
DC-SIGN and Toll-like receptor 4 mediate oxidized low-density lipoprotein-induced inflammatory responses in macrophages. Sci Rep 2017; 7:3296. [PMID: 28607410 PMCID: PMC5468253 DOI: 10.1038/s41598-017-03740-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
The regulation of inflammatory responses by innate immune receptors is recognized as a crucial step in the development of atherosclerosis, although the precise molecular mechanisms remain to be elucidated. This study focused on illustrating the roles of dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN)- and Toll-like receptor 4 (TLR4)-regulated inflammatory responses in macrophages. We found that DC-SIGN expression levels were increased in macrophages of atherosclerotic plaques. Oxidized low-density lipoprotein (oxLDL) significantly enhanced DC-SIGN protein expression levels after a short-term exposure. Knockdown of DC-SIGN decreased expression and secretion of interleukin 1-β (IL1-β), monocyte chemo-attractant protein 1 (MCP-1), tumor necrosis factor-α (TNFα) and matrix metalloproteinase-9 (MMP-9). Immunofluorescence studies demonstrated that DC-SIGN and TLR4 co-localized in regions of the plaques. Moreover, DC-SIGN was co-expressed with TLR4 on the plasma membrane after oxLDL stimulation. The presence of an endogenous interaction and the results of the in vitro pull-down assays revealed that DC-SIGN binds directly with TLR4. We also present evidence that DC-SIGN mediates TLR4-regulated NFκB activation but not activation of p38 and JNK. Our results suggest an essential role of DC-SIGN/TLR4 signaling in macrophages in the pathogenesis of atherosclerosis.
Collapse
|
23
|
Peroxisome proliferator-activated receptor-γ–coactivator 1α (PGC-1α) gene expression in chronic kidney disease patients on hemodialysis: relation to hemodialysis-related cardiovascular morbidity and mortality. Int Urol Nephrol 2017; 49:1835-1844. [DOI: 10.1007/s11255-017-1628-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/19/2017] [Indexed: 01/18/2023]
|
24
|
Human β-Defensin 3 Reduces TNF- α-Induced Inflammation and Monocyte Adhesion in Human Umbilical Vein Endothelial Cells. Mediators Inflamm 2017; 2017:8529542. [PMID: 28348463 PMCID: PMC5350351 DOI: 10.1155/2017/8529542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/27/2017] [Accepted: 02/14/2017] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate the role of human β-defensin 3 (hBD3) in the initiation stage of atherosclerosis with human umbilical vein endothelial cells (HUVECs) triggered by tumor necrosis factor- (TNF-) α. The effects of hBD3 on TNF-α-induced endothelial injury and inflammatory response were evaluated. Our data revealed that first, hBD3 reduced the production of interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1 (MCP-1), and macrophage migration inhibitory factor (MIF) in HUVECs in a dose-dependent manner. In addition, hBD3 significantly prevented intracellular reactive oxygen species (ROS) production by HUVECs. Second, western blot analysis demonstrated that hBD3 dose-dependently suppressed the protein levels of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-induced HUVECs. As a result, hBD3 inhibited monocyte adhesion to TNF-α-treated endothelial cells. Additionally, hBD3 suppressed TNF-α-induced F-actin reorganization in HUVECs. Third, hBD3 markedly inhibited NF-κB activation by decreasing the phosphorylation of IKK-α/β, IκB, and p65 subunit within 30 min. Moreover, the phosphorylation of p38 and c-Jun N-terminal protein kinase (JNK) in the mitogen-activated protein kinase (MAPK) pathway were also inhibited by hBD3 in HUVECs. In conclusion, hBD3 exerts anti-inflammatory and antioxidative effects in endothelial cells in response to TNF-α by inhibiting NF-κB and MAPK signaling.
Collapse
|
25
|
Biffi E. Microbiome and Cardiac Health. INTEGRATIVE CARDIOLOGY 2017:67-97. [DOI: 10.1007/978-3-319-40010-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Foit L, Thaxton CS. Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4. Biomaterials 2016; 100:67-75. [PMID: 27244690 DOI: 10.1016/j.biomaterials.2016.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 12/25/2022]
Abstract
Toll-like receptor 4 (TLR4) plays a critical role in the innate immune system. Stimulation of TLR4 occurs upon binding lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls. Due to the potency of the induced inflammatory response, there is a growing interest in agents that can most proximally modulate this LPS/TLR4 interaction to prevent downstream cell signaling events and the production of inflammatory mediators. Building on the natural ability of human high-density lipoprotein (HDL) to bind LPS, we synthesized a suite of HDL-like nanoparticles (HDL-like NP). We identified one HDL-like NP that was particularly effective at decreasing TLR4 signaling caused by addition of purified LPS or Gram-negative bacteria to model human cell lines or primary human peripheral blood cells. The HDL-like NP functioned to inhibit TLR4-dependent inflammatory response to LPS derived from multiple bacterial species. Mechanistically, data show that the NP mainly functions by scavenging and neutralizing the LPS toxin. Taken together, HDL-like NPs constitute a powerful endotoxin scavenger with the potential to significantly reduce LPS-mediated inflammation.
