1
|
Krylov A, Yu S, Veen K, Newton A, Ye A, Qin H, He J, Jusuf PR. Heterogeneity in quiescent Müller glia in the uninjured zebrafish retina drive differential responses following photoreceptor ablation. Front Mol Neurosci 2023; 16:1087136. [PMID: 37575968 PMCID: PMC10413128 DOI: 10.3389/fnmol.2023.1087136] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/23/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Loss of neurons in the neural retina is a leading cause of vision loss. While humans do not possess the capacity for retinal regeneration, zebrafish can achieve this through activation of resident Müller glia. Remarkably, despite the presence of Müller glia in humans and other mammalian vertebrates, these cells lack an intrinsic ability to contribute to regeneration. Upon activation, zebrafish Müller glia can adopt a stem cell-like state, undergo proliferation and generate new neurons. However, the underlying molecular mechanisms of this activation subsequent retinal regeneration remains unclear. Methods/Results To address this, we performed single-cell RNA sequencing (scRNA-seq) and report remarkable heterogeneity in gene expression within quiescent Müller glia across distinct dorsal, central and ventral retina pools of such cells. Next, we utilized a genetically driven, chemically inducible nitroreductase approach to study Müller glia activation following selective ablation of three distinct photoreceptor subtypes: long wavelength sensitive cones, short wavelength sensitive cones, and rods. There, our data revealed that a region-specific bias in activation of Müller glia exists in the zebrafish retina, and this is independent of the distribution of the ablated cell type across retinal regions. Notably, gene ontology analysis revealed that injury-responsive dorsal and central Müller glia express genes related to dorsal/ventral pattern formation, growth factor activity, and regulation of developmental process. Through scRNA-seq analysis, we identify a shared genetic program underlying initial Müller glia activation and cell cycle entry, followed by differences that drive the fate of regenerating neurons. We observed an initial expression of AP-1 and injury-responsive transcription factors, followed by genes involved in Notch signaling, ribosome biogenesis and gliogenesis, and finally expression of cell cycle, chromatin remodeling and microtubule-associated genes. Discussion Taken together, our findings document the regional specificity of gene expression within quiescent Müller glia and demonstrate unique Müller glia activation and regeneration features following neural ablation. These findings will improve our understanding of the molecular pathways relevant to neural regeneration in the retina.
Collapse
Affiliation(s)
- Aaron Krylov
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Shuguang Yu
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Kellie Veen
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Axel Newton
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huiwen Qin
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jie He
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Patricia R. Jusuf
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Zhao JZ, Li QY, Lin JJ, Yang LY, Du MY, Wang Y, Liu KX, Jiang ZA, Li HH, Wang SF, Sun B, Mu SQ, Li B, Liu K, Gong M, Sun SG. Integrated analysis of tRNA-derived small RNAs in proliferative human aortic smooth muscle cells. Cell Mol Biol Lett 2022; 27:47. [PMID: 35705912 PMCID: PMC9199163 DOI: 10.1186/s11658-022-00346-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Background Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to vascular remodeling diseases. Recently, it has been discovered that tRNA-derived small RNAs (tsRNAs), a new type of noncoding RNAs, are related to the proliferation and migration of VSMCs. tsRNAs regulate target gene expression through miRNA-like functions. This study aims to explore the potential of tsRNAs in human aortic smooth muscle cell (HASMC) proliferation. Methods High-throughput sequencing was performed to analyze the tsRNA expression profile of proliferative and quiescent HASMCs. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the sequence results and subcellular distribution of AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076. Based on the microRNA-like functions of tsRNAs, we predicted target promoters and mRNAs and constructed tsRNA–promoter and tsRNA–mRNA interaction networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to reveal the function of target genes. EdU incorporation assay, Western blot, and dual-luciferase reporter gene assay were utilized to detect the effects of tsRNAs on HASMC proliferation. Results Compared with quiescent HASMCs, there were 1838 differentially expressed tsRNAs in proliferative HASMCs, including 887 with increased expression (fold change > 2, p < 0.05) and 951 with decreased expression (fold change < ½, p < 0.05). AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076 were increased in proliferative HASMCs and were mainly located in the nucleus. Bioinformatics analysis suggested that the four tsRNAs involved a variety of GO terms and pathways related to VSMC proliferation. AS-tDR-000067 promoted HASMC proliferation by suppressing p53 transcription in a promoter-targeted manner. AS-tDR-000076 accelerated HASMC proliferation by attenuating mitofusin 2 (MFN2) levels in a 3′-untranslated region (UTR)-targeted manner. Conclusions During HASMC proliferation, the expression levels of many tsRNAs are altered. AS-tDR-000067 and AS-tDR-000076 act as new factors promoting VSMC proliferation. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00346-4.
Collapse
Affiliation(s)
- Jian-Zhi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China.,Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi-Yao Li
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jia-Jie Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Li-Yun Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Mei-Yang Du
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Ke-Xin Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Ze-An Jiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Huan-Huan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Si-Fan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Bo Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Shi-Qing Mu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Miao Gong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
3
|
Jiang W, Zhao W, Ye F, Huang S, Wu Y, Chen H, Zhou R, Fu G. SNHG12 regulates biological behaviors of ox-LDL-induced HA-VSMCs through upregulation of SPRY2 and NUB1. Atherosclerosis 2021; 340:1-11. [PMID: 34847450 DOI: 10.1016/j.atherosclerosis.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Human vascular smooth muscle cells (HA-VSMCs) are an important cell type involved in atherosclerosis. Low density lipoprotein (LDL) is a lipoprotein particle that carries cholesterol into peripheral tissue cells, and oxidized modified LDL (ox-LDL) is a well-known inducer of the atherosclerosis-related phenotype switch in VSMCs, leading to the occurrence of atherosclerosis. Accumulating studies have revealed that long non-coding RNAs (lncRNAs) mediate the effect of ox-LDL on the atherosclerosis-related biological activities of HA-VSMCs, including proliferation, migration, and apoptosis. However, the mechanism of small nucleolar RNA host gene 12 (SNHG12) in ox-LDL-induced phenotype switch of VSMCs remains unclear. Thus, this research dug in whether SNHG12 mediated the influence of ox-LDL on HA-VSMCs and the potential mechanism. METHODS Fundamental experiments and functional assays were performed to measure the function of SNHG12 on HA-VSMCs. Then, mechanism assays and rescue assays were performed to study the regulatory mechanism of SNHG12 in HA-VSMCs. RESULTS SNHG12 reversed the influence of ox-LDL treatment in enhancing cell proliferative and migratory abilities and weakening apoptotic ability in HA-VSMCs. SNHG12 was a competitive endogenous RNA (ceRNA) competing with sprouty RTK signaling antagonist 2 (SPRY2) to bind to miR-1301-3p, thus up-regulating SPRY2 expression in ox-LDL-treated HA-VSMCs. Besides, SNHG12 recruited serine and arginine rich splicing factor 1 (SRSF1) to stabilize negative regulator of ubiquitin like proteins 1 (NUB1) expression. CONCLUSIONS This study illustrated that SNHG12 inhibited cell proliferation, migration and facilitated cell apoptosis in ox-LDL-induced HA-VSMCs by up-regulating SPRY2 and NUB1.
Collapse
Affiliation(s)
- Wenbing Jiang
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Wei Zhao
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Fanhao Ye
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Shiwei Huang
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Youyang Wu
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Hao Chen
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Rui Zhou
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, PR China.
| |
Collapse
|
4
|
Childs BG, Zhang C, Shuja F, Sturmlechner I, Trewartha S, Fierro Velasco R, Baker D, Li H, van Deursen JM. Senescent cells suppress innate smooth muscle cell repair functions in atherosclerosis. NATURE AGING 2021; 1:698-714. [PMID: 34746803 PMCID: PMC8570576 DOI: 10.1038/s43587-021-00089-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Senescent cells (SNCs) degenerate the fibrous cap that normally prevents atherogenic plaque rupture, a leading cause of myocardial infarction and stroke. Here we explored the underlying mechanism using pharmacological or transgenic approaches to clear SNCs in the Ldlr -/- mouse model of atherosclerosis. SNC clearance reinforced fully deteriorated fibrous caps in highly advanced lesions, as evidenced by restored vascular smooth muscle cell (VSMC) numbers, elastin content, and overall cap thickness. We found that SNCs inhibit VSMC promigratory phenotype switching in the first interfiber space of the arterial wall directly beneath atherosclerotic plaque, thereby limiting lesion entry of medial VSMCs for fibrous cap assembly or reinforcement. SNCs do so by antagonizing IGF-1 through the secretion of insulin-like growth factor-binding protein 3 (Igfbp3). These data indicate that the intermittent use of senolytic agents or IGFBP-3 inhibition in combination with lipid lowering drugs may provide therapeutic benefit in atherosclerosis.
