1
|
Ruuth M, Lahelma M, Luukkonen PK, Lorey MB, Qadri S, Sädevirta S, Hyötyläinen T, Kovanen PT, Hodson L, Yki-Järvinen H, Öörni K. Overfeeding Saturated Fat Increases LDL (Low-Density Lipoprotein) Aggregation Susceptibility While Overfeeding Unsaturated Fat Decreases Proteoglycan-Binding of Lipoproteins. Arterioscler Thromb Vasc Biol 2021; 41:2823-2836. [PMID: 34470478 PMCID: PMC8545249 DOI: 10.1161/atvbaha.120.315766] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Supplemental Digital Content is available in the text. Objective: We recently showed that measurement of the susceptibility of LDL (low-density lipoprotein) to aggregation is an independent predictor of cardiovascular events. We now wished to compare effects of overfeeding different dietary macronutrients on LDL aggregation, proteoglycan-binding of plasma lipoproteins, and on the concentration of oxidized LDL in plasma, 3 in vitro parameters consistent with increased atherogenicity. Approach and Results: The participants (36 subjects; age, 48±10 years; body mass index, 30.9±6.2 kg/m2) were randomized to consume an extra 1000 kcal/day of either unsaturated fat, saturated fat, or simple sugars (CARB) for 3 weeks. We measured plasma proatherogenic properties (susceptibility of LDL to aggregation, proteoglycan-binding, oxidized LDL) and concentrations and composition of plasma lipoproteins using nuclear magnetic resonance spectroscopy, and in LDL using liquid chromatography mass spectrometry, before and after the overfeeding diets. LDL aggregation increased in the saturated fat but not the other groups. This change was associated with increased sphingolipid and saturated triacylglycerols in LDL and in plasma and reduction of clusterin on LDL particles. Proteoglycan binding of plasma lipoproteins decreased in the unsaturated fat group relative to the baseline diet. Lipoprotein properties remained unchanged in the CARB group. Conclusions: The type of fat during 3 weeks of overfeeding is an important determinant of the characteristics and functional properties of plasma lipoproteins in humans. Registration: URL: http://www.clinicaltrials.gov; Unique identifier NCT02133144.
Collapse
Affiliation(s)
- Maija Ruuth
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Haartmaninkatu, Helsinki, Finland (M.R., M.B.L., P.T.K., K.Ö.).,Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (M.R.)
| | - Mari Lahelma
- Minerva Foundation Institute for Medical Research, Helsinki, Finland (M.L., P.K.L., S.Q., S.S., H.Y.-J.).,Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (M.L., P.K.L., S.Q., S.S., H.Y.-J.)
| | - Panu K Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland (M.L., P.K.L., S.Q., S.S., H.Y.-J.).,Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (M.L., P.K.L., S.Q., S.S., H.Y.-J.)
| | - Martina B Lorey
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Haartmaninkatu, Helsinki, Finland (M.R., M.B.L., P.T.K., K.Ö.)
| | - Sami Qadri
- Minerva Foundation Institute for Medical Research, Helsinki, Finland (M.L., P.K.L., S.Q., S.S., H.Y.-J.).,Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (M.L., P.K.L., S.Q., S.S., H.Y.-J.)
| | - Sanja Sädevirta
- Minerva Foundation Institute for Medical Research, Helsinki, Finland (M.L., P.K.L., S.Q., S.S., H.Y.-J.).,Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (M.L., P.K.L., S.Q., S.S., H.Y.-J.)
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, Örebro, Sweden (T.H.)
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Haartmaninkatu, Helsinki, Finland (M.R., M.B.L., P.T.K., K.Ö.)
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, and National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, United Kingdom (L.H.)
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland (M.L., P.K.L., S.Q., S.S., H.Y.-J.).,Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (M.L., P.K.L., S.Q., S.S., H.Y.-J.)
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Haartmaninkatu, Helsinki, Finland (M.R., M.B.L., P.T.K., K.Ö.)
