1
|
Jung BC, Lim J, Kim SH, Kim YS. Caspase-8 Potentiates Triglyceride (TG)-Induced Cell Death of THP-1 Macrophages via a Positive Feedback Loop. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2021. [DOI: 10.15324/kjcls.2021.53.2.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Byung Chul Jung
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, United States
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Korea
| | - Jaewon Lim
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Korea
- Department of Biomedical Laboratory Science, College of Rehabilitation and Health, Daegu Haany University, Gyeongsan, Korea
| | - Sung Hoon Kim
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Korea
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan, Korea
| | - Yoon Suk Kim
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Korea
| |
Collapse
|
2
|
Tajbakhsh A, Kovanen PT, Rezaee M, Banach M, Moallem SA, Sahebkar A. Regulation of efferocytosis by caspase-dependent apoptotic cell death in atherosclerosis. Int J Biochem Cell Biol 2020; 120:105684. [PMID: 31911118 DOI: 10.1016/j.biocel.2020.105684] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/02/2019] [Accepted: 01/02/2020] [Indexed: 01/05/2023]
Abstract
During the growing process of the atherosclerotic lesions, lipid-filled macrophage foam cells form, accumulate, and ultimately undergo apoptotic death. If the apoptotic foam cells are not timely removed, they may undergo secondary necrosis, and form a necrotic lipid core which renders the plaque unstable and susceptible to rupture. Therefore, the non-lipid-filled fellow macrophages, as the main phagocytic cells in atherosclerotic lesions, need to effectively remove the apoptotic foam cells. In general, in apoptotic macrophages, caspases are the central regulators of several key processes required for their efficient efferocytosis. The processes include the generation of "Find-Me" signals (such as adenosine triphosphate/uridine triphosphate, fractalkine, lysophosphatidylcholine, and sphingosine-1-phosphate) for the recruitment of viable macrophages, generation of the "Eat-Me" signals (for example, phosphatidylserine) for the engulfment process, and, finally, release of anti-inflammatory mediators (including transforming factor β and interleukin-10) as a tolerance-enhancing and an anti-inflammatory response, and for the motile behavior of the apoptotic cell. The caspase-dependent mechanisms are operative also in apoptotic macrophages driving the atherogenesis. In this review, we explore the role of the molecular pathways related to the caspase-dependent events in efferocytosis in the context of atherosclerosis. Understanding of the molecular mechanisms of apoptotic cell death in atherosclerotic lesions is essential when searching for new leads to treat atherosclerosis.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Halal Research Center of IRI, FDA, Tehran, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahdi Rezaee
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Al-Zahraa University, Karbala, Iraq
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Quantitative analysis of the expression of caspase 3 and caspase 9 in different types of atherosclerotic lesions in the human aorta. Exp Mol Pathol 2015; 99:1-6. [DOI: 10.1016/j.yexmp.2015.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/01/2015] [Indexed: 01/15/2023]
|
4
|
Varghese B, Vlashi E, Xia W, Ayala Lopez W, Paulos CM, Reddy J, Xu LC, Low PS. Folate receptor-β in activated macrophages: ligand binding and receptor recycling kinetics. Mol Pharm 2014; 11:3609-16. [PMID: 25166491 DOI: 10.1021/mp500348e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activated macrophages overexpress a receptor for the vitamin folic acid termed the folate receptor β (FR-β). Because conjugation of folate to low molecular weight drugs, genes, liposomes, nanoparticles, and imaging agents has minor effects on FR binding, the vitamin can be exploited to target both therapeutic and imaging agents to activated macrophages without promoting their uptake by other healthy cells. In this paper, we characterize the binding, internalization, and recycling kinetics of FR-β on activated macrophages in inflamed tissues of rats with adjuvant-induced arthritis. Our results demonstrate that saturation of macrophage FR is achieved at injection doses of ∼150-300 nmol/kg, with more rapidly perfused tissues saturating at lower doses than inflamed appendages. After binding, FR-β internalizes and recycles back to the cell surface every ∼10-20 min, providing empty receptors for additional folate conjugate uptake. Because the half-life of low molecular weight folate conjugates in the vasculature is usually <1 h, these data suggest that targeting of folate conjugates to activated macrophages in vivo can be maximized by frequent dosing at conjugate concentrations that barely saturate FR (∼150 nmol/kg), thereby minimizing nonspecific binding to receptor-negative tissues and maximizing the probability that unoccupied cell surface receptors will be exposed to folate-drug conjugate.
