1
|
Kim DH, Lee S, Noh SG, Lee J, Chung HY. FoxO6-mediated ApoC3 upregulation promotes hepatic steatosis and hyperlipidemia in aged rats fed a high-fat diet. Aging (Albany NY) 2024; 16:4095-4115. [PMID: 38441531 PMCID: PMC10968681 DOI: 10.18632/aging.205610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/24/2024] [Indexed: 03/22/2024]
Abstract
FoxO6, an identified factor, induces hyperlipidemia and hepatic steatosis during aging by activating hepatic lipoprotein secretion and lipogenesis leading to increased ApoC3 concentrations in the bloodstream. However, the intricate mechanisms underlying hepatic steatosis induced by elevated FoxO6 under hyperglycemic conditions remain intricate and require further elucidation. In order to delineate the regulatory pathway involving ApoC3 controlled by FoxO6 and its resultant functional impacts, we employed a spectrum of models including liver cell cultures, aged rats subjected to HFD, transgenic mice overexpressing FoxO6 (FoxO6-Tg), and FoxO6 knockout mice (FoxO6-KO). Our findings indicate that FoxO6 triggered ApoC3-driven lipid accumulation in the livers of aged rats on an HFD and in FoxO6-Tg, consequently leading to hepatic steatosis and hyperglycemia. Conversely, the absence of FoxO6 attenuated the expression of genes involved in lipogenesis, resulting in diminished hepatic lipid accumulation and mitigated hyperlipidemia in murine models. Additionally, the upregulation of FoxO6 due to elevated glucose levels led to increased ApoC3 expression, consequently instigating cellular triglyceride mediated lipid accumulation. The transcriptional activation of FoxO6 induced by both the HFD and high glucose levels resulted in hepatic steatosis by upregulating ApoC3 and genes associated with gluconeogenesis in aged rats and liver cell cultures. Our conclusions indicate that the upregulation of ApoC3 by FoxO6 promotes the development of hyperlipidemia, hyperglycemia, and hepatic steatosis in vivo, and in vitro. Taken together, our findings underscore the significance of FoxO6 in driving hyperlipidemia and hepatic steatosis specifically under hyperglycemic states by enhancing the expression of ApoC3 in aged rats.
Collapse
Affiliation(s)
- Dae Hyun Kim
- Department of Food Science and Technology, College of Natural Resources and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do 50463, Republic of Korea
| | - Seulah Lee
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Sang Gyun Noh
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Packard CJ, Pirillo A, Tsimikas S, Ference BA, Catapano AL. Exploring apolipoprotein C-III: pathophysiological and pharmacological relevance. Cardiovasc Res 2024; 119:2843-2857. [PMID: 38039351 PMCID: PMC11484501 DOI: 10.1093/cvr/cvad177] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 12/03/2023] Open
Abstract
The availability of pharmacological approaches able to effectively reduce circulating LDL cholesterol (LDL-C) has led to a substantial reduction in the risk of atherosclerosis-related cardiovascular disease (CVD). However, a residual cardiovascular (CV) risk persists in treated individuals with optimal levels of LDL-C. Additional risk factors beyond LDL-C are involved, and among these, elevated levels of triglycerides (TGs) and TG-rich lipoproteins are causally associated with an increased CV risk. Apolipoprotein C-III (apoC-III) is a key regulator of TG metabolism and hence circulating levels through several mechanisms including the inhibition of lipoprotein lipase activity and alterations in the affinity of apoC-III-containing lipoproteins for both the hepatic receptors involved in their removal and extracellular matrix in the arterial wall. Genetic studies have clarified the role of apoC-III in humans, establishing a causal link with CVD and showing that loss-of-function mutations in the APOC3 gene are associated with reduced TG levels and reduced risk of coronary heart disease. Currently available hypolipidaemic drugs can reduce TG levels, although to a limited extent. Substantial reductions in TG levels can be obtained with new drugs that target specifically apoC-III; these include two antisense oligonucleotides, one small interfering RNA and an antibody.
Collapse
Affiliation(s)
- Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Milan, Italy
- Center for the Study of Dyslipidaemias, IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Alberico L Catapano
- Center for the Study of Dyslipidaemias, IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
3
|
Maraninchi M, Calabrese A, Nogueira JP, Castinetti F, Mancini J, Mourre F, Piétri L, Bénamo E, Albarel F, Morange I, Dupont-Roussel J, Nicolay A, Brue T, Béliard S, Valéro R. Role of growth hormone in hepatic and intestinal triglyceride-rich lipoprotein metabolism. J Clin Lipidol 2021; 15:712-723. [PMID: 34462238 DOI: 10.1016/j.jacl.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Elevated plasma concentrations of hepatic- and intestinally-derived triglyceride-rich lipoproteins (TRL) are implicated in the pathogenesis of atherosclerotic cardiovascular disease and all-cause mortality. Excess of TRL is the driving cause of atherogenic dyslipidemia commonly occurring in insulin-resistant individuals such as patients with obesity, type 2 diabetes and metabolic syndrome. Interestingly, growth hormone (GH)-deficient individuals display similar atherogenic dyslipidemia, suggesting an important role of GH and GH deficiency in the regulation of TRL metabolism. OBJECTIVE We aimed to examine the direct and/or indirect role of GH on TRL metabolism. METHODS We investigated the effect on fasting and postprandial hepatic-TRL and intestinal-TRL metabolism of short-term (one month) withdrawal of GH in 10 GH-deficient adults. RESULTS After GH withdrawal, we found a reduction in fasting plasma TRL concentration (significant decrease in TRL-TG, TRL-cholesterol, TRL-apoB-100, TRL-apoC-III and TRL-apoC-II) but not in postprandial TRL response. This reduction was due to fewer fasting TRL particles without a change in TG per particle and was not accompanied by a change in postprandial TRL-apoB-48 response. Individual reductions in TRL correlated strongly with increases in insulin sensitivity and decreases in TRL-apoC-III. CONCLUSION In this relatively short term 'loss of function' human experimental model, we have shown an unanticipated reduction of hepatic-TRL particles despite increase in total body fat mass and reduction in lean mass. These findings contrast with the atherogenic dyslipidemia previously described in chronic GH deficient states, providing a new perspective for the role of GH in lipoprotein metabolism.
Collapse
Affiliation(s)
- Marie Maraninchi
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 boulevard Baille, Marseille 13005, France
| | - Anastasia Calabrese
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 boulevard Baille, Marseille 13005, France
| | - Juan-Patricio Nogueira
- Docencia e Investigacion, Hospital Central de Formosa, Salta 555, Formosa CP 3600, Argentina; Facultad de Ciencias de la Salud, Universidad Nacional de Formosa, Gutnisky 3200, Formosa CP 3600, Argentina
| | - Frédéric Castinetti
- INSERM, U1251, Marseille Medical Genetics (MMG), Faculté des Sciences médicales et paramédicales, France and AP-HM, Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l'hypophyse HYPO, Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Univ, Marseille 13005, France
| | - Julien Mancini
- INSERM, IRD, UMR1252, SESSTIM, Aix-Marseille Univ, Marseille F-13273, France; APHM, Timone Hospital, Public Health Department (BIOSTIC), Marseille, F-13385, France
| | - Florian Mourre
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 boulevard Baille, Marseille 13005, France
| | - Léa Piétri
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 boulevard Baille, Marseille 13005, France
| | - Eric Bénamo
- Department of Endocrinology and Metabolic Diseases, Hospital d'Avignon Henri Duffaut, 205 rue Raoul Follereau, Avignon 84000, France
| | - Frédérique Albarel
- INSERM, U1251, Marseille Medical Genetics (MMG), Faculté des Sciences médicales et paramédicales, France and AP-HM, Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l'hypophyse HYPO, Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Univ, Marseille 13005, France
| | - Isabelle Morange
- INSERM, U1251, Marseille Medical Genetics (MMG), Faculté des Sciences médicales et paramédicales, France and AP-HM, Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l'hypophyse HYPO, Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Univ, Marseille 13005, France
| | - Jeanine Dupont-Roussel
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 boulevard Baille, Marseille 13005, France
| | - Alain Nicolay
- APHM, Laboratory of Endocrine Biochemistry, La Conception Hospital, Marseille, France
| | - Thierry Brue
- INSERM, U1251, Marseille Medical Genetics (MMG), Faculté des Sciences médicales et paramédicales, France and AP-HM, Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l'hypophyse HYPO, Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Univ, Marseille 13005, France
| | - Sophie Béliard
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 boulevard Baille, Marseille 13005, France
| | - René Valéro
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 boulevard Baille, Marseille 13005, France.
| |
Collapse
|
4
|
The Pathogenic Role of Very Low Density Lipoprotein on Atrial Remodeling in the Metabolic Syndrome. Int J Mol Sci 2020; 21:ijms21030891. [PMID: 32019138 PMCID: PMC7037013 DOI: 10.3390/ijms21030891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrillation (AF) is the most common persistent arrhythmia, and can lead to systemic thromboembolism and heart failure. Aging and metabolic syndrome (MetS) are major risks for AF. One of the most important manifestations of MetS is dyslipidemia, but its correlation with AF is ambiguous in clinical observational studies. Although there is a paradoxical relationship between fasting cholesterol and AF incidence, the benefit from lipid lowering therapy in reduction of AF is significant. Here, we reviewed the health burden from AF and MetS, the association between two disease entities, and the metabolism of triglyceride, which is elevated in MetS. We also reviewed scientific evidence for the mechanistic links between very low density lipoproteins (VLDL), which primarily carry circulatory triglyceride, to atrial cardiomyopathy and development of AF. The effects of VLDL to atria suggesting pathogenic to atrial cardiomyopathy and AF include excess lipid accumulation, direct cytotoxicity, abbreviated action potentials, disturbed calcium regulation, delayed conduction velocities, modulated gap junctions, and sarcomere protein derangements. The electrical remodeling and structural changes in concert promote development of atrial cardiomyopathy in MetS and ultimately lead to vulnerability to AF. As VLDL plays a major role in lipid metabolism after meals (rather than fasting state), further human studies that focus on the effects/correlation of postprandial lipids to atrial remodeling are required to determine whether VLDL-targeted therapy can reduce MetS-related AF. On the basis of our scientific evidence, we propose a pivotal role of VLDL in MetS-related atrial cardiomyopathy and vulnerability to AF.
Collapse
|
5
|
Li D, Rodia CN, Johnson ZK, Bae M, Muter A, Heussinger AE, Tambini N, Longo AM, Dong H, Lee JY, Kohan AB. Intestinal basolateral lipid substrate transport is linked to chylomicron secretion and is regulated by apoC-III. J Lipid Res 2019; 60:1503-1515. [PMID: 31152000 PMCID: PMC6718441 DOI: 10.1194/jlr.m092460] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/31/2019] [Indexed: 01/26/2023] Open
Abstract
Chylomicron metabolism is critical for determining plasma levels of triacylglycerols (TAGs) and cholesterol, both of which are risk factors for CVD. The rates of chylomicron secretion and remnant clearance are controlled by intracellular and extracellular factors, including apoC-III. We have previously shown that human apoC-III overexpression in mice (apoC-IIITg mice) decreases the rate of chylomicron secretion into lymph, as well as the TAG composition in chylomicrons. We now find that this decrease in chylomicron secretion is not due to the intracellular effects of apoC-III, but instead that primary murine enteroids are capable of taking up TAG from TAG-rich lipoproteins (TRLs) on their basolateral surface; and via Seahorse analyses, we find that mitochondrial respiration is induced by basolateral TRLs. Furthermore, TAG uptake into the enterocyte is inhibited when excess apoC-III is present on TRLs. In vivo, we find that dietary TAG is diverted from the cytosolic lipid droplets and driven toward mitochondrial FA oxidation when plasma apoC-III is high (or when basolateral substrates are absent). We propose that this pathway of basolateral lipid substrate transport (BLST) plays a physiologically relevant role in the maintenance of dietary lipid absorption and chylomicron secretion. Further, when apoC-III is in excess, it inhibits BLST and chylomicron secretion.