| |
Collapse
|
2
|
Singh RK, Haka AS, Bhardwaj P, Zha X, Maxfield FR. Dynamic Actin Reorganization and Vav/Cdc42-Dependent Actin Polymerization Promote Macrophage Aggregated LDL (Low-Density Lipoprotein) Uptake and Catabolism. Arterioscler Thromb Vasc Biol 2019; 39:137-149. [PMID: 30580573 DOI: 10.1161/atvbaha.118.312087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective- During atherosclerosis, LDLs (low-density lipoproteins) accumulate in the arteries, where they become modified, aggregated, and retained. Such deposits of aggregated LDL (agLDL) can be recognized by macrophages, which attempt to digest and clear them. AgLDL catabolism promotes internalization of cholesterol and foam cell formation, which leads to the progression of atherosclerosis. Therapeutic blockade of this process may delay disease progression. When macrophages interact with agLDL in vitro, they form a novel extracellular, hydrolytic compartment-the lysosomal synapse (LS)-aided by local actin polymerization to digest agLDL. Here, we investigated the specific regulators involved in actin polymerization during the formation of the LS. Approach and Results- We demonstrate in vivo that atherosclerotic plaque macrophages contacting agLDL deposits polymerize actin and form a compartment strikingly similar to those made in vitro. Live cell imaging revealed that macrophage cortical F-actin depolymerization is required for actin polymerization to support the formation of the LS. This depolymerization is cofilin-1 dependent. Using siRNA-mediated silencing, pharmacological inhibition, genetic knockout, and stable overexpression, we elucidate key roles for Cdc42 Rho GTPase and GEF (guanine nucleotide exchange factor) Vav in promoting actin polymerization during the formation of the LS and exclude a role for Rac1. Conclusions- These results highlight critical roles for dynamic macrophage F-actin rearrangement and polymerization via cofilin-1, Vav, and Cdc42 in LS formation, catabolism of agLDL, and foam cell formation. These proteins might represent therapeutic targets to treat atherosclerotic disease.
Collapse
Affiliation(s)
- Rajesh K Singh
- From the Department of Biochemistry, Weill Cornell Medical College, New York (R.K.S., A.S.H., P.B., F.R.M.)
| | - Abigail S Haka
- From the Department of Biochemistry, Weill Cornell Medical College, New York (R.K.S., A.S.H., P.B., F.R.M.)
| | - Priya Bhardwaj
- From the Department of Biochemistry, Weill Cornell Medical College, New York (R.K.S., A.S.H., P.B., F.R.M.)
| | - Xiaohui Zha
- Department of Biochemistry, Microbiology, and Immunology (X.Z.), University of Ottawa, ON, Canada.,Department of Medicine (X.Z.), University of Ottawa, ON, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, ON, Canada (X.Z.)
| | - Frederick R Maxfield
- From the Department of Biochemistry, Weill Cornell Medical College, New York (R.K.S., A.S.H., P.B., F.R.M.)
| |
Collapse
|
3
|
Ruuth M, Nguyen SD, Vihervaara T, Hilvo M, Laajala TD, Kondadi PK, Gisterå A, Lähteenmäki H, Kittilä T, Huusko J, Uusitupa M, Schwab U, Savolainen MJ, Sinisalo J, Lokki ML, Nieminen MS, Jula A, Perola M, Ylä-Herttula S, Rudel L, Öörni A, Baumann M, Baruch A, Laaksonen R, Ketelhuth DFJ, Aittokallio T, Jauhiainen M, Käkelä R, Borén J, Williams KJ, Kovanen PT, Öörni K. Susceptibility of low-density lipoprotein particles to aggregate depends on particle lipidome, is modifiable, and associates with future cardiovascular deaths. Eur Heart J 2019; 39:2562-2573. [PMID: 29982602 PMCID: PMC6047440 DOI: 10.1093/eurheartj/ehy319] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/21/2018] [Indexed: 12/15/2022] Open
Abstract
Aims Low-density lipoprotein (LDL) particles cause atherosclerotic cardiovascular disease (ASCVD) through their retention, modification, and accumulation within the arterial intima. High plasma concentrations of LDL drive this disease, but LDL quality may also contribute. Here, we focused on the intrinsic propensity of LDL to aggregate upon modification. We examined whether inter-individual differences in this quality are linked with LDL lipid composition and coronary artery disease (CAD) death, and basic mechanisms for plaque growth and destabilization. Methods and results We developed a novel, reproducible method to assess the susceptibility of LDL particles to aggregate during lipolysis induced ex vivo by human recombinant secretory sphingomyelinase. Among patients with an established CAD, we found that the presence of aggregation-prone LDL was predictive of future cardiovascular deaths, independently of conventional risk factors. Aggregation-prone LDL contained more sphingolipids and less phosphatidylcholines than did aggregation-resistant LDL. Three interventions in animal models to rationally alter LDL composition lowered its susceptibility to aggregate and slowed atherosclerosis. Similar compositional changes induced in humans by PCSK9 inhibition or healthy diet also lowered LDL aggregation susceptibility. Aggregated LDL in vitro activated macrophages and T cells, two key cell types involved in plaque progression and rupture. Conclusion Our results identify the susceptibility of LDL to aggregate as a novel measurable and modifiable factor in the progression of human ASCVD.