Collapse
Affiliation(s)
- Bennett G. Childs
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester MN, United States
| | - Fahad Shuja
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Rochester MN, United States
| | - Ines Sturmlechner
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
- Molecular Genetics Section, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Shawn Trewartha
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
| | - Raul Fierro Velasco
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
| | - Darren Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester MN, United States
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester MN, United States
| | - Jan M. van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester MN, United States
- Correspondence:
| |
Collapse
|
5
|
Yang Y, Mao W, Wang L, Lu L, Pang Y. Circular RNA circLMF1 regulates PDGF-BB-induced proliferation and migration of human aortic smooth muscle cells by regulating the miR-125a-3p/VEGFA or FGF1 axis. Clin Hemorheol Microcirc 2021; 80:167-183. [PMID: 34092624 DOI: 10.3233/ch-211166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atherosclerosis is a major cause of cardiovascular disease, in which vascular smooth muscle cells (VSMCs) proliferation and migration play a vital role. Circular RNAs (circRNAs) have been reported to be correlated with the VSMCs function. Therefore, this study is designed to explore the role and mechanism of circRNA lipase maturation factor 1 (circLMF1) in Human aortic VSMCs (HASMCs). The microarray was used for detecting the expression of circLMF1 in proliferative and quiescent HASMCs. Levels of circLMF1, microRNA-125a-3p (miR-125a-3p), vascular endothelial growth factor A (VEGFA), and fibroblast growth factor 1 (FGF1) were determined by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, cell cycle progression, and migration were assessed by Cell Counting Kit-8 (CCK-8), flow cytometry, wound healing, and transwell assays, respectively. Western blot assay determined proliferating cell nuclear antigen (PCNA), Cyclin D1, matrix metalloproteinase (MMP2), osteopontin (OPN), VEGFA, and FGF1 protein levels. The possible interactions between miR-125a-3p and circLMF1, and miR-125a-3p and VEGFA or FGF1 were predicted by circbank or targetscan, and then verified by a dual-luciferase reporter, RNA Immunoprecipitation (RIP), RNA pull-down assays. CircLMF1, VEGFA, and FGF1 were increased, and miR-125a-3p was decreased in platelet-derived growth factor-BB (PDGF-BB)-inducted HASMCs. Functionally, circLMF1 knockdown hindered cell viability, cell cycle progression, and migration in PDGF-BB-treated HASMCs. Mechanically, circLMF1 could regulate VEGFA or FGF1 expression through sponging miR-125a-3p. Our findings revealed that circLMF1 deficiency could inhibit cell viability, cell cycle progression, and migration of PDGF-BB stimulated atherosclerosis model partly through the miR-125a-3p/VEGFA or FGF1 axis, suggesting that targeting circLMF1 can be a feasible therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Cardiac Surgery, The Cardio-Cerebro Vascular Disease Specialist Hospital of Qinghai Province, Xining City, China
| | - Wenkai Mao
- Department of Cardiac Surgery, The Cardio-Cerebro Vascular Disease Specialist Hospital of Qinghai Province, Xining City, China
| | - Liming Wang
- Department of Cardiac Surgery, The Cardio-Cerebro Vascular Disease Specialist Hospital of Qinghai Province, Xining City, China
| | - Lin Lu
- Department of Cardiac Surgery, The Cardio-Cerebro Vascular Disease Specialist Hospital of Qinghai Province, Xining City, China
| | - Yunfeng Pang
- Department of Cardiac Surgery, The Cardio-Cerebro Vascular Disease Specialist Hospital of Qinghai Province, Xining City, China
| |
Collapse
|
6
|
Fan K, Ruan X, Wang L, Lu W, Shi Q, Xu Y. Circ_0004872 promotes platelet-derived growth factor-BB-induced proliferation, migration and dedifferentiation in HA-VSMCs via miR-513a-5p/TXNIP axis. Vascul Pharmacol 2021; 140:106842. [PMID: 33592319 DOI: 10.1016/j.vph.2021.106842] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 01/22/2023]
Abstract
The proliferation, migration and dedifferentiation of vascular smooth muscle cells (VSMCs) exert crucial roles in atherosclerosis (AS) progression. The aim of our study was to explore the influences of circular RNA 0004872 (circ_0004872) in platelet-derived growth factor-BB (PDGF-BB)-induced AS cell model and investigate the underlying mechanisms. Real-time quantitative polymerase chain reaction (RT-qPCR) was implemented for the expression detection of circ_0004872, mitogen-activated protein kinase 1 (MAPK1) messenger RNA (mRNA), microRNA-513a-5p (miR-513a-5p) and thioredoxin interacting protein (TXNIP). Cell proliferation was analyzed via Cell Counting Kit 8 (CCK8) assay. Cell migration was assessed via wound healing assay and transwell migration assay. Western blot assay was used to measure the expression of alpha smooth muscle actin (α-SMA), osteopontin (OPN), calponin and TXNIP. Dual-luciferase reporter assay and RNA-pull down assay were used for confirmation of interaction between miR-513a-5p and circ_0004872 or TXNIP. Circ_0004872 expression was elevated in PDGF-BB-induced human aortic vascular smooth muscle cells (HA-VSMCs) and carotid plaque tissues. Circ_0004872 silencing alleviated PDGF-BB-induced proliferation, migration and dedifferentiation in HA-VSMCs. MiR-513a-5p bound to circ_0004872, and circ_0004872 knockdown-induced effects in PDGF-BB-treated HA-VSMCs were largely attenuated by the silencing of miR-513a-5p. MiR-513a-5p bound to the 3' untranslated region (3'UTR) of TXNIP, and miR-513a-5p overexpression-mediated effects were counteracted by the transfection of pcDNA-TXNIP in PDGF-BB-induced HA-VSMCs. TXNIP was modulated by circ_0004872/miR-513a-5p signaling cascade in HA-VSMCs. Circ_0004872 accelerated PDGF-BB-induced proliferation, migration and dedifferentiation in HA-VSMCs through enhancing TXNIP level via sponging miR-513a-5p.
Collapse
Affiliation(s)
- Kaikai Fan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Xinhua Ruan
- Department of Cardiovascular Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Leilei Wang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Wanli Lu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospitale, Tianjin, China
| | - Qiangwei Shi
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yawei Xu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Zhu XL, Li T, Cao Y, Yao QP, Liu X, Li Y, Guan YY, Deng JJ, Jiang R, Jiang J. tRNA-derived fragments tRF GlnCTG induced by arterial injury promote vascular smooth muscle cell proliferation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:603-613. [PMID: 33552681 PMCID: PMC7819823 DOI: 10.1016/j.omtn.2020.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/09/2020] [Indexed: 01/20/2023]
Abstract
tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs) are originated from the specific cleavage of endogenous tRNAs or their precursors and regulate gene expression when the cells are in stressful circumstances. Here, we replicated the rat common carotid artery (CCA) intimal hyperplasia model and investigated the expression of tRFs/tiRNAs in the artery. The normal and the balloon-injured rat CCAs were subjected to small RNA sequencing, and then the differentially expressed tRFs/tiRNAs were identified and analyzed. The expression profiles of tRFs/tiRNAs in the healthy and injured CCAs were remarkably different. tRNAGlnCTG-derived fragments (tRFGlnCTG) were found to be overexpressed with a high abundance in the injured CCA. In in vitro experiments, the synthetic tRFGlnCTG mimetics elevated the proliferation and migration of rat vascular smooth muscle cells (VSMCs). Through bioinformatics analysis and an overexpression experiment, tRFGlnCTG was found to negatively regulate the expression of FAS cell surface death receptor (FAS). This study revealed that tRFGlnCTG is a crucial regulator in promoting VSMC proliferation. The investigation of the roles of tRFs/tiRNAs is of significance for understanding the mechanism, diagnosis, and treatment of intimal hyperplasia.
Collapse
Affiliation(s)
- Xiao-Ling Zhu
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Li
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Yu Cao
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ying Li
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang-Yang Guan
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ji-Jun Deng
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui Jiang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Corresponding author: Rui Jiang, Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan Province, China.
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
- Corresponding author: Jun Jiang, Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan Province, China.
| |
Collapse
|
8
|
Regulation of PDE5 expression in human aorta and thoracic aortic aneurysms. Sci Rep 2019; 9:12206. [PMID: 31434939 PMCID: PMC6704119 DOI: 10.1038/s41598-019-48432-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/25/2019] [Indexed: 01/05/2023] Open
Abstract
Aneurysms and dissections affecting thoracic aorta are associated with smooth muscle cell (SMC) dysfunction. NO/cGMP signaling pathway in smooth muscle cells has been shown to be affected in sporadic thoracic aortic aneurysms. We analyzed the mRNA levels of PDE5, a cGMP-hydrolyzing enzyme highly expressed in aortic SMCs, that regulates arterious vascular tone by lowering cGMP levels. We found that aortic tissue obtained from Marfan, tricuspid and bicuspid thoracic aneurysms expressed lower levels of PDE5 mRNA compared to control aortas. In particular, we found that affected aortas showed lower levels of all the PDE5A isoforms, compared to control aortas. Transfection of vascular SMCs (VSMCs) with NOTCH3 activated domain (NICD3) induced the expression of PDE5A1 and A3 protein isoforms, but not that of the corresponding mRNAs. VSMC stimulation with GSNO, a nitric oxide analogue or with 8-br-cGMP, but not with 8-br-cAMP, up-regulated PDE5 and NOTCH-3 protein levels, indicating a negative feedback loop to protect the arterial wall from excessive relaxation. Finally, we found that PDE5 is expressed early during human aorta development, suggesting that if loss of function mutations of PDE5 occur, they might potentially affect aortic wall development.
Collapse
|
9
|
Dong X, Hu H, Fang Z, Cui J, Liu F. CTRP6 inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration. Biomed Pharmacother 2018; 103:844-850. [PMID: 29710500 DOI: 10.1016/j.biopha.2018.04.112] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration play critical roles in the development and progression of atherosclerosis. C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs family, was involved in cardiovascular diseases, inflammatory reaction and adipogenesis. However, the role of CTRP6 in VSMCs remains largely unknown. The purpose of this study is to investigate the effects of CTRP6 on VSMC proliferation and migration and explore the possible mechanism. Our results indicated that CTRP6 expression was dramatically down-regulated in human atherosclerotic tissues and in cultured VSMCs stimulated by platelet-derived growth factor-BB (PDGF-BB). In addition, CTRP6 overexpression significantly inhibited the proliferation and migration of VSMCs exposed to PDGF-BB, as well as increased expression of α-SMA and SM22α in PDGF-BB-stimulated VSMCs. Furthermore, CTRP6 overexpression efficiently prevented the activation of PI3K/Akt/mTOR in VSMCs in response to PDGF-BB. In conclusion, these findings showed that CTRP6 inhibits PDGF-BB-induced VSMC proliferation and migration, at least in part, through suppressing the PI3K/Akt/mTOR signaling pathway. Therefore, CTRP6 may be a potential target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xunzhong Dong
- Department of Vascular Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, Anhui Province, China; Department of Vascular Surgery, The People's Hospital of Bozhou, Clinical College of Anhui Medical University, Bozhou, 236800, Anhui Province, China
| | - Hejie Hu
- Department of Vascular Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, Anhui Province, China.