Collapse
Affiliation(s)
- Diana Li
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Cayla N Rodia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Zania K Johnson
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Angelika Muter
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Amy E Heussinger
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Nicholas Tambini
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Austin M Longo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Hongli Dong
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT.
| |
Collapse
|
6
|
Renee Ruhaak L, van der Laarse A, Cobbaert CM. Apolipoprotein profiling as a personalized approach to the diagnosis and treatment of dyslipidaemia. Ann Clin Biochem 2019; 56:338-356. [PMID: 30889974 PMCID: PMC6595551 DOI: 10.1177/0004563219827620] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2018] [Indexed: 01/08/2023]
Abstract
An elevated low-density lipoprotein cholesterol concentration is a classical risk factor for cardiovascular disease. This has led to pharmacotherapy in patients with atherosclerotic heart disease or high heart disease risk with statins to reduce serum low-density lipoprotein cholesterol. Even in patients in whom the target levels of low-density lipoprotein cholesterol are reached, there remains a significant residual cardiovascular risk; this is due, in part, to a focus on low-density lipoprotein cholesterol alone and neglect of other important aspects of lipoprotein metabolism. A more refined lipoprotein analysis will provide additional information on the accumulation of very low-density lipoproteins, intermediate density lipoproteins, chylomicrons, chylomicron-remnants and Lp(a) concentrations. Instead of measuring the cholesterol and triglyceride content of the lipoproteins, measurement of their apolipoproteins (apos) is more informative. Apos are either specific for a particular lipoprotein or for a group of lipoproteins. In particular measurement of apos in atherogenic particles is more biologically meaningful than the measurement of the cholesterol concentration contained in these particles. Applying apo profiling will not only improve characterization of the lipoprotein abnormality, but will also improve definition of therapeutic targets. Apo profiling aligns with the concept of precision medicine by which an individual patient is not treated as 'average' patient by the average (dose of) therapy. This concept of precision medicine fits the unmet clinical need for stratified cardiovascular medicine. The requirements for clinical application of proteomics, including apo profiling, can now be met using robust mass spectrometry technology which offers desirable analytical performance and standardization.
Collapse
Affiliation(s)
- L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud van der Laarse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Khetarpal SA, Zeng X, Millar JS, Vitali C, Somasundara AVH, Zanoni P, Landro JA, Barucci N, Zavadoski WJ, Sun Z, de Haard H, Toth IV, Peloso GM, Natarajan P, Cuchel M, Lund-Katz S, Phillips MC, Tall AR, Kathiresan S, DaSilva-Jardine P, Yates NA, Rader DJ. A human APOC3 missense variant and monoclonal antibody accelerate apoC-III clearance and lower triglyceride-rich lipoprotein levels. Nat Med 2017; 23:1086-1094. [PMID: 28825717 PMCID: PMC5669375 DOI: 10.1038/nm.4390] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/25/2017] [Indexed: 12/22/2022]
Abstract
Recent large-scale genetic sequencing efforts have identified rare coding variants in genes in the triglyceride-rich lipoprotein (TRL) clearance pathway that are protective against coronary heart disease (CHD), independently of LDL cholesterol (LDL-C) levels. Insight into the mechanisms of protection of these variants may facilitate the development of new therapies for lowering TRL levels. The gene APOC3 encodes apoC-III, a critical inhibitor of triglyceride (TG) lipolysis and remnant TRL clearance. Here we report a detailed interrogation of the mechanism of TRL lowering by the APOC3 Ala43Thr (A43T) variant, the only missense (rather than protein-truncating) variant in APOC3 reported to be TG lowering and protective against CHD. We found that both human APOC3 A43T heterozygotes and mice expressing human APOC3 A43T display markedly reduced circulating apoC-III levels. In mice, this reduction is due to impaired binding of A43T apoC-III to lipoproteins and accelerated renal catabolism of free apoC-III. Moreover, the reduced content of apoC-III in TRLs resulted in accelerated clearance of circulating TRLs. On the basis of this protective mechanism, we developed a monoclonal antibody targeting lipoprotein-bound human apoC-III that promotes circulating apoC-III clearance in mice expressing human APOC3 and enhances TRL catabolism in vivo. These data reveal the molecular mechanism by which a missense variant in APOC3 causes reduced circulating TG levels and, hence, protects from CHD. This protective mechanism has the potential to be exploited as a new therapeutic approach to reduce apoC-III levels and circulating TRL burden.
Collapse
Affiliation(s)
- Sumeet A Khetarpal
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, Schools of the Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John S Millar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cecilia Vitali
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amritha Varshini Hanasoge Somasundara
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paolo Zanoni
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Zhiyuan Sun
- Biomedical Mass Spectrometry Center, Schools of the Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Marina Cuchel
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sissel Lund-Katz
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Phillips
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York, USA
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Nathan A Yates
- Biomedical Mass Spectrometry Center, Schools of the Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Cheng X, Yamauchi J, Lee S, Zhang T, Gong Z, Muzumdar R, Qu S, Dong HH. APOC3 Protein Is Not a Predisposing Factor for Fat-induced Nonalcoholic Fatty Liver Disease in Mice. J Biol Chem 2017; 292:3692-3705. [PMID: 28115523 DOI: 10.1074/jbc.m116.765917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/06/2017] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by excessive fat accumulation in liver, is prevalent in obesity. Genetic factors that link obesity to NAFLD remain obscure. Apolipoprotein C3 (APOC3) is a lipid-binding protein with a pivotal role in triglyceride metabolism. Humans with APOC3 gain-of-function mutations and mice with APOC3 overproduction are associated with hypertriglyceridemia. Nonetheless, it remains controversial whether APOC3 is culpable for diet-induced NAFLD. To address this fundamental issue, we fed APOC3-transgenic and wild-type littermates a high fructose diet or high fat diet, followed by determination of the effect of APOC3 on hepatic lipid metabolism and inflammation and the progression of NAFLD. To gain mechanistic insight into NAFLD, we determined the impact of APOC3 on hepatic triglyceride synthesis and secretion versus fatty acid oxidation. APOC3-transgenic mice were hypertriglyceridemic, culminating in marked elevation of triglycerides, cholesterols, and non-esterified fatty acids in plasma. Despite the prevailing hypertriglyceridemia, APOC3-transgenic mice, relative to wild-type littermates, had similar weight gain and hepatic lipid content without alterations in hepatic expression of key genes involved in triglyceride synthesis and secretion and fatty acid oxidation. APOC3-transgenic and wild-type mice had similar Kupffer cell content without alterations in hepatic expression of pro- and anti-inflammatory cytokines. APOC3 neither exacerbated diet-induced adiposity nor aggravated the degree of steatosis in high fructose or high fat-fed APOC3-transgenic mice. These effects ensued independently of weight gain even after 10-month high fat feeding. We concluded that APOC3, whose dysregulation is liable for hypertriglyceridemia, is not a predisposing factor for linking overnutrition to NAFLD in obesity.
Collapse
Affiliation(s)
- Xiaoyun Cheng
- From the Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China and.,the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Jun Yamauchi
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Sojin Lee
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Ting Zhang
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Zhenwei Gong
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Radhika Muzumdar
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Shen Qu
- From the Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China and
| | - H Henry Dong
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| |
Collapse
|
9
|
Liu YZ, Cheng X, Zhang T, Lee S, Yamauchi J, Xiao X, Gittes G, Qu S, Jiang CL, Dong HH. Effect of Hypertriglyceridemia on Beta Cell Mass and Function in ApoC3 Transgenic Mice. J Biol Chem 2016; 291:14695-705. [PMID: 27226540 DOI: 10.1074/jbc.m115.707885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Indexed: 12/28/2022] Open
Abstract
Hypertriglyceridemia results from increased production and decreased clearance of triglyceride-rich very low-density lipoproteins, a pathological condition that accounts for heightened risk of ischemic vascular diseases in obesity and type 2 diabetes. Despite its intimate association with insulin resistance, whether hypertriglyceridemia constitutes an independent risk for beta cell dysfunction in diabetes is unknown. Answering this fundamental question is stymied by the fact that hypertriglyceridemia is intertwined with hyperglycemia and insulin resistance in obese and diabetic subjects. To circumvent this limitation, we took advantage of apolipoprotein C3 (ApoC3)-transgenic mice, a model with genetic predisposition to hypertriglyceridemia. We showed that ApoC3-transgenic mice, as opposed to age/sex-matched wild-type littermates, develop hypertriglyceridemia with concomitant elevations in plasma cholesterol and non-esterified fatty acid levels. Anti-insulin and anti-glucagon dual immunohistochemistry in combination with morphometric analysis revealed that ApoC3-transgenic and wild-type littermates had similar beta cell and alpha cell masses as well as islet size and architecture. These effects correlated with similar amplitudes of glucose-stimulated insulin secretion and similar degrees of postprandial glucose excursion in ApoC3-transgenic versus wild-type littermates. Oil Red O histology did not visualize lipid infiltration into islets, correlating with the lack of ectopic triglyceride and cholesterol depositions in the pancreata of ApoC3-transgenic versus wild-type littermates. ApoC3-transgenic mice, despite persistent hypertriglyceridemia, maintained euglycemia under both fed and fasting conditions without manifestation of insulin resistance and fasting hyperinsulinemia. Thus, hypertriglyceridemia per se is not an independent risk factor for beta cell dysfunction in ApoC3 transgenic mice.
Collapse
Affiliation(s)
- Yun-Zi Liu
- From the Department of Pediatrics, Division of Pediatric Endocrinology, and the Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, China, and
| | - Xiaoyun Cheng
- From the Department of Pediatrics, Division of Pediatric Endocrinology, and the Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting Zhang
- From the Department of Pediatrics, Division of Pediatric Endocrinology, and
| | - Sojin Lee
- From the Department of Pediatrics, Division of Pediatric Endocrinology, and
| | - Jun Yamauchi
- From the Department of Pediatrics, Division of Pediatric Endocrinology, and
| | - Xiangwei Xiao
- the Department of Surgery, Division of Pediatric Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - George Gittes
- the Department of Surgery, Division of Pediatric Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Shen Qu
- the Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chun-Lei Jiang
- the Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, China, and
| | - H Henry Dong
- From the Department of Pediatrics, Division of Pediatric Endocrinology, and
| |
Collapse
|
10
|
Li Y, Li Z, Shi L, Zhao C, Shen B, Tian Y, Feng H. Loganin inhibits the inflammatory response in mouse 3T3L1 adipocytes and mouse model. Int Immunopharmacol 2016; 36:173-179. [PMID: 27155393 DOI: 10.1016/j.intimp.2016.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/25/2016] [Accepted: 04/18/2016] [Indexed: 01/01/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular walls. ApoCIII is an independent factor which promotes atherosclerotic processes. This study aimed to investigate whether Loganin administration inhibits the inflammatory response in vitro and in vivo. In the apoCIII-induced mouse adipocytes, the levels of cytokines, including TNF-α, MCP-1 and IL-6 were determined by enzyme-linked immunosorbent assay and their gene expressions were measured through RT-PCR. The phosphorylation of nuclear factor-κB (NF-κB) proteins was analyzed by Western blotting. Our results showed that Loganin markedly decreased TNF-α, MCP-1 and IL-6 concentrations as well as their gene expressions. Western blotting analysis indicated that Loganin suppressed the activation of NF-κB signaling. In the Tyloxapol-treated mouse model, Loganin reduced the contents of TC and TG in mouse serum. The results of Oil Red-O Staining showed that Loganin reduced the production of lipid droplets. So it is suggested that Loganin might be a potential therapeutic agent for preventing the inflammation stress in vitro and in vivo.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Zheng Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Lei Shi
- Jilin University Library, Changchun, Jilin 130062, PR China
| | - Chenxu Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Bingyu Shen
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Ye Tian
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Haihua Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China.
