1
|
Su H, Qiu Y, Luo J, Liu F, Yang J, Sui X, Zhang Y, Zhang Y, Zhou X. A high-radial strength, flex-resistant PLLA cuff tube for microvascular anastomosis. Int J Biol Macromol 2025; 312:144048. [PMID: 40348229 DOI: 10.1016/j.ijbiomac.2025.144048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/18/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Vascular anastomosis is the cornerstone in microsurgery. To assist complicated microvascular anastomosis with diameters <0.6 mm, nonsuture cuff technique was developed. However, cuff tube made from polyamide is not degradable, and their long-term retention in the body may cause stiffness in blood vessels at the anastomotic site. Thus, development of a biodegradable cuff tube would greatly enhance surgical operability and biosafety. In this study, biocompatible poly-L-lactic acid (PLLA) was chosen as the raw material to prepare cuff tube for nonsuture cuff technique. A customized 'C' shaped nozzle was adopted during the melting extruding process, and then was subjected to a water-cooling bath to maintain the round shape and inner diameter of 582 μm ± 20 μm. Its crystallization behavior was controlled through the cooling procedure to achieve the expected mechanical properties and operability. Its good hemocompatibility and genotoxicity were validated by various in vitro assays. Consequently, a PLLA cuff tube with a radial tensile strength of 12 MPa and an elastic modulus of 1685 MPa was prepared and used to assist establishing a rat orthotopic hindlimb transplantation model, which indicated that our PLLA cuff tube was suitable for microvascular anastomosis in organ or tissue repair.
Collapse
Affiliation(s)
- Hui Su
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yucheng Qiu
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jing Luo
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Fei Liu
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaofeng Sui
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yue Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yumei Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xianyu Zhou
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
2
|
Chen Z, Sang L, Liu Y, Bai Z. Sono-Piezo Dynamic Therapy: Utilizing Piezoelectric Materials as Sonosensitizer for Sonodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417439. [PMID: 39921482 PMCID: PMC11948011 DOI: 10.1002/advs.202417439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Indexed: 02/10/2025]
Abstract
Sonodynamic therapy (SDT) represents a promising approach for cancer treatment. Compared to photodynamic therapy, SDT offers increased penetration depth and higher precision. However, the practical application of SDT is constrained by the low water solubility, poor tumor specificity, and metabolic susceptibility of most sonosensitizers. Recent research has explored the use of piezoelectric materials as sonosensitizers in cancer treatment and inhibition of bacterial growth. Upon ultrasound excitation, the separation of electron-hole (e--h+) pairs occurs within the piezoelectric material. By improving the crystal structure of the material or incorporating other nanoparticles to prevent rapid recombination of e--h+ pairs, the piezoelectric material accumulates charges in the conduction band and valence band, achieving the redox potential of O2/·O2 -. This enables the piezoelectric material to serve as a sonosensitizer, leading to the concept termed Sono-Piezo Dynamic Therapy (SPDT). This review aims to define the concept of SPDT, provide a systematic overview of the historical development of piezoelectric materials in the application of SDT, and elucidate the potential mechanisms by which piezoelectric materials act as sonosensitizers. Importantly, various piezoelectric materials will be discussed in terms of their feasibility, advantages, and disadvantages as sonosensitizers, offering new perspectives for identifying potential sonosensitizers.
Collapse
Affiliation(s)
- Zhiguang Chen
- Department of UltrasoundThe First Hospital of China Medical UniversityNo. 155, Nanjing North Street, Heping DistrictShenyangLiaoning110001China
| | - Liang Sang
- Department of UltrasoundThe First Hospital of China Medical UniversityNo. 155, Nanjing North Street, Heping DistrictShenyangLiaoning110001China
| | - Yanjun Liu
- Department of UltrasoundThe First Hospital of China Medical UniversityNo. 155, Nanjing North Street, Heping DistrictShenyangLiaoning110001China
| | - ZhiQun Bai
- Department of UltrasoundThe First Hospital of China Medical UniversityNo. 155, Nanjing North Street, Heping DistrictShenyangLiaoning110001China
| |
Collapse
|
3
|
Raj B, Pg P, Sapa H, Shaji SS, T S, Kp AU, K K, Varma P. Small-Diameter Stents in Cardiovascular Applications. Chem Biodivers 2025:e202402008. [PMID: 39901606 DOI: 10.1002/cbdv.202402008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
Small-diameter stents play a crucial role in treating congenital heart diseases and variety of vascular conditions that have application from paediatrics to geriatric conditions, and a comprehensive review in this direction is lacking. This review explores historical development, design innovations, material compositions and mechanistic insights into functions of small-diameter stents, with a specific emphasis on biodegradable options. The necessity for stents that can adapt to growth of paediatric patients is discussed, highlighting the transition from durable polymers to bioresorbable materials such as polylactic acid (PLA) and magnesium alloys. While acknowledging the advancements made in reducing complications like restenosis and thrombosis, the review addresses the challenges that persist, including the need for improved biocompatibility and minimization of late adverse cardiac events associated with certain stent technologies. A detailed examination of various stent generations emphasizes the importance of drug release kinetics, structural integrity and potential for personalized interventions based on patient-specific factors. The exploration of novel therapeutic compounds, including nanoparticles and interfering RNA, illustrates the ongoing research aimed at enhancing stent efficacy. Ultimately, the review seeks to provide a comprehensive understanding of current landscape while identifying the gaps that future research must address to develop the ideal stent for diverse patient populations.
Collapse
Affiliation(s)
- Bhavana Raj
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Prajitha Pg
- Vel Tech Dr. Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, (Veltech Dr. RR and Dr. SR. Technical University), Avadi, Chennai, India
- Kerala Law Academy Law College, Kerala Law Academy Law College Peroorkada, Thiruvananthapuram, Kerala, India
| | - Harika Sapa
- Department of Cardiovascular and Thoracic Surgery (C.V.T.S.), School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Shona Sara Shaji
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Sreejith T
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Althaf Umar Kp
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Kaladhar K
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Praveen Varma
- Department of Cardiovascular and Thoracic Surgery (C.V.T.S.), School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
4
|
Zhang J, Chen Z, Rao L, He Y. Coronary bioresorbable metallic stents: Advancements and future perspectives. J Cardiol 2025; 85:69-78. [PMID: 39134302 DOI: 10.1016/j.jjcc.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 10/04/2024]
Abstract
Percutaneous coronary intervention is a critical treatment for coronary artery disease, particularly myocardial infarction, and is highly recommended in clinical guidelines. Traditional metallic stents, although initially effective, remain permanently in the artery and can lead to complications such as in-stent restenosis, late thrombosis, and chronic inflammation. Given the temporary need for stenting and the potential for late complications, bioresorbable stents have emerged as a promising alternative. However, bioresorbable polymeric stents have encountered significant clinical challenges due to their low mechanical strength and ductility, which increase the risks of thrombosis and local inflammation. Consequently, bioresorbable metals are being considered as a superior option for coronary stents. This review examines the progress of bioresorbable metallic stents from both preclinical and clinical perspectives, aiming to provide a theoretical foundation for future research. Iron, zinc, and magnesium are the primary materials used for these stents. Zinc-based bioresorbable stents have shown promise in preclinical studies due to their biocompatibility and vascular protective properties, although human clinical studies are still limited. Magnesium-based stents have demonstrated positive clinical outcomes, being fully absorbed within 12 months and showing low rates of late lumen loss and target lesion failure at 6- and 12-months post-implantation. Initial trials of iron-based stents have indicated favorable mid-term safety and efficacy, with complete absorption by the body within three years and consistent luminal expansion beyond six months post-implantation. Despite these advancements, further trials are needed for comprehensive validation. In conclusion, while current materials do not fully meet the ideal requirements, ongoing research should focus on developing bioresorbable stents with enhanced performance characteristics to better meet clinical needs.