| | - Zhengdong Fang
- Department of Vascular Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, Anhui Province, China
| | - Jian Cui
- Department of Vascular Surgery, The People's Hospital of Bozhou, Clinical College of Anhui Medical University, Bozhou, 236800, Anhui Province, China
| | - Fangxin Liu
- Department of Ultrasound, The People's Hospital of Bozhou, Clinical College of Anhui Medical University, Bozhou, 236800, Anhui Province, China
| |
Collapse
|
10
|
Yang X, Gong Y, He Q, Licht JD, Liaw L, Friesel RE. Loss of Spry1 attenuates vascular smooth muscle proliferation by impairing mitogen-mediated changes in cell cycle regulatory circuits. J Cell Biochem 2018; 119:3267-3279. [PMID: 29105817 PMCID: PMC5826877 DOI: 10.1002/jcb.26486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022]
Abstract
Signals from growth factors or mechanical stimuli converge to promote vascular smooth muscle cell (VSMC) migration and proliferation, key events in the pathogenesis of intimal hyperplasia upon vascular injury. Spry1, a regulator of receptor tyrosine kinases (RTK), plays a role in maintaining the contractile phenotype of VSMC. The aim of the current study was to determine the role of Spry1 in VSMC proliferation in vitro and injury induced neointimal hyperplasia in vivo. VSMC proliferation and neointima formation were evaluated in cultured human aortic SMC (hAoSMC) and ligation-induced injury of mouse carotid arteries from Spry1 gene targeted mice, and their corresponding wild type littermates. Human Spry1 or non-targeting control lentiviral shRNAs were used to knock down Spry1 in hAoSMC. Time course cell cycle analysis showed a reduced fraction of S-phase cells at 12 and 24 h after growth medium stimulation in Spry1 shRNA transduced hAoSMC. Consistent with reduced S-phase entry, the induction of cyclinD1 and the levels of pRbS807/S811, pH3Ser10, and pCdc2 were also reduced, while the cell cycle inhibitor p27Kip1 was maintained in Spry1 knockdown hAoSMC. In vivo, loss of Spry1 attenuated carotid artery ligation-induced neointima formation in mice, and this effect was accompanied by a decrease in cell proliferation similar to the in vitro results. Our findings demonstrate that loss of Spry1 attenuates mitogen-induced VSMC proliferation, and thus injury-induced neointimal hyperplasia likely via insufficient activation of Akt signaling causing decreased cyclinD1 and increased p27Kip1 and a subsequent decrease in Rb and cdc2 phosphorylation.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
| | - Yan Gong
- Department of Biological Repositories, Wuhan University Zhongnan Hopital, Wuhan, China
| | - Qing He
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jonathan D. Licht
- Division of Hematology and Oncology
- Department of Medicine
- University of Florida Health Cancer Center
- University of Florida College of Medicine, Gainesville, FL
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
- Department of Biological Repositories, Wuhan University Zhongnan Hopital, Wuhan, China
| | - Robert E. Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
| |
Collapse
|
11
|
Das S, Senapati P, Chen Z, Reddy MA, Ganguly R, Lanting L, Mandi V, Bansal A, Leung A, Zhang S, Jia Y, Wu X, Schones DE, Natarajan R. Regulation of angiotensin II actions by enhancers and super-enhancers in vascular smooth muscle cells. Nat Commun 2017; 8:1467. [PMID: 29133788 PMCID: PMC5684340 DOI: 10.1038/s41467-017-01629-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/04/2017] [Indexed: 11/09/2022] Open
Abstract
Angiotensin II (AngII) promotes hypertension and atherosclerosis by activating growth-promoting and pro-inflammatory gene expression in vascular smooth muscle cells (VSMCs). Enhancers and super-enhancers (SEs) play critical roles in driving disease-associated gene expression. However, enhancers/SEs mediating VSMC dysfunction remain uncharacterized. Here, we show that AngII alters vascular enhancer and SE repertoires in cultured VSMCs in vitro, ex vivo, and in AngII-infused mice aortas in vivo. AngII-induced enhancers/SEs are enriched in binding sites for signal-dependent transcription factors and dependent on key signaling kinases. Moreover, CRISPR-Cas9-mediated deletion of candidate enhancers/SEs, targeting SEs with the bromodomain and extra-terminal domain inhibitor JQ1, or knockdown of overlapping long noncoding RNAs (lncRNAs) blocks AngII-induced genes associated with growth-factor signaling and atherosclerosis. Furthermore, JQ1 ameliorates AngII-induced hypertension, medial hypertrophy and inflammation in vivo in mice. These results demonstrate AngII-induced signals integrate enhancers/SEs and lncRNAs to increase expression of genes involved in VSMC dysfunction, and could uncover novel therapies.
Collapse
Affiliation(s)
- Sadhan Das
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Parijat Senapati
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Zhuo Chen
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Marpadga A Reddy
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Rituparna Ganguly
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Varun Mandi
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Anita Bansal
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Selena Zhang
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Ye Jia
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
12
|
Gao X, Hicks KC, Neumann P, Patel TB. Hypoxia inducible factors regulate the transcription of the sprouty2 gene and expression of the sprouty2 protein. PLoS One 2017; 12:e0171616. [PMID: 28196140 PMCID: PMC5308774 DOI: 10.1371/journal.pone.0171616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Receptor Tyrosine Kinase (RTK) signaling plays a major role in tumorigenesis and normal development. Sprouty2 (Spry2) attenuates RTK signaling and inhibits processes such as angiogenesis, cell proliferation, migration and survival, which are all upregulated in tumors. Indeed in cancers of the liver, lung, prostate and breast, Spry2 protein levels are markedly decreased correlating with poor patient prognosis and shorter survival. Thus, it is important to understand how expression of Spry2 is regulated. While prior studies have focused on the post-translation regulation of Spry2, very few studies have focused on the transcriptional regulation of SPRY2 gene. Here, we demonstrate that in the human hepatoma cell line, Hep3B, the transcription of SPRY2 is inhibited by the transcription regulating hypoxia inducible factors (HIFs). HIFs are composed of an oxygen regulated alpha subunit (HIF1α or HIF2α) and a beta subunit (HIF1β). Intriguingly, silencing of HIF1α and HIF2α elevates SPRY2 mRNA and protein levels suggesting HIFs reduce the transcription of the SPRY2 promoter. In silico analysis identified ten hypoxia response elements (HREs) in the proximal promoter and first intron of SPRY2. Using chromatin immunoprecipitation (ChIP), we show that HIF1α/2α bind near the putative HREs in the proximal promoter and intron of SPRY2. Our studies demonstrated that not only is the SPRY2 promoter methylated, but silencing HIF1α/2α reduced the methylation. ChIP assays also showed DNA methyltransferase1 (DNMT1) binding to the proximal promoter and first intron of SPRY2 and silencing HIF1α/2α decreased this association. Additionally, silencing of DNMT1 mimicked the HIF1α/2α silencing-mediated increase in SPRY2 mRNA and protein. While simultaneous silencing of HIF1α/2α and DNMT1 increased SPRY2 mRNA a little more, the increase was not additive suggesting a common mechanism by which DNMT1 and HIF1α/2α regulate SPRY2 transcription. Together these data suggest that the transcription of SPRY2 is inhibited by HIFs, in part, via DNMT1- mediated methylation.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Kristin C. Hicks
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Paul Neumann
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Tarun B. Patel
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Lee AG, Capanzana R, Brockhurst J, Cheng MY, Buckmaster CL, Absher D, Schatzberg AF, Lyons DM. Learning to cope with stress modulates anterior cingulate cortex stargazin expression in monkeys and mice. Neurobiol Learn Mem 2016; 131:95-100. [PMID: 27003116 DOI: 10.1016/j.nlm.2016.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 11/29/2022]
Abstract
Intermittent mildly stressful situations provide opportunities to learn, practice, and improve coping with gains in subsequent emotion regulation. Here we investigate the effects of learning to cope with stress on anterior cingulate cortex gene expression in monkeys and mice. Anterior cingulate cortex is involved in learning, memory, cognitive control, and emotion regulation. Monkeys and mice were randomized to either stress coping or no-stress treatment conditions. Profiles of gene expression were acquired with HumanHT-12v4.0 Expression BeadChip arrays adapted for monkeys. Three genes identified in monkeys by arrays were then assessed in mice by quantitative real-time polymerase chain reaction. Expression of a key gene (PEMT) involved in acetylcholine biosynthesis was increased in monkeys by coping but this result was not verified in mice. Another gene (SPRY2) that encodes a negative regulator of neurotrophic factor signaling was decreased in monkeys by coping but this result was only partly verified in mice. The CACNG2 gene that encodes stargazin (also called TARP gamma-2) was increased by coping in monkeys as well as mice randomized to coping with or without subsequent behavioral tests of emotionality. As evidence of coping effects distinct from repeated stress exposures per se, increased stargazin expression induced by coping correlated with diminished emotionality in mice. Stargazin modulates glutamate receptor signaling and plays a role in synaptic plasticity. Molecular mechanisms of synaptic plasticity that mediate learning and memory in the context of coping with stress may provide novel targets for new treatments of disorders in human mental health.
Collapse
Affiliation(s)
- Alex G Lee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Roxanne Capanzana
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | | | | | | | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - David M Lyons
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| |
Collapse
|
14
|
Yang X, Liaw L, Prudovsky I, Brooks PC, Vary C, Oxburgh L, Friesel R. Fibroblast growth factor signaling in the vasculature. Curr Atheroscler Rep 2015; 17:509. [PMID: 25813213 DOI: 10.1007/s11883-015-0509-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite their discovery as angiogenic factors and mitogens for endothelial cells more than 30 years ago, much remains to be determined about the role of fibroblast growth factors (FGFs) and their receptors in vascular development, homeostasis, and disease. In vitro studies show that members of the FGF family stimulate growth, migration, and sprouting of endothelial cells, and growth, migration, and phenotypic plasticity of vascular smooth muscle cells. Recent studies have revealed important roles for FGFs and their receptors in the regulation of endothelial cell sprouting and vascular homeostasis in vivo. Furthermore, recent work has revealed roles for FGFs in atherosclerosis, vascular calcification, and vascular dysfunction. The large number of FGFs and their receptors expressed in endothelial and vascular smooth muscle cells complicates these studies. In this review, we summarize recent studies in which new and unanticipated roles for FGFs and their receptors in the vasculature have been revealed.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
HAN XIAOJIAN, HE DAN, XU LIANGJING, CHEN MIN, WANG YIQI, FENG JIUGENG, WEI MINJUN, HONG TAO, JIANG LIPING. Knockdown of connexin 43 attenuates balloon injury-induced vascular restenosis through the inhibition of the proliferation and migration of vascular smooth muscle cells. Int J Mol Med 2015; 36:1361-8. [DOI: 10.3892/ijmm.2015.2346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/24/2015] [Indexed: 11/05/2022] Open
|
16
|
Ning Z, McLellan AS, Ball M, Wynne F, O'Neill C, Mills W, Quinn JP, Kleinjan DA, Anney RJ, Carmody RJ, O'Keeffe G, Moore T. Regulation of SPRY3 by X chromosome and PAR2-linked promoters in an autism susceptibility region. Hum Mol Genet 2015; 24:5126-41. [PMID: 26089202 DOI: 10.1093/hmg/ddv231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/15/2015] [Indexed: 11/13/2022] Open
Abstract
Sprouty proteins are regulators of cell growth and branching morphogenesis. Unlike mouse Spry3, which is X-linked, human SPRY3 maps to the pseudoautosomal region 2; however, the human Y-linked allele is not expressed due to epigenetic silencing by an unknown mechanism. SPRY3 maps adjacent to X-linked Trimethyllysine hydroxylase epsilon (TMLHE), recently identified as an autism susceptibility gene. We report that Spry3 is highly expressed in central and peripheral nervous system ganglion cells in mouse and human, including cerebellar Purkinje cells and retinal ganglion cells. Transient over-expression or knockdown of Spry3 in cultured mouse superior cervical ganglion cells inhibits and promotes, respectively, neurite growth and branching. A 0.7 kb gene fragment spanning the human SPRY3 transcriptional start site recapitulates the endogenous Spry3-expression pattern in LacZ reporter mice. In the human and mouse the SPRY3 promoter contains an AG-rich repeat and we found co-expression, and promoter binding and/or regulation of SPRY3 expression by transcription factors MAZ, EGR1, ZNF263 and PAX6. We identified eight alleles of the human SPRY3 promoter repeat in Caucasians, and similar allele frequencies in autism families. We characterized multiple SPRY3 transcripts originating at two CpG islands in the X-linked F8A3-TMLHE region, suggesting X chromosome regulation of SPRY3. These findings provide an explanation for differential regulation of X and Y-linked SPRY3 alleles. In addition, the presence of a SPRY3 transcript exon in a previously described X chromosome deletion associated with autism, and the cerebellar interlobular variation in Spry3 expression coincident with the reported pattern of Purkinje cell loss in autism, suggest SPRY3 as a candidate susceptibility locus for autism.