| |
Collapse
|
11
|
Morita SY. Metabolism and Modification of Apolipoprotein B-Containing Lipoproteins Involved in Dyslipidemia and Atherosclerosis. Biol Pharm Bull 2016; 39:1-24. [DOI: 10.1248/bpb.b15-00716] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital
| |
Collapse
|
12
|
Carpentier AC. Hypertriglyceridemia Associated With Abdominal Obesity: Getting Contributing Factors Into Perspective. Arterioscler Thromb Vasc Biol 2015; 35:2076-8. [PMID: 26399918 DOI: 10.1161/atvbaha.115.306412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- André C Carpentier
- From the Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
13
|
Norata GD, Tsimikas S, Pirillo A, Catapano AL. Apolipoprotein C-III: From Pathophysiology to Pharmacology. Trends Pharmacol Sci 2015; 36:675-687. [DOI: 10.1016/j.tips.2015.07.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/07/2015] [Accepted: 07/10/2015] [Indexed: 01/14/2023]
|
14
|
Borén J, Watts GF, Adiels M, Söderlund S, Chan DC, Hakkarainen A, Lundbom N, Matikainen N, Kahri J, Vergès B, Barrett PHR, Taskinen MR. Kinetic and Related Determinants of Plasma Triglyceride Concentration in Abdominal Obesity: Multicenter Tracer Kinetic Study. Arterioscler Thromb Vasc Biol 2015; 35:2218-24. [PMID: 26315407 DOI: 10.1161/atvbaha.115.305614] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 08/04/2015] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Patients with obesity and diabetes mellitus have increased risk of cardiovascular disease. A major cause is an atherogenic dyslipidemia related primarily to elevated plasma concentrations of triglyceride-rich lipoproteins. The aim of this study was to clarify determinants of plasma triglyceride concentration. We focused on factors that predict the kinetics of very-low density lipoprotein 1 (VLDL1) triglycerides. APPROACH AND RESULTS A multicenter study using dual stable isotopes (deuterated leucine and glycerol) and multicompartmental modeling was performed to elucidate the kinetics of triglycerides and apoB in VLDL1 in 46 subjects with abdominal obesity and additional cardiometabolic risk factors. Results showed that plasma triglyceride concentrations were dependent on both the secretion rate (r=0.44, P<0.01; r=0.45, P<0.01) and fractional catabolism (r=0.49, P<0.001; r=0.55, P<0.001) of VLDL1-triglycerides and VLDL1-apoB. Liver fat mass was independently and directly associated with secretion rates of VLDL1-triglycerides (r=0.56, P<0.001) and VLDL1-apoB (r=0.53, P<0.001). Plasma apoC-III concentration was independently and inversely associated with the fractional catabolisms of VLDL1-triglycerides (r=0.48, P<0.001) and VLDL1-apoB (r=0.51, P<0.001). CONCLUSIONS Plasma triglyceride concentrations in abdominal obesity are determined by the kinetics of VLDL1 subspecies, catabolism being mainly dependent on apoC-III concentration and secretion on liver fat content. Reduction in liver fat and targeting apoC-III may be an effective approach for correcting triglyceride metabolism atherogenic dyslipidemia in obesity.
Collapse
Affiliation(s)
- Jan Borén
- From the Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden (J.B., M.A.); Lipid Disorders Clinic, Metabolic Research Centre, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology (G.F.W., D.C.C., P.H.R.B.) and Faculty of Engineering, Computing and Mathematics (P.H.R.B.), University of Western Australia, Perth, Australia; Heart and Lung Centre, Helsinki University Central Hospital and Research Programs' Unit, Diabetes and Obesity (S.S., N.M., M.-R.T.) and Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital (A.H., N.L.), University of Helsinki, Helsinki, Finland; Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland (N.M., J.K.); and Department of Endocrinology-Diabetology, University Hospital and INSERM CRI 866, Dijon, France (B.V.).
| | - Gerald F Watts
- From the Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden (J.B., M.A.); Lipid Disorders Clinic, Metabolic Research Centre, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology (G.F.W., D.C.C., P.H.R.B.) and Faculty of Engineering, Computing and Mathematics (P.H.R.B.), University of Western Australia, Perth, Australia; Heart and Lung Centre, Helsinki University Central Hospital and Research Programs' Unit, Diabetes and Obesity (S.S., N.M., M.-R.T.) and Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital (A.H., N.L.), University of Helsinki, Helsinki, Finland; Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland (N.M., J.K.); and Department of Endocrinology-Diabetology, University Hospital and INSERM CRI 866, Dijon, France (B.V.)
| | - Martin Adiels
- From the Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden (J.B., M.A.); Lipid Disorders Clinic, Metabolic Research Centre, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology (G.F.W., D.C.C., P.H.R.B.) and Faculty of Engineering, Computing and Mathematics (P.H.R.B.), University of Western Australia, Perth, Australia; Heart and Lung Centre, Helsinki University Central Hospital and Research Programs' Unit, Diabetes and Obesity (S.S., N.M., M.-R.T.) and Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital (A.H., N.L.), University of Helsinki, Helsinki, Finland; Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland (N.M., J.K.); and Department of Endocrinology-Diabetology, University Hospital and INSERM CRI 866, Dijon, France (B.V.)
| | - Sanni Söderlund
- From the Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden (J.B., M.A.); Lipid Disorders Clinic, Metabolic Research Centre, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology (G.F.W., D.C.C., P.H.R.B.) and Faculty of Engineering, Computing and Mathematics (P.H.R.B.), University of Western Australia, Perth, Australia; Heart and Lung Centre, Helsinki University Central Hospital and Research Programs' Unit, Diabetes and Obesity (S.S., N.M., M.-R.T.) and Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital (A.H., N.L.), University of Helsinki, Helsinki, Finland; Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland (N.M., J.K.); and Department of Endocrinology-Diabetology, University Hospital and INSERM CRI 866, Dijon, France (B.V.)
| | - Dick C Chan
- From the Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden (J.B., M.A.); Lipid Disorders Clinic, Metabolic Research Centre, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology (G.F.W., D.C.C., P.H.R.B.) and Faculty of Engineering, Computing and Mathematics (P.H.R.B.), University of Western Australia, Perth, Australia; Heart and Lung Centre, Helsinki University Central Hospital and Research Programs' Unit, Diabetes and Obesity (S.S., N.M., M.-R.T.) and Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital (A.H., N.L.), University of Helsinki, Helsinki, Finland; Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland (N.M., J.K.); and Department of Endocrinology-Diabetology, University Hospital and INSERM CRI 866, Dijon, France (B.V.)
| | - Antti Hakkarainen
- From the Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden (J.B., M.A.); Lipid Disorders Clinic, Metabolic Research Centre, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology (G.F.W., D.C.C., P.H.R.B.) and Faculty of Engineering, Computing and Mathematics (P.H.R.B.), University of Western Australia, Perth, Australia; Heart and Lung Centre, Helsinki University Central Hospital and Research Programs' Unit, Diabetes and Obesity (S.S., N.M., M.-R.T.) and Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital (A.H., N.L.), University of Helsinki, Helsinki, Finland; Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland (N.M., J.K.); and Department of Endocrinology-Diabetology, University Hospital and INSERM CRI 866, Dijon, France (B.V.)
| | - Nina Lundbom
- From the Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden (J.B., M.A.); Lipid Disorders Clinic, Metabolic Research Centre, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology (G.F.W., D.C.C., P.H.R.B.) and Faculty of Engineering, Computing and Mathematics (P.H.R.B.), University of Western Australia, Perth, Australia; Heart and Lung Centre, Helsinki University Central Hospital and Research Programs' Unit, Diabetes and Obesity (S.S., N.M., M.-R.T.) and Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital (A.H., N.L.), University of Helsinki, Helsinki, Finland; Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland (N.M., J.K.); and Department of Endocrinology-Diabetology, University Hospital and INSERM CRI 866, Dijon, France (B.V.)
| | - Niina Matikainen
- From the Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden (J.B., M.A.); Lipid Disorders Clinic, Metabolic Research Centre, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology (G.F.W., D.C.C., P.H.R.B.) and Faculty of Engineering, Computing and Mathematics (P.H.R.B.), University of Western Australia, Perth, Australia; Heart and Lung Centre, Helsinki University Central Hospital and Research Programs' Unit, Diabetes and Obesity (S.S., N.M., M.-R.T.) and Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital (A.H., N.L.), University of Helsinki, Helsinki, Finland; Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland (N.M., J.K.); and Department of Endocrinology-Diabetology, University Hospital and INSERM CRI 866, Dijon, France (B.V.)
| | - Juhani Kahri
- From the Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden (J.B., M.A.); Lipid Disorders Clinic, Metabolic Research Centre, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology (G.F.W., D.C.C., P.H.R.B.) and Faculty of Engineering, Computing and Mathematics (P.H.R.B.), University of Western Australia, Perth, Australia; Heart and Lung Centre, Helsinki University Central Hospital and Research Programs' Unit, Diabetes and Obesity (S.S., N.M., M.-R.T.) and Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital (A.H., N.L.), University of Helsinki, Helsinki, Finland; Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland (N.M., J.K.); and Department of Endocrinology-Diabetology, University Hospital and INSERM CRI 866, Dijon, France (B.V.)
| | - Bruno Vergès
- From the Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden (J.B., M.A.); Lipid Disorders Clinic, Metabolic Research Centre, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology (G.F.W., D.C.C., P.H.R.B.) and Faculty of Engineering, Computing and Mathematics (P.H.R.B.), University of Western Australia, Perth, Australia; Heart and Lung Centre, Helsinki University Central Hospital and Research Programs' Unit, Diabetes and Obesity (S.S., N.M., M.-R.T.) and Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital (A.H., N.L.), University of Helsinki, Helsinki, Finland; Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland (N.M., J.K.); and Department of Endocrinology-Diabetology, University Hospital and INSERM CRI 866, Dijon, France (B.V.)
| | - P Hugh R Barrett
- From the Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden (J.B., M.A.); Lipid Disorders Clinic, Metabolic Research Centre, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology (G.F.W., D.C.C., P.H.R.B.) and Faculty of Engineering, Computing and Mathematics (P.H.R.B.), University of Western Australia, Perth, Australia; Heart and Lung Centre, Helsinki University Central Hospital and Research Programs' Unit, Diabetes and Obesity (S.S., N.M., M.-R.T.) and Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital (A.H., N.L.), University of Helsinki, Helsinki, Finland; Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland (N.M., J.K.); and Department of Endocrinology-Diabetology, University Hospital and INSERM CRI 866, Dijon, France (B.V.)
| | - Marja-Riitta Taskinen
- From the Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden (J.B., M.A.); Lipid Disorders Clinic, Metabolic Research Centre, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology (G.F.W., D.C.C., P.H.R.B.) and Faculty of Engineering, Computing and Mathematics (P.H.R.B.), University of Western Australia, Perth, Australia; Heart and Lung Centre, Helsinki University Central Hospital and Research Programs' Unit, Diabetes and Obesity (S.S., N.M., M.-R.T.) and Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital (A.H., N.L.), University of Helsinki, Helsinki, Finland; Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland (N.M., J.K.); and Department of Endocrinology-Diabetology, University Hospital and INSERM CRI 866, Dijon, France (B.V.)
| |
Collapse
|
15
|
Abstract
Hypertriglyceridemia (HTG) is a highly prevalent condition that is associated with increased cardiovascular disease risk. HTG may arise as a result of defective metabolism of triglyceride-rich lipoproteins and their remnants, ie, impaired clearance, or increased production, or both. Current categorization of HTG segregates primary and secondary cases, implying genetic and nongenetic causes for each category. Many common and rare variants of the genes encoding factors involved in these pathways have been identified. Although monogenic forms of HTG do occur, most cases are polygenic and often coexist with nongenetic conditions. Cumulative, multiple genetic variants can increase the risks for HTG, whereas environmental and lifestyle factors can force expression of a dyslipidemic phenotype in a genetically susceptible person. HTG states are therefore best viewed as a complex phenotype resulting from the interaction of cumulated multiple susceptibility genes and environmental stressors. In view of the heterogeneity of the HTG states, the absence of a unifying metabolic or genetic abnormality, overlap with the metabolic syndrome and other features of insulin resistance, and evidence in some patients that accumulation of numerous small-effect genetic variants determines whether an individual is susceptible to HTG only or to HTG plus elevated low-density lipoprotein cholesterol, we propose that the diagnosis of primary HTG and further delineation of familial combined hyperlipidemia from familial HTG is neither feasible nor clinically relevant at the present time. The hope is that with greater understanding of genetic and environmental causes and their interaction, therapy can be intelligently targeted in the future.