Collapse
Affiliation(s)
- Junyan Zhang
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhongxiu Chen
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Li Rao
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yong He
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Yang Z, Yin G, Sun S, Xu P. Medical applications and prospects of polylactic acid materials. iScience 2024; 27:111512. [PMID: 39759018 PMCID: PMC11699620 DOI: 10.1016/j.isci.2024.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Polylactic acid (PLA) is a biodegradable and bio-based polymer that has gained significant attention as an environmentally friendly alternative to traditional petroleum-based plastics. In clinical treatment, biocompatible and non-toxic PLA materials enhance safety and reduce tissue reactions, while the biodegradability allows it to breakdown over time naturally, avoiding a second surgery. With the emergence of nanotechnology and three-dimensional (3D) printing, medical utilized-PLA has been produced with more structural and biological properties at both micro and macro scales for clinical therapy. This review summarizes current applications of the PLA-based biomaterials in drug delivery systems, orthopedic treatment, tissue regenerative engineering, and surgery and medical devices, providing viewpoints regarding the prospective medical utilization.
Collapse
Affiliation(s)
- Zhenqi Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shuyang Sun
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Asia Pacific Graduate Institute of Shanghai Jiao Tong University, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
6
|
Macaya-Ten F, Gonzalo N, Escaned J, Macaya C. [Inception of the coronary stent: a story of successful collaboration between innovative scientists and the biotechnology industry]. REC: INTERVENTIONAL CARDIOLOGY 2024; 6:321-331. [PMID: 40417337 PMCID: PMC12097343 DOI: 10.24875/recic.m24000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/26/2024] [Indexed: 05/27/2025] Open
Abstract
All cardiologists should delve into history to understand the current state of the art of their specialty. In the last century, the coronary stent was a pivotal achievement of research and biotechnological engineering. Since then, technology has advanced, and substantial improvements have been incorporated into this device, which has become the gold standard for treating coronary artery disease. This article summarizes the history of the coronary stent from its inception to the present day. The document reviews key historical and scientific milestones that have contributed to making percutaneous angioplasty a safe and highly effective procedure due to coronary stents. The evolution of the stent has been closely linked to the growth and maturation of interventional cardiology to date.
Collapse
Affiliation(s)
- Fernando Macaya-Ten
- Instituto Cardiovascular, Hospital Clínico San Carlos, Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Madrid, EspañaInstituto CardiovascularHospital Clínico San CarlosFundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC)MadridEspaña
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, EspañaFacultad de MedicinaUniversidad Complutense de MadridMadridEspaña
| | - Nieves Gonzalo
- Instituto Cardiovascular, Hospital Clínico San Carlos, Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Madrid, EspañaInstituto CardiovascularHospital Clínico San CarlosFundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC)MadridEspaña
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, EspañaFacultad de MedicinaUniversidad Complutense de MadridMadridEspaña
| | - Javier Escaned
- Instituto Cardiovascular, Hospital Clínico San Carlos, Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Madrid, EspañaInstituto CardiovascularHospital Clínico San CarlosFundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC)MadridEspaña
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, EspañaFacultad de MedicinaUniversidad Complutense de MadridMadridEspaña
| | - Carlos Macaya
- Instituto Cardiovascular, Hospital Clínico San Carlos, Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Madrid, EspañaInstituto CardiovascularHospital Clínico San CarlosFundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC)MadridEspaña
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, EspañaFacultad de MedicinaUniversidad Complutense de MadridMadridEspaña
| |
Collapse
|
7
|
McLennan DI, Maldonado JR, Foerster SR, Handler SS, LaDisa JF, Gudausky TM, Guillory RJ. Absorbable metal stents for vascular use in pediatric cardiology: progress and outlook. Front Cardiovasc Med 2024; 11:1410305. [PMID: 39165257 PMCID: PMC11334478 DOI: 10.3389/fcvm.2024.1410305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/19/2024] [Indexed: 08/22/2024] Open
Abstract
The past five years have yielded impressive advancements in fully absorbable metal stent technology. The desired ultimate ability for such devices to treat a vascular stenosis without long-term device-related complications or impeding future treatment continues to evoke excitement in clinicians and engineers alike. Nowhere is the need for fully absorbable metal stents greater than in patients experiencing vascular anomalies associated with congenital heart disease (CHD). Perhaps not surprisingly, commercially available absorbable metal stents have been implanted in pediatric cardiology patients with conditions ranging from pulmonary artery and vein stenosis to coarctation of the aorta and conduit/shunt reconstructions. Despite frequent short term procedural success, device performance has missed the mark with the commercially available devices not achieving degradation benchmarks for given applications. In this review we first provide a general overview detailing the theory of absorbable metal stents, and then review recent clinical use in CHD patients since the release of current-generation absorbable metal stents around 2019. We also discuss the challenges and our center's experience associated with the use of absorbable metal stents in this pediatric population. Lastly, we present potential directions for future engineering endeavors to mitigate existing challenges.
Collapse
Affiliation(s)
- Daniel I. McLennan
- Department of Pediatrics—Division of Cardiology, Herma Heart Institute, Children’s Wisconsin and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer R. Maldonado
- Department of Pediatrics—Division of Cardiology, Herma Heart Institute, Children’s Wisconsin and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Susan R. Foerster
- Department of Pediatrics—Division of Cardiology, Herma Heart Institute, Children’s Wisconsin and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Stephanie S. Handler
- Department of Pediatrics—Division of Cardiology, Herma Heart Institute, Children’s Wisconsin and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - John F. LaDisa
- Department of Pediatrics—Division of Cardiology, Herma Heart Institute, Children’s Wisconsin and the Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
- Departments of Physiology, and Medicine—Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Todd M. Gudausky
- Department of Pediatrics—Division of Cardiology, Herma Heart Institute, Children’s Wisconsin and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Roger J. Guillory
- Department of Pediatrics—Division of Cardiology, Herma Heart Institute, Children’s Wisconsin and the Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
8
|
Malone LP, Best SM, Cameron RE. Accelerated degradation testing impacts the degradation processes in 3D printed amorphous PLLA. Front Bioeng Biotechnol 2024; 12:1419654. [PMID: 39036561 PMCID: PMC11257899 DOI: 10.3389/fbioe.2024.1419654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Additive manufacturing and electrospinning are widely used to create degradable biomedical components. This work presents important new data showing that the temperature used in accelerated tests has a significant impact on the degradation process in amorphous 3D printed poly-l-lactic acid (PLLA) fibres. Samples (c. 100 μ m diameter) were degraded in a fluid environment at37 ° C,50 ° C and80 ° C over a period of 6 months. Our findings suggest that across all three fluid temperatures, the fibres underwent bulk homogeneous degradation. A three-stage degradation process was identified by measuring changes in fluid pH, PLLA fibre mass, molecular weight and polydispersity index. At37 ° C, the fibres remained amorphous but, at elevated temperatures, the PLLA crystallised. A short-term hydration study revealed a reduction in glass transition (Tg), allowing the fibres to crystallise, even at temperatures below the dry Tg. The findings suggest that degradation testing of amorphous PLLA fibres at elevated temperatures changes the degradation pathway which, in turn, affects the sample crystallinity and microstructure. The implication is that, although higher temperatures might be suitable for testing bulk material, predictive testing of the degradation of amorphous PLLA fibres (such as those produced via 3D printing or electrospinning) should be conducted at37 ° C.