Collapse
Affiliation(s)
- Bindu Varghese
- Department of Chemistry, Purdue University , West Lafayette, Indiana 49707, United States
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Hua Y, Nair S. Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications. Biochim Biophys Acta Mol Basis Dis 2014; 1852:195-208. [PMID: 24815358 DOI: 10.1016/j.bbadis.2014.04.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease is the leading cause of death in the U.S. and other developed countries. Metabolic syndrome, including obesity, diabetes/insulin resistance, hypertension and dyslipidemia is a major threat for public health in the modern society. It is well established that metabolic syndrome contributes to the development of cardiovascular disease collective called as cardiometabolic disease. Despite documented studies in the research field of cardiometabolic disease, the underlying mechanisms are far from clear. Proteases are enzymes that break down proteins, many of which have been implicated in various diseases including cardiac disease. Matrix metalloproteinase (MMP), calpain, cathepsin and caspase are among the major proteases involved in cardiac remodeling. Recent studies have also implicated proteases in the pathogenesis of cardiometabolic disease. Elevated expression and activities of proteases in atherosclerosis, coronary heart disease, obesity/insulin-associated heart disease as well as hypertensive heart disease have been documented. Furthermore, transgenic animals that are deficient in or over-express proteases allow scientists to understand the causal relationship between proteases and cardiometabolic disease. Mechanistically, MMPs and cathepsins exert their effect on cardiometabolic diseases mainly through modifying the extracellular matrix. However, MMP and cathepsin are also reported to affect intracellular proteins, by which they contribute to the development of cardiometabolic diseases. On the other hand, activation of calpain and caspases has been shown to influence intracellular signaling cascade including the NF-κB and apoptosis pathways. Clinically, proteases are reported to function as biomarkers of cardiometabolic diseases. More importantly, the inhibitors of proteases are credited with beneficial cardiometabolic profile, although the exact molecular mechanisms underlying these salutary effects are still under investigation. A better understanding of the role of MMPs, cathepsins, calpains and caspases in cardiometabolic diseases process may yield novel therapeutic targets for treating or controlling these diseases. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Yinan Hua
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, WY 82071, USA.
| | - Sreejayan Nair
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
6
|
ICAD deficiency in human colon cancer and predisposition to colon tumorigenesis: linkage to apoptosis resistance and genomic instability. PLoS One 2013; 8:e57871. [PMID: 23451280 PMCID: PMC3579889 DOI: 10.1371/journal.pone.0057871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/29/2013] [Indexed: 12/31/2022] Open
Abstract
We previously showed that DNA fragmentation factor, which comprises a caspase-3-activated DNase (CAD) and its inhibitor (ICAD), may influence the rate of cell death by generating PARP-1-activating DNA breaks. Here we tested the hypothesis that ICAD-deficient colon epithelial cells exhibiting resistance to death stimuli may accumulate additional genetic modifications, leading to a tumorigenic phenotype. We show that ICAD deficiency may be associated with colon malignancy in humans. Indeed, an examination of ICAD expression using immunohistochemistry in an array of both colon cancer and normal tissues revealed that ICAD expression levels were severely compromised in the cancerous tissues. Upon DNA damage caused by a low dose of irradiation, ICAD cells acquire a tumorigenic phenotype. Colon epithelial cells derived from ICAD mice showed a significant resistance to death induced by the colon carcinogen dimethylhydrazine in vitro and in mice. Such resistance was associated with a decrease in PARP-1 activation. In an animal model of dimethylhydrazine-induced colon tumorigenesis, ICAD−/− mice developed significantly higher numbers of tumors with markedly larger sizes than the wild-type counterparts. Interestingly, the phenotype of the ICAD−/− mice was not associated with a significant increase in the precancerous aberrant crypt foci suggesting a potential link to tumor progression rather than initiation. More importantly, ICAD deficiency was associated with severe genomic instability as assessed by array comparative genomic hybridization. Such genomic instability consisted most prominently of amplifications but with sizable deletions as compared to the wild-type counterparts affecting several cancer-related genes including RAF-1, GSN, LMO3, and Fzd6 independently of p53. Altogether, our results present a viable case for the involvement of ICAD deficiency in colon carcinogenesis and show that apoptosis and genomic instability may comprise the means by which such deficiency may contribute to the process of increasing susceptibility to carcinogen-induced tumorigenesis.