Collapse
Affiliation(s)
- Gary F Lewis
- Departments of Medicine and Physiology and the Banting and Best Diabetes Centre (G.F.L., C.X.), University of Toronto, Toronto, Ontario, Canada M5G 2C4; and Robarts Research Institute (R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5B7
| | | | | |
Collapse
|
16
|
Sacks FM. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr Opin Lipidol 2015; 26:56-63. [PMID: 25551803 PMCID: PMC4371603 DOI: 10.1097/mol.0000000000000146] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To describe the roles of apolipoprotein C-III (apoC-III) and apoE in VLDL and LDL metabolism RECENT FINDINGS ApoC-III can block clearance from the circulation of apolipoprotein B (apoB) lipoproteins, whereas apoE mediates their clearance. Normolipidemia is sustained by hepatic secretion of VLDL and IDL subspecies that contain both apoE and apoC-III (VLDL E+C-III+). Most of this VLDL E+C-III+ is speedily lipolyzed, reduced in apoC-III content, and cleared from the circulation as apoE containing dense VLDL, IDL, and light LDL. In contrast, in hypertriglyceridemia, most VLDL is secreted with apoC-III but without apoE, and so it is not cleared until it loses apoC-III during lipolysis to dense LDL. In normolipidemia, the liver also secretes IDL and large and medium-size LDL, whereas in hypertriglyceridemia, the liver secretes more dense LDL with and without apoC-III. These pathways establish the hypertriglyceridemic phenotype and link it metabolically to dense LDL. Dietary carbohydrate compared with unsaturated fat suppresses metabolic pathways mediated by apoE that are qualitatively similar to those suppressed in hypertriglyceridemia. SUMMARY The opposing actions of apoC-III and apoE on subspecies of VLDL and LDL, and the direct secretion of LDL in several sizes, establish much of the basic structure of human apoB lipoprotein metabolism in normal and hypertriglyceridemic humans.
Collapse
Affiliation(s)
- Frank M Sacks
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Ng TWK, Ooi EMM, Watts GF, Chan DC, Barrett PHR. Atorvastatin plus omega-3 fatty acid ethyl ester decreases very-low-density lipoprotein triglyceride production in insulin resistant obese men. Diabetes Obes Metab 2014; 16:519-26. [PMID: 24299019 DOI: 10.1111/dom.12243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/24/2013] [Accepted: 11/15/2013] [Indexed: 02/01/2023]
Abstract
AIM To test the effect of atorvastatin (ATV) and ATV plus ω-3 FAEEs on VLDL-TG metabolism in obese, insulin resistant men. METHODS We carried out a 6-week randomized, placebo-controlled study to examine the effect of ATV (40 mg/day) and ATV plus ω-3 FAEEs (4 g/day) on VLDL-TG metabolism in 36 insulin resistant obese men. VLDL-TG kinetics were determined using d5 -glycerol, gas chromatography-mass spectrometry and compartmental modelling. RESULTS Compared with the placebo, ATV significantly decreased VLDL-TG concentration (-40%, p < 0.001) by increasing VLDL-TG fractional catabolic rate (FCR) (+47%, p < 0.01). ATV plus ω-3 FAEEs lowered VLDL-TG concentration to a greater degree compared with placebo (-46%, p < 0.001) or ATV monotherapy (-13%, p = 0.04). This was achieved by a reduction in VLDL-TG production rate (PR) compared with placebo (-32%, p = 0.008) or ATV (-20%, p = 0.03) as well as a reciprocal increase in VLDL-TG FCR (+42%, p < 0.05) compared with placebo. CONCLUSION In insulin resistant, dyslipidaemic, obese men, ATV improves VLDL-TG metabolism by increasing VLDL-TG FCR. The addition of 4 g/day ω-3 FAEE to statin therapy provides further TG-lowering by lowering VLDL-TG PR.
Collapse
Affiliation(s)
- T W K Ng
- Metabolic Research Centre, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Australia
| | | | | | | | | |
Collapse
|
18
|
Chan DC, Barrett PHR, Watts GF. The metabolic and pharmacologic bases for treating atherogenic dyslipidaemia. Best Pract Res Clin Endocrinol Metab 2014; 28:369-85. [PMID: 24840265 DOI: 10.1016/j.beem.2013.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Dyslipoproteinaemia is a cardinal feature of the metabolic syndrome that accelerates atherosclerosis. It is characterized by high plasma concentrations of triglyceride-rich and apolipoprotein (apo) B-containing lipoproteins, with depressed high-density lipoprotein (HDL) and increased small dense low-density lipoprotein (LDL) particle concentrations. Dysregulation of lipoprotein metabolism in the metabolic syndrome may be due to a combination of overproduction of very-low density lipoprotein (VLDL) apoB, decreased catabolism of apoB-containing particles, and increased catabolism of HDL apoA-I particles. These abnormalities are due to a global metabolic effect of insulin resistance and visceral obesity. Lifestyle modifications (dietary restriction and increased exercise) and pharmacological treatments favourably alter lipoprotein transport by decreasing the hepatic secretion of VLDL-apoB and the catabolism of HDL apoA-I, as well as by increasing the clearance of LDL-apoB. The safety and tolerability of combination drug therapy based on statins is important and merits further investigation. There are several pipeline therapies for correcting triglyceride-rich lipoprotein and HDL metabolism. However, their clinical efficacy, safety and cost-effectiveness remain to be demonstrated.
Collapse
Affiliation(s)
- Dick C Chan
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - P Hugh R Barrett
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; Faculty of Engineering, Computing and Mathematics, University of Western Australia, Perth, Australia
| | - Gerald F Watts
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
19
|
Sips FLP, Tiemann CA, Oosterveer MH, Groen AK, Hilbers PAJ, van Riel NAW. A computational model for the analysis of lipoprotein distributions in the mouse: translating FPLC profiles to lipoprotein metabolism. PLoS Comput Biol 2014; 10:e1003579. [PMID: 24784354 PMCID: PMC4006703 DOI: 10.1371/journal.pcbi.1003579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 03/11/2014] [Indexed: 12/27/2022] Open
Abstract
Disturbances of lipoprotein metabolism are recognized as indicators of cardiometabolic disease risk. Lipoprotein size and composition, measured in a lipoprotein profile, are considered to be disease risk markers. However, the measured profile is a collective result of complex metabolic interactions, which complicates the identification of changes in metabolism. In this study we aim to develop a method which quantitatively relates murine lipoprotein size, composition and concentration to the molecular mechanisms underlying lipoprotein metabolism. We introduce a computational framework which incorporates a novel kinetic model of murine lipoprotein metabolism. The model is applied to compute a distribution of plasma lipoproteins, which is then related to experimental lipoprotein profiles through the generation of an in silico lipoprotein profile. The model was first applied to profiles obtained from wild-type C57Bl/6J mice. The results provided insight into the interplay of lipoprotein production, remodelling and catabolism. Moreover, the concentration and metabolism of unmeasured lipoprotein components could be determined. The model was validated through the prediction of lipoprotein profiles of several transgenic mouse models commonly used in cardiovascular research. Finally, the framework was employed for longitudinal analysis of the profiles of C57Bl/6J mice following a pharmaceutical intervention with a liver X receptor (LXR) agonist. The multifaceted regulatory response to the administration of the compound is incompletely understood. The results explain the characteristic changes of the observed lipoprotein profile in terms of the underlying metabolic perturbation and resultant modifications of lipid fluxes in the body. The Murine Lipoprotein Profiler (MuLiP) presented here is thus a valuable tool to assess the metabolic origin of altered murine lipoprotein profiles and can be applied in preclinical research performed in mice for analysis of lipid fluxes and lipoprotein composition.
Collapse
Affiliation(s)
- Fianne L P Sips
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Christian A Tiemann
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Maaike H Oosterveer
- Department of Pediatrics, University Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatrics, University Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter A J Hilbers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Natal A W van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Ouatou S, Ajjemami M, Charoute H, Sefri H, Ghalim N, Rhaissi H, Benrahma H, Barakat A, Rouba H. Association of APOA5 rs662799 and rs3135506 polymorphisms with arterial hypertension in Moroccan patients. Lipids Health Dis 2014; 13:60. [PMID: 24684850 PMCID: PMC3972990 DOI: 10.1186/1476-511x-13-60] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/26/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The goal of the study is to investigate the association between the APOA5 polymorphisms and haplotypes with Arterial Hypertension (AHT) in Moroccan patients. METHODS The study was performed in 283 subjects, 149 patients with AHT and 134 controls. All subjects were genotyped for the APOA5 -1131 T > C (rs662799), 56C > G (rs3135506) and c.553G > T (rs2075291) polymorphisms. RESULTS There was a strong association between -1131 T > C and 56C > G polymorphisms with AHT. The -1131 T > C and 56C > G polymorphisms were significantly associated with increased systolic blood pressure (SBP) and triglycerides (TG) levels. There were 4 haplotypes with a frequency higher than 5%, constructed from APOA5 polymorphisms, with the following order: -1131 T > C, 56C > G and c.553G > T. Haplotype H1 (TCG) was associated with decreased risk of AHT, whereas the haplotypes H2 (CCG) and H4 (CGG) were significantly associated with an increased risk of AHT. Carriers of H1 haplotype had a lower SBP and DBP and TG. In contrast, significant elevated SBP, DBP and TG were found in H4 haplotypes carriers. CONCLUSIONS Our data demonstrate for the first time that several common SNPs in the APOA5 gene and their haplotypes are closely associated with modifications of blood pressure and serum lipid parameters in the AHT patient.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Abdelhamid Barakat
- Laboratoire de Génétique Moléculaire et Humaine, Département de Recherche Scientifique, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360 Casablanca, Morocco.
| | | |
Collapse
|
21
|
van den Berg SAA, Heemskerk MM, Geerling JJ, van Klinken JB, Schaap FG, Bijland S, Berbée JFP, van Harmelen VJA, Pronk ACM, Schreurs M, Havekes LM, Rensen PCN, van Dijk KW. Apolipoprotein A5 deficiency aggravates high-fat diet-induced obesity due to impaired central regulation of food intake. FASEB J 2013; 27:3354-62. [PMID: 23650188 DOI: 10.1096/fj.12-225367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutations in apolipoprotein A5 (APOA5) have been associated with hypertriglyceridemia in humans and mice. This has been attributed to a stimulating role for APOA5 in lipoprotein lipase-mediated triglyceride hydrolysis and hepatic clearance of lipoprotein remnant particles. However, because of the low APOA5 plasma abundance, we investigated an additional signaling role for APOA5 in high-fat diet (HFD)-induced obesity. Wild-type (WT) and Apoa5(-/-) mice fed a chow diet showed no difference in body weight or 24-h food intake (Apoa5(-/-), 4.5±0.6 g; WT, 4.2±0.5 g), while Apoa5(-/-) mice fed an HFD ate more in 24 h (Apoa5(-/-), 2.8±0.4 g; WT, 2.5±0.3 g, P<0.05) and became more obese than WT mice. Also, intravenous injection of APOA5-loaded VLDL-like particles lowered food intake (VLDL control, 0.26±0.04 g; VLDL+APOA5, 0.11±0.07 g, P<0.01). In addition, the HFD-induced hyperphagia of Apoa5(-/-) mice was prevented by adenovirus-mediated hepatic overexpression of APOA5. Finally, intracerebroventricular injection of APOA5 reduced food intake compared to injection of the same mouse with artificial cerebral spinal fluid (0.40±0.11 g; APOA5, 0.23±0.08 g, P<0.01). These data indicate that the increased HFD-induced obesity of Apoa5(-/-) mice as compared to WT mice is at least partly explained by hyperphagia and that APOA5 plays a role in the central regulation of food intake.