Collapse
Affiliation(s)
- Zhenfei Ning
- School of Biochemistry and Cell Biology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland
| | - Andrew S McLellan
- School of Biochemistry and Cell Biology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland
| | - Melanie Ball
- School of Biochemistry and Cell Biology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland
| | - Freda Wynne
- School of Biochemistry and Cell Biology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland
| | - Cora O'Neill
- School of Biochemistry and Cell Biology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland
| | - Walter Mills
- School of Biochemistry and Cell Biology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland
| | - John P Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Dirk A Kleinjan
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Richard J Anney
- Department of Psychiatry, Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Ruaidhre J Carmody
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, Glasgow G12 8TA, UK and
| | - Gerard O'Keeffe
- Department of Anatomy and Neuroscience, Biosciences Institute, University College Cork, College Road, Cork, Ireland
| | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland,
| |
Collapse
|
17
|
Abstract
Sprouty proteins are evolutionarily conserved modulators of MAPK/ERK pathway. Through interacting with an increasing number of effectors, mediators, and regulators with ultimate influence on multiple targets within or beyond ERK, Sprouty orchestrates a complex, multilayered regulatory system and mediates a crosstalk among different signaling pathways for a coordinated cellular response. As such, Sprouty has been implicated in various developmental and physiological processes. Evidence shows that ERK is aberrantly activated in malignant conditions. Accordingly, Sprouty deregulation has been reported in different cancer types and shown to impact cancer development, progression, and metastasis. In this article, we have tried to provide an overview of the current knowledge about the Sprouty physiology and its regulatory functions in health, as well as an updated review of the Sprouty status in cancer. Putative implications of Sprouty in cancer biology, their clinical relevance, and their proposed applications are also revisited. As a developing story, however, role of Sprouty in cancer remains to be further elucidated.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- UNSW Department of Surgery, University of New South Wales, St George Hospital, Kogarah, Sydney, NSW, 2217, Australia,
| | | | | |
Collapse
|
18
|
Abu-Elmagd M, Goljanek Whysall K, Wheeler G, Münsterberg A. Sprouty2 mediated tuning of signalling is essential for somite myogenesis. BMC Med Genomics 2015; 8 Suppl 1:S8. [PMID: 25783674 PMCID: PMC4315326 DOI: 10.1186/1755-8794-8-s1-s8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Negative regulators of signal transduction cascades play critical roles in controlling different aspects of normal embryonic development. Sprouty2 (Spry2) negatively regulates receptor tyrosine kinases (RTK) and FGF signalling and is important in differentiation, cell migration and proliferation. In vertebrate embryos, Spry2 is expressed in paraxial mesoderm and in forming somites. Expression is maintained in the myotome until late stages of somite differentiation. However, its role and mode of action during somite myogenesis is still unclear. Results Here, we analysed chick Spry2 expression and showed that it overlaps with that of myogenic regulatory factors MyoD and Mgn. Targeted mis-expression of Spry2 led to inhibition of myogenesis, whilst its C-terminal domain led to an increased number of myogenic cells by stimulating cell proliferation. Conclusions Spry2 is expressed in somite myotomes and its expression overlaps with myogenic regulatory factors. Overexpression and dominant-negative interference showed that Spry2 plays a crucial role in regulating chick myogenesis by fine tuning of FGF signaling through a negative feedback loop. We also propose that mir-23, mir-27 and mir-128 could be part of the negative feedback loop mechanism. Our analysis is the first to shed some light on in vivo Spry2 function during chick somite myogenesis.
Collapse
|
19
|
Masoumi-Moghaddam S, Amini A, Wei AQ, Robertson G, Morris DL. Sprouty 2 protein, but not Sprouty 4, is an independent prognostic biomarker for human epithelial ovarian cancer. Int J Cancer 2015; 137:560-70. [PMID: 25630587 DOI: 10.1002/ijc.29425] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/17/2014] [Indexed: 12/12/2022]
Abstract
Sprouty proteins are evolutionary-conserved modulators of receptor tyrosine kinase signaling, deregulation of which has been implicated in the pathophysiology of cancer. In the present study, the expression status of Spry2 and Spry4 proteins and its clinical relevance in human epithelial ovarian cancer (EOC) were investigated retrospectively. We examined the immunohistochemical expression of Spry2 and Spry4 in matched tumor and normal tissue samples from 99 patients. The expression of ERK, p-ERK, Ki67, fibroblast growth factor-2, vascular endothelial growth factor and interleukin-6 and their correlation with Sprouty homologs were also evaluated. Moreover, the correlation between Spry2 and Spry4 and the clinicopathological characteristics were analyzed along with their predictive value for overall survival (OS) and disease-free survival (DFS). Our data indicated significant downregulation of Spry2 and Spry4 in tumor tissues (p < 0.0001). A significant inverse correlation was evident between Spry2 and p-ERK/ERK (p = 0.048), Ki67 (p = 0.011), disease stage (p = 0.013), tumor grade (p = 0.003), recurrence (p < 0.001) and post-treatment ascites (p = 0.001), individually. It was found that Spry2 low-expressing patients had significantly poorer OS (p = 0.002) and DFS (p = 0.004) than those with high expression of Spry2. Multivariate analysis showed that high Spry2 (p = 0.018), low stage (p = 0.049) and no residual tumor (p =0.006) were independent prognostic factors for a better OS. With regard to DFS, high Spry2 (p = 0.044) and low stage (p = 0.046) remained as independent predictors. In conclusion, we report for the first time significant downregulation of Spry2 and Spry4 proteins in human EOC. Spry2 expression was revealed to significantly impact tumor behavior with predictive value as an independent prognostic factor for survival and recurrence.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- Department of Surgery, St George Hospital, the University of New South Wales, Sydney, NSW, Australia
| | - Afshin Amini
- Department of Surgery, St George Hospital, the University of New South Wales, Sydney, NSW, Australia
| | - Ai-Qun Wei
- Department of Orthopaedic Surgery, St. George Hospital, the University of New South Wales, Sydney, NSW, Australia
| | - Gregory Robertson
- Department of Gynaecology Oncology, St George Hospital, the University of New South Wales, Sydney, NSW, Australia
| | - David L Morris
- Department of Surgery, St George Hospital, the University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
20
|
Han XJ, Chen M, Hong T, Zhu LY, He D, Feng JG, Jiang LP. Lentivirus-mediated RNAi knockdown of the gap junction protein, Cx43, attenuates the development of vascular restenosis following balloon injury. Int J Mol Med 2015; 35:885-92. [PMID: 25625334 PMCID: PMC4356439 DOI: 10.3892/ijmm.2015.2078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/22/2015] [Indexed: 11/16/2022] Open
Abstract
Percutaneous coronary intervention [PCI or percutaneous transluminal coronary angioplasty (PTCA)] has been developed into a mature interventional treatment for atherosclerotic cardiovascular disease. However, the long-term therapeutic effect is compromised by the high incidence of vascular restenosis following angioplasty, and the underlying mechanisms of vascular restenosis have not yet been fully elucidated. In the present study, we investigated the role of the gap junction (GJ) protein, connexin 43 (Cx43), in the development of vascular restenosis. To establish vascular restenosis, rat carotid arteries were subjected to balloon angioplasty injury. At 0, 7, 14 and 2 days following balloon injury, the arteries were removed, and the intimal/medial area of the vessels was measured to evaluate the degree of restenosis. We found that the intimal area gradually increased following balloon injury. Intimal hyperplasia and restenosis were particularly evident at 14 and 28 days after injury. In addition, the mRNA and protein expression of Cx43 was temporarily decreased at 7 days, and subsequently increased at 14 and 28 days following balloon injury, as shown by RT-PCR and western blot analysis. To determine the involvement of Cx43 in vascular restenosis, the lentivirus vector expressing shRNA targeting Cx43, Cx43-RNAi-LV, was used to silence Cx43 in the rat carotid arteries. The knockdown of Cx43 effectively attenuated the development of intimal hyperplasia and vascular restenosis following balloon injury. Thus, our data indicate the vital role of the GJ protein, Cx43, in the development of vascular restenosis, and provide new insight into the pathogenesis of vascular reste-nosis. Cx43 may prove to be a novel potential pharmacological target for the prevention of vascular restenosis following PCI.