Collapse
Affiliation(s)
- Luke P. Malone
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
9
|
He S, Wei L, Wang G, Pugno NM, Chen Q, Li Z. In Silico Evaluation of In Vivo Degradation Kinetics of Poly(Lactic Acid) Vascular Stent Devices. J Funct Biomater 2024; 15:135. [PMID: 38786646 PMCID: PMC11122488 DOI: 10.3390/jfb15050135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Biodegradable vascular stents (BVS) are deemed as great potential alternatives for overcoming the inherent limitations of permanent metallic stents in the treatment of coronary artery diseases. The current study aimed to comprehensively compare the mechanical behaviors of four poly(lactic acid) (PLA) BVS designs with varying geometries via numerical methods and to clarify the optimal BVS selection. Four PLA BVS (i.e., Absorb, DESolve, Igaki-Tamai, and Fantom) were first constructed. A degradation model was refined by simply including the fatigue effect induced by pulsatile blood pressures, and an explicit solver was employed to simulate the crimping and degradation behaviors of the four PLA BVS. The degradation dynamics here were characterized by four indices. The results indicated that the stent designs affected crimping and degradation behaviors. Compared to the other three stents, the DESolve stent had the greatest radial stiffness in the crimping simulation and the best diameter maintenance ability despite its faster degradation; moreover, the stent was considered to perform better according to a pilot scoring system. The current work provides a theoretical method for studying and understanding the degradation dynamics of the PLA BVS, and it could be helpful for the design of next-generation BVS.
Collapse
Affiliation(s)
- Shicheng He
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingling Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Nicola M. Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials and Mechanics, University of Trento, Via Mesiano 77, 38123 Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Qiang Chen
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhiyong Li
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
10
|
Zeng Y, Murali N, See CW, Liu J, Chi Y, Zhu D, Linsley CS, Wu BM, Li X. Effect of TiC Nanoparticles on a Zn-Al-Cu System for Biodegradable Cardiovascular Stent Applications. ACS Biomater Sci Eng 2024; 10:3438-3453. [PMID: 38564666 DOI: 10.1021/acsbiomaterials.3c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Despite being a weaker metal, zinc has become an increasingly popular candidate for biodegradable implant applications due to its suitable corrosion rate and biocompatibility. Previous studies have experimented with various alloy elements to improve the overall mechanical performance of pure Zn without compromising the corrosion performance and biocompatibility; however, the thermal stability of biodegradable Zn alloys has not been widely studied. In this study, TiC nanoparticles were introduced for the first time to a Zn-Al-Cu system. After hot rolling, TiC nanoparticles were uniformly distributed in the Zn matrix and effectively enabled phase control during solidification. The Zn-Cu phase, which was elongated and sharp in the reference alloy, became globular in the nanocomposite. The strength of the alloy, after introducing TiC nanoparticles, increased by 31% from 259.7 to 340.3 MPa, while its ductility remained high at 49.2% elongation to failure. Fatigue performance also improved greatly by adding TiC nanoparticles, increasing the fatigue limit by 47.6% from 44.7 to 66 MPa. Furthermore, TiC nanoparticles displayed excellent phase control capability during body-temperature aging. Without TiC restriction, Zn-Cu phases evolved into dendritic morphologies, and the Al-rich eutectic grew thicker at grain boundaries. However, both Zn-Cu and Al-rich eutectic phases remained relatively unchanged in shape and size in the nanocomposite. A combination of exceptional tensile properties, improved fatigue performance, better long-term stability with a suitable corrosion rate, and excellent biocompatibility makes this new Zn-Al-Cu-TiC material a promising candidate for biodegradable stents and other biodegradable applications.
Collapse
Affiliation(s)
- Yuxin Zeng
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Narayanan Murali
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Carmine Wang See
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jingke Liu
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Yitian Chi
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Chase S Linsley
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Benjamin M Wu
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- The ADA Forsyth Institute, Cambridge, Massachusetts 02140, United States
| | - Xiaochun Li
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Wiyono AV, Ardinal AP. Revolutionizing Cardiovascular Frontiers: A Dive Into Cutting-Edge Innovations in Coronary Stent Technology. Cardiol Rev 2024:00045415-990000000-00255. [PMID: 38709038 DOI: 10.1097/crd.0000000000000705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Plain balloon angioplasty was the initial method used to enlarge the intracoronary lumen size. However, it was linked to acute coronary closure due to early vessel recoil. This led to the invention of coronary stents, which offer mechanical support to open and maintain the vascular lumen. Nevertheless, the metallic scaffold introduced other issues, such as thrombosis and restenosis caused by neointimal proliferation. To address these concerns, polymers were employed to cover the scaffold, acting as drug reservoirs and regulators for controlled drug release. The use of polymers prevents direct contact between blood and metallic scaffolds. Drugs within the stent were incorporated to inhibit proliferation and expedite endothelialization in the healing process. Despite these advancements, adverse effects still arise due to the inflammatory reaction caused by the polymer material. Consequently, resorbable polymers and scaffolds were later discovered, but they have limitations and are not universally applicable. Various scaffold designs, thicknesses, materials, polymer components, and drugs have their own advantages and complications. Each stent generation has been designed to address the shortcomings of the preceding generation, yet new challenges continue to emerge. Conflicting data regarding the long-term safety and efficacy of coronary stents, especially in the extended follow-up, further complicates the assessment.
Collapse
Affiliation(s)
- Alice Valeria Wiyono
- Faculty of Life Sciences & Medicine, King's College London, School of Cardiovascular and Metabolic Medicine, London, United Kingdom
| | | |
Collapse
|
12
|
Van Daele L, Chausse V, Parmentier L, Brancart J, Pegueroles M, Van Vlierberghe S, Dubruel P. 3D-Printed Shape Memory Poly(alkylene terephthalate) Scaffolds as Cardiovascular Stents Revealing Enhanced Endothelialization. Adv Healthc Mater 2024; 13:e2303498. [PMID: 38329408 DOI: 10.1002/adhm.202303498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Cardiovascular diseases are the leading cause of death and current treatments such as stents still suffer from disadvantages. Balloon expansion causes damage to the arterial wall and limited and delayed endothelialization gives rise to restenosis and thrombosis. New more performing materials that circumvent these disadvantages are required to improve the success rate of interventions. To this end, the use of a novel polymer, poly(hexamethylene terephthalate), is investigated for this application. The synthesis to obtain polymers with high molar masses up to 126.5 kg mol-1 is optimized and a thorough chemical and thermal analysis is performed. The polymers are 3D-printed into personalized cardiovascular stents using the state-of-the-art solvent-cast direct-writing technique, the potential of these stents to expand using their shape memory behavior is established, and it is shown that the stents are more resistant to compression than the poly(l-lactide) benchmark. Furthermore, the polymer's hydrolytic stability is demonstrated in an accelerated degradation study of 6 months. Finally, the stents are subjected to an in vitro biological evaluation, revealing that the polymer is non-hemolytic and supports significant endothelialization after only 7 days, demonstrating the enormous potential of these polymers to serve cardiovascular applications.
Collapse
Affiliation(s)
- Lenny Van Daele
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Victor Chausse
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Barcelona, 08019, Spain
| | - Laurens Parmentier
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - Marta Pegueroles
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Barcelona, 08019, Spain
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| |
Collapse
|
13
|
Garg A, Alfatease A, Hani U, Haider N, Akbar MJ, Talath S, Angolkar M, Paramshetti S, Osmani RAM, Gundawar R. Drug eluting protein and polysaccharides-based biofunctionalized fabric textiles- pioneering a new frontier in tissue engineering: An extensive review. Int J Biol Macromol 2024; 268:131605. [PMID: 38641284 DOI: 10.1016/j.ijbiomac.2024.131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
In the ever-evolving landscape of tissue engineering, medicated biotextiles have emerged as a game-changer. These remarkable textiles have garnered significant attention for their ability to craft tissue scaffolds that closely mimic the properties of natural tissues. This comprehensive review delves into the realm of medicated protein and polysaccharide-based biotextiles, exploring a diverse array of fabric materials. We unravel the intricate web of fabrication methods, ranging from weft/warp knitting to plain/stain weaving and braiding, each lending its unique touch to the world of biotextiles creation. Fibre production techniques, such as melt spinning, wet/gel spinning, and multicomponent spinning, are demystified to shed light on the magic behind these ground-breaking textiles. The biotextiles thus crafted exhibit exceptional physical and chemical properties that hold immense promise in the field of tissue engineering (TE). Our review underscores the myriad applications of drug-eluting protein and polysaccharide-based textiles, including TE, tissue repair, regeneration, and wound healing. Additionally, we delve into commercially available products that harness the potential of medicated biotextiles, paving the way for a brighter future in healthcare and regenerative medicine. Step into the world of innovation with medicated biotextiles-where science meets the art of healing.