Collapse
Affiliation(s)
- Linda Foit
- Feinberg School of Medicine, Department of Urology, Northwestern University, Tarry 16-703, 303 E. Chicago Ave, Chicago, IL 60611, USA; Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior St, Chicago, IL 60611, USA
| | - C Shad Thaxton
- Feinberg School of Medicine, Department of Urology, Northwestern University, Tarry 16-703, 303 E. Chicago Ave, Chicago, IL 60611, USA; Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior St, Chicago, IL 60611, USA; International Institute for Nanotechnology (IIN), 2145 Sheridan Road, Evanston, IL 60208, USA; Robert H Lurie Comprehensive Cancer Center (RHLCCC), Northwestern University, Feinberg School of Medicine, 303 E Superior, Chicago, IL 60611, USA.
| |
Collapse
|
27
|
EOLA1 Inhibits Lipopolysaccharide-Induced Vascular Cell Adhesion Molecule-1 Expression by Association with MT2A in ECV304 Cells. Int J Inflam 2015; 2015:301562. [PMID: 26881174 PMCID: PMC4736203 DOI: 10.1155/2015/301562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 01/25/2023] Open
Abstract
Our research group firstly discovered endothelial-overexpressed lipopolysaccharide-associated factor 1 (EOLA1, GenBank number AY074889) as a lipopolysaccharide (LPS) responsive gene in ECV304 cells. The previous studies have further demonstrated the association of EOLA1 with metallothionein 2A (MT2A), while the role of EOLA1 during LPS-induced inflammatory response in ECV304 cells is unknown. In this report, we determined the subcellular localization of EOLA1 and the regulatory capacity of EOLA1 on vascular cell adhesion molecule-1 (VCAM-1) in response to LPS in ECV304 cells. Our results show that EOLA1 is broadly diffuse in the cells, and EOLA1 expression is dramatically induced by LPS. EOLA1 knockdown results in significant enhancement of LPS-induced VCAM-1 production. Consistent with this, overexpression of EOLA1 leads to the reduction of LPS-induced VCAM-1 production. Furthermore, MT2A knockdown reduces LPS-induced VCAM-1 production. Collectively, our results demonstrate a negative regulatory role of EOLA1 on LPS-induced VCAM-1 expression involving its association with MT2A in ECV304 cells.
Collapse
|
28
|
Lim S, Barter P. Antioxidant effects of statins in the management of cardiometabolic disorders. J Atheroscler Thromb 2014; 21:997-1010. [PMID: 25132378 DOI: 10.5551/jat.24398] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Redox systems are key players in vascular health. A shift in redox homeostasis-that results in an imbalance between reactive oxygen species (ROS) generation and endogenous antioxidant defenses has the potential to create a state of oxidative stress that subsequently plays a role in the pathogenesis of a number of diseases, including those of the cardiovascular and metabolic system. Statins, which are primarily used to reduce the concentration of low-density lipoprotein cholesterol, have also been shown to reduce oxidative stress by modulating redox systems. Studies conducted both in vitro and in vivo support the role of oxidative stress in the development of atherosclerosis and cardiovascular diseases. Oxidative stress may also be responsible for various diabetic complications and the development of fatty liver. Statins reduce oxidative stress by blocking the generation of ROS and reducing the NAD+/NADH ratio. These drugs also have effects on nitric oxide synthase, lipid peroxidation and the adiponectin levels. It is possible that the antioxidant properties of statins contribute to their protective cardiovascular effects, independent of the lipid-lowering actions of these agents. However, possible adverse effects of statins on glucose homeostasis may be related to the redox system. Therefore, studies investigating the modulation of redox signaling by statins are warranted.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine
| | | |
Collapse
|
29
|
Sawchuck DJ, Wittmann BK. Pre-eclampsia renamed and reframed: Intra-abdominal hypertension in pregnancy. Med Hypotheses 2014; 83:619-32. [PMID: 25189485 DOI: 10.1016/j.mehy.2014.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/05/2014] [Indexed: 02/08/2023]
Abstract
This hypothesis proposes pre-eclampsia is caused by intra-abdominal hypertension in pregnancy. Sustained or increasing intra-abdominal pressure ⩾12mmHg causes impaired venous return to the heart, systemic vascular resistance, ischemia reperfusion injury, intestinal permeability, translocation of lipopolysaccharide endotoxin to the liver, cytotoxic immune response, systemic inflammatory response, pressure transmission to thoracic and intra-cranial compartments, and multi-organ dysfunction. This hypothesis is predicated on Pascal's law, evidence founded in the intra-abdominal hypertension literature, and the adapted equation ΔIAP-P=ΔIAVF/Cab, where ΔIAP-P=change in intra-abdominal pressure in pregnancy, ΔIAVF=change in intra-abdominal vector force (volume and force direction) and Cab=abdominal compliance. Factors causing increased intra-abdominal pressure in pregnancy include: progressive uterine expansion, obstetrical factors that increase intra-uterine volume excessively or acutely, maternal anthropometric measurements that affect intra-abdominal pressure thresholds, maternal postures that increase abdominal force direction, abdominal compliance that is decreased, diminished with advancing gestation, or has reached maximum expansion, habitation at high altitude, and rapid drops in barometric pressure. We postulate that the threshold for lipopolysaccharide translocation depends on the magnitude of intra-abdominal pressure, the intestinal microbiome complex, and the degree of intestinal permeability. We advance that delivery cures pre-eclampsia through the mechanism of abdominal decompression.
Collapse
Affiliation(s)
- Diane J Sawchuck
- University of British Columbia, Faculty of Applied Sciences, T201-2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada.