Collapse
Affiliation(s)
- Xiao-Jian Han
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Min Chen
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling-Yu Zhu
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dan He
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiu-Geng Feng
- Department of Neurosurgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Ping Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
21
|
Kureha F, Satomi-Kobayashi S, Kubo Y, Kinugasa M, Ishida T, Takai Y, Hirata KI, Rikitake Y. Nectin-Like Molecule-5 Regulates Intimal Thickening After Carotid Artery Ligation in Mice. Arterioscler Thromb Vasc Biol 2013; 33:1206-11. [DOI: 10.1161/atvbaha.113.301425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Fumie Kureha
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Seimi Satomi-Kobayashi
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiki Kubo
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mitsuo Kinugasa
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsuro Ishida
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshimi Takai
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-ichi Hirata
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiyuki Rikitake
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (F.K., S.S.-K., M.K., T.I., K.-I.H., Y.R.), Division of Signal Transduction (Y.K., Y.R.), and Division of Molecular and Cellular Biology (Y.T., Y.R.), Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
22
|
Yang X, Gong Y, Tang Y, Li H, He Q, Gower L, Liaw L, Friesel RE. Spry1 and Spry4 differentially regulate human aortic smooth muscle cell phenotype via Akt/FoxO/myocardin signaling. PLoS One 2013; 8:e58746. [PMID: 23554919 PMCID: PMC3598808 DOI: 10.1371/journal.pone.0058746] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/05/2013] [Indexed: 01/25/2023] Open
Abstract
Background Changes in the vascular smooth muscle cell (VSMC) contractile phenotype occur in pathological states such as restenosis and atherosclerosis. Multiple cytokines, signaling through receptor tyrosine kinases (RTK) and PI3K/Akt and MAPK/ERK pathways, regulate these phenotypic transitions. The Spry proteins are feedback modulators of RTK signaling, but their specific roles in VSMC have not been established. Methodology/Principal Findings Here, we report for the first time that Spry1, but not Spry4, is required for maintaining the differentiated state of human VSMC in vitro. While Spry1 is a known MAPK/ERK inhibitor in many cell types, we found that Spry1 has little effect on MAPK/ERK signaling but increases and maintains Akt activation in VSMC. Sustained Akt signaling is required for VSMC marker expression in vitro, while ERK signaling negatively modulates Akt activation and VSMC marker gene expression. Spry4, which antagonizes both MAPK/ERK and Akt signaling, suppresses VSMC differentiation marker gene expression. We show using siRNA knockdown and ChIP assays that FoxO3a, a downstream target of PI3K/Akt signaling, represses myocardin promoter activity, and that Spry1 increases, while Spry4 decreases myocardin mRNA levels. Conclusions Together, these data indicate that Spry1 and Spry4 have opposing roles in VSMC phenotypic modulation, and Spry1 maintains the VSMC differentiation phenotype in vitro in part through an Akt/FoxO/myocardin pathway.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- * E-mail: (XY); (RF)
| | - Yan Gong
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- Graduate School for Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Yuefeng Tang
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- Graduate School for Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Hongfang Li
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou, China
| | - Qing He
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- Graduate School for Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Lindsey Gower
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- Graduate School for Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Robert E. Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- Graduate School for Biomedical Sciences, University of Maine, Orono, Maine, United States of America
- * E-mail: (XY); (RF)
| |
Collapse
|
23
|
Peier M, Walpen T, Christofori G, Battegay E, Humar R. Sprouty2 expression controls endothelial monolayer integrity and quiescence. Angiogenesis 2012; 16:455-68. [PMID: 23232625 DOI: 10.1007/s10456-012-9330-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/02/2012] [Indexed: 12/12/2022]
Abstract
Vascular integrity is fundamental to the formation of mature blood vessels and depends on a functional, quiescent endothelial monolayer. However, how endothelial cells enter and maintain quiescence in the presence of angiogenic factors is still poorly understood. Here we identify the fibroblast growth factor (FGF) antagonist Sprouty2 (Spry2) as a key player in mediating endothelial quiescence and barrier integrity in mouse aortic endothelial cells (MAECs): Spry2 knockout MAECs show spindle-like shapes and are incapable of forming a functional, impermeable endothelial monolayer in the presence of FGF2. Whereas dense wild type cells exhibit contact inhibition and stop to proliferate, Spry2 knockout MAECs remain responsive to FGF2 and continue to proliferate even at high cell densities. Importantly, the anti-proliferative effect of Spry2 is absent in sparsely plated cells. This cell density-dependent Spry2 function correlates with highly increased Spry2 expression in confluent wild type MAECs. Spry2 protein expression is barely detectable in single cells but steadily increases in cells growing to high cell densities, with hypoxia being one contributing factor. At confluence, Spry2 expression correlates with intact cell-cell contacts, whereas disruption of cell-cell contacts by EGTA, TNFα and thrombin decreases Spry2 protein expression. In confluent cells, high Spry2 levels correlate with decreased extracellular signal-regulated kinase 1/2 (Erk1/2) phosphorylation. In contrast, dense Spry2 knockout MAECs exhibit enhanced signaling by Erk1/2. Moreover, inhibiting Erk1/2 activity in Spry2 knockout cells restores wild type cobblestone monolayer morphology. This study thus reveals a novel Spry2 function, which mediates endothelial contact inhibition and barrier integrity.
Collapse
Affiliation(s)
- Martin Peier
- Division of Internal Medicine, University Hospital Zurich, Gloriastrasse 30, GLO30 J14, 8091, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Wondimu A, Weir L, Robertson D, Mezentsev A, Kalachikov S, Panteleyev AA. Loss of Arnt (Hif1β) in mouse epidermis triggers dermal angiogenesis, blood vessel dilation and clotting defects. J Transl Med 2012; 92:110-24. [PMID: 21946855 DOI: 10.1038/labinvest.2011.134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Targeted ablation of Aryl hydrocarbon receptor nuclear translocator (Arnt) in the mouse epidermis results in severe abnormalities in dermal vasculature reminiscent of petechia induced in human skin by anticoagulants or certain genetic disorders. Lack of Arnt leads to downregulation of Egln3/Phd3 hydroxylase and concomitant hypoxia-independent stabilization of hypoxia-induced factor 1α (Hif1α) along with compensatory induction of Arnt2. Ectopic induction of Arnt2 results in its heterodimerization with stabilized Hif1α and is associated with activation of genes coding for secreted proteins implicated in control of angiogenesis, coagulation, vasodilation and blood vessel permeability such as S100a8/S100a9, S100a10, Serpine1, Defb3, Socs3, Cxcl1 and Thbd. Since ARNT and ARNT2 heterodimers with HIF1α are known to have different (yet overlapping) downstream targets our findings suggest that loss of Arnt in the epidermis activates an aberrant paracrine regulatory pathway responsible for dermal vascular phenotype in K14-Arnt KO mice. This assumption is supported by a significant decline of von Willebrand factor in dermal vasculature of these mice where Arnt level remains normal. Given the essential role of ARNT in the adaptive response to environmental stress and striking similarity between skin vascular phenotype in K14-Arnt KO mice and specific vascular features of tumour stroma and psoriatic skin, we believe that further characterization of Arnt-dependent epidermal-dermal signalling may provide insight into the role of macro- and micro-environmental factors in control of skin vasculature and in pathogenesis of environmentally modulated skin disorders.
Collapse
Affiliation(s)
- Assefa Wondimu
- Department of Dermatology, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
25
|
Anderson K, Nordquist KA, Gao X, Hicks KC, Zhai B, Gygi SP, Patel TB. Regulation of cellular levels of Sprouty2 protein by prolyl hydroxylase domain and von Hippel-Lindau proteins. J Biol Chem 2011; 286:42027-42036. [PMID: 22006925 DOI: 10.1074/jbc.m111.303222] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sprouty (Spry) proteins modulate the actions of receptor tyrosine kinases during development and tumorigenesis. Decreases in cellular levels of Spry, especially Sprouty2 (Spry2), have been implicated in the growth and progression of tumors of the breast, prostate, lung, and liver. During development and tumor growth, cells experience hypoxia. Therefore, we investigated how hypoxia modulates the levels of Spry proteins. Hypoxia elevated the levels of all four expressed Spry isoforms in HeLa cells. Amounts of endogenous Spry2 in LS147T and HEP3B cells were also elevated by hypoxia. Using Spry2 as a prototype, we demonstrate that silencing and expression of prolyl hydroxylase domain proteins (PHD1-3) increase and decrease, respectively, the cellular content of Spry2. Spry2 also preferentially interacted with PHD1-3 and von Hippel-Lindau protein (pVHL) during normoxia but not in hypoxia. Additionally, Spry2 is hydroxylated on Pro residues 18, 144, and 160, and substitution of these residues with Ala enhanced stability of Spry2 and abrogated its interactions with pVHL. Silencing of pVHL increased levels of Spry2 by decreasing its ubiquitylation and degradation and thereby augmented the ability of Spry2 to inhibit FGF-elicited activation of ERK1/2. Thus, prolyl hydroxylase mediated hydroxylation and subsequent pVHL-elicited ubiquitylation of Spry2 target it for degradation and, consequently, provide a novel mechanism of regulating growth factor signaling.
Collapse
Affiliation(s)
- Kimberly Anderson
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Kyle A Nordquist
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153; Institute of Signal Transduction, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Xianlong Gao
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153; Institute of Signal Transduction, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Kristin C Hicks
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Bo Zhai
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Tarun B Patel
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153; Institute of Signal Transduction, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153.
| |
Collapse
|
26
|
Abstract
MicroRNAs (miRNAs) are a class of posttranscriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. There are currently over 10,000 miRNAs that have been identified in a range of species including metazoa, mycetozoa, viridiplantae, and viruses, of which 940, to date, are found in humans. It is estimated that more than 60% of human protein-coding genes harbor miRNA target sites in their 3′ untranslated region and, thus, are potentially regulated by these molecules in health and disease. This review will first briefly describe the discovery, structure, and mode of function of miRNAs in mammalian cells, before elaborating on their roles and significance during development and pathogenesis in the various mammalian organs, while attempting to reconcile their functions with our existing knowledge of their targets. Finally, we will summarize some of the advances made in utilizing miRNAs in therapeutics.