Collapse
|
7
|
Sung HJ, Son SJ, Yang SJ, Rhee KJ, Kim YS. Increased expression of interleukin-1β in triglyceride-induced macrophage cell death is mediated by p38 MAP kinase. BMB Rep 2012; 45:414-8. [PMID: 22831977 DOI: 10.5483/bmbrep.2012.45.7.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triglycerides (TG) are implicated in the development of atherosclerosis through formation of foam cells and induction of macrophage cell death. In this study, we report that addition of exogenous TG induced cell death in phorbol 12-myristate 13-acetate-differentiated THP-1 human macrophages. TG treatment induced a dramatic decrease in interleukin-1β (IL-1β) mRNA expression in a dose- and time-dependent manner. The expression of granulocyte macrophage colony-stimulating factor and platelet endothelial cell adhesion molecule remained unchanged. To identify signaling pathways involved in TG-induced downregulation of IL-1β, we added p38 MAPK, protein kinase C (PKC) or c-Raf1 specific inhibitors. We found that inhibition of p38 MAPK alleviated the TG-induced downregulation of IL-1β, whereas inhibition of PKC and c-Raf1 had no effect. This is the first report showing decreased IL-1β expression during TG-induced cell death in a human macrophage line. Our results suggest that downregulation of IL-1β expression by TG-treated macrophages may play a role during atherogenesis.
Collapse
Affiliation(s)
- Ho Joong Sung
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Gyeongi-Do, Korea
| | | | | | | | | |
Collapse
|
8
|
Martinet W, Schrijvers DM, De Meyer GRY. Pharmacological modulation of cell death in atherosclerosis: a promising approach towards plaque stabilization? Br J Pharmacol 2012; 164:1-13. [PMID: 21418184 DOI: 10.1111/j.1476-5381.2011.01342.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Despite tremendous advances over the last 15 years in identifying vulnerable atherosclerotic plaques, the incidence of death and disability caused by such lesions still remains the number one health threat in developed countries. Therefore, new systemic or focal therapies aimed at decreasing the overall burden of disease, and a change to a more benign phenotype, are needed. Because cell death is a prominent feature of advanced atherosclerotic plaques with a major impact on plaque destabilization, an increasing number of compounds targeting the apoptotic or autophagic machinery in atherosclerosis are being explored, predominantly at the preclinical level. This review will provide an overview of these compounds, with a focus on both inhibition and stimulation of cell death, to prevent acute coronary syndromes and sudden cardiac death.
Collapse
Affiliation(s)
- Wim Martinet
- Division of Pharmacology, University of Antwerp, Antwerp, Belgium.
| | | | | |
Collapse
|
9
|
Lammers B, Chandak PG, Aflaki E, Van Puijvelde GHM, Radovic B, Hildebrand RB, Meurs I, Out R, Kuiper J, Van Berkel TJC, Kolb D, Haemmerle G, Zechner R, Levak-Frank S, Van Eck M, Kratky D. Macrophage adipose triglyceride lipase deficiency attenuates atherosclerotic lesion development in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 2010; 31:67-73. [PMID: 21030715 DOI: 10.1161/atvbaha.110.215814] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The consequences of macrophage triglyceride (TG) accumulation on atherosclerosis have not been studied in detail so far. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme for the initial step in TG hydrolysis. Because ATGL knockout (KO) mice exhibit massive TG accumulation in macrophages, we used ATGL KO mice to study the effects of macrophage TG accumulation on atherogenesis. METHODS AND RESULTS Low-density lipoprotein receptor (LDLr) KO mice were transplanted with bone marrow from ATGL KO (ATGL KO→LDLr KO) or wild-type (WT→LDLr KO) mice and challenged with a Western-type diet for 9 weeks. Despite TG accumulation in ATGL KO macrophages, atherosclerosis in ATGL KO→LDLr KO mice was 43% reduced associated with decreased plasma monocyte chemoattractant protein-1 (MCP-1) and macrophage interleukin-6 concentrations. This coincided with a reduced amount of macrophages, possibly because of a 39% increase in intraplaque apoptosis and a decreased migratory capacity of ATGL KO macrophages. The reduced number of white blood cells might be due to a 36% decreased Lin(-)Sca-1(+)cKit(+) hematopoietic stem cell population. CONCLUSIONS We conclude that the attenuation of atherogenesis in ATGL KO→LDLr KO mice is due to decreased infiltration of less inflammatory macrophages into the arterial wall and increased macrophage apoptosis.