Collapse
|
22
|
Omega-3 fatty acid ethyl ester supplementation decreases very-low-density lipoprotein triacylglycerol secretion in obese men. Clin Sci (Lond) 2013; 125:45-51. [DOI: 10.1042/cs20120587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dysregulated VLDL-TAG (very-low-density lipoprotein triacylglycerol) metabolism in obesity may account for hypertriacylglycerolaemia and increased cardiovascular disease. ω-3 FAEEs (omega-3 fatty acid ethyl esters) decrease plasma TAG and VLDL concentrations, but the mechanisms are not fully understood. In the present study, we carried out a 6-week randomized, placebo-controlled study to examine the effect of high-dose ω-3 FAEE supplementation (3.2 g/day) on the metabolism of VLDL-TAG in obese men using intravenous administration of d5-glycerol. We also explored the relationship of VLDL-TAG kinetics with the metabolism of VLDL-apo (apolipoprotein) B-100 and HDL (high-density lipoprotein)-apoA-I. VLDL-TAG isotopic enrichment was measured using gas chromatography-mass spectrometry. Kinetic parameters were derived using a multicompartmental model. Compared with placebo, ω-3 FAEE supplementation significantly lowered plasma concentrations of total (−14%, P<0.05) and VLDL-TAG (−32%, P<0.05), as well as hepatic secretion of VLDL-TAG (−32%, P<0.03). The FCR (fractional catabolic rate) of VLDL-TAG was not altered by ω-3 FAEEs. There was a significant association between the change in secretion rates of VLDL-TAG and VLDL-apoB-100 (r=0.706, P<0.05). However, the change in VLDL-TAG secretion rate was not associated with change in HDL-apoA-I FCR (r=0.139, P>0.05). Our results suggest that the TAG-lowering effect of ω-3 FAEEs is associated with the decreased VLDL-TAG secretion rate and hence lower plasma VLDL-TAG concentration in obesity. The changes in VLDL-TAG and apoB-100 kinetics are closely coupled.
Collapse
|
23
|
Associations of apolipoprotein A5 with triglyceride, adiponectin and insulin resistance in patients with impaired glucose regulation and type 2 diabetes mellitus. Int J Diabetes Dev Ctries 2012. [DOI: 10.1007/s13410-012-0102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
24
|
Berglund L, Brunzell JD, Goldberg AC, Goldberg IJ, Sacks F, Murad MH, Stalenhoef AFH. Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2012; 97:2969-89. [PMID: 22962670 PMCID: PMC3431581 DOI: 10.1210/jc.2011-3213] [Citation(s) in RCA: 579] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The aim was to develop clinical practice guidelines on hypertriglyceridemia. PARTICIPANTS The Task Force included a chair selected by The Endocrine Society Clinical Guidelines Subcommittee (CGS), five additional experts in the field, and a methodologist. The authors received no corporate funding or remuneration. CONSENSUS PROCESS Consensus was guided by systematic reviews of evidence, e-mail discussion, conference calls, and one in-person meeting. The guidelines were reviewed and approved sequentially by The Endocrine Society's CGS and Clinical Affairs Core Committee, members responding to a web posting, and The Endocrine Society Council. At each stage, the Task Force incorporated changes in response to written comments. CONCLUSIONS The Task Force recommends that the diagnosis of hypertriglyceridemia be based on fasting levels, that mild and moderate hypertriglyceridemia (triglycerides of 150-999 mg/dl) be diagnosed to aid in the evaluation of cardiovascular risk, and that severe and very severe hypertriglyceridemia (triglycerides of > 1000 mg/dl) be considered a risk for pancreatitis. The Task Force also recommends that patients with hypertriglyceridemia be evaluated for secondary causes of hyperlipidemia and that subjects with primary hypertriglyceridemia be evaluated for family history of dyslipidemia and cardiovascular disease. The Task Force recommends that the treatment goal in patients with moderate hypertriglyceridemia be a non-high-density lipoprotein cholesterol level in agreement with National Cholesterol Education Program Adult Treatment Panel guidelines. The initial treatment should be lifestyle therapy; a combination of diet modification and drug therapy may also be considered. In patients with severe or very severe hypertriglyceridemia, a fibrate should be used as a first-line agent.
Collapse
Affiliation(s)
- Lars Berglund
- University of California, Davis, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis 2011; 219:15-21. [DOI: 10.1016/j.atherosclerosis.2011.07.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/03/2011] [Accepted: 07/04/2011] [Indexed: 11/21/2022]
|
26
|
Lamon-Fava S, Herrington DM, Horvath KV, Schaefer EJ, Asztalos BF. Effect of hormone replacement therapy on plasma lipoprotein levels and coronary atherosclerosis progression in postmenopausal women according to type 2 diabetes mellitus status. Metabolism 2010; 59:1794-800. [PMID: 20580029 PMCID: PMC2947588 DOI: 10.1016/j.metabol.2010.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 11/26/2022]
Abstract
Type 2 diabetes mellitus is associated with dyslipidemia and with an increased risk of coronary heart disease (CHD). Our objective was to compare the effects of hormone replacement therapy (HRT) on plasma lipoproteins and coronary disease progression in postmenopausal women with and without diabetes. Study subjects were participants in the Estrogen Replacement and Atherosclerosis trial, a placebo-controlled, randomized trial of HRT (conjugated equine estrogen 0.625 mg/d with or without medroxyprogesterone acetate 2.5 mg/d) in postmenopausal women with established CHD (mean age, 65 ± 7 years). Plasma remnant lipoprotein levels and high-density lipoprotein (HDL) subpopulation levels were measured at baseline and year 1. Quantitative coronary angiography was assessed at baseline and at follow-up. At baseline, remnant lipoprotein levels were significantly higher and HDL cholesterol (HDL-C) levels were significantly lower in diabetic women than in women without diabetes. Hormone replacement therapy lowered remnant lipoproteins and increased HDL-C and large HDL particle levels in both groups. However, during HRT, levels of these parameters were still significantly worse in diabetic women than in nondiabetic women. A significant interaction between HRT and diabetes status, with greater increases in plasma atheroprotective HDL α1 particles in nondiabetic women than in diabetic women during HRT, was observed. Coronary heart disease progressed significantly more in women with diabetes than in women without diabetes. Our findings indicate that diabetes attenuates the HRT-related increase in atheroprotective HDL α1 particles. Faster progression of coronary atherosclerosis in women with diabetes could be mediated in part by a worse lipoprotein profile in these women than in women without diabetes, both before and during HRT.
Collapse
Affiliation(s)
- Stefania Lamon-Fava
- Lipid Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|
27
|
Presence of Apolipoprotein C-III Attenuates Apolipoprotein E-Mediated Cellular Uptake of Cholesterol-Containing Lipid Particles by HepG2 Cells. Lipids 2010; 46:323-32. [DOI: 10.1007/s11745-010-3498-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/26/2010] [Indexed: 11/28/2022]
|
28
|
Abe Y, Kawakami A, Osaka M, Uematsu S, Akira S, Shimokado K, Sacks FM, Yoshida M. Apolipoprotein CIII induces monocyte chemoattractant protein-1 and interleukin 6 expression via Toll-like receptor 2 pathway in mouse adipocytes. Arterioscler Thromb Vasc Biol 2010; 30:2242-8. [PMID: 20829510 DOI: 10.1161/atvbaha.110.210427] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To examine the direct effect of apolipoprotein CIII (apoCIII) on adipokine expressions that are involved in obesity, insulin resistance, or metabolic syndrome. METHODS AND RESULTS ApoCIII in triglyceride-rich lipoproteins is elevated in patients with obesity, insulin resistance, or metabolic syndrome. Its level is also associated with proinflammatory adipokines. Fully differentiated mouse 3T3L1 adipocytes were incubated with apoCIII. ApoCIII activated nuclear factor κB of 3T3L1 adipocytes and induced the expression of monocyte chemoattractant protein (MCP) 1 and interleukin (IL) 6. ApoCIII also activated extracellular signal-regulated kinase and p38. Mitogen-activated protein kinase kinase (MEK)-1 inhibitor PD98059, but not p38 inhibitor SB203580, inhibited apoCIII-induced upregulation of MCP-1 and IL-6. Previously, it was shown that apoCIII activates proinflammatory signals through toll-like receptor (TLR) 2. TLR2-blocking antibody abolished activation of nuclear factor κB and extracellular signal-regulated kinase induced by apoCIII and inhibited apoCIII-induced upregulation of MCP-1 and IL-6. ApoCIII also reduced adiponectin expression of 3T3L1 adipocytes, which was recovered by TLR2-blocking antibody. ApoCIII induced the expression of MCP-1 and IL-6 in TLR2-overexpressed human embryonic kidney 293 cells but not wild-type human embryonic kidney 293 cells without TLR2. ApoCIII induced the expression of MCP-1 and IL-6 and decreased adiponectin expression in white adipose tissue of wild-type mice but not of TLR2-deficient mice in vivo. CONCLUSIONS ApoCIII may activate extracellular signal-regulated kinase and nuclear factor kB through TLR2 and induce proinflammatory adipokine expression in vitro and in vivo. Thus, apoCIII links dyslipidemia to inflammation in adipocytes, which, in turn, may contribute to atherosclerosis.
Collapse
Affiliation(s)
- Yasuko Abe
- Department of Geriatrics and Vascular Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138519, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Shin MJ, Krauss RM. Apolipoprotein CIII bound to apoB-containing lipoproteins is associated with small, dense LDL independent of plasma triglyceride levels in healthy men. Atherosclerosis 2010; 211:337-41. [DOI: 10.1016/j.atherosclerosis.2010.02.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
|
30
|
Zheng C, Khoo C, Furtado J, Sacks FM. Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation 2010; 121:1722-34. [PMID: 20368524 DOI: 10.1161/circulationaha.109.875807] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Here, we aim to identify defects of apolipoprotein (apo) B lipoprotein metabolism that characterize hypertriglyceridemia, focusing on apoC-III and apoE. METHODS AND RESULTS We studied the transport of plasma apoB within 21 distinct subfractions as separated by anti-apoC-III and anti-apoE immunoaffinity chromatography and ultracentrifugation in 9 patients with moderate hypertriglyceridemia and 12 normotriglyceridemic control subjects. Hypertriglyceridemia was characterized by a 3-fold higher liver secretion of very low-density lipoprotein (VLDL) that had apoC-III but not apoE and a 50% lower secretion of VLDL with both apoC-III and apoE (both P<0.05). This shift in VLDL secretion pattern from apoE to apoC-III resulted in significantly reduced clearance of light VLDL (-39%; P<0.05), compatible with the antagonizing effects of apoC-III on apoE-induced clearance of triglyceride-rich lipoproteins. In addition, rate constants for clearance were reduced for apoE-containing triglyceride-rich lipoproteins in hypertriglyceridemia, associated with increased apoC-III contents of these particles. LDL distribution shifted from light and medium LDL to dense LDL in hypertriglyceridemia through a quartet of kinetic perturbations: increased flux from apoC-III-containing triglyceride-rich lipoproteins, a shift in liver LDL secretion pattern from light to dense LDL, an increased conversion rate from light and medium LDL to dense LDL, and retarded catabolism of dense LDL. CONCLUSIONS These results support a central role for apoC-III in metabolic defects leading to hypertriglyceridemia. Triglyceride-rich lipoprotein metabolism shifts from an apoE-dominated system in normotriglyceridemic participants characterized by rapid clearance from circulation of VLDL to an apoC-III-dominated system in hypertriglyceridemic patients characterized by reduced clearance of triglyceride-rich lipoproteins and the formation of the dense LDL phenotype.