| | - Bernd K Wittmann
- University of British Columbia, Faculty of Applied Sciences, T201-2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| |
Collapse
|
30
|
Yang K, Zhang XJ, Cao LJ, Liu XH, Liu ZH, Wang XQ, Chen QJ, Lu L, Shen WF, Liu Y. Toll-like receptor 4 mediates inflammatory cytokine secretion in smooth muscle cells induced by oxidized low-density lipoprotein. PLoS One 2014; 9:e95935. [PMID: 24755612 PMCID: PMC3995878 DOI: 10.1371/journal.pone.0095935] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/01/2014] [Indexed: 12/15/2022] Open
Abstract
Oxidized low-density lipoprotein (oxLDL)-regulated secretion of inflammatory cytokines in smooth muscle cells (SMCs) is regarded as an important step in the progression of atherosclerosis; however, its underlying mechanism remains unclear. This study investigated the role of toll-like receptor 4 (TLR4) in oxLDL-induced expression of inflammatory cytokines in SMCs both in vivo and in vitro. We found that the levels of TLR4, interleukin 1-β (IL1-β), tumor necrosis factor-α (TNFα), monocyte chemoattractant protein 1 (MCP-1) and matrix metalloproteinase-2 (MMP-2) expression were increased in the SMCs of atherosclerotic plaques in patients with femoral artery stenosis. In cultured primary arterial SMCs from wild type mice, oxLDL caused dose- and time-dependent increase in the expression levels of TLR4 and cytokines. These effects were significantly weakened in arterial SMCs derived from TLR4 knockout mice (TLR4-/-). Moreover, the secretion of inflammatory cytokines was blocked by TLR4-specific antibodies in primary SMCs. Ox-LDL induced activation of p38 and NFκB was also inhibited in TLR4-/- primary SMCs or when treated with TLR4-specific antibodies. These results demonstrated that TLR4 is a crucial mediator in oxLDL-induced inflammatory cytokine expression and secretion, and p38 and NFκB activation.
Collapse
MESH Headings
- Aged
- Animals
- Cells, Cultured
- Cytokines/metabolism
- Humans
- Inflammation Mediators/physiology
- Lipoproteins, LDL/physiology
- Male
- Matrix Metalloproteinase 2/metabolism
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Primary Cell Culture
- Toll-Like Receptor 4/physiology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Ke Yang
- Institute of Cardiovascular Diseases, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Xiao Jie Zhang
- Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Li Juan Cao
- Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Xin He Liu
- Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, People’s Republic of China
- Institute of Cardiovascular Diseases, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Zhu Hui Liu
- Institute of Cardiovascular Diseases, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Xiao Qun Wang
- Institute of Cardiovascular Diseases, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Qiu Jin Chen
- Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Lin Lu
- Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, People’s Republic of China
- Institute of Cardiovascular Diseases, Medical School of Jiaotong University, Shanghai, People’s Republic of China
| | - Wei Feng Shen
- Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, People’s Republic of China
- Institute of Cardiovascular Diseases, Medical School of Jiaotong University, Shanghai, People’s Republic of China
- * E-mail: (YL); (WFS)
| | - Yan Liu
- Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, Shanghai, People’s Republic of China
- Institute of Cardiovascular Diseases, Medical School of Jiaotong University, Shanghai, People’s Republic of China
- * E-mail: (YL); (WFS)
| |
Collapse
|
31
|
Jiang D, Li D, Cao L, Wang L, Zhu S, Xu T, Wang C, Pan D. Positive feedback regulation of proliferation in vascular smooth muscle cells stimulated by lipopolysaccharide is mediated through the TLR 4/Rac1/Akt pathway. PLoS One 2014; 9:e92398. [PMID: 24667766 PMCID: PMC3965409 DOI: 10.1371/journal.pone.0092398] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 02/22/2014] [Indexed: 12/21/2022] Open
Abstract
Toll-like receptor 4 (TLR4) are important in inflammation and regulating vascular smooth muscle cells (VSMCs) proliferation, which are related to atherosclerosis and restenosis. We have investigated the mechanisms involved in Lipopolysaccharide (LPS)-induced proliferation of VSMCs. Stimulation of rat aortic VSMCs with LPS significantly increases the proliferation of VSMCs. This effect is regulated by Rac1 (Ras-related C3 botulinum toxin substrate l), which mediates the activation of phosphatidylinositol 3-kinase/Akt (PI3K/Akt) signaling pathways. Inhibition of Rac1 activity by NSC23766 is associated with inhibition of Akt activity. Treatment with NSC23766 or LY294002 significantly decreases LPS-induced TLR4 protein and mRNA expression. The data show that positive feedback regulation of proliferation in VSMCs is mediated through the TLR4/Rac1/Akt pathway.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Blotting, Western
- Cell Proliferation/drug effects
- Cells, Cultured
- Female
- Immunoprecipitation
- Lipopolysaccharides/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/metabolism
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Dehua Jiang
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- * E-mail: (DL); (CW)
| | - Lijuan Cao
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Lele Wang
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Shasha Zhu
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Tongda Xu
- Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Cheng Wang
- Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- * E-mail: (DL); (CW)
| | - Defeng Pan
- Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
32
|
Lim S, Sakuma I, Quon MJ, Koh KK. Differential metabolic actions of specific statins: clinical and therapeutic considerations. Antioxid Redox Signal 2014; 20:1286-99. [PMID: 23924053 PMCID: PMC4692132 DOI: 10.1089/ars.2013.5531] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE Statins, the most widely prescribed drugs in clinical practice, mainly act by reducing the plasma level of low-density lipoprotein (LDL)-cholesterol. A shift in redox homeostasis to an imbalance between reactive oxygen species generation and endogenous antioxidant mechanisms results in oxidative stress that has been implicated in the pathogenesis of various diseases, including those of the cardiovascular system. Beyond their efficacy in lowering LDL cholesterol, statins modulate redox systems that are implicated in the development of atherosclerosis, cardiovascular morbidity, and mortality. RECENT ADVANCES Differences in specific statins or their dosages result in differential metabolic actions arising from off-target or unknown mechanisms of action that can have important implications for overall patient morbidity and mortality. CRITICAL ISSUES A recent meta-analysis and a combined analysis have suggested that high doses of statins increase the risk of developing type 2 diabetes mellitus, but reduce the risk of cardiovascular events. Thus, it is important to consider the cardiovascular and metabolic context and natural history of diseases when choosing a specific statin therapy for optimal individual patient health over the long term. FUTURE DIRECTIONS More information is needed regarding the metabolism of statins, and the off-target or unknown actions of statins in affecting insulin resistance and metabolic homeostasis. The differential metabolic effects of specific statins should be considered in formulating optimal therapeutic strategies to reduce not just cardiovascular-related but also overall patient morbidity and mortality.