Collapse
Affiliation(s)
- Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Adel Alfatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad J Akbar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
14
|
Islam P, Schaly S, Abosalha AK, Boyajian J, Thareja R, Ahmad W, Shum-Tim D, Prakash S. Nanotechnology in development of next generation of stent and related medical devices: Current and future aspects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1941. [PMID: 38528392 DOI: 10.1002/wnan.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 03/27/2024]
Abstract
Coronary stents have saved millions of lives in the last three decades by treating atherosclerosis especially, by preventing plaque protrusion and subsequent aneurysms. They attenuate the vascular SMC proliferation and promote reconstruction of the endothelial bed to ensure superior revascularization. With the evolution of modern stent types, nanotechnology has become an integral part of stent technology. Nanocoating and nanosurface fabrication on metallic and polymeric stents have improved their drug loading capacity as well as other mechanical, physico-chemical, and biological properties. Nanofeatures can mimic the natural nanofeatures of vascular tissue and control drug-delivery. This review will highlight the role of nanotechnology in addressing the challenges of coronary stents and the recent advancements in the field of related medical devices. Different generations of stents carrying nanoparticle-based formulations like liposomes, lipid-polymer hybrid NPs, polymeric micelles, and dendrimers are discussed highlighting their roles in local drug delivery and anti-restenotic properties. Drug nanoparticles like Paclitaxel embedded in metal stents are discussed as a feature of first-generation drug-eluting stents. Customized precision stents ensure safe delivery of nanoparticle-mediated genes or concerted transfer of gene, drug, and/or bioactive molecules like antibodies, gene mimics via nanofabricated stents. Nanotechnology can aid such therapies for drug delivery successfully due to its easy scale-up possibilities. However, limitations of this technology such as their potential cytotoxic effects associated with nanoparticle delivery that can trigger hypersensitivity reactions have also been discussed in this review. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ahmed Kh Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Dominique Shum-Tim
- Division of Cardiac Surgery, Royal Victoria Hospital, McGill University Health Centre, McGill University, Faculty of Medicine and Health Sciences, Montreal, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Chen S, Du T, Zhang H, Qi J, Zhang Y, Mu Y, Qiao A. Methods for improving the properties of zinc for the application of biodegradable vascular stents. BIOMATERIALS ADVANCES 2024; 156:213693. [PMID: 37992478 DOI: 10.1016/j.bioadv.2023.213693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Biodegradable stents can support vessels for an extended period, maintain vascular patency, and progressively degrade once vascular remodeling is completed, thereby reducing the constraints of traditional metal stents. An ideal degradable stent must have good mechanical properties, degradation behavior, and biocompatibility. Zinc has become a new type of biodegradable metal after magnesium and iron, owing to its suitable degradation rate and good biocompatibility. However, zinc's poor strength and ductility make it unsuitable as a vascular stent material. Therefore, this paper reviewed the primary methods for improving the overall properties of zinc. By discussing the mechanical properties, degradation behavior, and biocompatibility of various improvement strategies, we found that alloying is the most common, simple, and effective method to improve mechanical properties. Deformation processing can further improve the mechanical properties by changing the microstructures of zinc alloys. Surface modification is an important means to improve the biological activity, blood compatibility and corrosion resistance of zinc alloys. Meanwhile, structural design can not only improve the mechanical properties of the vascular stents, but also endow the stents with special properties such as negative Poisson 's ratio. Manufacturing zinc alloys with excellent degradation properties, improved mechanical properties and strong biocompatibility and exploring their mechanism of interaction with the human body remain areas for future research.
Collapse
Affiliation(s)
- Shiliang Chen
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Tianming Du
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| | - Hanbing Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jing Qi
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yanping Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yongliang Mu
- School of Metallurgy, Northeastern University, Shenyang, China
| | - Aike Qiao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| |
Collapse
|
16
|
Zhang Y, Roux C, Rouchaud A, Meddahi-Pellé A, Gueguen V, Mangeney C, Sun F, Pavon-Djavid G, Luo Y. Recent advances in Fe-based bioresorbable stents: Materials design and biosafety. Bioact Mater 2024; 31:333-354. [PMID: 37663617 PMCID: PMC10474570 DOI: 10.1016/j.bioactmat.2023.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Fe-based materials have received more and more interests in recent years as candidates to fabricate bioresorbable stents due to their appropriate mechanical properties and biocompatibility. However, the low degradation rate of Fe is a serious limitation for such application. To overcome this critical issue, many efforts have been devoted to accelerate the corrosion rate of Fe-based stents, through the structural and surface modification of Fe matrix. As stents are implantable devices, the released corrosion products (Fe2+ ions) in vessels may alter the metabolism, by generating reactive oxygen species (ROS), which might in turn impact the biosafety of Fe-based stents. These considerations emphasize the importance of combining knowledge in both materials and biological science for the development of efficient and safe Fe-based stents, although there are still only limited numbers of reviews regarding this interdisciplinary field. This review aims to provide a concise overview of the main strategies developed so far to design Fe-based stents with accelerated degradation, highlighting the fundamental mechanisms of corrosion and the methods to study them as well as the reported approaches to accelerate the corrosion rates. These approaches will be divided into four main sections, focusing on (i) increased active surface areas, (ii) tailored microstructures, (iii) creation of galvanic reactions (by alloying, ion implantation or surface coating of noble metals) and (iv) decreased local pH induced by degradable surface organic layers. Recent advances in the evaluation of the in vitro biocompatibility of the final materials and ongoing in vivo tests are also provided.
Collapse
Affiliation(s)
- Yang Zhang
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Charles Roux
- Univ. Limoges, CNRS, XLIM, UMR 7252, Limoges, France
| | | | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Claire Mangeney
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
| | - Fan Sun
- PSL Université, Chimie Paris Tech, IRCP, CNRS UMR 8247, 11, Rue Pierre et Marie Curie, 75005, Paris, France
| | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Yun Luo
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
| |
Collapse
|
17
|
Yang Y, Yang Y, Hou Z, Wang T, Wu P, Shen L, Li P, Zhang K, Yang L, Sun S. Comprehensive review of materials, applications, and future innovations in biodegradable esophageal stents. Front Bioeng Biotechnol 2023; 11:1327517. [PMID: 38125305 PMCID: PMC10731276 DOI: 10.3389/fbioe.2023.1327517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Esophageal stricture (ES) results from benign and malignant conditions, such as uncontrolled gastroesophageal reflux disease (GERD) and esophageal neoplasms. Upper gastrointestinal endoscopy is the preferred diagnostic approach for ES and its underlying causes. Stent insertion using an endoscope is a prevalent method for alleviating or treating ES. Nevertheless, the widely used self-expandable metal stents (SEMS) and self-expandable plastic stents (SEPS) can result in complications such as migration and restenosis. Furthermore, they necessitate secondary extraction in cases of benign esophageal stricture (BES), rendering them unsatisfactory for clinical requirements. Over the past 3 decades, significant attention has been devoted to biodegradable materials, including synthetic polyester polymers and magnesium-based alloys, owing to their exceptional biocompatibility and biodegradability while addressing the challenges associated with recurring procedures after BES resolves. Novel esophageal stents have been developed and are undergoing experimental and clinical trials. Drug-eluting stents (DES) with drug-loading and drug-releasing capabilities are currently a research focal point, offering more efficient and precise ES treatments. Functional innovations have been investigated to optimize stent performance, including unidirectional drug-release and anti-migration features. Emerging manufacturing technologies such as three-dimensional (3D) printing and new biodegradable materials such as hydrogels have also contributed to the innovation of esophageal stents. The ultimate objective of the research and development of these materials is their clinical application in the treatment of ES and other benign conditions and the palliative treatment of malignant esophageal stricture (MES). This review aimed to offer a comprehensive overview of current biodegradable esophageal stent materials and their applications, highlight current research limitations and innovations, and offer insights into future development priorities and directions.