Collapse
Affiliation(s)
- Danish Sayed
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Maha Abdellatif
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| |
Collapse
|
27
|
Kilpeläinen TO, Zillikens MC, Stančáková A, Finucane FM, Ried JS, Langenberg C, Zhang W, Beckmann JS, Luan J, Vandenput L, Styrkarsdottir U, Zhou Y, Smith AV, Zhao JH, Amin N, Vedantam S, Shin SY, Haritunians T, Fu M, Feitosa MF, Kumari M, Halldorsson BV, Tikkanen E, Mangino M, Hayward C, Song C, Arnold AM, Aulchenko YS, Oostra BA, Campbell H, Cupples LA, Davis KE, Döring A, Eiriksdottir G, Estrada K, Fernández-Real JM, Garcia M, Gieger C, Glazer NL, Guiducci C, Hofman A, Humphries SE, Isomaa B, Jacobs LC, Jula A, Karasik D, Karlsson MK, Khaw KT, Kim LJ, Kivimäki M, Klopp N, Kühnel B, Kuusisto J, Liu Y, Ljunggren Ö, Lorentzon M, Luben RN, McKnight B, Mellström D, Mitchell BD, Mooser V, Moreno JM, Männistö S, O’Connell JR, Pascoe L, Peltonen L, Peral B, Perola M, Psaty BM, Salomaa V, Savage DB, Semple RK, Skaric-Juric T, Sigurdsson G, Song KS, Spector TD, Syvänen AC, Talmud PJ, Thorleifsson G, Thorsteinsdottir U, Uitterlinden AG, van Duijn CM, Vidal-Puig A, Wild SH, Wright AF, Clegg DJ, Schadt E, Wilson JF, Rudan I, Ripatti S, Borecki IB, Shuldiner AR, Ingelsson E, Jansson JO, Kaplan RC, Gudnason V, Harris TB, Groop L, Kiel DP, Rivadeneira F, et alKilpeläinen TO, Zillikens MC, Stančáková A, Finucane FM, Ried JS, Langenberg C, Zhang W, Beckmann JS, Luan J, Vandenput L, Styrkarsdottir U, Zhou Y, Smith AV, Zhao JH, Amin N, Vedantam S, Shin SY, Haritunians T, Fu M, Feitosa MF, Kumari M, Halldorsson BV, Tikkanen E, Mangino M, Hayward C, Song C, Arnold AM, Aulchenko YS, Oostra BA, Campbell H, Cupples LA, Davis KE, Döring A, Eiriksdottir G, Estrada K, Fernández-Real JM, Garcia M, Gieger C, Glazer NL, Guiducci C, Hofman A, Humphries SE, Isomaa B, Jacobs LC, Jula A, Karasik D, Karlsson MK, Khaw KT, Kim LJ, Kivimäki M, Klopp N, Kühnel B, Kuusisto J, Liu Y, Ljunggren Ö, Lorentzon M, Luben RN, McKnight B, Mellström D, Mitchell BD, Mooser V, Moreno JM, Männistö S, O’Connell JR, Pascoe L, Peltonen L, Peral B, Perola M, Psaty BM, Salomaa V, Savage DB, Semple RK, Skaric-Juric T, Sigurdsson G, Song KS, Spector TD, Syvänen AC, Talmud PJ, Thorleifsson G, Thorsteinsdottir U, Uitterlinden AG, van Duijn CM, Vidal-Puig A, Wild SH, Wright AF, Clegg DJ, Schadt E, Wilson JF, Rudan I, Ripatti S, Borecki IB, Shuldiner AR, Ingelsson E, Jansson JO, Kaplan RC, Gudnason V, Harris TB, Groop L, Kiel DP, Rivadeneira F, Walker M, Barroso I, Vollenweider P, Waeber G, Chambers JC, Kooner JS, Soranzo N, Hirschhorn JN, Stefansson K, Wichmann HE, Ohlsson C, O’Rahilly S, Wareham NJ, Speliotes EK, Fox CS, Laakso M, Loos RJF. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet 2011; 43:753-60. [PMID: 21706003 PMCID: PMC3262230 DOI: 10.1038/ng.866] [Show More Authors] [Citation(s) in RCA: 246] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/25/2011] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ∼2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 × 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 × 10(-11)) and one near SPRY2 (P = 3 × 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
Collapse
Affiliation(s)
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), The Netherlands
| | - Alena Stančáková
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio 70211, Finland
| | - Francis M Finucane
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Janina S Ried
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Jacques S Beckmann
- Department of Medical Genetics, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Jian’an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Liesbeth Vandenput
- Centre for Bone and Arthritis Research, Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | | | - Yanhua Zhou
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA
| | - Albert Vernon Smith
- Icelandic Heart Association, Heart Preventive Clinic and Research Institute, IS-201 Kopavogur, Iceland
| | - Jing-Hua Zhao
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Sailaja Vedantam
- Metabolism Initiative and Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA
- Divisions of Genetics and Endocrinology and Program in Genomics, Children’s Hospital, Boston, Massachusetts 02115, USA
| | - So Youn Shin
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Talin Haritunians
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Mao Fu
- Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Meena Kumari
- Genetic Epidemiology Group, Department of Epidemiology, UCL, London, WC1E6 BT, UK
| | - Bjarni V Halldorsson
- deCODE Genetics, Sturlugata 8, IS-101 Reykjavik, Iceland
- Reykjavik University, Menntavegur 1, IS-101 Reykjavik, Iceland
| | - Emmi Tikkanen
- Institute for Molecular Medicine Finland FIMM, 00014 University of Helsinki, Finland
- Public Health Genomics, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | | | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, EH4 2XU, UK
| | - Ci Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Alice M Arnold
- Department of Biostatistics, University of Washington, Seattle, Washington 98195, USA
| | - Yurii S Aulchenko
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Ben A Oostra
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Harry Campbell
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, EH8 9AG, UK
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA
- Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA
| | - Kathryn E Davis
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8854, USA
| | - Angela Döring
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Gudny Eiriksdottir
- Icelandic Heart Association, Heart Preventive Clinic and Research Institute, IS-201 Kopavogur, Iceland
| | - Karol Estrada
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), The Netherlands
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomédica de Girona, CIBEROBN (CB06/03/0010), 17007 Girona, Spain
| | - Melissa Garcia
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892-9205, USA
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Nicole L Glazer
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington 98101, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Candace Guiducci
- Metabolism Initiative and Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Albert Hofman
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), The Netherlands
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, Department of Medicine, University College London, London WC1E 6JF, UK
| | - Bo Isomaa
- Folkhälsan Research Centre, 00014 Helsinki, Finland
- Department of Social Services and Health Care, 68601 Jakobstad, Finland
| | - Leonie C Jacobs
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Antti Jula
- Population Studies Unit, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | - David Karasik
- Institute for Aging Research, Hebrew SeniorLife and Harvard Medical School, Boston, Massachusetts 02131, USA
| | - Magnus K Karlsson
- Department of Clinical Sciences, Lund University, 205 02 Malmö, Sweden
- Department of Orthopaedics, Malmö University Hospital, 205 02 Malmö, Sweden
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, Institute of Public health, University of Cambridge, Cambridge CB2 2SR, UK
| | - Lauren J Kim
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892-9205, USA
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London WC1E 6BT, UK
| | - Norman Klopp
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Brigitte Kühnel
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio 70211, Finland
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Östen Ljunggren
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Mattias Lorentzon
- Centre for Bone and Arthritis Research, Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Robert N Luben
- Department of Public Health and Primary Care, Institute of Public health, University of Cambridge, Cambridge CB2 2SR, UK
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, Washington 98195, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington 98101, USA
| | - Dan Mellström
- Centre for Bone and Arthritis Research, Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Vincent Mooser
- Genetic, R&D, GlaxoSmithKline, King of Prussia, Philadelphia 19406, USA
| | - José Maria Moreno
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomédica de Girona, CIBEROBN (CB06/03/0010), 17007 Girona, Spain
| | - Satu Männistö
- Chronic Disease Epidemiology and Prevention Unit, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Jeffery R O’Connell
- Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Laura Pascoe
- Institute of Cell & Molecular Biosciences, Newcastle University, NE2 4HH, Newcastle, UK
| | - Leena Peltonen
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Institute for Molecular Medicine Finland FIMM, 00014 University of Helsinki, Finland
- Public Health Genomics, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Belén Peral
- Instituto de Investigaciones Biomédicas, Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) & Universidad Autónoma de Madrid, E-28029, Madrid, Spain
| | - Markus Perola
- Institute for Molecular Medicine Finland FIMM, 00014 University of Helsinki, Finland
- Public Health Genomics, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington 98101, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
- Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA
- Department of Health Services, University of Washington, Seattle, Washington 98195, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington 98101, USA
| | - Veikko Salomaa
- Chronic Disease Epidemiology and Prevention Unit, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | - David B Savage
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Robert K Semple
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | | | - Gunnar Sigurdsson
- Department of Endocrinology and Metabolism, University Hospital, IS-108 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, IS-101 Reykjavik, Iceland
| | - Kijoung S Song
- Genetic, R&D, GlaxoSmithKline, King of Prussia, Philadelphia 19406, USA
| | | | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine, Science for Life Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Philippa J Talmud
- Centre for Cardiovascular Genetics, Department of Medicine, University College London, London WC1E 6JF, UK
| | | | - Unnur Thorsteinsdottir
- deCODE Genetics, Sturlugata 8, IS-101 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, IS-101 Reykjavik, Iceland
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), The Netherlands
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Cornelia M van Duijn
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), The Netherlands
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
- NGI, Centre for Medical Systems Biology (CMSB), Leiden, 2300 RC, The Netherlands
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Sarah H Wild
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, EH8 9AG, UK
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, EH4 2XU, UK
| | - Deborah J Clegg
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8854, USA
| | - Eric Schadt
- Pacific Biosciences, Menlo Park, California 94025-1451, USA
- Sage Bionetworks, Seattle, Washington 98109, USA
| | - James F Wilson
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, EH8 9AG, UK
| | - Igor Rudan
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, EH8 9AG, UK
- Croatian Centre for Global Health, University of Split Medical School, Split 21000, Croatia
- Gen Info Ltd, Zagreb 10000, Croatia
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland FIMM, 00014 University of Helsinki, Finland
- Public Health Genomics, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Ingrid B Borecki
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Alan R Shuldiner
- Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland 21231, USA
| | - Erik Ingelsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - John-Olov Jansson
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Heart Preventive Clinic and Research Institute, IS-201 Kopavogur, Iceland
- University of Iceland, IS-101 Reykjavik, Iceland
| | - Tamara B Harris
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892-9205, USA
| | - Leif Groop
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, 205 02 Malmö, Sweden
| | - Douglas P Kiel
- Institute for Aging Research, Hebrew SeniorLife and Harvard Medical School, Boston, Massachusetts 02131, USA
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), The Netherlands
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Mark Walker
- Institute of Cell & Molecular Biosciences, Newcastle University, NE2 4HH, Newcastle, UK
| | - Inês Barroso
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Peter Vollenweider
- Department of Internal Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Gérard Waeber
- Department of Internal Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - John C Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Jaspal S Kooner
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Rd., London W12 ONN, UK
| | - Nicole Soranzo
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Joel N Hirschhorn
- Metabolism Initiative and Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA
- Divisions of Genetics and Endocrinology and Program in Genomics, Children’s Hospital, Boston, Massachusetts 02115, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02142, USA
| | - Kari Stefansson
- deCODE Genetics, Sturlugata 8, IS-101 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, IS-101 Reykjavik, Iceland
| | - H-Erich Wichmann
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität and Klinikum Großhadern, 81377 Munich, Germany
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Stephen O’Rahilly
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Elizabeth K Speliotes
- Metabolism Initiative and Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Caroline S Fox
- National Heart, Lung, and Blood Institute and Harvard Medical School, Boston, Massachusetts 01702, USA
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio 70211, Finland
| | - Ruth J F Loos
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| |
Collapse
|
28
|
Prakash SK, LeMaire SA, Guo DC, Russell L, Regalado ES, Golabbakhsh H, Johnson RJ, Safi HJ, Estrera AL, Coselli JS, Bray MS, Leal SM, Milewicz DM, Belmont JW. Rare copy number variants disrupt genes regulating vascular smooth muscle cell adhesion and contractility in sporadic thoracic aortic aneurysms and dissections. Am J Hum Genet 2010; 87:743-56. [PMID: 21092924 DOI: 10.1016/j.ajhg.2010.09.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 09/07/2010] [Accepted: 09/16/2010] [Indexed: 10/18/2022] Open
Abstract
Thoracic aortic aneurysms and dissections (TAAD) cause significant morbidity and mortality, but the genetic origins of TAAD remain largely unknown. In a genome-wide analysis of 418 sporadic TAAD cases, we identified 47 copy number variant (CNV) regions that were enriched in or unique to TAAD patients compared to population controls. Gene ontology, expression profiling, and network analysis showed that genes within TAAD CNVs regulate smooth muscle cell adhesion or contractility and interact with the smooth muscle-specific isoforms of α-actin and β-myosin, which are known to cause familial TAAD when altered. Enrichment of these gene functions in rare CNVs was replicated in independent cohorts with sporadic TAAD (STAAD, n = 387) and inherited TAAD (FTAAD, n = 88). The overall prevalence of rare CNVs (23%) was significantly increased in FTAAD compared with STAAD patients (Fisher's exact test, p = 0.03). Our findings suggest that rare CNVs disrupting smooth muscle adhesion or contraction contribute to both sporadic and familial disease.