Collapse
Affiliation(s)
- Soo Lim
- 1 Division of Endocrinology, Seoul National University College of Medicine, Seoul National University Bundang Hospital , Seongnam, Korea
| | | | | | | |
Collapse
|
33
|
Schaumberger S, Ladinig A, Reisinger N, Ritzmann M, Schatzmayr G. Evaluation of the endotoxin binding efficiency of clay minerals using the Limulus Amebocyte lysate test: an in vitro study. AMB Express 2014; 4:1. [PMID: 24383578 PMCID: PMC3901786 DOI: 10.1186/2191-0855-4-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/17/2013] [Indexed: 11/23/2022] Open
Abstract
Endotoxins are part of the cell wall of Gram-negative bacteria. They are potent immune stimulators and can lead to death if present in high concentrations. Feed additives, which bind endotoxins in the gastrointestinal tract of animals, could help to prevent their negative impact. The objective of our study was to determine the potential of a bentonite (Bentonite 1), a sodium bentonite (Bentonite 2), a chemically treated smectite (Organoclay 1) and a modified attapulgite (Organoclay 2) to bind endotoxins in vitro. Polymyxin B served as positive control. The kinetic chromogenic Limulus Amebocyte lysate test was adapted to measure endotoxin activity. Firstly, a single sorption experiment (10 endotoxin units/mL (EU/mL)) was performed. Polymyxin B and organoclays showed 100% binding efficiency. Secondly, the adsorption efficiency of sorbents in aqueous solution with increasing endotoxin concentrations (2,450 – 51,700 EU/mL) was investigated. Organoclay 1 (0.1%) showed a good binding efficiency in aqueous solution (average 81%), whereas Bentonite 1 (0.1%) obtained a lower binding efficiency (21-54%). The following absorbent capacities were calculated in highest endotoxin concentration: 5.59 mg/g (Organoclay 1) > 3.97 mg/g (Polymyxin B) > 2.58mg/g (Organoclay 2) > 1.55 mg/g (Bentonite 1) > 1.23 mg/g (Bentonite 2). Thirdly, a sorption experiment in artificial intestinal fluid was conducted. Especially for organoclays, which are known to be unspecific adsorbents, the endotoxin binding capacity was significantly reduced. In contrast, Bentonite 1 showed comparable results in artificial intestinal fluid and aqueous solution. Based on the results of this in vitro study, the effect of promising clay minerals will be investigated in in vivo trials.
Collapse
|
34
|
Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 2013; 25:657-70. [PMID: 24231662 DOI: 10.1681/asn.2013080905] [Citation(s) in RCA: 518] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human gut harbors >100 trillion microbial cells, which influence the nutrition, metabolism, physiology, and immune function of the host. Here, we review the quantitative and qualitative changes in gut microbiota of patients with CKD that lead to disturbance of this symbiotic relationship, how this may contribute to the progression of CKD, and targeted interventions to re-establish symbiosis. Endotoxin derived from gut bacteria incites a powerful inflammatory response in the host organism. Furthermore, protein fermentation by gut microbiota generates myriad toxic metabolites, including p-cresol and indoxyl sulfate. Disruption of gut barrier function in CKD allows translocation of endotoxin and bacterial metabolites to the systemic circulation, which contributes to uremic toxicity, inflammation, progression of CKD, and associated cardiovascular disease. Several targeted interventions that aim to re-establish intestinal symbiosis, neutralize bacterial endotoxins, or adsorb gut-derived uremic toxins have been developed. Indeed, animal and human studies suggest that prebiotics and probiotics may have therapeutic roles in maintaining a metabolically-balanced gut microbiota and reducing progression of CKD and uremia-associated complications. We propose that further research should focus on using this highly efficient metabolic machinery to alleviate uremic symptoms.
Collapse
Affiliation(s)
- Ali Ramezani
- Division of Renal Diseases and Hypertension, The George Washington University, Washington DC
| | | |
Collapse
|
35
|
LIU BIN, WANG JIA, CHENG LAN, LIANG JINGPING. Role of JNK and NF-κB pathways in Porphyromonas gingivalis LPS-induced vascular cell adhesion molecule-1 expression in human aortic endothelial cells. Mol Med Rep 2013; 8:1594-600. [DOI: 10.3892/mmr.2013.1685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/05/2013] [Indexed: 11/06/2022] Open
|
36
|
Blomkalns AL, Gavrila D, Thomas M, Neltner BS, Blanco VM, Benjamin SB, McCormick ML, Stoll LL, Denning GM, Collins SP, Qin Z, Daugherty A, Cassis LA, Thompson RW, Weiss RM, Lindower PD, Pinney SM, Chatterjee T, Weintraub NL. CD14 directs adventitial macrophage precursor recruitment: role in early abdominal aortic aneurysm formation. J Am Heart Assoc 2013; 2:e000065. [PMID: 23537804 PMCID: PMC3647288 DOI: 10.1161/jaha.112.000065] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Recruitment of macrophage precursors to the adventitia plays a key role in the pathogenesis of abdominal aortic aneurysms (AAAs), but molecular mechanisms remain undefined. The innate immune signaling molecule CD14 was reported to be upregulated in adventitial macrophages in a murine model of AAA and in monocytes cocultured with aortic adventitial fibroblasts (AoAf) in vitro, concurrent with increased interleukin‐6 (IL‐6) expression. We hypothesized that CD14 plays a crucial role in adventitial macrophage precursor recruitment early during AAA formation. Methods and Results CD14−/− mice were resistant to AAA formation induced by 2 different AAA induction models: aortic elastase infusion and systemic angiotensin II (AngII) infusion. CD14 gene deletion led to reduced aortic macrophage infiltration and diminished elastin degradation. Adventitial monocyte binding to AngII‐infused aorta in vitro was dependent on CD14, and incubation of human acute monocytic leukemia cell line‐1 (THP‐1) monocytes with IL‐6 or conditioned medium from perivascular adipose tissue (PVAT) upregulated CD14 expression. Conditioned medium from AoAf and PVAT induced CD14‐dependent monocyte chemotaxis, which was potentiated by IL‐6. CD14 expression in aorta and plasma CD14 levels were increased in AAA patients compared with controls. Conclusions These findings link CD14 innate immune signaling via a novel IL‐6 amplification loop to adventitial macrophage precursor recruitment in the pathogenesis of AAA.