Collapse
Affiliation(s)
- Yaochen Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Li
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Das A, Mehrotra S, Kumar A. Advances in Fabrication Technologies for the Development of Next-Generation Cardiovascular Stents. J Funct Biomater 2023; 14:544. [PMID: 37998113 PMCID: PMC10672426 DOI: 10.3390/jfb14110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Coronary artery disease is the most prevalent cardiovascular disease, claiming millions of lives annually around the world. The current treatment includes surgically inserting a tubular construct, called a stent, inside arteries to restore blood flow. However, due to lack of patient-specific design, the commercial products cannot be used with different vessel anatomies. In this review, we have summarized the drawbacks in existing commercial metal stents which face problems of restenosis and inflammatory responses, owing to the development of neointimal hyperplasia. Further, we have highlighted the fabrication of stents using biodegradable polymers, which can circumvent most of the existing limitations. In this regard, we elaborated on the utilization of new fabrication methodologies based on additive manufacturing such as three-dimensional printing to design patient-specific stents. Finally, we have discussed the functionalization of these stent surfaces with suitable bioactive molecules which can prove to enhance their properties in preventing thrombosis and better healing of injured blood vessel lining.
Collapse
Affiliation(s)
- Ankita Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre of Excellence for Orthopaedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
19
|
Fan W, Tan J, Li L, Feng B, Shi W, Pei J, Yuan G, Yu B. Efficacy and Safety of Absorb Everolimus-Eluting Bioresorbable Vascular Scaffold in Peripheral Artery Disease: A Single-Arm Meta-Analysis. J Endovasc Ther 2023; 30:651-663. [PMID: 35510722 DOI: 10.1177/15266028221091899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE This study aimed to evaluate the benefits and risks of patients with peripheral artery disease (PAD) treated with Absorb everolimus-eluting bioresorbable vascular scaffold (BVS) by analyzing all the published studies on the clinical characteristics of patients with PAD. MATERIALS AND METHODS PubMed, Embase, and the Cochrane Library were searched for relevant studies. Efficacy, safety, and basic characteristics were analyzed. RESULTS Four studies were included in meta-analysis, including a total number of 155 patients with PAD. The pooled overall primary patency, freedom from target lesion revascularization (TLR), symptom resolution, and wound healing were 90%, 96%, 94%, and 86%, respectively. The pooled perioperative complication and all-cause mortality were 4% and 9%, respectively. Preoperative total occlusion was detected in 43 of 192 lesions (22%). The mean lesion length was 27.26 mm. In terms of comorbidities, the pooled percentage of hypertension, hyperlipidemia, diabetes mellitus, coronary artery disease, chronic kidney disease history, and smoking were 65%, 74%, 49%, 43%, 20%, and 57%, respectively. CONCLUSION Among these studies, hypertension, hyperlipidemia, and diabetes mellitus were the most common comorbidities in patients with PAD. The Absorb everolimus-eluting BVS was safe and showed the favorable clinical outcomes in both patency and TLR, especially in infrapopliteal disease with heavy calcification. The conclusions of this meta-analysis still needed to be verified by more relevant studies with more careful design, more rigorous execution, and larger sample size.
Collapse
Affiliation(s)
- Weijian Fan
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, P.R. China
| | - Jinyun Tan
- Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai, P.R. China
| | - Lingyu Li
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Boxuan Feng
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Weihao Shi
- Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, P.R. China
| |
Collapse
|
20
|
Wang Q, Huang S, Miao J, Chen Z, Li H, Zhao L, Yuan J. Impact of inverse unequal height strut structure on the functional performance of an additively manufactured cardiovascular stent. J Mech Behav Biomed Mater 2023; 146:106058. [PMID: 37549521 DOI: 10.1016/j.jmbbm.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Recently, additive manufacturing (AM) has been investigated as an innovative method to manufacture stents due to its capability in producing complex and customized structures. In this paper, the cardiovascular stents of M-type and N-type with inverse unequal height strut structure and N-type with equal height strut structure were designed and manufactured by Selective Laser Melting (SLM). Following surface polishing, balloon expansion, plane compression and three-point bending experiments were carried out to evaluate the mechanical performance of the stent. The stents designed with inverse unequal height strut structure showed higher radial support performance and lower radial recoil when compared to the stents with uniform design. This study proved the feasibility of SLM in rapid manufacturing of cardiovascular stents that can be used for performance evaluation in design stage.
Collapse
Affiliation(s)
- Qilong Wang
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Suxia Huang
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 056038, China; School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingtao Miao
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Zhiang Chen
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Hezong Li
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 056038, China; Key Laboratory of Intelligent Industrial Equipment Technology of Hebei Province, Handan, 056038, China.
| | - Liguo Zhao
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Jiangyong Yuan
- Affiliated Hospital of Hebei Engineering University, Handan, 056001, China
| |
Collapse
|
21
|
Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, Waite D, Glover K, Picco CJ, Korelidou A, Detamornrat U, Vora LK, Li L, Anjani QK, Donnelly RF, Domínguez-Robles J, Larrañeta E. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev 2023; 199:114950. [PMID: 37295560 DOI: 10.1016/j.addr.2023.114950] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Implantable drug delivery systems (IDDS) are an attractive alternative to conventional drug administration routes. Oral and injectable drug administration are the most common routes for drug delivery providing peaks of drug concentrations in blood after administration followed by concentration decay after a few hours. Therefore, constant drug administration is required to keep drug levels within the therapeutic window of the drug. Moreover, oral drug delivery presents alternative challenges due to drug degradation within the gastrointestinal tract or first pass metabolism. IDDS can be used to provide sustained drug delivery for prolonged periods of time. The use of this type of systems is especially interesting for the treatment of chronic conditions where patient adherence to conventional treatments can be challenging. These systems are normally used for systemic drug delivery. However, IDDS can be used for localised administration to maximise the amount of drug delivered within the active site while reducing systemic exposure. This review will cover current applications of IDDS focusing on the materials used to prepare this type of systems and the main therapeutic areas of application.
Collapse
Affiliation(s)
- Elizabeth Magill
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - David Waite
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
22
|
Karyappa R, Liu H, Zhu Q, Hashimoto M. Printability of Poly(lactic acid) Ink by Embedded 3D Printing via Immersion Precipitation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21575-21584. [PMID: 37078653 DOI: 10.1021/acsami.3c00149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Immersion precipitation three-dimensional printing (ip3DP) and freeform polymer precipitation (FPP) are unique and versatile methods of 3D printing to fabricate 3D structures based on nonsolvent-induced phase separation via direct ink writing (DIW). Immersion precipitation involves complex dynamics among solvents, nonsolvents, and dissolved polymers, and the printability of 3D models in these methods requires further understanding. To this end, we characterized these two methods of 3D printing using polylactide (PLA) dissolved in dichloromethane (7.5-30% w/w) as model inks. We analyzed the rheological properties of the solutions and the effect of printing parameters on solvent-nonsolvent diffusion to achieve printability. The PLA inks exhibited shear-thinning properties, and their viscosities varied over three orders of magnitude (10-1∼102 Pa·s). A processing map was presented to understand the ideal ranges of the concentration of PLA in inks and the nozzle diameter to ensure printability, and the fabrication of complex 3D structures was fabricated with adequate applied pressure and nozzle speed. The processing map also highlighted the advantages of embedded 3D printing over solvent-cast 3D printing based on solvent evaporation. Lastly, we demonstrated that the porosity of the interface and inner structure of the printed objects was readily tailored by the concentration of the PLA and the porogen added to the ink. The methods presented here offer new perspectives to fabricate micro-to-centimeter objects of thermoplastics with nanometer-scale inner pores and provide guidelines for successful embedded 3D printing based on immersion precipitation.
