1
|
Lin HYH, Shien T, Xu JW, Kuo YJ, Chen PL, Niu SW, Kuo IC, Kuo HF, Yang KC, Yeh YR. The application of blood flow sound contrastive learning to predict arteriovenous graft stenosis of patients with hemodialysis. PLoS One 2024; 19:e0308385. [PMID: 39150934 PMCID: PMC11329144 DOI: 10.1371/journal.pone.0308385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/23/2024] [Indexed: 08/18/2024] Open
Abstract
End-stage kidney disease (ESKD) presents a significant public health challenge, with hemodialysis (HD) remaining one of the most prevalent kidney replacement therapies. Ensuring the longevity and functionality of arteriovenous accesses is challenging for HD patients. Blood flow sound, which contains valuable information, has often been neglected in the past. However, machine learning offers a new approach, leveraging data non-invasively and learning autonomously to match the experience of healthcare professionas. This study aimed to devise a model for detecting arteriovenous grafts (AVGs) stenosis. A smartphone stethoscope was used to record the sound of AVG blood flow at the arterial and venous sides, with each recording lasting one minute. The sound recordings were transformed into mel spectrograms, and a 14-layer convolutional neural network (CNN) was employed to detect stenosis. The CNN comprised six convolution blocks with 3x3 kernel mapping, batch normalization, and rectified linear unit activation function. We applied contrastive learning to train the pre-training audio neural networks model with unlabeled data through self-supervised learning, followed by fine-tuning. In total, 27,406 dialysis session blood flow sounds were documented, including 180 stenosis blood flow sounds. Our proposed framework demonstrated a significant improvement (p<0.05) over training from scratch and a popular pre-trained audio neural networks (PANNs) model, achieving an accuracy of 0.9279, precision of 0.8462, and recall of 0.8077, compared to previous values of 0.8649, 0.7391, and 0.6538. This study illustrates how contrastive learning with unlabeled blood flow sound data can enhance convolutional neural networks for detecting AVG stenosis in HD patients.
Collapse
Affiliation(s)
- Hugo Y-H Lin
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tiffany Shien
- Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Juan-Wei Xu
- Department of Mathematics, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Yen-Jung Kuo
- Department of Post Baccalaureat Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Phang-Lang Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, United States of America
| | - Sheng-Wen Niu
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - I-Ching Kuo
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsuan-Fu Kuo
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cardiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | - Yi-Ren Yeh
- Department of Mathematics, National Kaohsiung Normal University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Vazquez-Padron RI, Martinez L, Duque JC, Salman LH, Tabbara M. The anatomical sources of neointimal cells in the arteriovenous fistula. J Vasc Access 2021; 24:99-106. [PMID: 33960241 PMCID: PMC8958841 DOI: 10.1177/11297298211011875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neointimal cells are an elusive population with ambiguous origins, functions, and states of differentiation. Expansion of the venous intima in arteriovenous fistula (AVF) is one of the most prominent remodeling processes in the wall after access creation. However, most of the current knowledge about neointimal cells in AVFs comes from extrapolations from the arterial neointima in non-AVF systems. Understanding the origin of neointimal cells in fistulas may have important implications for the design and effective delivery of therapies aimed to decrease intimal hyperplasia (IH). In addition, a broader knowledge of cellular dynamics during postoperative remodeling of the AVF may help clarify other transformation processes in the wall that combined with IH determine the successful remodeling or failure of the access. In this review, we discuss the possible anatomical sources of neointimal cells in AVFs and their relative contribution to intimal expansion.
Collapse
Affiliation(s)
- Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan C Duque
- Katz Family Division of Nephrology, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Loay H Salman
- Division of Nephrology, Albany Medical College, Albany, NY, USA
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Singh AK, Cai C, Kilari S, Zhao C, Simeon ML, Takahashi E, Edelman ER, Kong H(J, Macedo T, Singh RJ, Urban MW, Kumar R, Misra S. 1α,25-Dihydroxyvitamin D 3 Encapsulated in Nanoparticles Prevents Venous Neointimal Hyperplasia and Stenosis in Porcine Arteriovenous Fistulas. J Am Soc Nephrol 2021; 32:866-885. [PMID: 33627344 PMCID: PMC8017547 DOI: 10.1681/asn.2020060832] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/24/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Few therapies prevent venous neointimal hyperplasia (VNH) and venous stenosis (VS) formation in arteriovenous fistulas (AVF). Expression of the immediate early response gene X-1 (Iex-1), also known as Ier3, is associated with VNH and stenosis in murine AVFs. The study aimed to determine if local release of Ier3 long-acting inhibitor 1α,25(OH)2D3 from poly(lactic-co-glycolic acid) (PLGA) nanoparticles embedded in a thermosensitive Pluronic F127 hydrogel (1,25 NP) could affect VNH/VS formation in a large animal model. METHODS Immediately after AVF creation in a porcine model of renal failure, 1,25 NP or vehicle control was injected into the adventitia space of AVF outflow veins. Scanning electron microscopy and dynamic light scattering characterized drug and control nanoparticles. Animals were sacrificed 3 and 28 days later for gene expression, immunohistologic, magnetic resonance imaging and angiography, and ultrasound analyses. Whole transcriptome RNA sequencing with differential gene expression analysis was performed on outflow veins of AVF. RESULTS Encapsulation of 1α,25(OH)2D3 in PLGA nanoparticles formed nanoparticles of uniform size that were similar to nanoparticles without 1α,25(OH)2D3. The 1,25 NP-treated AVFs exhibited lower VNH/VS, Ier3 gene expression, and IER-3, MCP-1, CD68, HIF-1α, and VEGF-A immunostaining, fibrosis, and proliferation. Blood flow and lumen area increased significantly, whereas peak systolic velocity and wall shear stress decreased. Treatment increased Young's modulus and correlated with histologic assessment of fibrosis and with no evidence of vascular calcification. RNA sequencing analysis showed changes in the expression of genes associated with inflammatory, TGFβ1, and apoptotic pathways. CONCLUSIONS Local release of 1,25 NP improves AVF flow and hemodynamics, and reduces stenosis in association with reduction in inflammation, apoptosis, and fibrosis in a porcine model of arteriovenous fistula.
Collapse
Affiliation(s)
- Avishek K. Singh
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Chuanqi Cai
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Sreenivasulu Kilari
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Chenglei Zhao
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Michael L. Simeon
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Edwin Takahashi
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts,Department of Internal Medicine, Brigham and Women’s Hospital, Massachusetts, Boston, Massachusetts
| | - Hyunjoon (Joon) Kong
- Chemical and Biomolecular Engineering, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Thanila Macedo
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Ravinder J. Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Matthew W. Urban
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sanjay Misra
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Celdran Bonafonte D, Roy-Chaudhury P. A coming of age for vascular access research: the good, the bad, and the ugly! Kidney Int 2019; 95:1294-1295. [PMID: 31122705 DOI: 10.1016/j.kint.2019.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
Dialysis vascular access dysfunction remains an important clinical problem with a very significant morbidity, mortality, and socio-economic cost. Despite the magnitude of the clinical problem, there are currently no truly effective therapies for vascular access dysfunction. Through a high-quality scientific investigation, Liang et al. have identified a number of novel biological pathways responsible for "mouse" arteriovenous fistula stenosis. We hope that the identification of these druggable pathways (targets) will allow for the development of new and effective therapies for vascular access dysfunction, through the creation of an innovation substrate for dialysis vascular access.
Collapse
Affiliation(s)
- Diego Celdran Bonafonte
- Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Prabir Roy-Chaudhury
- University of North Carolina Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Southern Arizona VA Health Care System (SAVAHCS), Tucson, Arizona, USA.
| |
Collapse
|
5
|
Tsukada H, Nakamura M, Mizuno T, Satoh N, Nangaku M. Pharmaceutical prevention strategy for arteriovenous fistula and arteriovenous graft failure. RENAL REPLACEMENT THERAPY 2019. [DOI: 10.1186/s41100-019-0210-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
6
|
Satish M, Gunasekar P, Agrawal DK. Pro-inflammatory and pro-resolving mechanisms in the immunopathology of arteriovenous fistula maturation. Expert Rev Cardiovasc Ther 2019; 17:369-376. [PMID: 31056981 DOI: 10.1080/14779072.2019.1612745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: With high rates of arteriovenous fistula (AVF) failure, there is a continued need to predict other factors and mechanisms associated with maturation deficits. Given the central association of inflammation with AVF failure, with neointimal hyperplasia (NIH) as one such mechanism, inflammation must be considered in two endogenous ways, either pro-inflammatory or pro-resolving, resulting in inward or outward vascular remodeling. Areas covered: This review summarizes and critically evaluates the preclinical and interventional data underlying AVF failure in attempts to elucidate the necessary balance between inflammation and its resolution. Expert opinion: Understanding the pro-inflammatory and pro-resolving mechanisms underlying inward and outward vascular remodeling and NIH prevention with AVF maturation is a necessary effort to develop key diagnostic and therapeutic interventions towards the ongoing issue of long-term AVF patency. The ability for clinical application has progressed but is limited to the identification of key targets and pathways with little understanding of how they are related synergistically or antagonistically. Likewise, the balance between acute inflammation and pro-resolution requires pertinent temporal considerations necessary for timely therapeutic application and predictive measurement.
Collapse
Affiliation(s)
- Mohan Satish
- a Department of Clinical and Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| | - Palanikumar Gunasekar
- a Department of Clinical and Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| | - Devendra K Agrawal
- a Department of Clinical and Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| |
Collapse
|
7
|
Fan PY, Lee CC, Liu SH, Li IJ, Weng CH, Tu KH, Hsieh MY, Kuo CF, Chang TY, Tian YC, Yang CW, Wu HH. Preventing arteriovenous shunt failure in hemodialysis patients: a population-based cohort study. J Thromb Haemost 2019; 17:77-87. [PMID: 30472783 DOI: 10.1111/jth.14347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 11/29/2022]
Abstract
Essentials Uncertainty remains about antiplatelets for vascular access patency in hemodialysis patients. 95 971 people under hemodialysis were followed in a claims database in Taiwan. Aspirin reduced vascular access failure rate and did not increase major bleeding rate. Clopidogrel, Aggrenox, and warfarin might increase major bleeding rate. SUMMARY: Background Dialysis adequacy is a major determinant of survival for patients with end-stage renal disease. Good vascular access is essential to achieve adequate dialysis. Objectives This study evaluated the impacts of different drugs on the vascular access failure rate of an arteriovenous fistula or an arteriovenous graft and the rate of major bleeding in hemodialysis patients. Patients and methods We studied patients with end-stage renal disease registered in the Taiwan National Health Insurance program from 1 January 1997 to 31 December 2012. A total of 95 971 patients were enrolled in our study. Vascular access dysfunction was defined as the need for thrombectomy or percutaneous angioplasty. Major bleeding was defined as emergency department visits or hospitalization with a primary diagnosis of gastrointestinal bleeding or intracerebral hemorrhage. The adjusted odds ratios between person-quarters with or without antiplatelet or oral anticoagulant use were calculated using a generalized estimating equation. Results The odds ratio of vascular access failure was 0.21 (0.11-0.39) for aspirin, 0.76 (0.74-0.79) for clopidogrel, 0.67 (0.59-0.77) for dipyridamole, 0.67 (0.53-0.86) for Aggrenox and 0.96 (0.90-1.03) for warfarin. The highest odds ratio for intracerebral hemorrhage was 5.33 (1.25-22.72) in younger patients using Aggrenox. The highest odds ratio for gastrointestinal bleeding was 1.34 (1.10-1.64) for clopidogrel. Conclusion Antiplatelet agents, but not warfarin, might reduce the vascular access thrombosis rate. The gastrointestinal bleeding rate was increased in the group using clopidogrel. Aggrenox should be used with caution in young individuals because it might increase the rate of intracerebral hemorrhage.