Collapse
Affiliation(s)
- Andra L Blomkalns
- Division of Cardiovascular Diseases, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0769, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Keizer HG. The "Mevalonate hypothesis": a cholesterol-independent alternative for the etiology of atherosclerosis. Lipids Health Dis 2012; 11:149. [PMID: 23122424 PMCID: PMC3496605 DOI: 10.1186/1476-511x-11-149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/27/2012] [Indexed: 11/12/2022] Open
Abstract
The “cholesterol hypothesis” is the leading theory to explain the cause of atherosclerosis. The “cholesterol hypothesis” assumes that plasma (LDL) cholesterol is an important causal factor for atherosclerosis. However, data of at least seven placebo controlled randomized prospective trials with various cholesterol lowering drugs show that plasma cholesterol lowering does not necessarily lead to protection against cardiovascular disease. Therefore an alternative hypothesis for the etiology of cardiovascular disease is formulated. This alternative hypothesis, the “mevalonate hypothesis”, assumes that after stimulation of the mevalonate pathway in endothelial cells by inflammatory factors, these cells start producing cholesterol and free radicals. In this hypothesis, only the latter play a role in the etiology of atherosclerosis by contributing to the formation of oxidized cholesterol which is a widely accepted causal factor for atherosclerosis. Regardless of how the mevalonate pathway is activated (by withdrawal of statin drugs, by inflammatory factors or indirectly by reduced intracellular cholesterol levels) in all these cases free radical production is observed as well as cardiovascular disease. Since in the “mevalonate hypothesis” cholesterol is produced at the same time as the free radicals causing atherosclerosis, this hypothesis provides an explanation for the correlation which exists between cardiovascular disease and plasma cholesterol levels. From an evolutionary perspective, concomitant cholesterol production and free radical production in response to inflammatory factors makes sense if one realizes that both activities potentially protect cells and organisms from infection by gram-negative bacteria. In conclusion, data have been collected which suggest that activation of the mevalonate pathway in endothelial cells is likely to be a causal factor for atherosclerosis. This “mevalonate hypothesis” provides a better explanation for results obtained from recent clinical studies with cholesterol lowering drugs than the “cholesterol hypothesis”. Furthermore, this hypothesis explains how cholesterol can be correlated with cardiovascular disease without being a causal factor for it. Finally it provides a logical explanation for the etiology of this disease.
Collapse
Affiliation(s)
- Hiskias G Keizer
- Stepan Specialty Products B.V., Museumlaan 16, 1541 LP, Koog aan de Zaan, The Netherlands.
| |
Collapse
|
38
|
Liu B, Cheng L, Liu D, Wang J, Zhang X, Shu R, Liang J. Role of p38 Mitogen-Activated Protein Kinase Pathway inPorphyromonas gingivalisLipopolysaccharide–Induced VCAM-1 Expression in Human Aortic Endothelial Cells. J Periodontol 2012; 83:955-62. [DOI: 10.1902/jop.2011.110406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Mani V, Weber TE, Baumgard LH, Gabler NK. Growth and Development Symposium: Endotoxin, inflammation, and intestinal function in livestock. J Anim Sci 2012; 90:1452-65. [PMID: 22247110 DOI: 10.2527/jas.2011-4627] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Endotoxin, also referred to as lipopolysaccharide (LPS), can stimulate localized or systemic inflammation via the activation of pattern recognition receptors. Additionally, endotoxin and inflammation can regulate intestinal epithelial function by altering integrity, nutrient transport, and utilization. The gastrointestinal tract is a large reservoir of both gram-positive and gram-negative bacteria, of which the gram-negative bacteria serve as a source of endotoxin. Luminal endotoxin can enter circulation via two routes: 1) nonspecific paracellular transport through epithelial cell tight junctions, and 2) transcellular transport through lipid raft membrane domains involving receptor-mediated endocytosis. Paracellular transport of endotoxin occurs through dissociation of tight junction protein complexes resulting in reduced intestinal barrier integrity, which can be a result of enteric disease, inflammation, or environmental and metabolic stress. Transcellular transport, via specialized membrane regions rich in glycolipids, sphingolipids, cholesterol, and saturated fatty acids, is a result of raft recruitment of endotoxin-related signaling proteins leading to endotoxin signaling and endocytosis. Both transport routes and sensitivity to endotoxin may be altered by diet and environmental and metabolic stresses. Intestinal-derived endotoxin and inflammation result in suppressed appetite, activation of the immune system, and partitioning of energy and nutrients away from growth toward supporting the immune system requirements. In livestock, this leads to the suppression of growth, particularly suppression of lean tissue accretion. In this paper, we summarize the evidence that intestinal transport of endotoxin and the subsequent inflammation leads to decrease in the production performance of agricultural animals and we present an overview of endotoxin detoxification mechanisms in livestock.