Collapse
Affiliation(s)
- Rahul Karyappa
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Hongfei Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Republic of Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Republic of Singapore
| |
Collapse
|
23
|
Ghafari C, Brassart N, Delmotte P, Brunner P, Dghoughi S, Carlier S. Bioresorbable Magnesium-Based Stent: Real-World Clinical Experience and Feasibility of Follow-Up by Coronary Computed Tomography: A New Window to Look at New Scaffolds. Biomedicines 2023; 11:biomedicines11041150. [PMID: 37189769 DOI: 10.3390/biomedicines11041150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
(1) Background: The diagnostic accuracy of coronary computed tomography angiography (CCTA) for coronary artery disease (CAD) has greatly improved so CCTA represents a transition in the care of patients suffering from CAD. Magnesium-based bioresorbable stents (Mg-BRS) secure acute percutaneous coronary intervention (PCI) results without leaving, in the long term, a metallic caging effect. The purpose of this real-world study was to assess clinical and CCTA medium- and long-term follow-up of all our patients with implanted Mg-BRS. (2) Methods: The patency of 52 Mg-BRS implanted in 44 patients with de novo lesions (24 of which had acute coronary syndrome (ACS)) was evaluated by CCTA and compared to quantitative coronary angiography (QCA) post-implantation. (3) Results: ten events including four deaths occurred during a median follow-up of 48 months. CCTA was interpretable and in-stent measurements were successful at follow-up without being hindered by the stent strut's "blooming effect". Minimal in-stent diameters on CCTA were found to be 1.03 ± 0.60 mm smaller than the expected diameter after post-dilation on implantation (p < 0.05), a difference not found in comparing CCTA and QCA. (4) Conclusions: CCTA follow-up of implanted Mg-BRS is fully interpretable and we confirm the long-term Mg-BRS safety profile.
Collapse
Affiliation(s)
- Chadi Ghafari
- Department of Cardiology, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
| | | | | | | | | | - Stéphane Carlier
- Department of Cardiology, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
- CHU Ambroise Paré, 7000 Mons, Belgium
| |
Collapse
|
24
|
Barungi S, Hernández-Camarero P, Moreno-Terribas G, Villalba-Montoro R, Marchal JA, López-Ruiz E, Perán M. Clinical implications of inflammation in atheroma formation and novel therapies in cardiovascular diseases. Front Cell Dev Biol 2023; 11:1148768. [PMID: 37009489 PMCID: PMC10061140 DOI: 10.3389/fcell.2023.1148768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading causes of death and disability in the world. Among all CVD, the most common is coronary artery disease (CAD). CAD results from the complications promoted by atherosclerosis, which is characterized by the accumulation of atherosclerotic plaques that limit and block the blood flow of the arteries involved in heart oxygenation. Atherosclerotic disease is usually treated by stents implantation and angioplasty, but these surgical interventions also favour thrombosis and restenosis which often lead to device failure. Hence, efficient and long-lasting therapeutic options that are easily accessible to patients are in high demand. Advanced technologies including nanotechnology or vascular tissue engineering may provide promising solutions for CVD. Moreover, advances in the understanding of the biological processes underlying atherosclerosis can lead to a significant improvement in the management of CVD and even to the development of novel efficient drugs. To note, over the last years, the observation that inflammation leads to atherosclerosis has gained interest providing a link between atheroma formation and oncogenesis. Here, we have focused on the description of the available therapy for atherosclerosis, including surgical treatment and experimental treatment, the mechanisms of atheroma formation, and possible novel therapeutic candidates such as the use of anti-inflammatory treatments to reduce CVD.
Collapse
Affiliation(s)
- Shivan Barungi
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | | | | | - Juan Antonio Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| | - Elena López-Ruiz
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| |
Collapse
|
25
|
Karanth D, Puleo D, Dawson D, Holliday LS, Sharab L. Characterization of 3D printed biodegradable piezoelectric scaffolds for bone regeneration. Clin Exp Dent Res 2023; 9:398-408. [PMID: 36779270 PMCID: PMC10098282 DOI: 10.1002/cre2.712] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/17/2022] [Accepted: 01/10/2023] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVE The primary objective of this research was to develop a poly(l-lactic acid) (PLLA) scaffold and evaluate critical characteristics essential for its biologic use as a craniofacial implant. MATERIALS AND METHODS PLLA scaffolds were designed and fabricated using fused deposition modeling technology. The surface morphology and microarchitecture were analyzed using scanning electron microscopy (SEM) and microCT, respectively. Crystallography, compressive modulus, and the piezoelectric potential generated upon mechanical distortion were characterized. Hydrolytic degradation was studied. MG63 osteoblast-like cell proliferation and morphology were assessed. RESULTS The porosity of the scaffolds was 73%, with an average pore size of 450 µm and an average scaffold fiber thickness of 130 µm. The average compressive modulus was 244 MPa, and the scaffolds generated an electric potential of 25 mV upon cyclic/repeated loading. The crystallinity reduced from 27.5% to 13.9% during the 3D printing process. The hydrolytic degradation was minimal during a 12-week period. Osteoblast-like cells did not attach to the uncoated scaffold but attached well after coating the scaffold with fibrinogen. They then proliferated to cover the complete scaffold by Day 14. CONCLUSION The PLLA scaffolds were designed and printed, proving the feasibility of 3D printing as a method of fabricating PLLA scaffolds. The elastic modulus was comparable to that of trabecular bone, and the piezoelectric properties of the PLLA were retained after 3D printing. The scaffolds were cytocompatible. These 3D-printed PLLA scaffolds showed promising properties akin to the natural bone, and they warrant further investigation for bone regeneration.
Collapse
Affiliation(s)
- Divakar Karanth
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - David Puleo
- Department of Biomedical Engineering, University of Mississippi, University Park, Mississippi, USA
| | - Dolph Dawson
- Department of Periodontics, University of Kentucky College of Dentistry, Lexington, Kentucky, USA
| | - L S Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Lina Sharab
- Department of Orthodontics, University of Kentucky College of Dentistry, Lexington, Kentucky, USA
| |
Collapse
|
26
|
Glushchenko L, Hubbard B, Sedush N, Shchepochkin V, Krupnin A, Sharafeev A. Novel Self-expanding Shape-Memory Bioresorbable Peripheral Stent Displays Efficient Delivery, Accelerated Resorption, and Low Luminal Loss in a Porcine Model. J Endovasc Ther 2023; 30:140-147. [PMID: 35142226 PMCID: PMC9896407 DOI: 10.1177/15266028221077001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE AND DESIGN The search for improved stenting technologies to treat peripheral artery disease is trending toward biodegradable self-expanding shape-memory stents that, as of now, still suffer from the acute trade-off between deliverability and luminal stability: Higher deliverability leads to lower lumen stability, vessel recoil, and stent breakage. This study was aimed at the development and testing of a self-expanding bioresorbable poly(l,l-lactide-co-ε-caprolactone) stent that was designed to produce confident self-expansion after efficient crimping, as well as quick bioresorption, and sufficient radial force. MATERIALS AND METHODS Bench tests were employed to measure shape-memory properties, radial force, and hydrolytic degradation of the stent. The porcine model was employed to study deliverability, lumen stability, biocompatibility, and stent integrity. A total of 32 stents were implanted in the iliac arteries of 16 pigs with 15 to 180 day follow-up periods. The stented vessels were studied by angiography and histological evaluation. RESULTS Recovery of the diameter of the stent due to shape-memory effect was equal to 90.6% after 6Fr crimping and storage in refrigeration for 1 week. Radial force measured after storage was equal to 0.7 N/mm. Technical success of implantation in pigs (after the delivery implemented by pusher) was 94%. At 180 days, no implanted stents were found to be fragmented: All of the devices remained at the site of implantation with no stent migration and all stents retained their luminal support. Only moderate inflammation and neoepithelialization were detected by histological assessment at 60, 90, 120, and 180 days. Lumen loss at 180 days was less than 25% of the vessel diameter. CONCLUSIONS The stent with the mechanical and chemical properties described in this study may present the optimal solution of the trade-off between deliverability and luminal stability that is necessary for designing the next generation stent for endovascular therapy of peripheral arterial disease.