Collapse
Affiliation(s)
- P Y Fan
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, , Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, , Taiwan
| | - C C Lee
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, , Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, , Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, , Taiwan
| | - S H Liu
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, , Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, , Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, , Taiwan
| | - I-J Li
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, , Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, , Taiwan
| | - C H Weng
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, , Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, , Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, , Taiwan
| | - K H Tu
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, , Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, , Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, , Taiwan
| | - M Y Hsieh
- Big Data Research Office, Chang Gung Memorial Hospital, Taoyuan, , Taiwan
| | - C F Kuo
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - T-Y Chang
- Department of Neurology, Stroke Center, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Y C Tian
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, , Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, , Taiwan
| | - C W Yang
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, , Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, , Taiwan
| | - H H Wu
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, , Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, , Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, , Taiwan
| |
Collapse
|
8
|
Outcomes of a Polytetrafluoroethylene Hybrid Vascular Graft with Preloaded Nitinol Stent at the Venous Outflow for Dialysis Vascular Access. Ann Vasc Surg 2018; 55:210-215. [PMID: 30217711 DOI: 10.1016/j.avsg.2018.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND To evaluate outcomes and patency of arteriovenous grafts (AVGs) created using Gore hybrid vascular grafts in hemodialysis patients with limited venous outflow or challenging anatomy. MATERIALS AND METHODS A retrospective review was performed in two academic centers of all patients between July 2013 and December 2016 who underwent surgical AVG creation using a Gore hybrid vascular graft in a brachial artery to axillary configuration. Patient characteristics and comorbidities as well as graft patency, function, and subsequent need for percutaneous interventions were recorded. RESULTS Forty-six patients including 30 females (65.2%) and 16 males (34.8%) with a mean age of 63 ± 13 years were identified. The most common indications for a hybrid vascular graft were limited surgical accessibility and/or revision of existing AVG due to severe stenotic lesions at the venous outflow in 33 patients (72%). One-year primary unassisted and assisted patency rates were 44 ± 8% and 54 ± 8%, respectively, compared with 1-year secondary patency rate of 66 ± 8%. The rate of percutaneous interventions to maintain graft function and patency was approximately one intervention per graft per year. CONCLUSIONS Access created with the hybrid vascular graft in a brachial-axillary (brachial artery to axillary vein) configuration is an acceptable option for patients with limited venous outflow reserve and challenging anatomy. Twelve-month primary and secondary patency rates and need for percutaneous interventions were comparable to traditional AVGs.
Collapse
|
9
|
Baig K, Fields R, Gaca J, Hanish S, Milton L, Koch W, Lawson J. A porcine Model of Intimal-Medial Hyperplasia in Polytetrafluoroethylene Arteriovenous Grafts. J Vasc Access 2018. [DOI: 10.1177/112972980300400306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose Vascular access polytetrafluoroethylene (PTFE) graft failure is a major cause of morbidity in the hemodialysis population. The most common cause of graft failure is thrombosis secondary to stenosis at the venous outflow tract. Venous outflow stenosis is characterized by intimal-medial hyperplasia. We have developed a porcine arteriovenous (AV) graft model that may be used to investigate this proliferative response and aid in the development of new therapies to prevent intimal-medial hyperplasia and improve graft patency. Methods Left carotid to right external jugular vein PTFE (6 mm) grafts were implanted in the necks of swine. Immediately following anatomosis, flow rates were recorded. In one group of animals (n = 4) the venous outflow tract was harvested after 7 days and morphometric analysis of intimal and medial area was performed. In a second group (n = 8) the graft patency was monitored until 28 days. Results All porcine PTFE fistula grafts were patent at 7 days and 100% patency was maintained until 14 days. After 28 days, 75% of the grafts failed due to thrombosis. The venous outflow tract developed a significant proliferative response. After 7 days the intimal and medial areas were 469 ± 9 μm2 and 875 ± 26 μm2 respectively. At 28 days the intimal and medial areas were 913 ± 55 μm2 and 1437 ± 182 μm2 respectively. Luminal flow rate of the venous outflow tract was reduced significantly (344 ± 11 ml/min at Day 0 to 129 ± 14 ml/min at Day 7, p < 0.05). Conclusions This porcine model rapidly, reliably and robustly reproduces the flow reducing stenosis and intimal-medial hyperplasia at the venous outflow tract of PTFE arteriovenous fistula. It represents a promising tool for investigating the mechanisms of intimal-medial hyperplasia, evaluating therapeutic interventions and new graft materials.
Collapse
Affiliation(s)
- K. Baig
- Department of Surgery, Duke University
Medical Center, Durham - USA
| | - R.C. Fields
- Department of Surgery, Duke University
Medical Center, Durham - USA
| | - J. Gaca
- Department of Surgery, Duke University
Medical Center, Durham - USA
| | - S. Hanish
- Department of Surgery, Duke University
Medical Center, Durham - USA
| | - L.G. Milton
- Department of Surgery, Duke University
Medical Center, Durham - USA
| | - W.J. Koch
- Department of Surgery, Duke University
Medical Center, Durham - USA
| | - J.H. Lawson
- Department of Surgery, Duke University
Medical Center, Durham - USA
- Department of Pathology, Duke
University Medical Center, Durham - USA
| |
Collapse
|
10
|
Occhionorelli S, De Tullio D, Pellegrini D, Ascanelli S, Resta G, Stano R, Messina F, Azzena G. Arteriovenous Fistulas for Hemodialysis Created using a Long-Term Absorbable Suture: A Safe Solution and a Measure to Minimize Myointimal Hyperplasia. J Vasc Access 2018; 6:171-6. [PMID: 16552697 DOI: 10.1177/112972980500600403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background/aims The goal of the therapeutic management of patients affected by end-stage renal disease (ESRD) is to maintain the vascular access (VA) as long as possible. Myointimal hyperplasia development in the vascular walls of arteriovenous fistulas (AVFs) is considered one of the most important factors responsible for procedure failure. These alterations could be linked to hemodynamic changes in the anastomosis and to the presence of the surgical suture itself. We report our preliminary experience, discussing the use and the possible benefits of an absorbable suture in polyglycolide trimethylene carbonate (PTC) in AVF creation. Methods Seventy-four AVFs were created as primary access for hemodialysis (HD), using PTC, over 4 years. Age, gender, ESRD etiology, artery and vein preoperative diameters, AVF survival outcome, and the number of AVFs created per year were recorded. The Kaplan-Meier method was used to analyze AVF survival rates. Results No dehiscences, pseudoaneurysms, or failures in the “critical” period related to PTC absorption were recorded. Kaplan-Meier analysis was used to evaluate AVF survival; 12-month primary AVF survival (74.33%) and AVF failure (25.67%) rates, 9 “early” (8.22%) and 10 “late” failures (13.51%), and a 360-day mean survival were found. Conclusions Our data indicate that PTC, a well known and widely used material for sutures in vascular surgery, is safe and effective in AVF creation. Potential advantages of PTC sutures are represented by a reduced myointimal hyperplasia formation in the AVF vascular walls, prolonging the AVF lifespan and avoiding re-interventions.
Collapse
Affiliation(s)
- S Occhionorelli
- Department of Surgical, Anesthesiological, Radiological Sciences, Surgical Clinic Institute, University of Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Morena M, Bosc JY, Jaussent I, Dupuy AM, Terrier N, Leray-Moragues H, Flavier JL, Maurice F, Delcourt C, Cristol JP, Canaud B. The role of mineral metabolism and inflammation on dialysis vascular access failure. J Vasc Access 2018; 7:77-82. [PMID: 16868901 DOI: 10.1177/112972980600700207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Thrombosis of arteriovenous fistula (AVF) is the leading cause of vascular access (VA) loss usually due to silent stenosis. Therefore, assessment of relevant risk factors of VA monitoring may provide insight into potential therapeutic targets for stenosis and thrombosis. The aim of this study was to evaluate the influence of cardiovascular risk factors (including inflammation and mineral metabolism dysfunctions) on the failure of internal AVF in HD patients. 128 HD patients with internal AVF were included in the study and followed up for two years. At baseline, VA morphology and function were followed by Doppler ultrasonography and serum albumin, prealbumine, C-reactive protein, orosomucoid, calcium, phosphorus, parathyroid hormone, bone-type alkaline phosphatase, osteoprotegerin and receptor activator of nuclear factor κB ligand were measured. At baseline, 50 stenoses were detected but none of them required any intervention. Age and biological parameters did not significantly differ between patients with or without VA stenosis. Over the two year- follow up, VA thrombosis occurred in 19 patients. Preexisting stenosis of VA was present in 9/19 patients (47.3% of cases) (chi-square = 3.708, p = 0.0538). Despite the low rate of events, phosphorus [1.75 (0.95–2.77) vs 1.42 (0.47–3.22) mmol/L, p = 0.0416], Calcium x Phosphorus product [4.00 (2.00–5.90) vs 3.40 (1.10–6.80) mmol2/L2, p = 0.0676] and parathyroid hormone [165.00 (1.00–944.00) vs 79.50 (1.00–846.60) ng/L, p = 0.0814) levels were higher in the 19 thrombotic patients whereas all other biological parameters did not significantly differ. These results, which confirm that VA thrombosis occurs more frequently upon preexisting stenosis, also demonstrate that mineral metabolism disorders, compared to inflammation, may contribute to VA dysfunction leading to thrombosis.
Collapse
Affiliation(s)
- M Morena
- Biochemistry Laboratory, Lapeyronie University Hospital, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yang B, Kilari S, Brahmbhatt A, McCall DL, Torres EN, Leof EB, Mukhopadhyay D, Misra S. CorMatrix Wrapped Around the Adventitia of the Arteriovenous Fistula Outflow Vein Attenuates Venous Neointimal Hyperplasia. Sci Rep 2017; 7:14298. [PMID: 29085001 PMCID: PMC5662725 DOI: 10.1038/s41598-017-14696-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/17/2017] [Indexed: 11/28/2022] Open
Abstract
Venous neointimal hyperplasia (VNH) at the outflow vein of hemodialysis AVF is a major factor contributing to failure. CorMatrix is an extracellular matrix that has been used in cardiovascular procedures primarily as scaffolding during surgery. In the present study, we sought to determine whether CorMatrix wrapped around the outflow vein of arteriovenous fistula (AVF) at the time of creation could reduce VNH. In mice, the carotid artery to the ipsilateral jugular vein was connected to create an AVF, and CorMatrix scaffold was wrapped around the outflow vein compared to control mice that received no scaffolding. Immunohistochemistry, Western blot, and qRT-PCR were performed on the outflow vein at 7 and 21 days after AVF creation. In outflow veins treated with CorMatrix, there was an increase in the mean lumen vessel area with a decrease in the ratio of neointima area/media + adventitia area (P < 0.05). Furthermore, there was a significant increase in apoptosis, with a reduction in cell density and proliferation in the outflow veins treated with CorMatrix compared to controls (P < 0.05). Immunohistochemical analysis revealed a significant reduction in fibroblasts, myofibroblasts, macrophages, and leukocytes with a reduction in Tnf-α gene expression (P < 0.05). In conclusion, outflow veins treated with CorMatrix have reduced VNH.