Collapse
Affiliation(s)
- Bart Lammers
- Division of Biopharmaceutics, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Aronis A, Aharoni-Simon M, Madar Z, Tirosh O. Triacylglycerol-induced impairment in mitochondrial biogenesis and function in J774.2 and mouse peritoneal macrophage foam cells. Arch Biochem Biophys 2009; 492:74-81. [PMID: 19772854 DOI: 10.1016/j.abb.2009.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/19/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
Abstract
The aim of this study was to detect mitochondrial alterations in J774.2 macrophages and mouse peritoneal macrophages (MPM) foam cells. J774.2 and MPM cells were exposed to triacylglycerol (TG) emulsion (1 mg/ml) for induction of fat accumulation. Impairment of mitochondrial function was reflected by reduced cellular ATP production and decreased expression of subunits of mitochondrial complexes I and III. The expression of subunit IV of complex IV remained unchanged, however, the content of its precursor in cells increased. Inhibitors of mitochondrial complexes, rotenone (0.1 microM) and myxothiazol (25 nM), protected the viability in TG-loaded macrophages. The exposure to TG caused downregulation of PPARgamma coactivator (PGC)-1alpha and nuclear respiratory factor (NRF)-1. Activation of peroxisome proliferator-activated receptors attenuated reactive oxygen species production in the foam cells. Treatment with antioxidant N-acetylcysteine (NAC) prevented lipid-mediated mitochondrial and cellular damage. In conclusion, this study demonstrates the important role of mitochondrial biogenesis dysfunction in TG-induced lipotoxicity in macrophages.
Collapse
Affiliation(s)
- Anna Aronis
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
11
|
Babaev VR, Chew JD, Ding L, Davis S, Breyer MD, Breyer RM, Oates JA, Fazio S, Linton MF. Macrophage EP4 deficiency increases apoptosis and suppresses early atherosclerosis. Cell Metab 2008; 8:492-501. [PMID: 19041765 PMCID: PMC2614698 DOI: 10.1016/j.cmet.2008.09.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/06/2008] [Accepted: 09/10/2008] [Indexed: 12/23/2022]
Abstract
Prostaglandin (PG) E(2), a major product of activated macrophages, has been implicated in atherosclerosis and plaque rupture. The PGE(2) receptors, EP2 and EP4, are expressed in atherosclerotic lesions and are known to inhibit apoptosis in cancer cells. To examine the roles of macrophage EP4 and EP2 in apoptosis and early atherosclerosis, fetal liver cell transplantation was used to generate LDLR(-/-) mice chimeric for EP2(-/-) or EP4(-/-) hematopoietic cells. After 8 weeks on a Western diet, EP4(-/-) --> LDLR(-/-) mice, but not EP2(-/-) --> LDLR(-/-) mice, had significantly reduced aortic atherosclerosis with increased apoptotic cells in the lesions. EP4(-/-) peritoneal macrophages had increased sensitivity to proapoptotic stimuli, including palmitic acid and free cholesterol loading, which was accompanied by suppression of activity of p-Akt, p-Bad, and NF-kappaB-regulated genes. Thus, EP4 deficiency inhibits the PI3K/Akt and NF-kappaB pathways compromising macrophage survival and suppressing early atherosclerosis, identifying macrophage EP4-signaling pathways as molecular targets for modulating the development of atherosclerosis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/biosynthesis
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Macrophages/metabolism
- Mice
- Mice, Knockout
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Proto-Oncogene Proteins c-akt/biosynthesis
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP4 Subtype
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Vladimir R. Babaev
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Joshua D. Chew
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Lei Ding
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sarah Davis
- Department of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Matthew D. Breyer
- Department of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Richard M. Breyer
- Department of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - John A. Oates
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sergio Fazio
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - MacRae F. Linton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
12
|