Collapse
Affiliation(s)
- Chunyu Zheng
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
31
|
Sundaram M, Zhong S, Bou Khalil M, Links PH, Zhao Y, Iqbal J, Hussain MM, Parks RJ, Wang Y, Yao Z. Expression of apolipoprotein C-III in McA-RH7777 cells enhances VLDL assembly and secretion under lipid-rich conditions. J Lipid Res 2010. [PMID: 19622837 DOI: 10.1194/jlr.m900346-jlr200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein (apo) C-III plays a regulatory role in VLDL lipolysis and clearance. In this study, we determined a potential intracellular role of apoC-III in hepatic VLDL assembly and secretion. Stable expression of recombinant apoC-III in McA-RH7777 cells resulted in increased secretion efficiency of VLDL-associated triacylglycerol (TAG) and apoB-100 in a gene-dosage-dependent manner. The stimulatory effect of apoC-III on TAG secretion was manifested only when cells were cultured under lipid-rich (i.e., media supplemented with exogenous oleate) but not lipid-poor conditions. The stimulated TAG secretion was accompanied by increased secretion of apoB-100 and apoB-48 as VLDL(1). Expression of apoC-III also increased mRNA and activity of microsomal triglyceride transfer protein (MTP). Pulse-chase experiments showed that apoC-III expression promoted VLDL(1) secretion even under conditions where the MTP activity was inhibited immediately after the formation of lipid-poor apoB-100 particles, suggesting an involvement of apoC-III in the second-step VLDL assembly process. Consistent with this notion, the newly synthesized apoC-III was predominantly associated with TAG within the microsomal lumen that resembled lipid precursors of VLDL. Introducing an Ala23-to-Thr mutation into apoC-III, a naturally occurring mutation originally identified in two Mayan Indian subjects with hypotriglyceridemia, abolished the ability of apoC-III to stimulate VLDL secretion from transfected cells. Thus, expression of apoC-III in McA-RH7777 cells enhances hepatic TAG-rich VLDL assembly and secretion under lipid-rich conditions.
Collapse
Affiliation(s)
- Meenakshi Sundaram
- Department of Biochemistry, Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Ottawa Institute of Systems Biology, University of Ottawa Canada K1H 8M5
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sundaram M, Zhong S, Bou Khalil M, Links PH, Zhao Y, Iqbal J, Hussain MM, Parks RJ, Wang Y, Yao Z. Expression of apolipoprotein C-III in McA-RH7777 cells enhances VLDL assembly and secretion under lipid-rich conditions. J Lipid Res 2010; 51:150-61. [PMID: 19622837 DOI: 10.1194/m900346-jlr200] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Apolipoprotein (apo) C-III plays a regulatory role in VLDL lipolysis and clearance. In this study, we determined a potential intracellular role of apoC-III in hepatic VLDL assembly and secretion. Stable expression of recombinant apoC-III in McA-RH7777 cells resulted in increased secretion efficiency of VLDL-associated triacylglycerol (TAG) and apoB-100 in a gene-dosage-dependent manner. The stimulatory effect of apoC-III on TAG secretion was manifested only when cells were cultured under lipid-rich (i.e., media supplemented with exogenous oleate) but not lipid-poor conditions. The stimulated TAG secretion was accompanied by increased secretion of apoB-100 and apoB-48 as VLDL(1). Expression of apoC-III also increased mRNA and activity of microsomal triglyceride transfer protein (MTP). Pulse-chase experiments showed that apoC-III expression promoted VLDL(1) secretion even under conditions where the MTP activity was inhibited immediately after the formation of lipid-poor apoB-100 particles, suggesting an involvement of apoC-III in the second-step VLDL assembly process. Consistent with this notion, the newly synthesized apoC-III was predominantly associated with TAG within the microsomal lumen that resembled lipid precursors of VLDL. Introducing an Ala23-to-Thr mutation into apoC-III, a naturally occurring mutation originally identified in two Mayan Indian subjects with hypotriglyceridemia, abolished the ability of apoC-III to stimulate VLDL secretion from transfected cells. Thus, expression of apoC-III in McA-RH7777 cells enhances hepatic TAG-rich VLDL assembly and secretion under lipid-rich conditions.
Collapse
Affiliation(s)
- Meenakshi Sundaram
- Department of Biochemistry, Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Ottawa Institute of Systems Biology, University of Ottawa Canada K1H 8M5
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chan DC, Watts GF, Gan S, Wong ATY, Ooi EMM, Barrett PHR. Nonalcoholic fatty liver disease as the transducer of hepatic oversecretion of very-low-density lipoprotein-apolipoprotein B-100 in obesity. Arterioscler Thromb Vasc Biol 2010; 30:1043-50. [PMID: 20150556 DOI: 10.1161/atvbaha.109.202275] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To examine the association between liver fat content and very low-density lipoprotein (VLDL)-apolipoprotein (apo) B-100 kinetics and the corresponding responses to weight loss in obese subjects. METHODS AND RESULTS VLDL-apoB-100 kinetics were assessed using stable isotope tracers, and the fat content of the liver and abdomen was determined by magnetic resonance techniques in 25 obese subjects. In univariate analysis, liver fat content was significantly (P<0.05 in all) associated with body mass index (r=0.65), visceral fat area (r=0.45), triglycerides (r=0.40), homeostasis model assessment score (r=0.40), VLDL-apoB-100 concentrations (r=0.44), and secretion rate (r=0.45). However, liver fat content was not associated with plasma concentrations of retinol-binding protein 4, fetuin A, adiponectin, interleukin-6, and tumor necrosis factor-alpha. Of these 25 subjects, 9 diagnosed as having nonalcoholic fatty liver disease (which is highly prevalent in obese individuals and strongly associated with dyslipidemia) underwent a weight loss program. The low-fat diet achieved significant reduction in body weight, body mass index, liver fat, visceral and subcutaneous fat areas, homeostasis model assessment score, triglycerides, VLDL-apoB-100 concentrations, and VLDL-apoB-100 secretion rate. The percentage reduction of liver fat with weight loss was significantly associated with the corresponding decreases in VLDL-apoB-100 secretion (r=0.67) and visceral fat (r=0.84). CONCLUSION In patients with obesity, hepatic steatosis increases VLDL-apoB-100 secretion. Weight loss can help reduce this abnormality.
Collapse
Affiliation(s)
- Dick C Chan
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | | | | | | | | | | |
Collapse
|
34
|
van Schalkwijk DB, de Graaf AA, van Ommen B, van Bochove K, Rensen PCN, Havekes LM, van de Pas NCA, Hoefsloot HCJ, van der Greef J, Freidig AP. Improved cholesterol phenotype analysis by a model relating lipoprotein life cycle processes to particle size. J Lipid Res 2009; 50:2398-411. [PMID: 19515990 DOI: 10.1194/jlr.m800354-jlr200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Increased plasma cholesterol is a known risk factor for cardiovascular disease. Lipoprotein particles transport both cholesterol and triglycerides through the blood. It is thought that the size distribution of these particles codetermines cardiovascular disease risk. New types of measurements can determine the concentration of many lipoprotein size-classes but exactly how each small class relates to disease risk is difficult to clear up. Because relating physiological process status to disease risk seems promising, we propose investigating how lipoprotein production, lipolysis, and uptake processes depend on particle size. To do this, we introduced a novel model framework (Particle Profiler) and evaluated its feasibility. The framework was tested using existing stable isotope flux data. The model framework implementation we present here reproduced the flux data and derived lipoprotein size pattern changes that corresponded to measured changes. It also sensitively indicated changes in lipoprotein metabolism between patient groups that are biologically plausible. Finally, the model was able to reproduce the cholesterol and triglyceride phenotype of known genetic diseases like familial hypercholesterolemia and familial hyperchylomicronemia. In the future, Particle Profiler can be applied for analyzing detailed lipoprotein size profile data and deriving rates of various lipolysis and uptake processes if an independent production estimate is given.
Collapse
|
35
|
Hopkins PN, Nanjee MN, Wu LL, McGinty MG, Brinton EA, Hunt SC, Anderson JL. Altered composition of triglyceride-rich lipoproteins and coronary artery disease in a large case-control study. Atherosclerosis 2009; 207:559-66. [PMID: 19524242 DOI: 10.1016/j.atherosclerosis.2009.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 05/11/2009] [Accepted: 05/16/2009] [Indexed: 12/31/2022]
Abstract
BACKGROUND Traditional beta-quantification of plasma lipoproteins by ultracentrifugation separates triglyceride-rich lipoproteins (TGRL) from higher density lipoproteins. The cholesterol in the TGRL fraction is referred to as measured very low-density lipoprotein cholesterol (VLDL-C) recognizing that other TGRL may be present. The measured VLDL-C to total plasma triglyceride (VLDL-C/TG) has long been considered an index of average TGRL composition with abnormally high VLDL-C/TG ratios (>or=0.30 with TG>150mg/dL) indicative of atherogenic remnant accumulation (type III hyperlipidemia). However, virtually no reports are available which examine potential associations between CAD and VLDL-C/TG at the lower end of the spectrum. METHODS AND RESULTS We performed ultracentrifugation in 1170 cases with premature-onset, familial CAD and 1759 population-based controls and examined the VLDL-C/TG ratio as an index of TGRL composition. As expected, we found very high CAD risk associated with severe type III hyperlipidemia (OR 10.5, p=0.02). Unexpectedly, however, we found a robust, graded, and independent association between CAD risk and lower than average VLDL-C/TG ratios (p<0.0001 as ordered categories or as a continuous variable). Among those in the lowest VLDL-C/TG category (a ratio <0.12), CAD risk was clearly increased (OR 4.5, 95% CI 2.9-6.9) and remained significantly elevated in various subgroups including those with triglycerides below 200mg/dl, in males and females separately, as well as among those with no traditional CAD risk factors (OR 5.8, 95% CI 1.5-22). Significant compositional differences by case status were confirmed in a subset whose samples were re-spun with measurement of lipids and apolipoprotein B (apo B) in each subfraction. CONCLUSIONS We found a strong, graded, independent, and robust association between CAD and lower VLDL-C/TG ratios. We consider this a novel, hypothesis-generating observation which will hopefully generate additional future studies to provide confirmation and further insight into potential mechanisms.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics Research, Department of Internal Medicine, Cardiology Division, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Harvey SB, Zhang Y, Wilson-Grady J, Monkkonen T, Nelsestuen GL, Kasthuri RS, Verneris MR, Lund TC, Ely EW, Bernard GR, Zeisler H, Homoncik M, Jilma B, Swan T, Kellogg TA. O-glycoside biomarker of apolipoprotein C3: responsiveness to obesity, bariatric surgery, and therapy with metformin, to chronic or severe liver disease and to mortality in severe sepsis and graft vs host disease. J Proteome Res 2009; 8:603-12. [PMID: 19055479 DOI: 10.1021/pr800751x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The glyco-isoforms of intact apolipoprotein C3 (ApoC3) were used to probe glycomic changes associated with obesity and recovery following bariatric surgery, liver diseases such as chronic hepatitis C (CHC) and alcoholic liver cirrhosis, as well as severe, multiorgan diseases such as sepsis and graft vs host disease (GVHD). ApoC3 glyco-isoform ratios responded to unique stimuli that did not correlate with serum lipids or with other blood components measured in either a control population or a group of extremely obese individuals. However, glyco-isoform ratios correlated with obesity with a 1.8-fold change among subjects eligible for bariatric surgery relative to a nonobese control population. Bariatric surgery resulted in rapid change of isoform distribution to that of nonobese individuals, after which the distribution was stable in each individual. Although multiple simultaneous factors complicated effector attribution, the isoform ratios of very obese individuals were nearly normal for diabetic individuals on metformin therapy. Glyco-isoform ratios were sensitive to liver diseases such as chronic hepatitis C and alcoholic liver cirrhosis. The correlation coefficient with fibrosis was superior to that of current assays of serum enzyme levels. Diseases of pregnancy that can result in liver damage, HELLP syndrome and pre-eclampsia, did not alter ApoC3 glyco-isoform ratios. Early after umbilical cord blood transplantation the isoform ratios changed and returned to normal in long-term survivors. Larger changes were observed in persons who died. GVHD had little effect. Persons with severe sepsis showed altered ratios. Similar cut-points for mortality (3.5-fold difference from controls) were found for UCBT and sepsis. Similar values characterized liver cirrhosis. Overall, while changes of glyco-isoform ratios occurred in many situations, individual stability of isoform distribution was evident and large changes were limited to high-level disease. If ratio changes associated with obesity are found to document a risk factor for long-term outcomes, the information provided by glyco-isoform ratio changes may provide important, novel information for diagnostic, prognostic and therapy response to metabolic conditions.