Collapse
Affiliation(s)
- Binxia Yang
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA
| | - Sreenivasulu Kilari
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA
| | - Akshaar Brahmbhatt
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA
| | - Deborah L McCall
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA
| | - Evelyn Nieves Torres
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA
| | - Edward B Leof
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA. .,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
13
|
Siddiqui MA, Ashraff S, Santos D, Carline T. An overview of AVF maturation and endothelial dysfunction in an advanced renal failure. RENAL REPLACEMENT THERAPY 2017. [DOI: 10.1186/s41100-017-0123-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
MacRae JM, Dipchand C, Oliver M, Moist L, Lok C, Clark E, Hiremath S, Kappel J, Kiaii M, Luscombe R, Miller LM. Arteriovenous Access Failure, Stenosis, and Thrombosis. Can J Kidney Health Dis 2016; 3:2054358116669126. [PMID: 28270918 PMCID: PMC5332078 DOI: 10.1177/2054358116669126] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/04/2016] [Indexed: 01/29/2023] Open
Abstract
Vascular access–related complications can lead to patient morbidity and reduced patient quality of life. Some of the common arteriovenous access complications include failure to mature, stenosis formation, and thrombosis.
Collapse
Affiliation(s)
- Jennifer M MacRae
- Cumming School of Medicine and Department of Cardiac Sciences, University of Calgary, Alberta, Canada
| | | | - Matthew Oliver
- Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Louise Moist
- Department of Medicine, University of Western Ontario, London, Canada
| | - Charmaine Lok
- Faculty of Medicine, University Health Network, University of Toronto, Ontario, Canada
| | - Edward Clark
- Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | | - Joanne Kappel
- Faculty of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Mercedeh Kiaii
- Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Rick Luscombe
- Department of Nursing, Providence Health Care, Vancouver, British Columbia, Canada
| | - Lisa M Miller
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
15
|
García-Pajares R, Polo JR, Flores A, Gonzalez-Tabares E, Solís JV. Upper Arm Polytetrafluoroethylene Grafts for Dialysis Access. Analysis of Two Different Graft Sizes: 6 mm and 6–8 mm. Vasc Endovascular Surg 2016; 37:335-43. [PMID: 14528379 DOI: 10.1177/153857440303700505] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this retrospective study was to analyze 2 sizes of expanded polytetrafluoroethylene (PTFE) upper arm grafts for dialysis: 8 millimeters, tapered to 6 mm at the arterial side, and 6 millimeters. All upper arm PTFE grafts (Gore-Tex®) were performed between January 1981 and April 1997. Patient characteristics, complication rate, and patency rates were compared for both kind of grafts. Five hundred and seven PTFE grafts were analyzed (183 6-mm grafts and 324 6- to 8-mm grafts). Early failure was found in 5 grafts (2.7%) in 6-mm grafts, and in 5 grafts (1.5%) in 8-mm grafts (not significant). Steal syndrome was found in 1 patient (0.5%) of the 6-mm group, and in 11 (3.4%) of the 8-mm grafts (p=0.085). The rate of late complications requiring surgical repair was 0.56 episode per graft-year in the 6-mm grafts group, and 0.33 in the 8-mm grafts (p<0.001). Primary patency rates of 6-mm grafts were 72%, 33%, and 19% at 1, 3, and 5 years; and secondary patency rates were 86%, 68%, 56%, and 44% at 1, 3, 5, and 6 years, respectively. In the 8-mm grafts group, primary patency rates were 77%, 52%, and 39% at 1, 3, and 5 years; and secondary patency rates were 92%, 84%, 73%, and 66% at 1, 3, 5, and 6 years, respectively. Comparison of patency rates of 6-mm and 8-mm grafts were statistically significant (p< 0.001) for both primary and secondary curves. However, secondary survival curves were similar for both kind of grafts in a subpopulation of diabetic patients. The authors conclude that the 8-mm graft, tapered to 6 mm at the arterial side, is a dialysis graft with fewer complications and a better patency rate than grafts of 6 mm placed in the same anatomical position, at least in a population of nondiabetic patients. Steal syndrome was observed in some cases of diabetic and older patients with a large-bore graft. Thus, this kind of prosthesis should be avoided in this population. On the other hand, this is not a prospective, randomized study made with any intention for comparison. Therefore, the aforementioned conclusions must be cautiously considered.
Collapse
|
16
|
Wong CY, de Vries MR, Wang Y, van der Vorst JR, Vahrmeijer AL, van Zonneveld AJ, Hamming JF, Roy-Chaudhury P, Rabelink TJ, Quax PHA, Rotmans JI. A Novel Murine Model of Arteriovenous Fistula Failure: The Surgical Procedure in Detail. J Vis Exp 2016:e53294. [PMID: 26863177 DOI: 10.3791/53294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The arteriovenous fistula (AVF) still suffers from a high number of failures caused by insufficient remodeling and intimal hyperplasia from which the exact pathophysiology remains unknown. In order to unravel the pathophysiology a murine model of AVF-failure was developed in which the configuration of the anastomosis resembles the preferred situation in the clinical setting. A model was described in which an AVF is created by connecting the venous end of the branch of the external jugular vein to the side of the common carotid artery using interrupted sutures. At a histological level, we observed progressive stenotic intimal lesions in the venous outflow tract that is also seen in failed human AVFs. Although this procedure can be technically challenging due to the small dimensions of the animal, we were able to achieve a surgical success rate of 97% after sufficient training. The key advantage of a murine model is the availability of transgenic animals. In view of the different proposed mechanisms that are responsible for AVF failure, disabling genes that might play a role in vascular remodeling can help us to unravel the complex pathophysiology of AVF failure.
Collapse
Affiliation(s)
- Chun Yu Wong
- Department of Nephrology, Leiden University Medical Center; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center; Department of Surgery, Leiden University Medical Center
| | - Margreet R de Vries
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center; Department of Surgery, Leiden University Medical Center
| | - Yang Wang
- Division of Nephrology, University of Cincinnati
| | | | | | - Anton-Jan van Zonneveld
- Department of Nephrology, Leiden University Medical Center; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center
| | | | | | - Ton J Rabelink
- Department of Nephrology, Leiden University Medical Center; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center; Department of Surgery, Leiden University Medical Center
| | - Joris I Rotmans
- Department of Nephrology, Leiden University Medical Center; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center;
| |
Collapse
|
17
|
Kwon SH, Li L, He Y, Tey CS, Li H, Zhuplatov I, Kim SJ, Terry CM, Blumenthal DK, Shiu YT, Cheung AK. Prevention of Venous Neointimal Hyperplasia by a Multitarget Receptor Tyrosine Kinase Inhibitor. J Vasc Res 2016; 52:244-256. [PMID: 26788996 DOI: 10.1159/000442977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 12/01/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/AIMS Venous neointimal hyperplasia (NH) is the predominant cause of stenosis in hemodialysis arteriovenous grafts (AVG), but there is currently no clinically used therapy to prevent NH. METHODS A porcine AVG model was used to identify potential pharmacological targets to prevent NH. Sunitinib, a broad-spectrum tyrosine kinase inhibitor, was examined as a potential anti-NH drug utilizing in vitro and ex vivo models. RESULTS In an in vivo porcine model, PDGF, VEGF and their receptors PDGFR-α and VEGFR-2 were upregulated at the venous anastomosis within 2 weeks after AVG placement, with NH development by 4 weeks. Sunitinib inhibited PDGF-stimulated proliferation, migration, phosphorylation of MAPK and PI3K/Akt proteins and changes in the expression of cell-cycle regulatory proteins in vascular smooth-muscle cells as well as VEGF-stimulated endothelial cell proliferation in vitro. In an ex vivo model, significant NH was observed in porcine vein segments perfused for 12 days under pathological shear stress. Sunitinib (100 nM) inhibited NH formation, with the intima-to-lumen area ratio decreasing from 0.45 ± 0.25 to 0.04 ± 0.02 (p < 0.05) with treatment. CONCLUSION These findings demonstrate sunitinib to be a potential NH-preventive drug as well as the utility of an ex vivo model to investigate pharmacotherapies under pathophysiological flow conditions.
Collapse
Affiliation(s)
- Sun Hyung Kwon
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, U.S.A
| | - Li Li
- Division of Nephrology & Hypertension, Department of Medicine, University of Utah, Salt Lake City, Utah, U.S.A
| | - Yuxia He
- Division of Nephrology & Hypertension, Department of Medicine, University of Utah, Salt Lake City, Utah, U.S.A
| | - Chieh Sheng Tey
- Division of Nephrology & Hypertension, Department of Medicine, University of Utah, Salt Lake City, Utah, U.S.A
| | - Huan Li
- Division of Nephrology & Hypertension, Department of Medicine, University of Utah, Salt Lake City, Utah, U.S.A
| | - Ilya Zhuplatov
- Division of Nephrology & Hypertension, Department of Medicine, University of Utah, Salt Lake City, Utah, U.S.A
| | - Seung-Jung Kim
- School of Medicine, Division of Nephrology, Ewha Womans University, Seoul, South Korea
| | - Christi M Terry
- Division of Nephrology & Hypertension, Department of Medicine, University of Utah, Salt Lake City, Utah, U.S.A
| | - Donald K Blumenthal
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, U.S.A
| | - Yan-Ting Shiu
- Division of Nephrology & Hypertension, Department of Medicine, University of Utah, Salt Lake City, Utah, U.S.A
| | - Alfred K Cheung
- Division of Nephrology & Hypertension, Department of Medicine, University of Utah, Salt Lake City, Utah, U.S.A.,Medical Service, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah, U.S.A
| |
Collapse
|
18
|
Yang B, Brahmbhatt A, Nieves Torres E, Thielen B, McCall DL, Engel S, Bansal A, Pandey MK, Dietz AB, Leof EB, DeGrado TR, Mukhopadhyay D, Misra S. Tracking and Therapeutic Value of Human Adipose Tissue-derived Mesenchymal Stem Cell Transplantation in Reducing Venous Neointimal Hyperplasia Associated with Arteriovenous Fistula. Radiology 2015; 279:513-22. [PMID: 26583911 DOI: 10.1148/radiol.2015150947] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To determine if adventitial transplantation of human adipose tissue-derived mesenchymal stem cells (MSCs) to the outflow vein of B6.Cg-Foxn1(nu)/J mice with arteriovenous fistula (AVF) at the time of creation would reduce monocyte chemoattractant protein-1 (Mcp-1) gene expression and venous neointimal hyperplasia. The second aim was to track transplanted zirconium 89 ((89)Zr)-labeled MSCs serially with positron emission tomography (PET) for 21 days. MATERIALS AND METHODS All animal experiments were performed according to protocols approved by the institutional animal care and use committee. Fifty B6.Cg-Foxn1(nu)/J mice were used to accomplish the study aims. Green fluorescent protein was used to stably label 2.5 × 10(5) MSCs, which were injected into the adventitia of the outflow vein at the time of AVF creation in the MSC group. Eleven mice died after AVF placement. Animals were sacrificed on day 7 after AVF placement for real-time polymerase chain reaction (n = 6 for MSC and control groups) and histomorphometric (n = 6 for MSC and control groups) analyses and on day 21 for histomorphometric analysis only (n = 6 for MSC and control groups). In a separate group of experiments (n = 3), animals with transplanted (89)Zr-labeled MSCs were serially imaged with PET for 3 weeks. Multiple comparisons were performed with two-way analysis of variance, followed by the Student t test with post hoc Bonferroni correction. RESULTS In vessels with transplanted MSCs compared with control vessels, there was a significant decrease in Mcp-1 gene expression (day 7: mean reduction, 62%; P = .029), with a significant increase in the mean lumen vessel area (day 7: mean increase, 176% [P = .013]; day 21: mean increase, 415% [P = .011]). Moreover, this was accompanied by a significant decrease in Ki-67 index (proliferation on day 7: mean reduction, 81% [P = .0003]; proliferation on day 21: mean reduction, 60%, [P = .016]). Prolonged retention of MSCs at the adventitia was evidenced by serial PET images of (89)Zr-labeled cells. CONCLUSION Adventitial transplantation of MSCs decreases Mcp-1 gene expression, accompanied by a reduction in venous neointimal hyperplasia.