Collapse
Affiliation(s)
- V Mani
- Department of Animal Science, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Diabetes is a mutifactorial metabolic disorder that leads to a number of complications. Diabetes is estimated to affect 36 million people in the U.S.A., and the prevalence of diagnosed and undiagnosed diabetes is at 9.3% and continues to rise. Evidence from experimental animal models as well as humans has indicated that systemic inflammation plays a role in the pathophysiological processes of diabetes and is facilitated by innate immune responses. TLRs (Toll-like receptors) are key innate immune receptors that recognize conserved PAMPs (pathogen-associated molecular patterns), induce inflammatory responses essential for host defences and initiate an adaptive immune response. Although TLR expression is increased in a plethora of inflammatory disorders, the effects of metabolic aberrations on TLRs and their role in diabetes and its complications is still emerging. In the present paper, we provide a systematic review on how TLRs play a detrimental role in the pathogenic processes [increased blood sugar, NEFAs (non-esterified 'free' fatty acids), cytokines and ROS (reactive oxygen species)] that manifest diabetes. Furthermore, we will highlight some of the therapeutic strategies targeted at decreasing TLRs to abrogate inflammation in diabetes that may eventually result in decreased complications.
Collapse
|
41
|
Bertocchi C, Traunwieser M, Dörler J, Hasslacher J, Joannidis M, Dunzendorfer S. Atorvastatin inhibits functional expression of proatherogenic TLR2 in arterial endothelial cells. Cell Physiol Biochem 2011; 28:625-30. [PMID: 22178874 DOI: 10.1159/000335758] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND There is growing evidence that TLR2 plays a role in the pathogenesis of atherosclerosis. It is highly expressed in endothelial cells in areas of disturbed blood flow, like plaques or vessel bifurcations, but laminar blood flow suppresses endothelial TLR2 expression and is therefore thought to be atheroprotective. We sought for means to also protect lesion prone sites from TLR2 over-expression and subsequent endothelial activation. METHODS Human coronary artery endothelial cells (HCAEC) were treated with atorvastatin (ATV) and TLR2 surface expression was determined by FACS analyses. Western blot analyses were used to explore the phosphorylation status of SP1. RESULTS ATV profoundly inhibited basal and stimulated endothelial TLR2 expression in a time- and dose-dependent manner. It also inhibited HCAEC activation by MALP-2. TLR2 surface expression was inversely correlated to SP1 serine phosphorylation and was casein kinase 2 dependent. CONCLUSION We demonstrate that ATV can control over-expression of proinflammatory endothelial TLR2 protein and TLR2-mediated endothelial activation. The mechanism involves casein kinase 2 and SP1 phosphorylation. ATV effects on endothelial cell TLR2 are comparable to those of laminar blood flow and might therefore also be atheroprotective.
Collapse
Affiliation(s)
- Cristina Bertocchi
- Department of Internal Medicine, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
42
|
Jain SK, Rains JL. Toll-like receptor-4 and vascular inflammation in diabetes: editorial. Cytokine 2011; 55:446-7. [PMID: 21696981 DOI: 10.1016/j.cyto.2011.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/10/2011] [Indexed: 01/24/2023]
|
43
|
Akamatsu Y, Yamamoto T, Yamamoto K, Oseko F, Kanamura N, Imanishi J, Kita M. Porphyromonas gingivalis induces myocarditis and/or myocardial infarction in mice and IL-17A is involved in pathogenesis of these diseases. Arch Oral Biol 2011; 56:1290-8. [PMID: 21683342 DOI: 10.1016/j.archoralbio.2011.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 05/19/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Although an association between periodontitis and cardiovascular diseases has been suggested, the role of Porphyromonas gingivalis in cardiovascular diseases is not clear. In this study, we examined whether experimental bacteremia of P. gingivalis causes cardiovascular diseases and investigated the mechanism of pathogenesis of cardiovascular diseases induced by P. gingivalis. DESIGN C57BL/6 mice were intravenously inoculated with 2.0 × 10(8)CFU of P. gingivalis A7436 strain. Mice were sacrificed at specified days and their hearts were collected. The collected organs were divided into two halves and used for histological evaluation and cytokine analysis. IL-17A(-/-), IFN-γ(-/-) and TNF-α(-/-) mice were also intravenously inoculated and the histological changes of hearts in mice were examined. RESULTS Myocarditis and/or myocardial infarction were observed in mice injected with P. gingivalis. The levels of IL1-β, IL-6, IL-17A, IL-18, TNF-α and IFN-γ mRNA increased significantly after P. gingivalis injection. In particular, high levels of IL-17A and IFN-γ mRNA expression were observed in hearts of mice after P. gingivalis injection in comparison with these levels before injection. Furthermore, the production of IL-17A was detected in hearts of wild-type mice after P. gingivalis injection. In wild-type, TNF-α(-/-) and IFN-γ(-/-) mice, moderate infiltration of neutrophils and monocytes was observed in hearts at 5 days after injection. In contrast, no inflammatory findings were observed in hearts of IL-17A(-/-) mice. CONCLUSION We have demonstrated that an experimental bacteremia of P. gingivalis could induce myocarditis and/or myocardial infarction in mice, and IL-17A plays an important role in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Yuki Akamatsu
- Department of Microbiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Wang Y, Zhang MX, Meng X, Liu FQ, Yu GS, Zhang C, Sun T, Wang XP, Li L, Wang YY, Ding SF, Yang JM, Zhang Y. Atorvastatin suppresses LPS-induced rapid upregulation of Toll-like receptor 4 and its signaling pathway in endothelial cells. Am J Physiol Heart Circ Physiol 2011; 300:H1743-52. [DOI: 10.1152/ajpheart.01335.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the present study, we tested our hypothesis that atorvastatin exerts its anti-inflammation effect via suppressing LPS-induced rapid upregulation of Toll-like receptor 4 (TLR4) mRNA and its downstream p38, ERK, and NF-κB signaling pathways in human umbilical-vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). TLR4 mRNA expression and its downstream kinase activities induced by LPS alone or atorvastatin + LPS in endothelial cells were quantified using quantitative real-time PCR and enzyme-linked immunosorbent assay. Preincubation of LPS-stimulated endothelial cells with TLR4 siRNA was conducted to identify the target of the anti-inflammatory effects of atorvastatin. Atorvastatin incubation resulted in the reduction of LPS-induced TLR4 mRNA expression, ERK1/2 and P38 MAPK phosphorylation, and NF-κB binding activity. Pretreatment with MEK/ERK1/2 inhibitor PD98059 attenuated atorvastatin + LPS-induced NF-κB activity but had no effect on P38 MAPK phosphorylation. In contrast, pretreatment with P38 MAPK inhibitor SB203580 resulted in upregulation of atorvastatin + LPS-induced ERK1/2 phosphorylation but had no significant effects on NF-κB activity. On the other hand, blocking NF-κB with SN50 produced no effects on atorvastatin + LPS-induced ERK1/2 and P38 MAPK phosphorylation. Moreover, TLR4 gene silencing produced the same effects as the atorvastatin treatment. In conclusion, atorvastatin downregulated TLR4 mRNA expression by two distinct signaling pathways. First, atorvastatin stabilized Iκ-Bα, which directly inhibited NF-κB activation. Second, atorvastatin inactivated ERK phosphorylation, which indirectly inhibited NF-κB activation. Suppression of p38 MAPK by atorvastatin upregulates ERK but exerts no effect on NF-κB.