Collapse
Affiliation(s)
- Maija Ruuth
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland.,Research Programs Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014 University of Helsinki, Finland
| | - Su Duy Nguyen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland
| | | | - Mika Hilvo
- Zora Biosciences, Biologinkuja 1, 02150 Espoo, Finland
| | - Teemu D Laajala
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, P.O. Box 20, 00014 University of Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Vesilinnantie 5, 20014 University of Turku, Finland
| | - Pradeep Kumar Kondadi
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, SU Sahlgrenska, 41345 Gothenburg, Sweden
| | - Anton Gisterå
- Department of Medicine, Karolinska University Hospital, Karolinska Institute, Solna 171 76 Stockholm, Sweden
| | - Hanna Lähteenmäki
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Tiia Kittilä
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Jenni Huusko
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211 Kuopio, Finland
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211 Kuopio, Finland.,Institute of Clinical Medicine, Internal Medicine, Kuopio University Hospital, Puijonlaaksontie 2, P.O. Box 100, 70029 Kuopio, Finland
| | - Markku J Savolainen
- Research Unit of Internal Medicine, University of Oulu, Pentti Kaiteran katu 1, P.O. Box 8000, 90014, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Pentti Kaiteran katu 1, P.O. Box 8000, 90014 Oulu, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, P.O. Box 340, 00029 Helsinki, Finland
| | - Marja-Liisa Lokki
- Transplantation Laboratory, Medicum, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, 00014 Helsinki, Finland
| | - Markku S Nieminen
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, P.O. Box 340, 00029 Helsinki, Finland
| | - Antti Jula
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare, Genomics and Biomarkers Unit, Mannerheimintie 166, P.O. Box 30, 00271 Helsinki, Finland
| | - Markus Perola
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare, Genomics and Biomarkers Unit, Mannerheimintie 166, P.O. Box 30, 00271 Helsinki, Finland.,Institute for Molecular Medicine Finland and Diabetes and Obesity Research Program, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014 University of Helsinki, Finland
| | - Seppo Ylä-Herttula
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211 Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Puijonlaaksontie 2, P.O. Box 100, 70029 Kuopio, Finland
| | - Lawrence Rudel
- Department of Biochemistry Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Anssi Öörni
- Information Systems, Åbo Akademi University, Fänriksgatan 3A, 20500 Turku, Finland
| | - Marc Baumann
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014 University of Helsinki, Finland
| | - Amos Baruch
- Genentech Research and Early Development, 1 DNA Way Mailstop 258A, South San Francisco, CA 94080, USA
| | - Reijo Laaksonen
- Zora Biosciences, Biologinkuja 1, 02150 Espoo, Finland.,Finnish Cardiovascular Research Center, University of Tampere, Kalevantie 4, 33100 Tampere, Finland.,Finnish Clinical Biobank Tampere, University Hospital of Tampere, Arvo Ylpön katu 6, 33520 Tampere, Finland
| | - Daniel F J Ketelhuth
- Department of Medicine, Karolinska University Hospital, Karolinska Institute, Solna 171 76 Stockholm, Sweden
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, P.O. Box 20, 00014 University of Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Vesilinnantie 5, 20014 University of Turku, Finland
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare, Genomics and Biomarkers Unit, Mannerheimintie 166, P.O. Box 30, 00271 Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014 University of Helsinki, Finland.,Helsinki University Lipidomics Unit, Helsinki Institute for Life Science (HiLIFE), Viikinkaari 1, P.O. Box 65, 00014 University of Helsinki, Finland
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, SU Sahlgrenska, 41345 Gothenburg, Sweden