Collapse
Affiliation(s)
- Stephen B Harvey
- Department of Biochemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chan DC, Barrett PHR, Ooi EMM, Ji J, Chan DT, Watts GF. Very low density lipoprotein metabolism and plasma adiponectin as predictors of high-density lipoprotein apolipoprotein A-I kinetics in obese and nonobese men. J Clin Endocrinol Metab 2009; 94:989-97. [PMID: 19116237 DOI: 10.1210/jc.2008-1457] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Hypercatabolism of high-density lipoprotein (HDL) apolipoprotein (apo) A-I results in low plasma apoA-I concentration. The mechanisms regulating apoA-I catabolism may relate to alterations in very low density lipoprotein (VLDL) metabolism and plasma adiponectin and serum amyloid A protein (SAA) concentrations. OBJECTIVE We examined the associations between the fractional catabolic rate (FCR) of HDL-apoA-I and VLDL kinetics, plasma adiponectin, and SAA concentrations. STUDY DESIGN The kinetics of HDL-apoA-I and VLDL-apoB were measured in 50 obese and 37 nonobese men using stable isotopic techniques. RESULTS In the obese group, HDL-apoA-I FCR was positively correlated with insulin, homeostasis model of assessment for insulin resistance (HOMA-IR) score, triglycerides, VLDL-apoB, and VLDL-apoB production rate (PR). In the nonobese group, HDL-apoA-I FCR was positively correlated with triglycerides, apoC-III, VLDL-apoB, and VLDL-apoB PR and negatively correlated with plasma adiponectin. Plasma SAA was not associated with HDL-apoA-I FCR in either group. In multiple regression analyses, VLDL-apoB PR and HOMA-IR score, and VLDL-apoB PR and adiponectin were independently predictive of HDL-apoA-I FCR in the obese and nonobese groups, respectively. HDL-apoA-I FCR was positively and strongly associated with HDL-apoA-I PR in both groups. CONCLUSIONS Variation in VLDL-apoB production, and hence plasma triglyceride concentrations, exerts a major effect on the catabolism of HDL-apoA-I. Insulin resistance and adiponectin may also contribute to the variation in HDL-apoA-I catabolism in obese and nonobese subjects, respectively. We also hypothesize that apoA-I PR determines a steady-state, lowered plasma of apoA-I, which may reflect a compensatory response to a primary defect in the catabolism of HDL-apoA-I due to altered VLDL metabolism.
Collapse
Affiliation(s)
- Dick C Chan
- School of Medicine and Pharmacology, University of Western Australia, Royal Perth Hospital, Perth, Western Australia 6847, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Forte TM, Shu X, Ryan RO. The ins (cell) and outs (plasma) of apolipoprotein A-V. J Lipid Res 2008; 50 Suppl:S150-5. [PMID: 19050314 DOI: 10.1194/jlr.r800050-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Apolipoprotein A-V (apoA-V) has a close interrelationship with plasma triglyceride (TG). Since the discovery of the apoA-V gene in 2001, we have learned that single nucleotide polymorphisms in this gene correlate with altered plasma TG levels in humans, while genetically engineered mice manifest unique TG phenotypes. Studies of recombinant apoA-V protein have revealed that it is composed of two independently folded structural domains. The C-terminal domain possesses high lipid binding affinity, while the N-terminal domain adopts a helix bundle molecular architecture. A sequence element with high positive charge character, between residues 185 and 228, functions in binding of apoA-V to heparan sulfate proteoglycans as well as to members of the low-density lipoprotein receptor family and glycosylphosphatidylinositol high-density lipoprotein binding protein1. These interactions may be related to the capacity of this protein to regulate TG levels. ApoA-V is poorly secreted from transfected cultured hepatoma cell lines and is present in plasma at exceedingly low levels. Studies of apoA-V intracellular trafficking revealed an association with cytosolic lipid droplets. Thus, it is conceivable that apoA-V may also modulate TG metabolism within the cell. Much remains to be learned about this fascinating yet confounding member of the class of exchangeable apolipoproteins.
Collapse
Affiliation(s)
- Trudy M Forte
- Center for Prevention of Obesity, Diabetes, and Cardiovascular Disease, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | | | |
Collapse
|
39
|
Fruchart JC, Sacks F, Hermans MP, Assmann G, Brown WV, Ceska R, Chapman MJ, Dodson PM, Fioretto P, Ginsberg HN, Kadowaki T, Lablanche JM, Marx N, Plutzky J, Reiner Ž, Rosenson RS, Staels B, Stock JK, Sy R, Wanner C, Zambon A, Zimmet P. The Residual Risk Reduction Initiative: A Call to Action to Reduce Residual Vascular Risk in Patients with Dyslipidemia. Am J Cardiol 2008. [DOI: 10.1016/j.amjcard.2008.10.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Abstract
PURPOSE OF REVIEW We have examined the evidence from recent human studies examining the role of apolipoprotein A-V in triglyceride-rich lipoprotein metabolism and cardiovascular disease risk. Special emphasis was placed on the evidence emerging from the association between genetic variability at the apolipoprotein A5 locus, lipid phenotypes and disease outcomes. Moreover, we address recent reports evaluating apolipoprotein A5 gene-environment interactions in relation to cardiovascular disease and its common risk factors. RECENT FINDINGS Several genetic association studies have continued to strengthen the position of APOA5 as a major gene that is involved in triglyceride metabolism and modulated by dietary factors and pharmacological therapies. Moreover, genetic variants at this locus have been significantly associated with both coronary disease and stroke risks. SUMMARY Apolipoprotein A-V has an important role in lipid metabolism, specifically for triglyceride-rich lipoproteins. However, its mechanism of action is still poorly understood. Clinical significance at present comes largely from genetic studies showing a consistent association with plasma triglyceride concentrations. Moreover, the effects of common genetic variants on triglyceride concentrations and disease risk are further modulated by other factors such as diet, pharmacological interventions and BMI. Therefore, these genetic variants could be potentially used to predict cardiovascular disease risk and individualize therapeutic options to decrease cardiovascular disease risk.
Collapse
Affiliation(s)
- E Shyong Tai
- Department of Endocrinology, Singapore General Hospital, Department of Medicine and Center for Molecular Epidemiology, National University of Singapore, Singapore
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Association of APOA5 −1131T>C and S19W gene polymorphisms with both mild hypertriglyceridemia and hyperchylomicronemia in type 2 diabetic patients. Clin Chim Acta 2008; 394:99-103. [DOI: 10.1016/j.cca.2008.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/19/2008] [Accepted: 04/19/2008] [Indexed: 11/30/2022]
|
42
|
Adiels M, Olofsson SO, Taskinen MR, Borén J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol 2008; 28:1225-36. [PMID: 18565848 DOI: 10.1161/atvbaha.107.160192] [Citation(s) in RCA: 527] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin resistance is a key feature of the metabolic syndrome and often progresses to type 2 diabetes. Both insulin resistance and type 2 diabetes are characterized by dyslipidemia, which is an important and common risk factor for cardiovascular disease. Diabetic dyslipidemia is a cluster of potentially atherogenic lipid and lipoprotein abnormalities that are metabolically interrelated. Recent evidence suggests that a fundamental defect is an overproduction of large very low-density lipoprotein (VLDL) particles, which initiates a sequence of lipoprotein changes, resulting in higher levels of remnant particles, smaller LDL, and lower levels of high-density liporotein (HDL) cholesterol. These atherogenic lipid abnormalities precede the diagnosis of type 2 diabetes by several years, and it is thus important to elucidate the mechanisms involved in the overproduction of large VLDL particles. Here, we review the pathophysiology of VLDL biosynthesis and metabolism in the metabolic syndrome. We also review recent research investigating the relation between hepatic accumulation of lipids and insulin resistance, and sources of fatty acids for liver fat and VLDL biosynthesis. Finally, we briefly discuss current treatments for lipid management of dyslipidemia and potential future therapeutic targets.
Collapse
Affiliation(s)
- Martin Adiels
- Wallenberg Laboratory, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden.
| | | | | | | |
Collapse
|
43
|
Pavlic M, Valéro R, Duez H, Xiao C, Szeto L, Patterson BW, Lewis GF. Triglyceride-rich lipoprotein-associated apolipoprotein C-III production is stimulated by plasma free fatty acids in humans. Arterioscler Thromb Vasc Biol 2008; 28:1660-5. [PMID: 18556566 DOI: 10.1161/atvbaha.108.169383] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Insulin resistant states are associated with increased fatty acid flux to liver and intestine, which stimulates the production of triglyceride-rich lipoproteins (TRL). ApoC-III production and plasma and TRL concentrations are increased in insulin resistance and may contribute to the hypertriglyceridemia of these conditions. The mechanism underlying that increase is not known, but because apoC-III and VLDL production are closely linked we hypothesized that FFAs may stimulate TRL apoC-III production. METHODS AND RESULTS We used Intralipid/heparin (IH) to raise plasma FFA in 12 healthy men in the fed state, and stable isotopes to examine apoC-III metabolism. TRL apoC-III concentration was significantly higher in the IH study, and this increase was associated with higher production (PR) and fractional catabolic rate (FCR). The increase in production was greater than in FCR (90% versus 30%, respectively), accounting for the elevated concentration. Glycerol infusion had no effect on apoC-III concentration, PR, or FCR compared to saline, indicating that the effect was not attributable to glycerol released from intralipid. CONCLUSIONS These findings confirm that TRL apoC-III production is stimulated by an acute elevation of plasma FFAs, suggesting a novel regulatory pathway that may play a role in the overproduction of TRL apoC-III in insulin resistant states.