Collapse
Affiliation(s)
- Leonid Glushchenko
- Resotech Medical Solutions Corp,
Delaware, USA,Leonid Glushchenko, Resotech Medical
Solutions Corp, 51 Little Falls Drive, the City of Wilmington, County of New
Castle, Delaware, 19808, USA.
| | - Brad Hubbard
- Pathway Preclinical Services,
Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
27
|
Seguchi M, Aytekin A, Lenz T, Nicol P, Alvarez-Covarrubias HA, Xhepa E, Klosterman GR, Beele A, Sabic E, Utsch L, Alyaqoob A, Joner M. Challenges of the newer generation of resorbable magnesium scaffolds: Lessons from failure mechanisms of the past generation. J Cardiol 2023; 81:179-188. [PMID: 36122642 DOI: 10.1016/j.jjcc.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
Bioresorbable scaffolds (BRS) were developed to overcome the obstacles of metallic stents, mostly related to sustained presence of metallic foreign body in the coronary vessel. Following earlier success of single-arm BRS studies, randomized controlled trials of Absorb bioresorbable vascular scaffold (Abbott Vascular, Santa Clara, CA, USA) showed poor long-term clinical outcomes, particularly in terms of scaffold thrombosis. BRS made from magnesium alloy provide a promising alternative in terms of radial force, strut thickness and, potentially lower thrombogenicity. A recent clinical study demonstrated that magnesium-based BRS seems to be promising with regards to the risk of scaffold thrombosis. In this review, our aim is to describe the issues that prevented Absorb BVS from achieving favorable outcomes, provide current status of existing BRS technologies and the challenges that newer generation BRSs need to overcome, and the results of clinical studies for commercially available magnesium-based BRS, which remain the only BRS actively studied in clinical practice.
Collapse
Affiliation(s)
- Masaru Seguchi
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany.
| | - Alp Aytekin
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Tobias Lenz
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Philipp Nicol
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Hector A Alvarez-Covarrubias
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany; Hospital de Cardiología, Centro Médico Nacional Siglo XXI, IMMS, Ciudad de México, México
| | - Erion Xhepa
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Grace R Klosterman
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Alicia Beele
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Emina Sabic
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Léa Utsch
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Aseel Alyaqoob
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Michael Joner
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany; Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
28
|
Wang Q, Liu Q, Gao J, He J, Zhang H, Ding J. Stereo Coverage and Overall Stiffness of Biomaterial Arrays Underly Parts of Topography Effects on Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6142-6155. [PMID: 36637977 DOI: 10.1021/acsami.2c19742] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface topography is a biophysical factor affecting cell behaviors, yet the underlying cues are still not clear. Herein, we hypothesized that stereo coverage and overall stiffness of biomaterial arrays on the scale of single cells underly parts of topography effects on cell adhesion. We fabricated a series of microarrays (micropillar, micropit, and microtube) of poly(l-lactic acid) (PLLA) using mold casting based on pre-designed templates. The characteristic sizes of array units were less than that of a single cell, and thus, each cell could sense the micropatterns with varied roughness. With human umbilical vein endothelial cells (HUVECs) as the model cell type, we examined spreading areas and cell viabilities on different surfaces. "Stereo coverage" was defined to quantify the actual cell spreading fraction on a topographic surface. Particularly in the case of high micropillars, cells were confirmed not able to touch the bottom and had to partially hang among the micropillars. Then, in our opinion, a cell sensed the overall stiffness combining the bulk stiffness of the raw material and the stiffness of the culture medium. Spreading area and single cell viability were correlated to coverage and topographic feature of the prepared microarrays in particular with the significantly protruded geometry feather. Cell traction forces exerted on micropillars were also discussed. These findings provide new insights into the surface modifications toward biomedical implants.
Collapse
Affiliation(s)
- Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| |
Collapse
|
29
|
Gregory DA, Fricker ATR, Mitrev P, Ray M, Asare E, Sim D, Larpnimitchai S, Zhang Z, Ma J, Tetali SSV, Roy I. Additive Manufacturing of Polyhydroxyalkanoate-Based Blends Using Fused Deposition Modelling for the Development of Biomedical Devices. J Funct Biomater 2023; 14:jfb14010040. [PMID: 36662087 PMCID: PMC9865795 DOI: 10.3390/jfb14010040] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
In the last few decades Additive Manufacturing has advanced and is becoming important for biomedical applications. In this study we look at a variety of biomedical devices including, bone implants, tooth implants, osteochondral tissue repair patches, general tissue repair patches, nerve guidance conduits (NGCs) and coronary artery stents to which fused deposition modelling (FDM) can be applied. We have proposed CAD designs for these devices and employed a cost-effective 3D printer to fabricate proof-of-concept prototypes. We highlight issues with current CAD design and slicing and suggest optimisations of more complex designs targeted towards biomedical applications. We demonstrate the ability to print patient specific implants from real CT scans and reconstruct missing structures by means of mirroring and mesh mixing. A blend of Polyhydroxyalkanoates (PHAs), a family of biocompatible and bioresorbable natural polymers and Poly(L-lactic acid) (PLLA), a known bioresorbable medical polymer is used. Our characterisation of the PLA/PHA filament suggest that its tensile properties might be useful to applications such as stents, NGCs, and bone scaffolds. In addition to this, the proof-of-concept work for other applications shows that FDM is very useful for a large variety of other soft tissue applications, however other more elastomeric MCL-PHAs need to be used.