Collapse
Affiliation(s)
- Binxia Yang
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Akshaar Brahmbhatt
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Evelyn Nieves Torres
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Brian Thielen
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Deborah L McCall
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Sean Engel
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Aditya Bansal
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Mukesh K Pandey
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Allan B Dietz
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Edward B Leof
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Timothy R DeGrado
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Debabrata Mukhopadhyay
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Sanjay Misra
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| |
Collapse
|
19
|
Duque JC, Martinez L, Mesa A, Wei Y, Tabbara M, Salman LH, Vazquez-Padron RI. CD4(+) lymphocytes improve venous blood flow in experimental arteriovenous fistulae. Surgery 2015; 158:529-36. [PMID: 25999254 DOI: 10.1016/j.surg.2015.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/16/2015] [Accepted: 02/21/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND The role of immune cells in arteriovenous fistulae (AVF) maturation is poorly understood and has received, until quite recently, little attention. This study examines the function of T lymphocytes in AVF vascular remodeling. METHODS Experimental fistulae were created in athymic rnu nude rats lacking mature T lymphocytes and euthymic control animals by anastomosing the left superior epigastric vein to the nearby femoral artery. Blood flow rates, wall morphology, and histologic changes were assessed in AVF 21 days after creation. The effect of CD4(+) lymphocytes on AVF maturation in athymic animals was analyzed by adoptive transfer of cells after fistula creation. RESULTS The absence of T lymphocytes compromised blood flow in experimental fistulae. Histopathologic inspection of AVF from athymic rats revealed that T-cell immunodeficiency negatively affected venous vascular remodeling, as evidenced by a reduced lumen, a thick muscular layer, and a low number of inflammatory cells compared with control animals. Adoptive transfer of CD4(+) lymphocytes from euthymic rats into athymic animals after fistula creation improved blood flow and reduced intima-media thickness. CONCLUSION These results point at the protective role of CD4(+) lymphocytes in the remodeling of the AVF vascular wall.
Collapse
Affiliation(s)
- Juan C Duque
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Annia Mesa
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Yuntao Wei
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Loay H Salman
- Section of Interventional Nephrology, University of Miami Miller School of Medicine, Miami, FL
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL.
| |
Collapse
|
20
|
Elliott WH, Tan Y, Li M, Tan W. RETRACTED ARTICLE: High Pulsatility Flow Promotes Vascular Fibrosis by Triggering Endothelial EndMT and Fibroblast Activation. Cell Mol Bioeng 2015; 8:285-295. [PMID: 34522234 DOI: 10.1007/s12195-015-0386-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/16/2015] [Indexed: 11/29/2022] Open
Abstract
Vascular fibrosis, the formation of excess fibrous tissue on the blood vessel wall, is characterized by unmitigated proliferation of fibroblasts or myofibroblast-like cells exhibiting α-smooth-muscle-actin in vessel lumen and other vascular layers. It likely contributes to vascular unresponsiveness to conventional therapies. This paper demonstrates a new flow-induced vascular fibrosis mechanism. Using our developed flow system which simulates the effect of vessel stiffening and generates unidirectional high pulsatility flow (HPF) with the mean shear flow at a physiological level, we have shown that HPF caused vascular endothelial dysfunction. Herein, we further explored the role of HPF in vascular fibrosis through endothelial-to-mesenchymal transdifferentiation (EndMT). Pulmonary arterial endothelial cells (ECs) were exposed to steady flow and HPF, which have the same physiological mean fluid shear but different in flow pulsatility. Cells were analyzed after being conditioned with flows for 24 or 48 h. HPF was found to induce EndMT of cells after 48 h stimulation; cells demonstrated drastically decreased expression in EC marker CD31, as well as increased transforming growth factor β, α-SMA, and collagen type-I, in both gene and protein expression profiles. Using the flow media from HPF-conditioned endothelial culture to cultivate arterial adventitial fibroblasts (AdvFBs) and ECs respectively, we found that the conditioned media respectively enhanced migration, proliferation and α-SMA expression of AdvFBs, and induced EndMT of ECs. It was further revealed that cells exposed to HPF exhibited much higher percentage of caspase-positive cells compared to those exposed to steady flow. Apoptotic cells together with remaining, caspase-negative cells suggested the presence of apoptosis-resistant dysfunctional ECs which likely underwent EndMT process and perpetuated fibrosis throughout vascular tissues. Therefore, our results indicate that prolonged HPF stimuli induce vascular fibrosis through triggering EndMT and EC-mediated AdvFB activation and migration, which follows initial endothelial inflammation, dysfunction and apoptosis.
Collapse
Affiliation(s)
- Winston H Elliott
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Dr, ECME 114, Boulder, CO 80309-0427 USA
| | - Yan Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Dr, ECME 114, Boulder, CO 80309-0427 USA
| | - Min Li
- Department of Pediatrics, University of Colorado at Denver, Aurora, CO 80045 USA
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Dr, ECME 114, Boulder, CO 80309-0427 USA.,Department of Pediatrics, University of Colorado at Denver, Aurora, CO 80045 USA
| |
Collapse
|
21
|
Brahmbhatt A, NievesTorres E, Yang B, Edwards WD, Roy Chaudhury P, Lee MK, Kong H, Mukhopadhyay D, Kumar R, Misra S. The role of Iex-1 in the pathogenesis of venous neointimal hyperplasia associated with hemodialysis arteriovenous fistula. PLoS One 2014; 9:e102542. [PMID: 25036043 PMCID: PMC4103828 DOI: 10.1371/journal.pone.0102542] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/19/2014] [Indexed: 12/15/2022] Open
Abstract
Arteriovenous fistulas (AVFs) used for hemodialysis fail because of venous neointimal hyperplasia (VNH). There are 1,500,000 patients that have end stage renal disease worldwide and the majority requires hemodialysis. In the present study, the role of the intermediate early response gene X-1 (IEX-1), also known as IER-3 in the pathogenesis of VNH was evaluated. In human samples removed from failed AVF, there was a significant increase in IEX-1 expression localized to the adventitia. In Iex-1-/- mice and wild type (WT) controls, chronic kidney disease was induced and an AVF placed 28 days later by connecting the carotid artery to jugular vein. The outflow vein was removed three days following the creation of the AVF and gene expression analysis demonstrated a significant decrease in vascular endothelial growth factor-A (Vegf-A) and monocyte chemoattractant protein-1 (Mcp-1) gene expression in Iex-1-/- mice when compared to WT mice (P<0.05). At 28 days after AVF placement, histomorphometric and immune-histochemical analyses of the outflow vein demonstrated a significant decrease in neointimal hyperplasia with an increase in average lumen vessel area associated with a decrease in fibroblast, myofibroblast, and Ly6C staining. There was a decrease in proliferation (Ki-67) and an increase in the TUNEL staining in Iex-1 KO mice compared to WT. In addition, there was a decrease in Vegf-A, Mcp-1, and matrix metalloproteiniase-9 (Mmp-9) staining. Iex-1 expression was reduced in vivo and in vitro using nanoparticles coated with calcitriol, an inhibitor of Iex-1 that demonstrated that Iex-1 reduction results in decrease in Vegf-A. In aggregate, these results indicate that the absence of IEX-1 gene results in reduced VNH accompanied with a decrease in proliferation, reduced fibroblast, myofibroblast, and Ly6C staining accompanied with increased apoptosis mediated through a reduction in Vegf-A/Mcp-1 axis and Mmp-9. Adventitial delivery of nanoparticles coated with calcitriol reduced Iex-1 and VNH.
Collapse
Affiliation(s)
- Akshaar Brahmbhatt
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Evelyn NievesTorres
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Binxia Yang
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - William D. Edwards
- Department of Lab Medicine and Pathology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Prabir Roy Chaudhury
- Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Min Kyun Lee
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Hyunjoon Kong
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rajiv Kumar
- Department of Biochemistry and Molecular Biology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Biochemistry and Molecular Biology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
22
|
Abstract
Despite extensive efforts, most approaches to reduce arteriovenous (AV) access-related complications did not results in substantial improvement of AV access patency thus far. Part of this disappointing progress relates to incomplete understanding of the underlying pathophysiology of hemodialysis access failure. In order to unravel the pathophysiology of hemodialysis access failure, animal models that closely mimic human pathology are of utmost importance. Indeed, it is impossible to study the extremely complex response of the AV access at a molecular and cellular level in great detail in dialysis patients. Over the past decades, numerous animal models have been developed in an attempt to unravel the vascular pathology of AV access failure and to design new therapeutic strategies aimed to improve durability of these vascular conduits. While large animals such as pigs are suitable for intervention studies, murine models have the greatest potential to gain more insight in the molecular mechanisms underlying AV access failure due to the availability of transgenic mice. In the present review, we describe several existing models of AV access failure and discuss the advantages and limitations of these models.