Collapse
Affiliation(s)
- Ying Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital
| | - Ming Xiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital
| | - Xiao Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital
| | - Fu Qiang Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital
| | - Guang Sheng Yu
- Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital
| | - Tao Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital
| | - Xu Ping Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital
| | - Li Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital
| | - Yuan Yuan Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital
| | - Shi Fang Ding
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital
| | - Jian Min Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital
| |
Collapse
|
45
|
Blomkalns AL, Stoll LL, Shaheen W, Romig-Martin SA, Dickson EW, Weintraub NL, Denning GM. Low level bacterial endotoxin activates two distinct signaling pathways in human peripheral blood mononuclear cells. JOURNAL OF INFLAMMATION-LONDON 2011; 8:4. [PMID: 21352551 PMCID: PMC3056742 DOI: 10.1186/1476-9255-8-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 02/25/2011] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bacterial endotoxin, long recognized as a potent pro-inflammatory mediator in acute infectious processes, has more recently been identified as a risk factor for atherosclerosis and other cardiovascular diseases. When endotoxin enters the bloodstream, one of the first cells activated is the circulating monocyte, which exhibits a wide range of pro-inflammatory responses. METHODS We studied the effect of low doses of E. coli LPS on IL-8 release and superoxide formation by freshly isolated human peripheral blood mononuclear cells (PBMC). RESULTS IL-8 release was consistently detectable at 10 pg/ml of endotoxin, reaching a maximum at 1 ng/ml, and was exclusively produced by monocytes; the lymphocytes neither produced IL-8, nor affected monocyte IL-8 release. Superoxide production was detectable at 30 pg/ml of endotoxin, reaching a maximum at 3 ng/ml. Peak respiratory burst activity was seen at 15-20 min, and superoxide levels returned to baseline by 1 h. IL-8 release was dependent on both membrane-associated CD14 (mCD14) and Toll-like receptor 4 (TLR4. Superoxide production was dependent on the presence of LBP, but was not significantly affected by a blocking antibody to TLR4. Moreover, treatment with lovastatin inhibited LPS-dependent IL-8 release and superoxide production. CONCLUSIONS These findings suggest that IL-8 release and the respiratory burst are regulated by distinct endotoxin-dependent signaling pathways in PBMC in low level of endotoxin exposure. Selectively modulating these pathways could lead to new approaches to treat chronic inflammatory diseases, such as atherosclerosis, while preserving the capacity of monocytes to respond to acute bacterial infections.
Collapse
Affiliation(s)
- Andra L Blomkalns
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH USA
| | - Lynn L Stoll
- Department of Emergency Medicine, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Wassim Shaheen
- The Department of Internal Medicine, Division of Cardiovascular Diseases, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sara A Romig-Martin
- Department of Emergency Medicine, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Eric W Dickson
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Neal L Weintraub
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, OH, USA
| | - Gerene M Denning
- Department of Emergency Medicine, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
46
|
Manco M, Putignani L, Bottazzo GF. Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr Rev 2010; 31:817-44. [PMID: 20592272 DOI: 10.1210/er.2009-0030] [Citation(s) in RCA: 351] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Compelling evidence supports the concepts that gut microbiota actively promotes weight gain and fat accumulation and sustains, indirectly, a condition of low-grade inflammation, thus enhancing the cardiovascular risk. Fewer Bacteroidetes and more Firmicutes seem to characterize the gut microbiota of obese people as compared with that of lean individuals. This difference translates into an increased efficiency of microbiota of obese individuals in harvesting energy from otherwise indigestible carbohydrates. Furthermore, the microbiota also seems able to favor fat accumulation. Indeed, studies performed in germ-free animals have demonstrated that conventionalization of sterile intestine with gut microbiota is associated with an enhanced expression of various lipogenic genes in different tissues, i.e., hepatic, adipose, and muscle tissues. Finally, the microbiota favors systemic exposure to the lipopolysaccharides (LPSs), large glycolipids derived from the outer membrane of Gram-negative bacteria. LPSs can cause a condition of "metabolic endotoxemia" characterized by low-grade inflammation, insulin resistance, and augmented cardiovascular risk. LPSs are a powerful trigger for the innate immune system response. Upon binding to the Toll-like receptor 4 and its coreceptors, LPSs trigger a cascade of responses ultimately resulting in the release of proinflammatory molecules that interfere with modulation of glucose and insulin metabolism, promote development and rupture of the atherosclerotic plaque, and favor progression of fatty liver disease to steatohepatitis. This review gives a comprehensive breakdown of the interaction among gut microbiota, LPSs, and the innate immune system in the development of obesity and promotion of an individual's cardiovascular risk.