| | - Kevin Jon Williams
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, SU Sahlgrenska, 41345 Gothenburg, Sweden
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland.,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014 University of Helsinki, Finland
| |
Collapse
|
4
|
Singh RK, Haka AS, Asmal A, Barbosa-Lorenzi VC, Grosheva I, Chin HF, Xiong Y, Hla T, Maxfield FR. TLR4 (Toll-Like Receptor 4)-Dependent Signaling Drives Extracellular Catabolism of LDL (Low-Density Lipoprotein) Aggregates. Arterioscler Thromb Vasc Biol 2019; 40:86-102. [PMID: 31597445 DOI: 10.1161/atvbaha.119.313200] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Aggregation and modification of LDLs (low-density lipoproteins) promote their retention and accumulation in the arteries. This is a critical initiating factor during atherosclerosis. Macrophage catabolism of agLDL (aggregated LDL) occurs using a specialized extracellular, hydrolytic compartment, the lysosomal synapse. Compartment formation by local actin polymerization and delivery of lysosomal contents by exocytosis promotes acidification of the compartment and degradation of agLDL. Internalization of metabolites, such as cholesterol, promotes foam cell formation, a process that drives atherogenesis. Furthermore, there is accumulating evidence for the involvement of TLR4 (Toll-like receptor 4) and its adaptor protein MyD88 (myeloid differentiation primary response 88) in atherosclerosis. Here, we investigated the role of TLR4 in catabolism of agLDL using the lysosomal synapse and foam cell formation. Approach and Results: Using bone marrow-derived macrophages from knockout mice, we find that TLR4 and MyD88 regulate compartment formation, lysosome exocytosis, acidification of the compartment, and foam cell formation. Using siRNA (small interfering RNA), pharmacological inhibition and knockout bone marrow-derived macrophages, we implicate SYK (spleen tyrosine kinase), PI3K (phosphoinositide 3-kinase), and Akt in agLDL catabolism using the lysosomal synapse. Using bone marrow transplantation of LDL receptor knockout mice with TLR4 knockout bone marrow, we show that deficiency of TLR4 protects macrophages from lipid accumulation during atherosclerosis. Finally, we demonstrate that macrophages in vivo form an extracellular compartment and exocytose lysosome contents similar to that observed in vitro for degradation of agLDL. CONCLUSIONS We present a mechanism in which interaction of macrophages with agLDL initiates a TLR4 signaling pathway, resulting in formation of the lysosomal synapse, catabolism of agLDL, and lipid accumulation in vitro and in vivo.
Collapse
Affiliation(s)
- Rajesh K Singh
- From the Department of Biochemistry, Weill Cornell Medical College, New York, NY (R.K.S., A.S.H., A.A., V.C.B.-L., I.G., H.F.C., F.R.M.)
| | - Abigail S Haka
- From the Department of Biochemistry, Weill Cornell Medical College, New York, NY (R.K.S., A.S.H., A.A., V.C.B.-L., I.G., H.F.C., F.R.M.)
| | - Arky Asmal
- From the Department of Biochemistry, Weill Cornell Medical College, New York, NY (R.K.S., A.S.H., A.A., V.C.B.-L., I.G., H.F.C., F.R.M.)
| | - Valéria C Barbosa-Lorenzi
- From the Department of Biochemistry, Weill Cornell Medical College, New York, NY (R.K.S., A.S.H., A.A., V.C.B.-L., I.G., H.F.C., F.R.M.)
| | - Inna Grosheva
- From the Department of Biochemistry, Weill Cornell Medical College, New York, NY (R.K.S., A.S.H., A.A., V.C.B.-L., I.G., H.F.C., F.R.M.)
| | - Harvey F Chin
- From the Department of Biochemistry, Weill Cornell Medical College, New York, NY (R.K.S., A.S.H., A.A., V.C.B.-L., I.G., H.F.C., F.R.M.)
| | - Yuquan Xiong
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA (Y.X., T.H.).,Current address: Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY (Y.X.)
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA (Y.X., T.H.)
| | - Frederick R Maxfield
- From the Department of Biochemistry, Weill Cornell Medical College, New York, NY (R.K.S., A.S.H., A.A., V.C.B.-L., I.G., H.F.C., F.R.M.)