Collapse
|
29
|
Xiang Q, Lin G, Xu J, Zheng S, Chen S, Zhou K, Wang T. The role of caveolin1 and sprouty1 in genistein's regulation of vascular smooth muscle cell and endothelial cell proliferation. Eur J Pharmacol 2010; 648:153-61. [DOI: 10.1016/j.ejphar.2010.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/21/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
|
30
|
Wietecha MS, Chen L, Ranzer MJ, Anderson K, Ying C, Patel TB, DiPietro LA. Sprouty2 downregulates angiogenesis during mouse skin wound healing. Am J Physiol Heart Circ Physiol 2010; 300:H459-67. [PMID: 21076020 DOI: 10.1152/ajpheart.00244.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis is regulated by signals received by receptor tyrosine kinases such as vascular endothelial growth factor receptors. Mammalian Sprouty (Spry) proteins are known to function by specifically antagonizing the activation of the mitogen-activated protein kinase signaling pathway by receptor tyrosine kinases, a pathway known to promote angiogenesis. To examine the role of Spry2 in the regulation of angiogenesis during wound repair, we used a model of murine dermal wound healing. Full-thickness excisional wounds (3 mm) were made on the dorsum of anesthetized adult female FVB mice. Samples were harvested at multiple time points postwounding and analyzed using real-time RT-PCR, Western blot analysis, and immunofluorescent histochemistry. Spry2 mRNA and protein levels in the wound bed increased significantly during the resolving phases of healing, coincident with the onset of vascular regression in this wound model. In another experiment, intracellular levels of Spry2 or its dominant-negative mutant (Y55F) were elevated by a topical application to the wounds of controlled-release gel containing cell permeable, transactivator of transcription-tagged Spry2, Spry2Y55F, or green fluorescent protein (as control). Wound samples were analyzed for vascularity using CD31 immunofluorescent histochemistry as well as for total and phospho-Erk1/2 protein content. The treatment of wounds with Spry2 resulted in a significant decrease in vascularity and a reduced abundance of phospho-Erk1/2 compared with wounds treated with the green fluorescent protein control. In contrast, the wounds treated with the dominant-negative Spry2Y55F exhibited a moderate increase in vascularity and elevated phospho-Erk1/2 content. These results indicate that endogenous Spry2 functions to downregulate angiogenesis in the healing murine skin wound, potentially by inhibiting the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Mateusz S Wietecha
- University of Illinois at Chicago, College of Dentistry, Center for Wound Healing & Tissue Regeneration (MC 859 801 S. Paulina, Rm. 401B, Chicago, IL 60612-7211, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Edwin F, Anderson K, Patel TB. HECT domain-containing E3 ubiquitin ligase Nedd4 interacts with and ubiquitinates Sprouty2. J Biol Chem 2009; 285:255-64. [PMID: 19864419 DOI: 10.1074/jbc.m109.030882] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sprouty (Spry) proteins are important regulators of receptor tyrosine kinase signaling in development and disease. Alterations in cellular Spry content have been associated with certain forms of cancers and also in cardiovascular diseases. Thus, understanding the mechanisms that regulate cellular Spry levels are important. Herein, we demonstrate that Spry1 and Spry2, but not Spry3 or Spry4, associate with the HECT domain family E3 ubiquitin ligase, Nedd4. The Spry2/Nedd4 association involves the WW domains of Nedd4 and requires phosphorylation of the Mnk2 kinase sites, Ser(112) and Ser(121), on Spry2. The phospho-Ser(112/121) region on Spry2 that binds WW domains of Nedd4 is a novel non-canonical WW domain binding region that does not contain Pro residues after phospho-Ser. Endogenous and overexpressed Nedd4 polyubiquitinate Spry2 via Lys(48) on ubiquitin and decrease its stability. Silencing of endogenous Nedd4 increased the cellular Spry2 content and attenuated fibroblast growth factor-elicited ERK1/2 activation that was reversed when elevations in Spry2 levels were prevented by Spry2-specific small interfering RNA. Mnk2 silencing decreased Spry2-Nedd4 interactions and also augmented the ability of Spry2 to inhibit fibroblast growth factor signaling. This is the first report demonstrating the regulation of cellular Spry content and its ability to modulate receptor tyrosine kinase signaling by a HECT domain-containing E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Francis Edwin
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
32
|
Edwin F, Anderson K, Ying C, Patel TB. Intermolecular interactions of Sprouty proteins and their implications in development and disease. Mol Pharmacol 2009; 76:679-91. [PMID: 19570949 PMCID: PMC2769046 DOI: 10.1124/mol.109.055848] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 07/01/2009] [Indexed: 12/19/2022] Open
Abstract
Receptor tyrosine kinase (RTK) signaling is spatially and temporally regulated by a number of positive and negative regulatory mechanisms. These regulatory mechanisms control the amplitude and duration of the signals initiated at the cell surface to have a normal or aberrant biological outcome in development and disease, respectively. In the past decade, the Sprouty (Spry) family of proteins has been identified as modulators of RTK signaling in normal development and disease. This review summarizes recent advances concerning the biological activities modulated by Spry family proteins, their interactions with signaling proteins, and their involvement in cardiovascular diseases and cancer. The diversity of mechanisms in the regulation of Spry expression and activity in cell systems emphasizes the crucial role of Spry proteins in development and growth across the animal kingdom.
Collapse
Affiliation(s)
- Francis Edwin
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
33
|
Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, Yan L, Malhotra A, Vatner D, Abdellatif M. MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 2008; 19:3272-82. [PMID: 18508928 PMCID: PMC2488276 DOI: 10.1091/mbc.e08-02-0159] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The posttranscriptional regulator, microRNA-21 (miR-21), is up-regulated in many forms of cancer, as well as during cardiac hypertrophic growth. To understand its role, we overexpressed it in cardiocytes where it revealed a unique type of cell-to-cell "linker" in the form of long slender outgrowths and branches. We subsequently confirmed that miR-21 directly targets and down-regulates the expression of Sprouty2 (SPRY2), an inhibitor of branching morphogenesis and neurite outgrowths. We found that beta-adrenergic receptor (betaAR) stimulation induces up-regulation of miR-21 and down-regulation of SPRY2 and is, likewise, associated with connecting cell branches. Knockdown of SPRY2 reproduced the branching morphology in cardiocytes, and vice versa, knockdown of miR-21 using a specific 'miRNA eraser' or overexpression of SPRY2 inhibited betaAR-induced cellular outgrowths. These structures enclose sarcomeres and connect adjacent cardiocytes through functional gap junctions. To determine how this aspect of miR-21 function translates in cancer cells, we knocked it down in colon cancer SW480 cells. This resulted in disappearance of their microvillus-like protrusions accompanied by SPRY2-dependent inhibition of cell migration. Thus, we propose that an increase in miR-21 enhances the formation of various types of cellular protrusions through directly targeting and down-regulating SPRY2.
Collapse
Affiliation(s)
- Danish Sayed
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Edwin F, Patel TB. A novel role of Sprouty 2 in regulating cellular apoptosis. J Biol Chem 2007; 283:3181-3190. [PMID: 18070883 DOI: 10.1074/jbc.m706567200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sprouty (SPRY) proteins modulate receptor-tyrosine kinase signaling and, thereby, regulate cell migration and proliferation. Here, we have examined the role of endogenous human SPRY2 (hSPRY2) in the regulation of cellular apoptosis. Small inhibitory RNA-mediated silencing of hSPRY2 abolished the anti-apoptotic action of serum in adrenal cortex adenocarcinoma (SW13) cells. Silencing of hSPRY2 decreased serum- or epidermal growth factor (EGF)-elicited activation of AKT and ERK1/2 and reduced the levels of EGF receptor. Silencing of hSPRY2 also inhibited serum-induced activation of p90RSK and decreased phosphorylation of pro-apoptotic protein BAD (BCL2-antagonist of cell death) by p90RSK. Inhibiting both the ERK1/2 and AKT pathways abolished the ability of serum to protect against apoptosis, mimicking the effects of silencing hSPRY2. Serum transactivated the EGF receptor (EGFR), and inhibition of the EGFR by a neutralizing antibody attenuated the anti-apoptotic actions of serum. Consistent with the role of EGFR and perhaps other growth factor receptors in the anti-apoptotic actions of serum, the tyrosine kinase binding domain of c-Cbl (Cbl-TKB) protected against down-regulation of the growth factor receptors such as EGFR and preserved the anti-apoptotic actions of serum when hSpry2 was silenced. Additionally, silencing of Spry2 in c-Cbl null cells did not alter the ability of serum to promote cell survival. Moreover, reintroduction of wild type hSPRY2, but not its mutants that do not bind c-Cbl or CIN85 into SW13 cells after endogenous hSPRY2 had been silenced, restored the anti-apoptotic actions of serum. Overall, we conclude that endogenous hSPRY2-mediated regulation of apoptosis requires c-Cbl and is manifested by the ability of hSPRY2 to sequester c-Cbl and thereby augment signaling via growth factor receptors.
Collapse
Affiliation(s)
- Francis Edwin
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Tarun B Patel
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153.
| |
Collapse
|
35
|
Ongür D, Pohlman J, Dow AL, Eisch AJ, Edwin F, Heckers S, Cohen BM, Patel TB, Carlezon WA. Electroconvulsive seizures stimulate glial proliferation and reduce expression of Sprouty2 within the prefrontal cortex of rats. Biol Psychiatry 2007; 62:505-12. [PMID: 17336937 DOI: 10.1016/j.biopsych.2006.11.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/14/2006] [Accepted: 11/17/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Reductions in cell number are found within the medial prefrontal cortex (PFC) in major depression and bipolar disorder, conditions for which electroconvulsive therapy (ECT) is a highly effective treatment. We investigated whether electroconvulsive seizure (ECS) in rats stimulates cellular proliferation in the PFC immediately and four weeks after the treatments. In parallel, we examined if ECS also alters the expression of Sprouty2 (SPRY2), an inhibitor of cell proliferation. METHODS Sprague-Dawley rats received 10 days of ECS treatments and bromodeoxyuridine (BrdU) injections. After a four week survival period, we estimated the density and number of BrdU-, proliferating cell nuclear antigen (PCNA)-, and SPRY2-immunoreactive cells in the medial (infralimbic) PFC (ILPFC). We also determined the percentage of BrdU-labeled cells that were immunoreactive for markers specific to oligodendrocytes, astrocytes, endothelial cells and neurons. RESULTS ECS dramatically enhanced the proliferation of new cells in the infralimbic PFC, and this effect persisted four weeks following the treatments. The percentage of new cells expressing oligodendrocyte precursor cell markers increased slightly following ECS. In contrast, ECS dramatically reduced the number of cells expressing SPRY2. CONCLUSIONS ECS stimulates long-lasting increases in glial proliferation within the ILPFC. ECS also decreases SPRY2 expression in the same region, an effect that might contribute to increased glial proliferation.