Chiapello LS, Baronetti JL, Garro AP, Spesso MF, Masih DT. Cryptococcus neoformans glucuronoxylomannan induces macrophage apoptosis mediated by nitric oxide in a caspase-independent pathway. Int Immunol 2008; 20:1527-41. [DOI: 10.1093/intimm/dxn112] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
13
|
Aronis A, Madar Z, Tirosh O. Lipotoxic effects of triacylglycerols in J774.2 macrophages. Nutrition 2008; 24:167-76. [PMID: 18165129 DOI: 10.1016/j.nut.2007.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/28/2007] [Accepted: 10/30/2007] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Triacylglycerols (TGs) are being considered as an independent risk factor in atherosclerosis and metabolic syndrome, acting by dysregulation of the TG/high-density lipoprotein axis. Accumulation of lipids in subendothelial space attracts macrophages, leading to atherosclerotic plaque formation and increased plaque instability due to formation of foam cells and macrophage death. The aim of this study was to evaluate lipotoxic effects in macrophages caused by TG uptake. METHODS J774.2 macrophages were exposed to soybean or olive oil-based lipid emulsions as a source of TGs (1 mg/mL) in a presence or absence of lipase inhibitor paraoxon (20 microM) or to bovine serum albumin-complexed palmitic (150 microM), linoleic (600 microM), and oleic (600 microM) fatty acids. RESULTS The results demonstrated accumulation of TGs, G1/S arrest, and cell death with necrotic morphologic features after exposure to TG emulsions. These effects were prevented by treatment with an antioxidant N-acetyl-cysteine (0.5 mM). Paraoxon inhibited intracellular TG degradation but did not prevent lipotoxicity and cell death. Olive oil TG triggered macrophage death in a manner similar to soybean oil. Treatment of the macrophages with free fatty acid, mainly with palmitic acid, showed a reactive oxygen species-independent cell death pathway, which was different from that of TG and was not prevented by N-acetyl-cysteine. CONCLUSION This study shows a direct lipotoxic pathway for TG molecules in macrophages, which is not associated with degradation of TG molecule to free fatty acids. This study for the first time can explain at a cellular level how TGs as an independent risk factor aggravate atherosclerotic outcomes.
Collapse
Affiliation(s)
- Anna Aronis
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | |
Collapse
|
14
|
Wehinger A, Tancevski I, Schgoer W, Eller P, Hochegger K, Morak M, Hermetter A, Ritsch A, Patsch JR, Foeger B. Phospholipid Transfer Protein Augments Apoptosis in THP-1–Derived Macrophages Induced by Lipolyzed Hypertriglyceridemic Plasma. Arterioscler Thromb Vasc Biol 2007; 27:908-15. [PMID: 17272752 DOI: 10.1161/01.atv.0000259361.91267.8c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Lipolysis of triglyceride-rich lipoproteins (TGRLPs) generates phospholipid-rich surface remnants and induces cytotoxic effects in adjacent vascular cells. We hypothesized that by integrating surface remnants into HDL, phospholipid transfer protein (PLTP) alleviates cytotoxicity. METHODS AND RESULTS To test this hypothesis and gain insight into cytotoxicity during the postprandial phase in vivo, we injected normo-TG and hyper-TG human volunteers after a standardized fat meal (postprandial sample) with heparin, thereby stimulating lipolysis (postprandial heparinized sample). Incubation of (primary) human macrophages and primary human endothelial cells with postprandial heparinized hyper-TG plasma induced pronounced cytotoxic effects that were dose dependent on the TG content of the sample. No such effects were seen with normo-TG and postprandial hyper-TG plasma. In vitro lipolysis of VLDL and chylomicrons indicated that both lipoprotein fractions can cause cytotoxicity. Interestingly, in experiments with THP-1-derived macrophages stably transfected with PLTP, PLTP substantially augmented both net phospholipid uptake and apoptotic cell death due to postprandial heparinized hyper-TG plasma. We observed that activation of caspase-3/7, poly-ADP-ribose polymerase, and enhanced bioactivity of acid sphingomyelinase may all contribute to this augmented apoptosis. CONCLUSIONS Our data show that lipolysis of TGRLPs and their remodelling by PLTP interact to disturb cellular phospholipid flux and intracellular signaling processes, ultimately leading to apoptosis in human macrophages and endothelial cells.