Collapse
Affiliation(s)
- Melania Manco
- Bambino Gesù Hospital, Instituto di Ricovero e Cura a Carattere Scientifico, Piazza San Onofrio 4, I-00165 Rome, Italy.
| | | | | |
Collapse
|
47
|
Higashimori M, Tatro JB, Moore KJ, Mendelsohn ME, Galper JB, Beasley D. Role of toll-like receptor 4 in intimal foam cell accumulation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2010; 31:50-7. [PMID: 20966403 DOI: 10.1161/atvbaha.110.210971] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Atherosclerosis encompasses a conspicuously maladaptive inflammatory response that might involve innate immunity. Here, we compared the role of Toll-like receptor 4 (TLR4) with that of TLR2 in intimal foam cell accumulation and inflammation in apolipoprotein E (ApoE) knockout (KO) mice in vivo and determined potential mechanisms of upstream activation and downstream action. METHODS AND RESULTS We measured lipid accumulation and gene expression in the lesion-prone lesser curvature of the aortic arch. TLR4 deficiency reduced intimal lipid by ≈75% in ApoE KO mice, despite unaltered total serum cholesterol and triglyceride levels, whereas TLR2 deficiency reduced it by ≈45%. TLR4 deficiency prevented the increased interleukin-1α (IL-1α) and monocyte chemoattractant protein-1 mRNA levels seen within lesional tissue, and it also lowered serum IL-1α levels. Smooth muscle cells (SMC) were present within the intima of the lesser curvature of the aortic arch at this early lesion stage, and they enveloped and permeated nascent lesions, which consisted of focal clusters of foam cells. Cholesterol enrichment of SMC in vitro stimulated acyl-coenzyme A:cholesterol acyltransferase-1 mRNA expression, cytoplasmic cholesterol ester accumulation, and monocyte chemoattractant protein-1 mRNA and protein expression in a TLR4-dependent manner. CONCLUSIONS TLR4 contributes to early-stage intimal foam cell accumulation at lesion-prone aortic sites in ApoE KO mice, as does TLR2 to a lesser extent. Intimal SMC surround and penetrate early lesions, where TLR4 signaling within them may influence lesion progression.
Collapse
|
48
|
Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem 2010; 21:781-92. [DOI: 10.1016/j.jnutbio.2009.12.004] [Citation(s) in RCA: 362] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/01/2009] [Accepted: 12/03/2009] [Indexed: 12/11/2022]
|
49
|
Expression and role of adiponectin receptor 1 in lipopolysaccharide-induced proliferation of cultured rat adventitial fibroblasts. Cell Biol Int 2010; 34:163-9. [PMID: 19947943 DOI: 10.1042/cbi20090013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adiponectin is an adipose-derived hormone that has anti-diabetic and anti-atherogenic effects through interaction with AdipoR1 and AdipoR2 (adiponectin receptors 1 and 2), but little is known about the expression and function of adiponectin and its receptors in adventitia and adventitial fibroblasts. In the present study, we have demonstrated that AdipoR1 is highly expressed in rat adventitia and cultured adventitial fibroblasts by quantitative real-time PCR, Western blotting and immunofluorescent staining, whereas Adipo2 is low-expressed. The expression of AdipoR1 have been observed to decrease gradually in adventitial fibroblasts in response to LPS (lipopolysaccharide) treatment. No local expression of adiponectin has been detected in adventitial tissues, indicating that serum adiponectin is the ligand for AdipoR1 in adventitial fibroblasts. In addition, treatment of recombinant adiponectin inhibited LPS-induced proliferation of adventitial fibroblasts via activation of the AMPK (adenosine monophosphate-activated protein kinase). AdipoR1 siRNA (small interfering RNA) transfection potently knocked down the receptor protein. The siRNA-AdipoR1 transfected cells and AMPK inhibitor compound C treated cells showed decreased phosphorylated level of AMPK as determined by Western blot analysis, and increased the proliferation of adventitial fibroblasts as determined by BrdU (5-bromo-29-deoxyuridine) staining. These results demonstrated that adiponectin stimulates the proliferation of adventitial fibroblasts via the AdipoR1 and AMPK signalling pathways.
Collapse
|
50
|
Shimada K, Daida H, Ma-Krupa W, Goronzy JJ, Weyand CM. Lipopolysaccharide, CD14 and Toll-like receptors: an emerging link between innate immunity and atherosclerotic disease. Future Cardiol 2010; 1:657-74. [PMID: 19804106 DOI: 10.2217/14796678.1.5.657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Atherosclerosis and its clinical complications are now understood to be an inflammatory syndrome in which an ongoing systemic inflammatory response is combined with the accumulation of immune cells in the atherosclerotic plaque. Both arms of the immune system, innate and adaptive, have been implicated in contributing to essentially all stages of atherosclerosis, from initiation to progression and, ultimately, atherothrombotic complications. Innate immunity is the first line of defense against invading microorganisms. The recognition units of the innate immune system are designed to respond to molecular patterns shared by a variety of infectious microorganisms, such as bacterial lipopolysaccharide. Numerous basic and clinical studies have provided evidence that responsiveness to lipopolysaccharide may be correlated to the risk of atherosclerotic disease. The molecular basis of this connection appears to lie in Toll-like receptors that are expressed on cells of the innate immune system, bind to lipopolysaccharide, and thus determine the strength of antibacterial immune responses in the host. Variations in the function of Toll-like receptors and their signaling pathways are now suspected to play a critical role in determining the risk of atherosclerosis. This review summarizes recent research advances exploring the role of innate immunity, particularly lipopolysaccharide, CD14 and Toll-like receptors, in the initiation and development of atherosclerotic disease.
Collapse
Affiliation(s)
- Kazunori Shimada
- Juntendo University School of Medicine, Division of Cardiology, Department of Internal Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | |
Collapse
|