Collapse
|
23
|
Fitts MK, Pike DB, Anderson K, Shiu YT. Hemodynamic Shear Stress and Endothelial Dysfunction in Hemodialysis Access. ACTA ACUST UNITED AC 2014; 7:33-44. [PMID: 25309636 DOI: 10.2174/1874303x01407010033] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Surgically-created blood conduits used for chronic hemodialysis, including native arteriovenous fistulas (AVFs) and synthetic AV grafts (AVGs), are the lifeline for kidney failure patients. Unfortunately, each has its own limitations: AVFs often fail to mature to become useful for dialysis and AVGs often fail due to stenosis as a result of neointimal hyperplasia, which preferentially forms at the graft-venous anastomosis. No clinical therapies are currently available to significantly promote AVF maturation or prevent neointimal hyperplasia in AVGs. Central to devising strategies to solve these problems is a complete mechanistic understanding of the pathophysiological processes. The pathology of arteriovenous access problems is likely multi-factorial. This review focuses on the roles of fluid-wall shear stress (WSS) and endothelial cells (ECs). In arteriovenous access, shunting of arterial blood flow directly into the vein drastically alters the hemodynamics in the vein. These hemodynamic changes are likely major contributors to non-maturation of an AVF vein and/or formation of neointimal hyperplasia at the venous anastomosis of an AVG. ECs separate blood from other vascular wall cells and also influence the phenotype of these other cells. In arteriovenous access, the responses of ECs to aberrant WSS may subsequently lead to AVF non-maturation and/or AVG stenosis. This review provides an overview of the methods for characterizing blood flow and calculating WSS in arteriovenous access and discusses EC responses to arteriovenous hemodynamics. This review also discusses the role of WSS in the pathology of arteriovenous access, as well as confounding factors that modulate the impact of WSS.
Collapse
Affiliation(s)
- Michelle K Fitts
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | - Daniel B Pike
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | - Kasey Anderson
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | - Yan-Ting Shiu
- Department of Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
24
|
Arteriovenous fistula stenosis in hemodialysis patients is characterized by an increased adventitial fibrosis. J Nephrol 2014; 27:555-62. [DOI: 10.1007/s40620-014-0050-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/07/2013] [Indexed: 02/06/2023]
|
25
|
Yang B, Janardhanan R, Vohra P, Greene EL, Bhattacharya S, Withers S, Roy B, Nieves Torres EC, Mandrekar J, Leof EB, Mukhopadhyay D, Misra S. Adventitial transduction of lentivirus-shRNA-VEGF-A in arteriovenous fistula reduces venous stenosis formation. Kidney Int 2013; 85:289-306. [PMID: 23924957 PMCID: PMC3844094 DOI: 10.1038/ki.2013.290] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 06/02/2013] [Accepted: 06/20/2013] [Indexed: 12/30/2022]
Abstract
Venous neointimal hyperplasia (VNH) causes hemodialysis vascular access failure. Here we tested whether VNH formation occurs in part due to local vessel hypoxia caused by surgical trauma to the vasa vasorum of the outflow vein at the time of arteriovenous fistula placement. Selective targeting of the adventitia of the outflow vein at the time of fistula creation was performed using a lentivirus-delivered small-hairpin RNA that inhibits VEGF-A expression. This resulted in significant increase in mean lumen vessel area, decreased media/adventitia area, and decreased constrictive remodeling with a significant increase in apoptosis (increase in caspase 3 activity and TUNEL staining) accompanied with decreased cellular proliferation and hypoxia-inducible factor-1α at the outflow vein. There was significant decrease in cells staining positive for α-smooth muscle actin (a myofibroblast marker) and VEGFR-1 expression with a decrease in MMP-2 and MMP-9. These results were confirmed in animals that were treated with humanized monoclonal antibody to VEGF-A with similar results. Since hypoxia can cause fibroblast to differentiate into myofibroblasts, we silenced VEGF-A gene expression in fibroblasts and subjected them to hypoxia. This decreased myofibroblast production, cellular proliferation, cell invasion, MMP-2 activity, and increased caspase 3. Thus, VEGF-A reduction at the time of arteriovenous fistula placement results in increased positive vascular remodeling.
Collapse
Affiliation(s)
- Binxia Yang
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rajiv Janardhanan
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Pawan Vohra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eddie L Greene
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Santanu Bhattacharya
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah Withers
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bhaskar Roy
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Evelyn C Nieves Torres
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Edward B Leof
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjay Misra
- 1] Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA [2] Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
26
|
Janardhanan R, Yang B, Vohra P, Roy B, Withers S, Bhattacharya S, Mandrekar J, Kong H, Leof EB, Mukhopadhyay D, Misra S. Simvastatin reduces venous stenosis formation in a murine hemodialysis vascular access model. Kidney Int 2013; 84:338-52. [PMID: 23636169 PMCID: PMC3731558 DOI: 10.1038/ki.2013.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 12/26/2022]
Abstract
Venous neointimal hyperplasia (VNH) is responsible for hemodialysis vascular access malfunction. Here we tested whether VNH formation occurs, in part, due to vascular endothelial growth factor-A (VEGF-A) and matrix metalloproteinase (MMP)-9 gene expression causing adventitial fibroblast transdifferentiation to myofibroblasts (α-SMA-positive cells). These cells have increased proliferative and migratory capacity leading to VNH formation. Simvastatin was used to decrease VEGF-A and MMP-9 gene expression in our murine arteriovenous fistula model created by connecting the right carotid artery to the ipsilateral jugular vein. Compared to fistulae of vehicle-treated mice, the fistulae of simvastatin-treated mice had the expected decrease in VEGF-A and MMP-9 but also showed a significant reduction in MMP-2 expression with a significant decrease in VNH and a significant increase in the mean lumen vessel area. There was an increase in terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, and decreases in α-SMA density, cell proliferation, and HIF-1α and hypoxyprobe staining. This latter result prompted us to determine the effect of simvastatin on fibroblasts subjected to hypoxia in vitro. Simvastatin-treated fibroblasts had a significant decrease in myofibroblast production along with decreased cellular proliferation, migration, and MMP-9 activity but increased caspase 3 activity suggesting increased apoptosis. Thus, simvastatin results in a significant reduction in VNH, with increase in mean lumen vessel area by decreasing VEGF-A/MMP-9 pathway activity.
Collapse
Affiliation(s)
- Rajiv Janardhanan
- Department of Radiology, Vascular and Interventional Radiology Translational Laboratory, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lim CS, Kiriakidis S, Sandison A, Paleolog EM, Davies AH. Hypoxia-inducible factor pathway and diseases of the vascular wall. J Vasc Surg 2013; 58:219-30. [PMID: 23643279 DOI: 10.1016/j.jvs.2013.02.240] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/11/2013] [Accepted: 02/16/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hypoxia may contribute to the pathogenesis of various diseases of the vascular wall. Hypoxia-inducible factors (HIFs) are nuclear transcriptional factors that regulate the transcription of genes that mediate cellular and tissue homeostatic responses to altered oxygenation. This article reviews the published literature on and discusses the role of the HIF pathway in diseases involving the vascular wall, including atherosclerosis, arterial aneurysms, pulmonary hypertension, vascular graft failure, chronic venous diseases, and vascular malformation. METHODS PubMed was searched with the terms "hypoxia-inducible factor" or "HIF" and "atherosclerosis," "carotid stenosis," "aneurysm," "pulmonary artery hypertension," "varicose veins," "venous thrombosis," "graft thrombosis," and "vascular malformation." RESULTS In atherosclerotic plaque, HIF-1α was localized in macrophages and smooth muscle cells bordering the necrotic core. Increased HIF-1α may contribute to atherosclerosis through alteration of smooth muscle cell proliferation and migration, angiogenesis, and lipid metabolism. The expression of HIF-1α is significantly elevated in aortic aneurysms compared with nonaneurysmal arteries. In pulmonary hypertension, HIF-1α contributes to the increase of intracellular K(+) and Ca(2+) leading to vasoconstriction of pulmonary smooth muscle cells. Alteration of the HIF pathway may contribute to vascular graft failure through the formation of intimal hyperplasia. In chronic venous disease, HIF pathway dysregulation contributes to formation of varicose veins and venous thromboembolism. However, whether the activation of the HIF pathway is protective or destructive to the venous wall is unclear. Increased activation of the HIF pathway causes aberrant expression of angiogenic factors contributing to the formation and maintenance of vascular malformations. CONCLUSIONS Pathologic vascular wall remodelling of many common diseases of the blood vessels has been found to be associated with altered activity of the HIF pathway. Therefore, understanding the role of the HIF pathway in diseases of the vascular wall is important to identify novel therapeutic strategies in the management of these pathologies.
Collapse
Affiliation(s)
- Chung S Lim
- Academic Section of Vascular Surgery, Department of Surgery and Cancer, Faculty of Medicine, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Lata C, Green D, Wan J, Roy S, Santilli SM. The role of short-term oxygen administration in the prevention of intimal hyperplasia. J Vasc Surg 2013; 58:452-9. [PMID: 23380177 DOI: 10.1016/j.jvs.2012.11.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/30/2012] [Accepted: 11/03/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Intimal hyperplasia (IH) is the cause of most failed arteriovenous fistulas (AVFs), resulting in repeat procedures and leading to increased utilization of scarce health care resources. Our laboratory has previously demonstrated the role of supplemental oxygen in preventing IH and smooth muscle cell proliferation (SMCp) at an artery-to-graft anastomosis and at the deployment site of an intra-arterial stent. This study examines the effect of supplemental oxygen in preventing IH and SMCp in an AVF in a rabbit model. METHODS Ninety-six rabbits were randomized into four groups: group 1, control; group 2, no surgery with supplemental oxygen; group 3, AVF without supplemental oxygen; and group 4, AVF with supplemental oxygen. Rabbits receiving supplemental oxygen received 30% oxygen for up to 42 days. Specimens were collected in all groups at days 1, 3, 7, 21, 42, and 90. IH and SMCp were measured at the AVF site as well as in the artery and vein proximal and distal to the AVF. RESULTS IH was first noted at day 7 and significantly increased through day 90 at all locations in the nonoxygen-supplemented groups. No significant IH was noted in the oxygen-supplemented group at any location or any time point. SMCp was noted at day 3 through day 21 in the nonoxygen-supplemented group, whereas almost no SMCp was noted in the oxygen-supplemented group at any location or time point. CONCLUSIONS Without oxygen supplementation, SMCp begins at day 3 and is no longer noted at day 21 after creation of an AVF, whereas IH begins by day 7 and increases at least through day 90 after creation of an AVF. Forty-two days of 30% supplemental oxygen inhibits IH and SCMp after creation of an AVF. These data suggest a role for the short-term administration of low-dose O2 to prevent both IH and SMCp after creation of an AVF that may prolong patency and function.
Collapse
MESH Headings
- Animals
- Arteriovenous Shunt, Surgical/adverse effects
- Cell Proliferation
- Graft Occlusion, Vascular/etiology
- Graft Occlusion, Vascular/pathology
- Graft Occlusion, Vascular/physiopathology
- Graft Occlusion, Vascular/prevention & control
- Hyperplasia
- Iliac Artery/drug effects
- Iliac Artery/pathology
- Iliac Artery/physiopathology
- Iliac Artery/surgery
- Iliac Vein/drug effects
- Iliac Vein/pathology
- Iliac Vein/physiopathology
- Iliac Vein/surgery
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/surgery
- Neointima
- Oxygen Inhalation Therapy
- Rabbits
- Time Factors
- Vascular Patency
Collapse
Affiliation(s)
- Charu Lata
- Department of Surgery, University of Minnesota and Minneapolis Veterans Health Care System, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
29
|
Roy-Chaudhury P, Arnold P, Seigel J, Misra S. From basic biology to randomized clinical trial: the Beta Radiation for Arteriovenous Graft Outflow Stenosis (BRAVO II). Semin Dial 2012; 26:227-32. [PMID: 23067015 DOI: 10.1111/sdi.12000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The BRAVO-II study was a randomized controlled study of endovascular radiation therapy as compared to sham radiation therapy, following angioplasty of a thrombosed PRFE graft. The results did not show a benefit of endovascular radiation therapy, albeit in the context of an early termination of the study at less than 50% enrollment due to business reasons. Emphasis is laid on the fact that there may still be a role for radiation therapy in specific clinical settings associated with dialysis vascular access dysfunction.