Collapse
Affiliation(s)
- Andreas Wehinger
- Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fox R, Nhan TQ, Law GL, Morris DR, Liles WC, Schwartz SM. PSGL-1 and mTOR regulate translation of ROCK-1 and physiological functions of macrophages. EMBO J 2007; 26:505-15. [PMID: 17245434 PMCID: PMC1783463 DOI: 10.1038/sj.emboj.7601522] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 11/30/2006] [Indexed: 10/23/2022] Open
Abstract
Rho-associated kinases (ROCKs) are critical molecules involved in the physiological functions of macrophages, such as chemotaxis and phagocytosis. We demonstrate that macrophage adherence promotes rapid changes in physiological functions that depend on translational upregulation of preformed ROCK-1 mRNA, but not ROCK-2 mRNA. Before adherence, both ROCK mRNAs were present in the cytoplasm of macrophages, whereas ROCK proteins were undetectable. Macrophage adherence promoted signaling through P-selectin glycoprotein ligand-1 (PSGL-1)/Akt/mTOR that resulted in synthesis of ROCK-1, but not ROCK-2. Following synthesis, ROCK-1 was catalytically active. In addition, there was a rapamycin/sirolimus-sensitive enhanced loading of ribosomes on preformed ROCK-1 mRNAs. Inhibition of mTOR by rapamycin abolished ROCK-1 synthesis in macrophages resulting in an inhibition of chemotaxis and phagocytosis. Macrophages from PSGL-1-deficient mice recapitulated pharmacological inhibitor studies. These results indicate that receptor-mediated regulation at the level of translation is a component of a rapid set of mechanisms required to direct the macrophage phenotype upon adherence and suggest a mechanism for the immunosuppressive and anti-inflammatory effects of rapamycin/sirolimus.
Collapse
Affiliation(s)
- Richard Fox
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, 815 Mercer Street, Seattle, WA 98109, USA. Tel.: +1 206 390 2997; Fax: +1 206 897 1540; E-mail:
| | - Thomas Q Nhan
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - G Lynn Law
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David R Morris
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - W Conrad Liles
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Toronto/University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
| | - Stephen M Schwartz
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, 815 Mercer Street, Room 421, Seattle, WA 98109-4714, USA. Tel.: +1 206 543 0258; Fax: +1 206 897 1540; E-mail:
| |
Collapse
|
16
|
Namgaladze D, Brüne B. Phospholipase A
2
–Modified Low-Density Lipoprotein Activates the Phosphatidylinositol 3-Kinase-Akt Pathway and Increases Cell Survival in Monocytic Cells. Arterioscler Thromb Vasc Biol 2006; 26:2510-6. [PMID: 16973971 DOI: 10.1161/01.atv.0000245797.76062.2e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Monocyte survival is an important determinant in the development of atherosclerotic lesions. We investigated the influence of phospholipase A
2
-modified LDL (PLA-LDL), a pro-atherogenic factor, on activation of the pro-survival kinase Akt and cell death in monocytic cells.
Methods and Results—
PLA-LDL induced robust phosphorylation and activation of Akt in THP1 cells. It also attenuated oxidative stress-induced cell death, an effect abolished by phosphatidylinositol 3-kinase (PI3K) inhibition. In addition, PLA-LDL increased survival of human monocytes. We noticed that lipid products derived from LDL phospholipolysis are mediators of PLA-LDL–induced Akt activation. Arachidonic acid, which is released on phospholipase treatment of LDL, induced Akt phosphorylation and increased cell survival, whereas lysophosphatidylcholine, another compound generated by LDL phospholipolysis, induced only transient Akt phosphorylation and was cytotoxic.
Conclusions—
Our data indicate that PLA-LDL induces activation of the PI3K-Akt pathway and promotes monocytic cell survival, which may contribute to the pro-atherogenic effects of phospholipase A
2
-modified LDL.