Collapse
Affiliation(s)
- Dost Ongür
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sutterlüty H, Mayer CE, Setinek U, Attems J, Ovtcharov S, Mikula M, Mikulits W, Micksche M, Berger W. Down-regulation of Sprouty2 in non-small cell lung cancer contributes to tumor malignancy via extracellular signal-regulated kinase pathway-dependent and -independent mechanisms. Mol Cancer Res 2007; 5:509-20. [PMID: 17510316 DOI: 10.1158/1541-7786.mcr-06-0273] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sprouty (Spry) proteins function as inhibitors of receptor tyrosine kinase signaling mainly by interfering with the Ras/Raf/mitogen-activated protein kinase cascade, a pathway known to be frequently deregulated in human non-small cell lung cancer (NSCLC). In this study, we show a consistently lowered Spry2 expression in NSCLC when compared with the corresponding normal lung epithelium. Based on these findings, we investigated the influence of Spry2 expression on the malignant phenotype of NSCLC cells. Ectopic expression of Spry2 antagonized mitogen-activated protein kinase activity and inhibited cell migration in cell lines homozygous for K-Ras wild type, whereas in NSCLC cells expressing mutated K-Ras, Spry2 failed to diminish extracellular signal-regulated kinase (ERK) phosphorylation. Nonetheless, Spry2 significantly reduced cell proliferation in all investigated cell lines and blocked tumor formation in mice. Accordingly, a Spry2 mutant unable to inhibit ERK phosphorylation reduced cell proliferation significantly but less pronounced compared with the wild-type protein. Therefore, we conclude that Spry2 interferes with ERK phosphorylation and another yet unidentified pathway. Our results suggest that Spry2 plays a role as tumor suppressor in NSCLC by antagonizing receptor tyrosine kinase-induced signaling at different levels, indicating feasibility for the usage of Spry in targeted gene therapy of NSCLC.
Collapse
Affiliation(s)
- Hedwig Sutterlüty
- Institute of Cancer Research, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lo TL, Fong CW, Yusoff P, McKie AB, Chua MS, Leung HY, Guy GR. Sprouty and cancer: The first terms report. Cancer Lett 2006; 242:141-50. [PMID: 16469433 DOI: 10.1016/j.canlet.2005.12.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 12/16/2005] [Accepted: 12/19/2005] [Indexed: 11/15/2022]
Abstract
The Ras/Erk signaling pathway has a central role in development of multi-cellular organisms as well as in signal transmission in the mature individual. Recently, a family of genes, designated Sprouty, induced by the Ras/Erk pathway was found to specify proteins that inhibited the upstream pathway. Being in a position that is likely to control well-characterized oncogene products suggested that the expression levels of the Sprouty genes may be relevant in human carcinogenesis. Early data on the deregulation of Sprouty expression in breast, prostate and liver cancers is discussed along with the notion that some of them might have potential as tumour markers or that the derived proteins may act as tumour suppressors.
Collapse
Affiliation(s)
- Ting Ling Lo
- Signal Transduction laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, #6-01, Proteos, Singapore, 138673
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Sprouty-related proteins with an EVH1 domain (Spreds) belong to a new protein family harboring a conserved N-terminal EVH1 domain, which is related to the VASP (vasodilator-stimulated phosphoprotein) EVH1 domain (Enabled/VASP homology 1 domain) and a C-terminal Sprouty-related domain, typical for Sprouty proteins. Spreds were, like Sproutys, initially discovered as inhibitors of the Ras/MAPK pathway, and the SPR (Sprouty-related) domains of both protein families seem to be very important for many protein interactions and cellular processes. VASP was initially characterized as a proline-rich substrate of protein kinases A and G in human platelets and later shown to be a scaffold protein, regulating both signal transduction pathways and the actin filament system. The VASP-EVH1 domain is known to bind specifically to a FP(4) binding motif, which is, for example, present in the focal adhesion proteins vinculin and zyxin. In this review we give a structural and functional overview on these three protein families and ask whether nature plays a modular protein domain puzzle with stable exchangeable elements or if these closely related domains have various functions when pasted in a different protein context.
Collapse
Affiliation(s)
- Karin Bundschu
- Abteilung Biochemie und Molekulare Biologie, Universität Ulm, 89081 Ulm, Germany.
| | | | | |
Collapse
|
39
|
Cabrita MA, Jäggi F, Widjaja SP, Christofori G. A functional interaction between sprouty proteins and caveolin-1. J Biol Chem 2006; 281:29201-12. [PMID: 16877379 DOI: 10.1074/jbc.m603921200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth factor-mediated signal transduction cascades can be regulated spatio-temporally by signaling modulators, such as Sprouty proteins. The four mammalian Sprouty family members are palmitoylated phosphoproteins that can attenuate or potentiate numerous growth factor-induced signaling pathways. Previously, we have shown that Sprouty-1 and Sprouty-2 associate with Caveolin-1, the major structural protein of caveolae. Like Sprouty, Caveolin-1 inhibits growth factor-induced mitogen-activated protein kinase activation. Here, we demonstrate that all four mammalian Sprouty family members physically interact with Caveolin-1. The C terminus of Caveolin-1 is the major Sprouty-binding site, whereas Sprouty binds Caveolin-1 via its conserved C-terminal domain. A single point mutation in this domain results in loss of Caveolin-1 interaction. Moreover, we demonstrate that the various Sprouty isoforms differ dramatically in their cooperation with Caveolin-1-mediated inhibition of mitogen-activated protein kinase activation and that such cooperation is also highly dependent on the type of growth factor investigated and on cell density. Together, the data suggest that the Sprouty/Caveolin-1 interaction modulates signaling in a growth factor- and Sprouty isoform-specific manner.
Collapse
Affiliation(s)
- Miguel A Cabrita
- Institute of Biochemistry and Genetics, Department of Clinical-Biological Sciences, Center of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|
40
|
Brewster L, Brey E, Greisler H. Cardiovascular gene delivery: The good road is awaiting. Adv Drug Deliv Rev 2006; 58:604-29. [PMID: 16769148 PMCID: PMC3337725 DOI: 10.1016/j.addr.2006.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 03/24/2006] [Indexed: 01/13/2023]
Abstract
Atherosclerotic cardiovascular disease is a leading cause of death worldwide. Despite recent improvements in medical, operative, and endovascular treatments, the number of interventions performed annually continues to increase. Unfortunately, the durability of these interventions is limited acutely by thrombotic complications and later by myointimal hyperplasia followed by progression of atherosclerotic disease over time. Despite improving medical management of patients with atherosclerotic disease, these complications appear to be persisting. Cardiovascular gene therapy has the potential to make significant clinical inroads to limit these complications. This article will review the technical aspects of cardiovascular gene therapy; its application for promoting a functional endothelium, smooth muscle cell growth inhibition, therapeutic angiogenesis, tissue engineered vascular conduits, and discuss the current status of various applicable clinical trials.
Collapse
Affiliation(s)
- L.P. Brewster
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - E.M. Brey
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
- Research and Surgical Services, Edward J. Hines Jr. V.A. Hospital, Hines, IL, 60141, USA
| | - H.P. Greisler
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, IL, 60153, USA
- Research and Surgical Services, Edward J. Hines Jr. V.A. Hospital, Hines, IL, 60141, USA
- Corresponding author. Loyola University Medical Center, Department of Surgery, 2160 South First Avenue, Maywood, IL, 60153, USA. Tel.: +1 708 216 8541; fax: +1 708 216 6300. (H.P. Greisler)
| |
Collapse
|
41
|
Edwin F, Singh R, Endersby R, Baker SJ, Patel TB. The tumor suppressor PTEN is necessary for human Sprouty 2-mediated inhibition of cell proliferation. J Biol Chem 2005; 281:4816-22. [PMID: 16371366 DOI: 10.1074/jbc.m508300200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sprouty family proteins are novel regulators of growth factor actions. Human Sprouty 2 (hSPRY2) inhibits the proliferation of a number of different cell types. However, the mechanisms involved in the anti-proliferative actions of hSPRY2 remain to be elucidated. Here we have demonstrated that hSPRY2 increases the amount of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and decreases its phosphorylation. The resultant increase in PTEN activity is reflected in decreased activation of Akt by epidermal growth factor and serum. Consistent with increased PTEN activity, in hSPRY2-expressing cells, the progression of cells from the G1 to S phase is decreased. By using PTEN null primary mouse embryonic fibroblasts and their isogenic controls as well as small interfering RNA against PTEN, we demonstrated that PTEN is necessary for hSPRY2 to inhibit Akt activation by epidermal growth factor as well as cell proliferation. Overall, we concluded that hSPRY2 mediates its anti-proliferative actions by altering PTEN content and activity.
Collapse
Affiliation(s)
- Francis Edwin
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | | | | | |
Collapse
|
42
|
de Alvaro C, Martinez N, Rojas JM, Lorenzo M. Sprouty-2 overexpression in C2C12 cells confers myogenic differentiation properties in the presence of FGF2. Mol Biol Cell 2005; 16:4454-61. [PMID: 16000370 PMCID: PMC1196351 DOI: 10.1091/mbc.e05-05-0419] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myoblast C2C12 cells cultured in the presence of FGF2 actively proliferate and showed a differentiation-defective phenotype compared with cells cultured in low serum or in the presence of insulin. These FGF2 effects are associated with sustained activation of p44/p42-MAPK and lack of activation of AKT. Here we demonstrate that Sprouty-2, a protein involved in the negative feedback of receptor tyrosine kinase signaling, when stably overexpressed in C2C12 cells and in the presence of FGF2 produces growth arrest (precluding the expression of PCNA and the phosphorylation of retinoblastoma and inducing the expression of p21(CIP)) and myogenesis (multinucleated myotubes formation, induction of creatine kinase and expression of myosin heavy chain protein). These events were accompanied by repression of p44/p42-MAPK and activation of AKT. When C2C12 cells were stably transfected with a Sprouty-2 (Y55F) mutant defective in inhibiting p44/p42-MAPK activation by FGF, myoblasts in the presence of FGF continue to grow and completely fail to form myotubes. This work is the first evidence of the contribution of sprouty genes to myogenic differentiation in the presence of FGF2.
Collapse
Affiliation(s)
- Cristina de Alvaro
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|