| |
Collapse
|
5
|
Cysteamine inhibits lysosomal oxidation of low density lipoprotein in human macrophages and reduces atherosclerosis in mice. Atherosclerosis 2019; 291:9-18. [PMID: 31629988 PMCID: PMC6912160 DOI: 10.1016/j.atherosclerosis.2019.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
Background and aims We have shown previously that low density lipoprotein (LDL) aggregated by vortexing is internalised by macrophages and oxidised by iron in lysosomes to form the advanced lipid/protein oxidation product ceroid. We have now used sphingomyelinase-aggregated LDL, a more pathophysiological form of aggregated LDL, to study lysosomal oxidation of LDL and its inhibition by antioxidants, including cysteamine (2-aminoethanethiol), which concentrates in lysosomes by several orders of magnitude. We have also investigated the effect of cysteamine on atherosclerosis in mice. Methods LDL was incubated with sphingomyelinase, which increased its average particle diameter from 26 to 170 nm, and was then incubated for up to 7 days with human monocyte-derived macrophages. LDL receptor-deficient mice were fed a Western diet (19–22 per group) and some given cysteamine in their drinking water at a dose equivalent to that used in cystinosis patients. The extent of atherosclerosis in the aortic root and the rest of the aorta was measured. Results Confocal microscopy revealed lipid accumulation in lysosomes in the cultured macrophages. Large amounts of ceroid were produced, which colocalised with the lysosomal marker LAMP2. The antioxidants cysteamine, butylated hydroxytoluene, amifostine and its active metabolite WR-1065, inhibited the production of ceroid. Cysteamine at concentrations well below those expected to be present in lysosomes inhibited the oxidation of LDL by iron ions at lysosomal pH (pH 4.5) for prolonged periods. Finally, we showed that the extent of atherosclerotic lesions in the aortic root and arch of mice was significantly reduced by cysteamine. Conclusions These results support our hypothesis that lysosomal oxidation of LDL is important in atherosclerosis and hence antioxidant drugs that concentrate in lysosomes might provide a novel therapy for this disease. The drug cysteamine, which accumulates in lysosomes, inhibited the oxidation of LDL by iron at pH 4.5 (the pH of lysosomes). Cysteamine inhibited the lysosomal oxidation of LDL inside cultured macrophages. Cysteamine reduced atherosclerosis in LDL receptor knockout mice. These results support our hypothesis that lysosomal oxidation of LDL is important in atherosclerosis. Antioxidant drugs that concentrate in lysosomes might provide a novel therapy for this disease.
Collapse
|
6
|
Borén J, Williams KJ. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol 2016; 27:473-83. [PMID: 27472409 DOI: 10.1097/mol.0000000000000330] [Citation(s) in RCA: 338] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Today, it is no longer a hypothesis, but an established fact, that increased plasma concentrations of cholesterol-rich apolipoprotein-B (apoB)-containing lipoproteins are causatively linked to atherosclerotic cardiovascular disease (ASCVD) and that lowering plasma LDL concentrations reduces cardiovascular events in humans. Here, we review evidence behind this assertion, with an emphasis on recent studies supporting the 'response-to-retention' model - namely, that the key initiating event in atherogenesis is the retention, or trapping, of cholesterol-rich apoB-containing lipoproteins within the arterial wall. RECENT FINDINGS New clinical trials have shown that ezetimibe and anti-PCSK9 antibodies - both nonstatins - lower ASCVD events, and they do so to the same extent as would be expected from comparable plasma LDL lowering by a statin. These studies demonstrate beyond any doubt the causal role of apoB-containing lipoproteins in atherogenesis. In addition, recent laboratory experimentation and human Mendelian randomization studies have revealed novel information about the critical role of apoB-containing lipoproteins in atherogenesis. New information has also emerged on mechanisms for the accumulation in plasma of harmful cholesterol-rich and triglyceride-rich apoB-containing remnant lipoproteins in states of overnutrition. Like LDL, these harmful cholesterol-rich and triglyceride-rich apoB-containing remnant lipoprotein remnants become retained and modified within the arterial wall, causing atherosclerosis. SUMMARY LDL and other cholesterol-rich, apoB-containing lipoproteins, once they become retained and modified within the arterial wall, cause atherosclerosis. This simple, robust pathophysiologic understanding may finally allow us to eradicate ASCVD, the leading killer in the world.