Collapse
Affiliation(s)
- Dmitry Namgaladze
- Faculty of Medicine, Institute of Biochemistry I, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | |
Collapse
|
17
|
Nhan TQ, Liles WC, Schwartz SM. Physiological functions of caspases beyond cell death. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:729-37. [PMID: 16936249 PMCID: PMC1698830 DOI: 10.2353/ajpath.2006.060105] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Q Nhan
- Department of Pathology, University of Washington, 815 Mercer St. #421, Seattle, WA 98109-4714, USA
| | | | | |
Collapse
|
18
|
Boullier A, Li Y, Quehenberger O, Palinski W, Tabas I, Witztum JL, Miller YI. Minimally Oxidized LDL Offsets the Apoptotic Effects of Extensively Oxidized LDL and Free Cholesterol in Macrophages. Arterioscler Thromb Vasc Biol 2006; 26:1169-76. [PMID: 16484596 DOI: 10.1161/01.atv.0000210279.97308.9a] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Lipid-loaded macrophage-derived foam cells populate atherosclerotic lesions and produce many pro-inflammatory and plaque-destabilizing factors. An excessive accumulation of extensively oxidized low-density lipoprotein (OxLDL) or free cholesterol (FC), both of which are believed to be major lipid components of macrophages in advanced lesions, rapidly induces apoptosis in macrophages. Indeed, there is evidence of macrophage death in lesions, but how the surviving macrophages avoid death induced by OxLDL, FC, and other factors is not known. METHODS AND RESULTS Minimally oxidized LDL (mmLDL), which is an early product of progressive LDL oxidation in atherosclerotic lesions, countered OxLDL-induced or FC-induced apoptosis and stimulated macrophage survival both in cell culture and in vivo. DNA fragmentation and caspase-3 activity in OxLDL-treated peritoneal macrophages were significantly reduced by coincubation with mmLDL. In a separate set of experiments, mmLDL significantly reduced annexin V binding to macrophages in which apoptosis was induced by FC loading. In both cellular models, mmLDL activated a pro-survival PI3K/Akt signaling pathway, and PI3K inhibitors, wortmannin and LY294002, eliminated the pro-survival effect of mmLDL. Immunohistochemical examination demonstrated phospho-Akt in murine atherosclerotic lesions. CONCLUSIONS Minimally oxidized LDL, an early form of oxidized LDL in atherosclerotic lesions, may contribute to prolonged survival of macrophage foam cells in lesions via a PI3K/Akt-dependent mechanism.
Collapse
Affiliation(s)
- Agnès Boullier
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0682, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Membrane lipids are essential for biological functions ranging from membrane trafficking to signal transduction. The composition of lipid membranes influences their organization and properties, so it is not surprising that disorders in lipid metabolism and transport have a role in human disease. Significant recent progress has enhanced our understanding of the molecular and cellular basis of lipid-associated disorders such as Tangier disease, Niemann-Pick disease type C and atherosclerosis. These insights have also led to improved understanding of normal physiology.
Collapse
Affiliation(s)
- Frederick R Maxfield
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
20
|
Tabas I. Consequences and Therapeutic Implications of Macrophage Apoptosis in Atherosclerosis. Arterioscler Thromb Vasc Biol 2005; 25:2255-64. [PMID: 16141399 DOI: 10.1161/01.atv.0000184783.04864.9f] [Citation(s) in RCA: 502] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Macrophage apoptosis occurs throughout all stages of atherosclerosis, yet new findings in vivo suggest that the consequences of this event may be very different in early versus late atherosclerotic lesions. In early lesions, where phagocytic clearance of apoptotic cells appears to be efficient, macrophage apoptosis is associated with diminished lesion cellularity and decreased lesion progression. In late lesions, however, a number of factors may contribute to defective phagocytic clearance of apoptotic macrophages, leading to secondary necrosis of these cells and a proinflammatory response. The cumulative effect of these late lesional events is generation of the necrotic core, which, in concert with proatherogenic effects of residual surviving macrophages, promotes further inflammation, plaque instability, and thrombosis. Thus, the ability or lack thereof of lesional phagocytes to safely clear apoptotic macrophages may be an important determinant of acute atherothrombotic clinical events. Further understanding of the mechanisms involved in macrophage apoptosis and phagocytic clearance might lead to novel therapeutic strategies directed against the progression of advanced plaques.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|