Collapse
Affiliation(s)
- Prabir Roy-Chaudhury
- Dialysis Vascular Research Group, Division of Nephrology, University of Cincinnati and VA Medical Center, Cincinnati, Ohio, USA.
| | | | | | | |
Collapse
|
30
|
McCormick SM, Seil JT, Smith DS, Tan F, Loth F. Transitional Flow in a Cylindrical Flow Chamber for Studies at the Cellular Level. Cardiovasc Eng Technol 2012. [PMID: 23205152 PMCID: PMC3505516 DOI: 10.1007/s13239-012-0107-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fluid shear stress is an important regulator of vascular and endothelial cell (EC) functions. Its effect is dependent not only on magnitude but also on flow type. Although laminar flow predominates in the vasculature, transitional flow can occur and is thought to play a role in vascular diseases. While a great deal is known about the mechanisms and signaling cascades through which laminar shear stress regulates cells, little is known on how transitional shear stress regulates cells. To better understand the response of endothelial cells to transitional shear stress, a novel cylindrical flow chamber was designed to expose endothelial cells to a transitional flow environment similar to that found in vivo. The velocity profiles within the transitional flow chamber at Reynolds numbers 2200 and 3000 were measured using laser Doppler anemometry (LDA). At both Reynolds numbers, the velocity profiles are blunt (non-parabolic) with fluctuations larger than 5% of the velocity at the center of the pipe indicating the flows are transitional. Based on near wall velocity measurements and well established data for flow at these Reynolds numbers, the wall shear stress was estimated to be 3–4 and 5–6 dynes/cm2 for Reynolds number 2200 and 3000, respectively. In contrast to laminar shear stress, no cell alignment was observed under transitional shear stress at both Reynolds numbers. However, transitional shear stress at the higher Reynolds number caused cell elongation similar to that of laminar shear stress at 3 dynes/cm2. The fluctuating component of the wall shear stress may be responsible for these differences. The transitional flow chamber will facilitate cellular studies to identify the mechanisms through which transitional shear stress alters EC biology, which will assist in the development of vascular therapeutic treatments.
Collapse
Affiliation(s)
- Susan M. McCormick
- Section of Vascular Surgery and Endovascular Therapy, Department of Surgery, University of Chicago, MC 5028, 5841 S. Maryland Ave., Chicago, IL 60637 USA
| | - Justin T. Seil
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL USA
| | - David S. Smith
- Engineering Health and Sciences Division, College of Du Page, Chicago, IL USA
| | - Francis Tan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL USA
| | - Francis Loth
- Departments of Mechanical and Biomedical Engineering, University of Akron, Akron, OH USA
| |
Collapse
|
31
|
Roy-Chaudhury P, El-Khatib M, Campos-Naciff B, Wadehra D, Ramani K, Leesar M, Mistry M, Wang Y, Chan JS, Lee T, Munda R. Back to the Future: How Biology and Technology Could Change the Role of PTFE Grafts in Vascular Access Management. Semin Dial 2012; 25:495-504. [DOI: 10.1111/j.1525-139x.2012.01091.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Ahmed S, Roy-Chaudhury P. Radiation therapy for dialysis access stenosis: unfulfilled promise or false expectations. Semin Dial 2012; 25:464-9. [PMID: 22276964 DOI: 10.1111/j.1525-139x.2011.01006.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemodialysis vascular access dysfunction is a major cause of morbidity and hospitalization in the hemodialysis population at a cost of well over $1 billion per annum. Venous stenosis (due to venous neointimal hyperplasia [VNH]) is the most common cause of polytetrafluroethylene PTFE) dialysis access graft and arteriovenous fistula (AVF) failure. Despite the magnitude of the clinical problem, however, there are currently no effective therapies for this condition. We and others have previously demonstrated that VNH in PTFE dialysis grafts and AVF is composed of smooth muscle cells/myofibroblasts, endothelial cells within neointimal microvessels, and peri-graft macrophages. Radiation therapy blocks the proliferation and activation of all these cell types. The current review will dissect out the available in vitro, experimental, and clinical data on the use of radiation therapy for vascular stenosis in general, and for dialysis access dysfunction in particular. It is important to try and identify whether there is still a role for radiation therapy in this specific clinical setting. We believe that this is a critically important question to answer in view of the huge unmet clinical need that is currently associated with hemodialysis vascular access dysfunction.
Collapse
Affiliation(s)
- Syed Ahmed
- Dialysis Vascular Access Research Group, Division of Nephrology, University of Cincinnati, Cincinnati, Ohio 45267-0585, USA
| | | |
Collapse
|
33
|
Hsu YH, Chen YC, Chen TH, Sue YM, Cheng TH, Chen JR, Chen CH. Far-infrared therapy induces the nuclear translocation of PLZF which inhibits VEGF-induced proliferation in human umbilical vein endothelial cells. PLoS One 2012; 7:e30674. [PMID: 22292015 PMCID: PMC3264594 DOI: 10.1371/journal.pone.0030674] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/20/2011] [Indexed: 11/21/2022] Open
Abstract
Many studies suggest that far-infrared (FIR) therapy can reduce the frequency of some vascular-related diseases. The non-thermal effect of FIR was recently found to play a role in the long-term protective effect on vascular function, but its molecular mechanism is still unknown. In the present study, we evaluated the biological effect of FIR on vascular endothelial growth factor (VEGF)-induced proliferation in human umbilical vein endothelial cells (HUVECs). We found that FIR ranging 3∼10 µm significantly inhibited VEGF-induced proliferation in HUVECs. According to intensity and time course analyses, the inhibitory effect of FIR peaked at an effective intensity of 0.13 mW/cm(2) at 30 min. On the other hand, a thermal effect did not inhibit VEGF-induced proliferation in HUVECs. FIR exposure also inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinases in HUVECs. FIR exposure further induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO generation in VEGF-treated HUVECs. Both VEGF-induced NO and reactive oxygen species generation was involved in the inhibitory effect of FIR. Nitrotyrosine formation significantly increased in HUVECs treated with VEGF and FIR together. Inhibition of phosphoinositide 3-kinase (PI3K) by wortmannin abolished the FIR-induced phosphorylation of eNOS and Akt in HUVECs. FIR exposure upregulated the expression of PI3K p85 at the transcriptional level. We further found that FIR exposure induced the nuclear translocation of promyelocytic leukemia zinc finger protein (PLZF) in HUVECs. This induction was independent of a thermal effect. The small interfering RNA transfection of PLZF blocked FIR-increased PI3K levels and the inhibitory effect of FIR. These data suggest that FIR induces the nuclear translocation of PLZF which inhibits VEGF-induced proliferation in HUVECs.
Collapse
Affiliation(s)
- Yung-Ho Hsu
- Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yen-Cheng Chen
- Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Tso-Hsiao Chen
- Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Yuh-Mou Sue
- Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Jia-Rung Chen
- Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Cheng-Hsien Chen
- Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| |
Collapse
|
34
|
Manning E, Skartsis N, Orta AM, Velazquez OC, Liu ZJ, Asif A, Salman LH, Vazquez-Padron RI. A new arteriovenous fistula model to study the development of neointimal hyperplasia. J Vasc Res 2012; 49:123-31. [PMID: 22249138 DOI: 10.1159/000332327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 08/19/2011] [Indexed: 11/19/2022] Open
Abstract
This study describes an alternative arteriovenous fistula (AVF) model in the rat in which the animals develop significant neointimal hyperplasia (NIH) not only at the distal anastomotic site, but also throughout the fistula body. This aortocaval fistula was established by anastomosing the distal end of the renal vein to the abdominal aorta after unilateral nephrectomy. The increased hemodynamic stress resulting from exposing the renal vein to the arterial circulation induced venous NIH as early as 7 days after surgery. This experimental AVF was characterized by the early lack of endothelium, the accumulation of proliferating vascular smooth muscle cells and the neovascularization of the fistula adventitia. In summary, we have described an informative animal model to study the pathobiology of NIH in native AVF.
Collapse
Affiliation(s)
- Eddie Manning
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla. 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ryu JH, Lim SY, Ryu DR, Kang DH, Choi KB, Kim SJ. Association between vascular access failure and microparticles in hemodialysis patients. Kidney Res Clin Pract 2012; 31:38-47. [PMID: 26889407 PMCID: PMC4715093 DOI: 10.1016/j.krcp.2011.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/10/2011] [Accepted: 08/03/2011] [Indexed: 11/30/2022] Open
Abstract
Background Vascular access failure, a major cause of morbidity in hemodialysis (HD) patients, occurs mainly at stenotic endothelium following an acute thrombotic event. Microparticles (MPs) are fragments derived from injured cell membrane and are closely associated with coagulation and vascular inflammatory responses. Methods We investigated the relationship between levels of circulating MPs and vascular access patency in HD patients. A total of 82 HD patients and 28 healthy patients were enrolled. We used flow cytometry to measure endothelial MPs (EMPs) identified by CD31+CD42− or CD51+ and platelet-derived MPs (PMPs) identified by CD31+CD42+ in plasma samples of participants. Vascular access patency was defined as an interval from the time of access formation to the time of first access stenosis in each patient. MP counts were compared according to access patent duration. Results The levels of EMP (both CD31+CD42− and CD51+) and CD31+CD42+PMP were significantly higher in patients than in healthy participants. Levels of CD31+CD42−EMP and CD31+CD42+PMP showed a positive correlation. In non-diabetic HD patients, CD31+CD42−EMPs and CD31+CD42+PMPs were more elevated in the shorter access survival group (access survival <1 year) than in the longer survival group (access survival ≥ 4 years). Conclusion Elevated circulating EMP or PMP counts are influenced by end-stage renal disease and increased levels of EMP and PMP may be associated with vascular access failure in HD patients.
Collapse
Affiliation(s)
- Jung-Hwa Ryu
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Su-Young Lim
- Medical Research Institute, Ewha Womans University School of Medicine, Seoul, Korea
| | - Dong-Ryeol Ryu
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Kyu Bok Choi
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Seung-Jung Kim
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Ryu JH, Kim SJ. Clopidogrel effectively suppresses endothelial microparticle generation induced by indoxyl sulfate via inhibition of the p38 mitogen-activated protein kinase pathway. Blood Purif 2011; 32:186-94. [PMID: 21811066 DOI: 10.1159/000326297] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 02/18/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Endothelial microparticles (EMPs) are closely associated with vascular dysfunction. We investigated the effects of several drugs on EMP generation in human umbilical vein endothelial cells (HUVECs), and the involvement of the mitogen-activated protein kinase (MAPK) in EMP generation. METHODS CD31+CD42-EMP counts were measured by flow cytometry in supernatants of HUVECs incubated with indoxyl sulfate. The EMP responses to losartan, lovastatin, clopidogrel, and mesoglycan were examined. We then measured the effects of MAPK inhibitors on EMPs. RESULTS (1) Indoxyl sulfate induced EMP release in HUVECs in a dose-dependent fashion; (2) all drugs (10-50 μM) inhibited EMP generation induced by indoxyl sulfate, with clopidogrel being the most effective; (3) the p38 MAPK inhibitor suppressed EMP generation induced by indoxyl sulfate, and (4) clopidogrel significantly suppressed MAPK signaling activated by indoxyl sulfate, with the most potency on p38. CONCLUSION The p38 signaling involves EMP generation induced by indoxyl sulfate and is effectively suppressed by clopidogrel.