Collapse
|
44
|
Chan DC, Chen MM, Ooi EMM, Watts GF. An ABC of apolipoprotein C-III: a clinically useful new cardiovascular risk factor? Int J Clin Pract 2008; 62:799-809. [PMID: 18201179 DOI: 10.1111/j.1742-1241.2007.01678.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Hypertriglyceridaemia, commonly found in subjects with obesity and type 2 diabetes mellitus, is associated with increased risk of coronary heart disease (CHD). Apolipoprotein C-III (apoC-III) plays an important role in regulating the metabolism of triglyceride-rich lipoproteins (TRLs) and may provide a new approach to assessing hypertriglyceridaemia. AIMS We review the role of apoC-III in regulating TRL metabolism and address the potential importance of apoC-III in clinical practice. DISCUSSION Hypertriglyceridaemia is chiefly a consequence of alterations in the kinetics of TRLs, including overproduction and delayed clearance of very-low density lipoprotein (VLDL). ApoC-III is an inhibitor of lipoprotein lipase and of TRLs remnant uptake by hepatic lipoprotein receptors. Elevated apoC-III, usually resulting from hepatic overproduction of VLDL apoC-III, may cause accumulation of plasma TRLs leading to hypertriglyceridaemia. The results from recent observational studies demonstrate that apoC-III is a strong predictor of risk for CHD, but this chiefly relates to apoC-III in apoB-containing lipoproteins. Lifestyle and pharmacological intervention can correct hypertriglyceridaemia by a mechanism of action that regulates apoC-III transport. CONCLUSIONS Targeting apoC-III metabolism may therefore be an important, new therapeutic approach to managing dyslipidaemia and CHD risk in obesity, insulin resistance and type 2 diabetes mellitus. However, further work is required to establish the practical aspects of measuring apoC-III in routine laboratory service and the precise therapeutic targets for serum total apoC-III and/or apoC-III in apoB-containing lipoproteins. While showing much promise as a potentially useful cardiovascular risk factor, apoC-III is not yet ready for prime time use in clinical practice.
Collapse
Affiliation(s)
- D C Chan
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | | | | | | |
Collapse
|
45
|
Chan DC, Nguyen MN, Watts GF, Barrett PHR. Plasma apolipoprotein C-III transport in centrally obese men: associations with very low-density lipoprotein apolipoprotein B and high-density lipoprotein apolipoprotein A-I metabolism. J Clin Endocrinol Metab 2008; 93:557-64. [PMID: 18000086 PMCID: PMC2729148 DOI: 10.1210/jc.2006-2676] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Apolipoprotein (apo) C-III is associated with hypertriglyceridemia and progression of cardiovascular disease. Plasma apoC-III is elevated in centrally obese men, and we hypothesized that the kinetics of apoC-III are disturbed in these subjects. OBJECTIVE We developed a compartmental model to determine very low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) apoC-III metabolic parameters in centrally obese men and investigated the associations with VLDL-apoB and HDL-apoA-I kinetics. STUDY DESIGN Apolipoprotein kinetics was determined using stable isotope techniques and compartmental modelling in 39 centrally obese and 12 nonobese men. RESULTS Compared with nonobese subjects, centrally obese subjects had increased plasma apoC-III concentration (160 +/- 5 mg/liter vs. 103 +/- 9 mg/liter, P < 0.001), reflecting increased concentrations of both VLDL-apoC-III and HDL-apoC-III. These related to increased production rate (PR) of VLDL-apoC-III (2.12 +/- 0.14 vs. 1.56 +/- 0.29 mg/kg x d, P < 0.05) and reduced fractional catabolic rate (FCR) of both VLDL- and HDL-apoC-III (0.70 +/- 0.02 pools/d vs. 0.82 +/- 0.05 pools/d, P < 0.05). In centrally obese men, VLDL-apoC-III concentration was significantly (P < 0.05) associated with VLDL-apoB concentration and PR as well as HDL-apoA-I FCR and PR and inversely with VLDL-apoB FCR. HDL-apoC-III concentration was significantly (P < 0.05) associated with the concentrations of both VLDL-apoB and HDL-apoA-I, the FCR, and the PR of HDL-apoA-I and inversely with the VLDL-apoB FCR. In multiple regression analysis, both VLDL-apoC-III and HDL-apoC-III concentrations were significantly associated with HDL-apoA-I FCR. CONCLUSIONS In centrally obese men, elevated VLDL-apoC-III and HDL-apoC-III concentrations are a consequence of elevated production and decreased catabolism of VLDL-apoC-III and reduced catabolism of HDL-apoC-III, respectively. These defects are associated with disturbances in VLDL-apoB and HDL-apoA-I metabolism.
Collapse
Affiliation(s)
- Dick C Chan
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Royal Perth Hospital, GPO Box X2213, Perth, Western Australia 6847, Australia
| | | | | | | |
Collapse
|
46
|
Hiukka A, Leinonen E, Jauhiainen M, Sundvall J, Ehnholm C, Keech AC, Taskinen MR. Long-term effects of fenofibrate on VLDL and HDL subspecies in participants with type 2 diabetes mellitus. Diabetologia 2007; 50:2067-75. [PMID: 17653691 DOI: 10.1007/s00125-007-0751-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/17/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS Low HDL-cholesterol (HDL-C) is frequently accompanied by high triacylglycerol levels in diabetic dyslipidaemia, increasing the risk of CHD. In the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study, fenofibrate treatment lowered triacylglycerol levels, but the initial 5% increase in HDL-C attenuated over 5 years. We explored the changes in VLDL and HDL subspecies during fenofibrate treatment in a statin-free FIELD cohort. METHODS We randomised 171 participants with type 2 diabetes mellitus, who had been recruited to the FIELD study in Helsinki, to micronised fenofibrate (200 mg/day) or placebo in double-blind study design. VLDL and HDL subspecies were separated by ultracentrifugation at baseline and at the second and fifth year. Apolipoprotein (apo)A-I and apoA-II were measured by immunoturbidometric methods and lipoprotein (Lp)A-I and LpAI-AII particles by differential immunoassay. RESULTS Fenofibrate reduced plasma triacylglycerol levels by 26%, resulting from a marked reduction in VLDL1 triacylglycerol (0.62 vs 0.29 mmol/l, p < 0.001). Fenofibrate caused an increase in LDL size (Delta 0.80 nm, p < 0.001). HDL-C was similar between the groups. HDL2-C was decreased by fenofibrate (-27.5% at 5th year, p < 0.001) and HDL3-C increased (13.0% at 5th year, p < 0.001). Fenofibrate had no effect on apoA-I, whereas apoA-II increased. Thus, LpA-I decreased while LpAI-AII increased. Activities of cholesteryl ester transfer protein, phospholipids transfer protein and lecithin:cholesterylacyl transferase were unchanged by fenofibrate. High homocysteine levels were associated with a slight decrease in HDL-C and apoA-I. CONCLUSIONS/INTERPRETATION Fenofibrate markedly reduced large VLDL particles and produced a clear shift in HDL subspecies towards smaller particles. The HDL3-C increase in conjunction with unchanged apoA-I [corrected] levels is a dilemma with regard to cardiovascular disease.
Collapse
Affiliation(s)
- A Hiukka
- Department of Medicine, Division of Cardiology, Helsinki University Hospital and Biomedicum, Haartmaninkatu 8, 00290, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
47
|
Kahri J, Fruchart-Najib J, Matikainen N, Fruchart JC, Vakkilainen J, Taskinen MR. The increase of apolipoprotein A-V during postprandial lipemia parallels the response of triglyceride-rich lipoproteins in type 2 diabetes: no relationship between apoA-V and postheparin plasma lipolytic activity. Diabetes Care 2007; 30:2083-5. [PMID: 17485571 DOI: 10.2337/dc07-0100] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Juhani Kahri
- Division of Cardiology, Helsinki University Hospital, Biomedicum, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Atherosclerosis is a chronic disease associated with accumulation of lipids in lesions along blood vessels, leading to the occlusion of blood flow. Much of the focus has been on the role of low-density lipoprotein (LDL), and of oxidatively modified LDL, in the initiation and progression of this disease. LDL is in fact a metabolic end-product of the triglyceride-rich lipoproteins (ie, very-low density lipoproteins). Over the years, univariate analyses have implicated triglycerides as a contributor in atherosclerosis. However, depending on the studies, the significance of this relationship is either reduced or nullified when other co-variates are taken into account. This review summarizes more recent data that support the role of triglyceride-rich lipoproteins in the atherosclerotic process, both in the fasted as well as in the postprandial state.
Collapse
Affiliation(s)
- Ngoc-Anh Le
- Emory Lipid Research Laboratory, Atlanta Veterans' Affairs Medical Center, 1670 Clairemont Road, Room 4A187, Decatur, GA 30033, USA.
| | | |
Collapse
|
49
|
Zheng C, Khoo C, Ikewaki K, Sacks FM. Rapid turnover of apolipoprotein C-III-containing triglyceride-rich lipoproteins contributing to the formation of LDL subfractions. J Lipid Res 2007; 48:1190-203. [PMID: 17314277 DOI: 10.1194/jlr.p600011-jlr200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The atherogenicity theory for triglyceride-rich lipoproteins (TRLs; VLDL + intermediate density lipoprotein) generally cites the action of apolipoprotein C-III (apoC-III), a component of some TRLs, to retard their metabolism in plasma. We studied the kinetics of multiple TRL and LDL subfractions according to the content of apoC-III and apoE in 11 hypertriglyceridemic and normolipidemic persons. The liver secretes mainly two types of apoB lipoproteins: TRL with apoC-III and LDL without apoC-III. Approximately 45% of TRLs with apoC-III are secreted together with apoE. Contrary to expectation, TRLs with apoC-III but not apoE have fast catabolism, losing some or all of their apoC-III and becoming LDL. In contrast, apoE directs TRL flux toward rapid clearance, limiting LDL formation. Direct clearance of TRL with apoC-III is suppressed among particles also containing apoE. TRLs without apoC-III or apoE are a minor, slow-metabolizing precursor of LDL with little direct removal. Increased VLDL apoC-III levels are correlated with increased VLDL production rather than with slow particle turnover. Finally, hypertriglyceridemic subjects have significantly greater production of apoC-III-containing VLDL and global prolongation in residence time of all particle types. ApoE may be the key determinant of the metabolic fate of atherogenic apoC-III-containing TRLs in plasma, channeling them toward removal from the circulation and reducing the formation of LDLs, both those with apoC-III and the main type without apoC-III.
Collapse
Affiliation(s)
- Chunyu Zheng
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
50
|
Brown WV. High-density lipoprotein and transport of cholesterol and triglyceride in blood. J Clin Lipidol 2007; 1:7-19. [PMID: 21291664 DOI: 10.1016/j.jacl.2007.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Accepted: 02/06/2007] [Indexed: 01/03/2023]
Abstract
High-density lipoproteins (HDL) contain approximately 25% of the cholesterol and <5% of the triglyceride in the plasma of human blood. However, the dynamic exchange of lipids and lipid-binding proteins is not revealed by simply considering the mass of material at any point in time. HDL are the most complex of lipoprotein species with multiple protein constituents, which facilitate cholesterol secretion from cells, cholesterol esterification in plasma, and transfer of cholesterol to other lipoproteins and to the liver for excretion. They also play a major role in triglyceride transport by providing for activation of lipoprotein lipase, exchange of triglyceride among the lipoproteins, and removal of triglyceride rich remnants of chylomicrons and very-low-density lipoproteins after lipase action. In addition, antioxidative enzymes and phospholipid transfer proteins are important components of HDL. Many of the proteins of HDL are exchangeable with other lipoproteins, including chylomicrons and very-low-density lipoproteins. The constantly changing content of lipids and apolipoproteins in HDL particles generate a series of structures that can be analyzed by using separation techniques that depend on size or charge of the particles. Interaction of these various structures can be very different with cell surfaces depending on the size or apolipoprotein content. A series of different transport proteins preferentially exchange lipids with specific structures among the HDL but interact poorly or not at all with others. The role of these differing forms of HDL and their interactions with cells and other lipoprotein species in plasma is the subject of intense study stimulated by the potential for reducing atherogenesis. The strength of this is only partially indicated by the correlation of higher total levels of the HDL particles with reduced incidence of vascular disease in various clinical trials and epidemiological studies.
Collapse
Affiliation(s)
- William Virgil Brown
- Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center 111, 1670 Clairmont Road, Atlanta, GA 30033, USA
| |
Collapse
|