Collapse
Affiliation(s)
- Jan Borén
- aDepartment of Molecular and Clinical Medicine, University of Gothenburg bSahlgrenska University Hospital, Gothenburg, Sweden cSection of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
7
|
Cavigiolio G, Jayaraman S. Proteolysis of apolipoprotein A-I by secretory phospholipase A₂: a new link between inflammation and atherosclerosis. J Biol Chem 2014; 289:10011-23. [PMID: 24523407 DOI: 10.1074/jbc.m113.525717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the acute phase of the inflammatory response, secretory phospholipase A2 (sPLA2) reaches its maximum levels in plasma, where it is mostly associated with high density lipoproteins (HDL). Overexpression of human sPLA2 in transgenic mice reduces both HDL cholesterol and apolipoprotein A-I (apoA-I) plasma levels through increased HDL catabolism by an unknown mechanism. To identify unknown PLA2-mediated activities on the molecular components of HDL, we characterized the protein and lipid products of the PLA2 reaction with HDL. Consistent with previous studies, hydrolysis of HDL phospholipids by PLA2 reduced the particle size without changing its protein composition. However, when HDL was destabilized in the presence of PLA2 by the action of cholesteryl ester transfer protein or by guanidine hydrochloride treatment, a fraction of apoA-I, but no other proteins, dissociated from the particle and was rapidly cleaved. Incubation of PLA2 with lipid-free apoA-I produced similar protein fragments in the range of 6-15 kDa, suggesting specific and direct reaction of PLA2 with apoA-I. Mass spectrometry analysis of isolated proteolytic fragments indicated at least two major cleavage sites at the C-terminal and the central domain of apoA-I. ApoA-I proteolysis by PLA2 was Ca(2+)-independent, implicating a different mechanism from the Ca(2+)-dependent PLA2-mediated phospholipid hydrolysis. Inhibition of proteolysis by benzamidine suggests that the proteolytic and lipolytic activities of PLA2 proceed through different mechanisms. Our study identifies a previously unknown proteolytic activity of PLA2 that is specific to apoA-I and may contribute to the enhanced catabolism of apoA-I in inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Giorgio Cavigiolio
- From the Children's Hospital Oakland Research Institute, Oakland, California 94609 and
| | | |
Collapse
|
8
|
Phospholipase A2 mediates apolipoprotein-independent uptake of chylomicron remnant-like particles by human macrophages. Int J Vasc Med 2011; 2012:501954. [PMID: 21876814 PMCID: PMC3160105 DOI: 10.1155/2012/501954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 01/26/2023] Open
Abstract
Apolipoprotein E-receptor-mediated pathways are the main routes by which macrophages take up chylomicron remnants, but uptake may also be mediated by receptor-independent routes. To investigate these mechanisms, triacylglycerol (TG) accumulation induced by apolipoprotein-free chylomicron remnant-like particles (CRLPw/o) in human monocyte-derived macrophages was evaluated. Macrophage TG content increased about 5-fold after incubation with
CRLPw/o, and this effect was not reduced by the inhibition of phagocytosis, macropinocytosis, apolipoprotein E function, or proteoglycan bridging.
The role of lipases, including lipoprotein lipase, cholesteryl ester hydrolase, and secretory (sPLA2) and cytosolic phospholipase A2, was studied using [3H]TG-labelled CRLPw/o. Total cell radioactivity after incubation with [3H]TG CRLPw/o was reduced by 15–30% by inhibitors of lipoprotein lipase and cholesteryl ester hydrolase and by about 45% by inhibitors of sPLA2 and cytosolic PLA2 . These results suggest that macrophage lipolytic enzymes mediate the internalization of postprandial TG-rich lipoproteins and that sPLA2 and cytosolic PLA2, play a more important role than extracellular lipoprotein lipase-mediated TG hydrolysis.
Collapse
|
9
|
Parasassi T, De Spirito M, Mei G, Brunelli R, Greco G, Lenzi L, Maulucci G, Nicolai E, Papi M, Arcovito G, Tosatto SCE, Ursini F. Low density lipoprotein misfolding and amyloidogenesis. FASEB J 2008; 22:2350-6. [PMID: 18292214 DOI: 10.1096/fj.07-097774] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In early atherogenesis, subendothelial retention of lipidic droplets is associated with an inflammatory response-to-injury, culminating in the formation of foam cells and plaque. Low density lipoprotein (LDL) is the main constituent of subendothelial lipidic droplets. The process is believed to occur following LDL modification. Searching for a modified LDL in plasma, electronegative LDL [LDL(-)] was identified and found to be associated with major risk biomarkers. The apoprotein in LDL(-) is misfolded, and we show here that this modification primes the aggregation of native LDL, conforming to the typical pattern of protein amyloidogenesis. After a lag phase, whose length depends on LDL(-) concentration, light scattering and atomic force microscopy reveal early exponential growth of intermediate globules, which evolve into fibrils. These globules are remarkably similar to subendothelial droplets in atheromatous lesions and different from those produced by oxidation or biochemical manipulation. During aggregation, ellipticity and tryptophan fluorescence measurements reveal a domino-style spread of apoprotein misfolding from LDL(-) to all of the LDL. Computational analysis of the apoprotein primary sequence predicts an unstable, aggregation-prone domain in the regulatory alpha2 region. Apoprotein misfolding well represents an LDL modification able to transform this cholesterol carrier into a trigger for a response-to-injury in the artery wall.
Collapse
Affiliation(s)
- Tiziana Parasassi
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|