Collapse
Affiliation(s)
- Jung-Hwa Ryu
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | | |
Collapse
|
37
|
Abstract
Interleukin (IL)-17 (also known as IL-17A) is produced by activated T cells. It is a marker cytokine of the T(H₁₇) lineage. IL-17 production is induced in infections, autoimmune diseases and other inflammatory events. IL-17 is involved in host defense, but also inflammatory tissue destruction. Vascular disease, mostly in the chronic form of atherosclerosis, is a leading cause of death. While normal vessels harbor only few leukocytes, large numbers of both innate and adaptive immune cells accumulate during vascular inflammation, both in chronic forms such as atherosclerosis and in acute vasculitis. IL-17 has a role in chronic vascular inflammation of atherosclerosis and possibly hypertensive vascular changes. In acute inflammation, IL-17 is elevated and may be causally involved in the autoimmune vasculitides including vasculitis in systemic lupus erythematodes. Blood vessels are important targets in alloimmune graft rejection and a number of studies provide data on a role of IL-17 in this context. This brief review summarizes the currently available evidence for and putative mechanisms of action of IL-17 in mouse models of and human vascular disease.
Collapse
Affiliation(s)
- Sibylle von Vietinghoff
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | |
Collapse
|
38
|
Misra S, Fu AA, Misra KD, Shergill UM, Leof EB, Mukhopadhyay D. Hypoxia-induced phenotypic switch of fibroblasts to myofibroblasts through a matrix metalloproteinase 2/tissue inhibitor of metalloproteinase-mediated pathway: implications for venous neointimal hyperplasia in hemodialysis access. J Vasc Interv Radiol 2010; 21:896-902. [PMID: 20434368 DOI: 10.1016/j.jvir.2010.02.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 02/08/2010] [Accepted: 02/18/2010] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Hemodialysis grafts fail because of venous neointimal hyperplasia formation caused by adventitial fibroblasts that have become myofibroblasts (ie, alpha-smooth muscle actin [SMA]-positive cells) and migrate to the neointima. There is increased expression of hypoxia-inducible factor (HIF)-1alpha in venous neointimal hyperplasia formation in experimental animal models and clinical samples. It was hypothesized that, under hypoxic stimulus (ie, HIF-1alpha), fibroblasts will convert to myofibroblasts through a matrix metalloproteinase (MMP)-2-mediated pathway. MATERIALS AND METHODS Murine AKR-2B fibroblasts were made hypoxic or normoxic for 24, 48, and 72 hours. Protein expression for HIF-1alpha, alpha-SMA, MMP-2, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1, and TIMP-2 was performed to determine the kinetic changes of these proteins. Immunostaining for alpha-SMA, collagen, and fibronectin was performed. RESULTS At all time points, there was significantly increased expression of HIF-1alpha in the hypoxic fibroblasts compared with normoxic fibroblasts (P < .05). There was significantly increased expression of alpha-SMA at all time points, which peaked by 48 hours in hypoxic fibroblasts compared with normoxic fibroblasts (P < .05). There was a significant increase in the expression of active MMP-2 by 48-72 hours and a significant increase in TIMP-1 by 48-72 hours by hypoxic fibroblasts (P < .05). By 72 hours, there was significant increase in TIMP-2 expression (P < .05). Immunohistochemical analysis demonstrated increased expression of alpha-SMA, collagen, and fibronectin as the duration of hypoxia increased. CONCLUSIONS Under hypoxic conditions, fibroblasts will convert to myofibroblasts through an MMP-2-mediated pathway, which may provide insight into the mechanism of venous neointimal hyperplasia.
Collapse
Affiliation(s)
- Sanjay Misra
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells. Proc Natl Acad Sci U S A 2010; 107:15886-91. [PMID: 20798044 DOI: 10.1073/pnas.1001253107] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a newly discovered homolog of ACE whose actions oppose those of angiotensin II (AngII). However, the underlying mechanisms by which ACE2 effectively suppresses early atherosclerotic lesions remain poorly understood. Here, we show, both in vitro and in vivo, that ACE2 inhibited the development of early atherosclerotic lesions by suppressing the growth of vascular smooth muscle cells (VSMCs) and improving endothelial function. In a relatively large cohort animal study (66 rabbits), aortic segments transfected by Ad-ACE2 showed significantly attenuated fatty streak formation, neointimal macrophage infiltration, and alleviation of impaired endothelial function. Segments also showed decreased expression of monocyte chemoattractant protein 1, lectin-like oxidized low-density lipoprotein receptor 1, and proliferating cell nuclear antigen, which led to the delayed onset of atherosclerotic lesions. At the cellular level, ACE2 significantly modulated AngII-induced growth and migration in human umbilical vein endothelial cells and VSMCs. The antiatherosclerotic effect of ACE2 involved down-regulation of the ERK-p38, JAK-STAT, and AngII-ROS-NF-kappaB signaling pathways and up-regulation of the PI3K-Akt pathway. These findings revealed the molecular mechanisms of the antiatherosclerotic activity of ACE2 and suggested that modulation of ACE2 could offer a therapeutic option for treating atherosclerosis.
Collapse
|
40
|
Misra S, Shergill U, Yang B, Janardhanan R, Misra KD. Increased expression of HIF-1alpha, VEGF-A and its receptors, MMP-2, TIMP-1, and ADAMTS-1 at the venous stenosis of arteriovenous fistula in a mouse model with renal insufficiency. J Vasc Interv Radiol 2010; 21:1255-61. [PMID: 20598569 DOI: 10.1016/j.jvir.2010.02.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2001] [Revised: 01/31/2010] [Accepted: 02/11/2010] [Indexed: 11/28/2022] Open
Abstract
PURPOSE A mouse model of renal insufficiency with arteriovenous fistula (AVF) and venous stenosis was created. The authors tested the hypothesis that there is increased gene expression of hypoxia-inducible factor-1 alpha (HIF-1alpha); vascular endothelial growth factor-A (VEGF-A) and its receptors (VEGFR-1, -2); matrix metalloproteinase-2 (MMP-2), -9 (MMP-9); tissue inhibitor of metalloproteinase-1, -2 (TIMP-1, -2); and a disintegrin and metalloproteinase thrombospondin-1 (ADAMTS-1) at the venous stenosis. MATERIALS AND METHODS Nineteen male C57BL/6 mice underwent a left nephrectomy and a surgical occlusion of the right upper pole to induce renal function characterized in eight animals. Twenty eight days later, an AVF (n = 11) was created from the right carotid artery to ipsilateral jugular vein, and the mice were killed at day 7 (n = 4) and day 14 (n = 4). The outflow and control veins were removed for gene expression. Three mice were killed at day 28 for histologic analysis. RESULTS The mean serum blood urea nitrogen level remained significantly elevated for 8 weeks when compared with baseline (P < .05). By day seven, there was a significant increase in the expression of HIF-1alpha, VEGF-A, VEGFR-1, VEGFR-2, MMP-2, TIMP-1, and ADAMTS-1 at the outflow vein, with HIF-1alpha and TIMP-1 levels significantly elevated at day 14 (P < .05). By day 28, the venous stenosis was characterized by a thickened vein wall and neointima. CONCLUSIONS A mouse model of renal insufficiency with AVF was developed that had increased expression of HIF-1alpha, VEGF-A, VEGFR-1, VEGFR-2, MMP-2, TIMP-1, and ADAMTS-1 at the outflow vein with venous stenosis by day 28.
Collapse
Affiliation(s)
- Sanjay Misra
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Alfred 6460, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
41
|
Croatt AJ, Grande JP, Hernandez MC, Ackerman AW, Katusic ZS, Nath KA. Characterization of a model of an arteriovenous fistula in the rat: the effect of L-NAME. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2530-41. [PMID: 20363917 DOI: 10.2353/ajpath.2010.090649] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vascular access dysfunction contributes to the mortality of patients undergoing chronic hemodialysis. The present study analyzed the changes that evolve in a femoral arteriovenous fistula in the rat. The venous segment of this model exhibited, at 1 week, activation of pro-inflammatory transcription factors and up-regulation of pro-inflammatory, proliferative, procoagulant, and profibrotic genes; and at 4 weeks, the venous segment displayed neointimal hyperplasia, smooth muscle proliferation, and thrombus formation. These changes were accompanied by endothelial (e) nitric oxide synthase (NOS) and inducible (i) NOS up-regulation. The administration of NG-nitro-L-arginine methyl ester, an inhibitor of NOS activity, increased venous neointimal hyperplasia and pro-inflammatory gene expression (monocyte chemoattractant protein-1 and cytokine-induced neutrophil chemoattractant-1), increased systolic blood pressure, and decreased blood flow through the fistula. In another hypertensive model, the rat subtotal nephrectomy model, venous neointimal hyperplasia in the arteriovenous fistula was also exacerbated. We conclude that this arteriovenous fistula model recapitulates the salient features observed in dysfunctional, hemodialysis arteriovenous fistulas, and that venous neointimal hyperplasia is exacerbated when this model is superimposed in two different models of systemic hypertension. Since the uremic milieu contains increased amounts of asymmetric dimethylarginine, we speculate that such accumulation of this endogenous inhibitor of NOS, by virtue of its pressor or nitric oxide-depleting effects, or a combination thereof, may contribute to the limited longevity of arteriovenous fistulas used for hemodialysis.
Collapse
Affiliation(s)
- Anthony J Croatt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
42
|
Shavit L, Lifschitz M, Lee S, Slotki I. Use of enoxaparin to diminish the incidence of vascular access stenosis/thrombosis in chronic hemodialysis patients. Int Urol Nephrol 2010; 43:499-505. [DOI: 10.1007/s11255-009-9703-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/28/2009] [Indexed: 01/19/2023]
|
43
|
Carroll GT, McGloughlin TM, O’Keeffe LM, Callanan A, Walsh MT. Realistic Temporal Variations of Shear Stress Modulate MMP-2 and MCP-1 Expression in Arteriovenous Vascular Access. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0089-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
44
|
Yang B, Shergill U, Fu AA, Knudsen B, Misra S. The mouse arteriovenous fistula model. J Vasc Interv Radiol 2009; 20:946-50. [PMID: 19555889 DOI: 10.1016/j.jvir.2009.03.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/24/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022] Open
Abstract
PURPOSE The first aim of the present study was to create a mouse carotid artery-to-jugular vein arteriovenous (AV) fistula model. This model was used to test the hypothesis that there is increased gene expression of matrix metalloproteinase (MMP)-2 and MMP-9 at the venous stenosis. MATERIALS AND METHODS Ten male FVB/NJ mice underwent the creation of an AV fistula between the left carotid artery and ipsilateral jugular vein, with the contralateral vessels serving as controls. Two mice died 1 day after surgery and the other eight were euthanized at day 28. Reverse transcriptase polymerase chain reaction was performed in five mice, with the grafted vein and control vein tissue used to determine the expression of MMP-2, MMP-9, TIMP-1, and TIMP-2. Immunohistochemical analysis of the grafted vein and control vein was performed in three mice. RESULTS Venous stenosis formed at the outflow vein, characterized by a thickened neointima with cells staining positive for alpha-smooth muscle actin. There was increased expression of MMP-2, tissue inhibitor of metalloproteinase (TIMP)-1, and TIMP-2 by day 28 at the venous stenosis compared with control vein. CONCLUSIONS A mouse carotid artery-to-jugular vein AV fistula model was developed and used to demonstrate increased expression of several markers known to be associated with AV fistula stenosis. The model may be useful in investigating mechanisms responsible for AV fistula venous stenoses.
Collapse
Affiliation(s)
- Binxia Yang
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street Southwest, Alfred 6460, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
45
|
Misra S, Fu AA, Misra KD, Glockner JF, Mukhopadhyay D. Wall shear stress measurement using phase contrast magnetic resonance imaging with phase contrast magnetic resonance angiography in arteriovenous polytetrafluoroethylene grafts. Angiology 2009; 60:441-7. [PMID: 19625275 DOI: 10.1177/0003319709335908] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of the present article was to determine the changes in luminal vessel area, blood flow, and wall shear stress in both the inflow artery and the venous stenosis of arteriovenous polytetrafluoroethylene (PTFE) grafts. METHODS AND MATERIALS Polytetrafluoroethylene grafts were placed from the carotid artery to the ipsilateral jugular vein in 8 castrated juvenile male pigs. Contrast-enhanced magnetic resonance angiography (MRA) with cine phase-contrast magnetic resonance imaging (MRI) was performed 2 weeks after graft placement. RESULTS The mean wall shear stress at the venous stenosis was 4 times higher than the control vein, while the inflow artery was only 2-fold higher. By day 14, venous stenosis had formed, which was characterized by narrowed area and elevated blood flow. CONCLUSION By day 14, there is venous stenosis formation in porcine arteriovenous PTFE grafts with increased shear stress with decreased area when compared to control vein.
Collapse
Affiliation(s)
- Sanjay Misra
- Department of Radiology, Division of Vascular and Interventional Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Alfred 6460, Rochester, MN 55902, USA.
| | | | | | | | | |
Collapse
|
46
|
Proteomic profiling in early venous stenosis formation in a porcine model of hemodialysis graft. J Vasc Interv Radiol 2008; 20:241-51. [PMID: 19028119 DOI: 10.1016/j.jvir.2008.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To use proteomic analysis to identify up- and downregulated proteins in early venous stenosis formation in a porcine model of hemodialysis graft failure. MATERIALS AND METHODS Pigs had chronic renal insufficiency created by subtotal renal infarction caused by renal artery embolization. Arteriovenous polytetrafluoroethylene grafts were placed 28 days later and the animals were killed after a further 3 days (n = 4), 7 days (n = 4), or 14 days (n = 4). Proteomic analysis with isotope-coded affinity tags and multidimensional liquid chromatography followed by tandem mass spectrometry was performed on the venous stenosis and control vessels. Expression of proteins was further confirmed by Western blot analysis. The blood urea nitrogen (BUN) and creatinine levels were determined before renal artery embolization and at the time of graft placement. RESULTS At graft placement, mean BUN and creatinine levels were significantly higher than before embolization (P < .05). Six proteins were identified that were common to all four animals at the same time point. Five proteins (alpha-fetoprotein, fetuin A, macrophage migration inhibitory factor, pyruvate dehydrogenase E1 component, and lactoferrin) were upregulated and one protein (decorin) was downregulated. Expression of macrophage migration inhibitory factor, alpha-fetoprotein, and lactoferrin was further validated with Western blotting. By day 14, lactoferrin and fetuin-A expression were increased significantly in early venous stenosis formation. CONCLUSIONS Significantly increased expression of lactoferrin and fetuin-A were observed in early venous stenosis by day 14. Understanding the role of lactoferrin and fetuin-A in hemodialysis vascular access failure could help in improving outcomes in patients undergoing hemodialysis.
Collapse
|
47
|
Fetuin-A expression in early venous stenosis formation in a porcine model of hemodialysis graft failure. J Vasc Interv Radiol 2008; 19:1477-82. [PMID: 18693047 DOI: 10.1016/j.jvir.2008.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 06/01/2008] [Accepted: 06/03/2008] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Because fetuin-A is a cytokine with multifunctional effects on vascular smooth muscle cells and fibroblasts, the authors examined the course of its expression in early venous stenosis formation in a porcine model of chronic renal insufficiency with polytetrafluoroethylene (PTFE) arteriovenous (AV) hemodialysis grafts. MATERIALS AND METHODS Pigs had chronic renal insufficiency created by complete embolization of the left kidney and partial embolization of the right kidney. Twenty-eight days later, PTFE AV grafts were placed from the carotid artery to the ipsilateral jugular vein, and the animals were euthanized 3 days (n = 4), 7 days (n = 4), or 14 days (n = 4) later. Expression of fetuin-A was determined by Western blot analysis of the venous stenosis, control veins, and plasma. Immunohistochemical analysis of the venous stenosis and control vein was performed. Blood urea nitrogen (BUN) and creatinine were measured before embolization and at the time of graft placement. RESULTS The mean BUN and creatinine levels at graft placement were significantly higher than before embolization (P < .05). Severe venous neointimal hyperplasia occurred by day 14 and was characterized by primarily alpha-smooth muscle actin-positive cells. By day 14, fetuin-A levels had increased significantly (P < .05) at the venous stenosis compared with control veins and in the serum compared with measurements before embolization. CONCLUSIONS Significantly increased expression of fetuin-A was observed in early venous stenosis by day 14 and in serum compared with baseline measurements. Understanding the role of fetuin-A in venous neointimal hyperplasia could help in improving outcomes in patients undergoing hemodialysis.
Collapse
|
48
|
Expression of hypoxia inducible factor-1 alpha, macrophage migration inhibition factor, matrix metalloproteinase-2 and -9, and their inhibitors in hemodialysis grafts and arteriovenous fistulas. J Vasc Interv Radiol 2008; 19:252-9. [PMID: 18341958 DOI: 10.1016/j.jvir.2007.10.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/14/2007] [Accepted: 10/15/2007] [Indexed: 12/27/2022] Open
Abstract
PURPOSE It is well recognized that arteriovenous fistulas (AVFs) used for hemodialysis access have better primary patency rates with less restenosis than polytetrafluoroethylene (PTFE) grafts; however, the mechanism responsible for this is not known. Recent data suggest that hypoxia inducible factor-1 alpha (HIF-1 alpha) is associated with vascular restenosis, possibly through mechanisms that increase the production of macrophage migration inhibition factor (MIF), matrix metalloproteinase-2 (MMP-2) and MMP-9, and their inhibitors (tissue inhibitor of MMPs; TIMP). The present study tested the hypothesis that there are differences in the expression patterns of HIF-1 alpha, MIF, MMP-2, MMP-9, and TIMPs in specimens removed from patients with AVFs and PTFE grafts. MATERIALS AND METHODS Whole-vessel tissue samples were obtained from the vein distal to the vein-to-PTFE graft anastomosis and the proximal outflow vein (within 6 cm of the arteriovenous anastomosis) of AVFs from 17 patients who required a surgical revision for thrombosis and stenosis. Nonstenotic veins of four patients undergoing hemodialysis vascular access placement were used as controls. PTFE grafts (n = 6), AVFs (n = 6), and control samples (n = 3) underwent Western blot analysis and zymography. A separate group of five patients with PTFE hemodialysis grafts and one control subject were used for immunohistochemical analysis. RESULTS Specimens from patients with PTFE grafts had significantly higher expression of HIF-1 alpha (P = .03), MIF (P = .02), TIMP-1 (P = .0006), pro-MMP-2 (P = .02), and pro-MMP-9 (P = .046) compared with control veins. The expression of only pro-MMP-9 was significantly higher in AVFs compared with control samples (P = .004). There was a significant increase in the expression of MIF (P = .007) and TIMP-1 (P < .0001) in PTFE graft specimens compared with AVFs. MIF and TIMP-1 were localized to the adventitia of the vein distal to the vein-to-PTFE graft anastomosis. CONCLUSIONS There were major differences in the expression patterns of hypoxia (ie, HIF-1 alpha) and proteins regulated by HIF-1?, including MIF, pro-MMP-2, pro-MMP-9, and TIMP-1, in specimens removed from patients with PTFE grafts and AVFs. Understanding the role of HIF-1 alpha and these proteins in hemodialysis access failure can help improve outcomes.
Collapse
|
49
|
Increased expression of hypoxia-inducible factor-1 alpha in venous stenosis of arteriovenous polytetrafluoroethylene grafts in a chronic renal insufficiency porcine model. J Vasc Interv Radiol 2008; 19:260-5. [PMID: 18341959 DOI: 10.1016/j.jvir.2007.10.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 10/10/2007] [Accepted: 10/13/2007] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To create a more clinically relevant model of hemodialysis graft failure in pigs by creating chronic renal insufficiency before polytetrafluoroethylene (PTFE) hemodialysis graft placement and to determine the expression of hypoxia-inducible factor-1 alpha (HIF-1 alpha) at the vein-to-graft anastomosis (VGA). MATERIALS AND METHODS Chronic renal insufficiency was created in 14 castrated juvenile male pigs with complete embolization of the left renal artery and the partial embolization of the right renal artery by infusing 150-250-mum polyvinyl acrylide spherical particles. The efficacy of the embolization was assessed by determining the amount of polyvinyl acrylide particles used per kidney, the weight of the kidneys at sacrifice, and kidney function (blood urea nitrogen [BUN] and creatinine levels). Twenty-eight days after embolization, PTFE grafts were placed from the carotid artery to the ipsilateral jugular vein and removed 3, 7, and 14 days after graft placement. Western blot for HIF-1 alpha was performed in the VGA and control vessel. RESULTS The left kidney required two times the polyvinyl acrylide particles than did the right kidney (P < .05). The right kidney weighed nearly three times more than the left (P < .05). The BUN and creatinine levels at graft placement were significantly higher than those at baseline (P < .05). Four grafts were patent at day 3, four at day 7, and four at day 14. By day 7, the mean HIF-1 alpha at the VGA had increased significantly when compared with that of control vessels (P < .05). CONCLUSIONS A more clinically relevant porcine model of hemodialysis graft failure was created, and there was significantly increased expression of HIF-1 alpha by day 7 at the VGA.
Collapse
|
50
|
Misra S, Fu AA, Anderson JL, Sethi S, Glockner JF, McKusick MA, Bjarnason H, Woodrum DA, Mukhopadhyay D. The Rat Femoral Arteriovenous Fistula Model: Increased Expression of Matrix Metalloproteinase–2 and −9 at the Venous Stenosis. J Vasc Interv Radiol 2008; 19:587-94. [DOI: 10.1016/j.jvir.2008.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/05/2008] [Accepted: 01/09/2008] [Indexed: 10/22/2022] Open
|