Collapse
|
30
|
Patnaik A, Maddury J. Current Status of the Bioresorbable Scaffolds in Coronary Interventions. INDIAN JOURNAL OF CARDIOVASCULAR DISEASE IN WOMEN 2022. [DOI: 10.25259/ijcdw_11_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Amar Patnaik
- Department of Cardiology, Star Hospitals, Hyderabad, Telangana, India,
| | - Jyotsna Maddury
- Department of Cardiology, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana, India,
| |
Collapse
|
31
|
Zhao W, Yue C, Liu L, Liu Y, Leng J. Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application. Adv Healthc Mater 2022:e2201975. [PMID: 36520058 DOI: 10.1002/adhm.202201975] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/06/2022] [Indexed: 12/23/2022]
Abstract
As a kind of smart material, shape memory polymer (SMP) shows great application potential in the biomedical field. Compared with traditional metal-based medical devices, SMP-based devices have the following characteristics: 1) The adaptive ability allows the biomedical device to better match the surrounding tissue after being implanted into the body by minimally invasive implantation; 2) it has better biocompatibility and adjustable biodegradability; 3) mechanical properties can be regulated in a large range to better match with the surrounding tissue. 4D printing technology is a comprehensive technology based on smart materials and 3D printing, which has great application value in the biomedical field. 4D printing technology breaks through the technical bottleneck of personalized customization and provides a new opportunity for the further development of the biomedical field. This paper summarizes the application of SMP and 4D printing technology in the field of bone tissue scaffolds, tracheal scaffolds, and drug release, etc. Moreover, this paper analyzes the existing problems and prospects, hoping to provide a preliminary discussion and useful reference for the application of SMP in biomedical engineering.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Chengbin Yue
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Liwu Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), P.O. Box 3011, No. 2 Yikuang Street, Harbin, 150080, P. R. China
| |
Collapse
|
32
|
Huang J, Ge S, Luo D, Du R, Wang Y, Liu W, Wang G, Yin T. The endothelium permeability after bioresorbable scaffolds implantation caused by the heterogeneous expression of tight junction proteins. Mater Today Bio 2022; 16:100410. [PMID: 36090609 PMCID: PMC9450163 DOI: 10.1016/j.mtbio.2022.100410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
As one of the main functions of vascular endothelial cells, Vascular permeability is determined by four tight junction proteins (TJPs): Zonula Occludens-1 (ZO-1), Claudin-5, Occludin and Tricellulin. The barrier function of blood vessels will be reconstructed after they are damaged by endothelial mechanical injuries caused by vascular interventions. In this study, the effects of balloon expansion (transient mechanical injury) on four TJPs and vascular permeability were compared with those of poly-l-lactic acid bioresorbable scaffolds (BRSs) implantation (continuous mechanical stimulation). We found that BRSs do not affect vascular permeability, while the recovery of vascular barrier function was found to be only related to the mechanical injuries and repair of endothelium. Mechanical stimulation affects and accelerates the recovery process of vascular permeability with the heterogeneous expression levels of TJPs induced after BRSs implantation. Different TJPs have different sensitivity to different loyal mechanical stimuli. ZO-1 is more sensitive to shear stress and tension than to static pressure. Occludin is sensitive to static pressure and shear stress. Tricellulin is more sensitive to tension stretching. Compared with the other three TJPs, Claudin-5 can respond to mechanical stimulation, with relatively low sensitivity, though. This difference in sensitivity determines the heterogeneous expression of TJPs. Mechanical stimulation of different kinds and strengths can also cause different cell morphological changes and inflammatory reactions. As an important element affecting endothelial function, the mechanical factors emerging after BRSs implantation are worthy of more attention. The repair of vascular permeability is directly related to the type of vascular injuries, while BRSs implantation has little effect on vascular permeability. Transient and persistent mechanical stimulation is the main reason to influence the expression of TJPs. Heterogeneous expression of TJPs caused by their different sensitivity to the form of mechanical stimuli.
Collapse
|
33
|
Zong J, He Q, Liu Y, Qiu M, Wu J, Hu B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater Today Bio 2022; 16:100368. [PMID: 35937578 PMCID: PMC9352968 DOI: 10.1016/j.mtbio.2022.100368] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Implantation of cardiovascular stents is an important therapeutic method to treat coronary artery diseases. Bare-metal and drug-eluting stents show promising clinical outcomes, however, their permanent presence may create complications. In recent years, numerous preclinical and clinical trials have evaluated the properties of bioresorbable stents, including polymer and magnesium-based stents. Three-dimensional (3D) printed-shape-memory polymeric materials enable the self-deployment of stents and provide a novel approach for individualized treatment. Novel bioresorbable metallic stents such as iron- and zinc-based stents have also been investigated and refined. However, the development of novel bioresorbable stents accompanied by clinical translation remains time-consuming and challenging. This review comprehensively summarizes the development of bioresorbable stents based on their preclinical/clinical trials and highlights translational research as well as novel technologies for stents (e.g., bioresorbable electronic stents integrated with biosensors). These findings are expected to inspire the design of novel stents and optimization approaches to improve the efficacy of treatments for cardiovascular diseases. Bioresorbable stents can overcome the limitations of non-degradable stents. 3D printing of shape-memory polymeric stents can lead to better clinical outcomes. Advances in Mg-, Fe- and Zn-based stents from a translational perspective. Electronic stents integrated with biosensors can covey stent status in real time. Development in the assessment of stent performance in vivo.
Collapse
Affiliation(s)
- Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| |
Collapse
|
34
|
Xing Y, Liang G, Zhu T. Current status and outlook of potential applications of biodegradable materials in cerebral vascular stents. Neurosurg Rev 2022; 45:3565-3571. [PMID: 36214907 DOI: 10.1007/s10143-022-01876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/02/2022] [Accepted: 09/24/2022] [Indexed: 10/17/2022]
Abstract
The treatment of intracranial aneurysms (IAs) has undergone a very significant transformation in recent decades, and endovascular interventions have gradually become one of the most common treatments. As permanent metal stents can cause some degree of long-term damage to patients, biodegradable stent materials are emerging as attractive potential alternatives. By reviewing the current research status and the advantages and disadvantages of existing biodegradable biomaterials, this review expects to provide a valuable reference for subsequent research on biodegradable biomaterials.
Collapse
Affiliation(s)
- Yiqi Xing
- Dalian Medical University, Graduate School, 9 West section of Lushun South Road, Dalian, 116044, China
- General Hospital of Northern Theater Command, Institute of Neuroscience, Shenyang, Liaoning, China
| | - Guobiao Liang
- General Hospital of Northern Theater Command, Institute of Neuroscience, Shenyang, Liaoning, China
| | - Tingzhun Zhu
- General Hospital of Northern Theater Command, Institute of Neuroscience, Shenyang, Liaoning, China.
| |
Collapse
|
35
|
Dual stimulus response mechanical properties tunable biodegradable and biocompatible PLCL/PPDO based shape memory composites. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Lukas Sadowski P, Singh A, Daniel Luo H, Michael Majcher J, Urosev I, Rothenbroker M, Kapishon V, Niels Smeets M, Hoare T. Functionalized poly(oligo(lactic acid) methacrylate)-block-poly(oligo(ethylene glycol) methacrylate) block copolymers: A synthetically tunable analogue to PLA-PEG for fabricating drug-loaded nanoparticles. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Supercritical Impregnation of Mango Leaf Extract into PLA 3D-Printed Devices and Evaluation of Their Biocompatibility with Endothelial Cell Cultures. Polymers (Basel) 2022; 14:polym14132706. [PMID: 35808751 PMCID: PMC9269286 DOI: 10.3390/polym14132706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
The addition of natural substances with pharmacoactive properties to polymeric biomedical devices would provide beneficial regarding the assimilation of these endoprostheses when implanted into a patient’s body. The added drug would facilitate endothelization by regulating the inflammatory processes that such interventions entail, preventing contamination hazards and favoring the angiogenesis or formation of blood vessels in the tissue. The present work used mango leaf extract (MLE) obtained through pressurized ethanol for this purpose. Polylactic acid (PLA) in the form of filaments or 3D-printed disks was impregnated by means of supercritical technology with MLE for the culture essays. The release kinetics has been studied and the polymer matrices have been examined by scanning electron microscopy (SEM). The impregnated devices were subjected to in vitro culture of colony-forming endothelial cells. The influence of the different impregnation conditions used for the production of the MLE impregnated polymeric devices on the development of the cell culture was determined by fluorescence microscopy. The best results were obtained from the calcein cultures on 35 °C MLE impregnated into 3D-printed polymer disks.
Collapse
|
38
|
Grivet-Brancot A, Boffito M, Ciardelli G. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications. Macromol Biosci 2022; 22:e2200039. [PMID: 35488769 DOI: 10.1002/mabi.202200039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Indexed: 11/09/2022]
Abstract
In recent years, 3D printing techniques experienced a growing interest in several sectors, including the biomedical one. Their main advantage resides in the possibility to obtain complex and personalized structures in a cost-effective way impossible to achieve with traditional production methods. This is especially true for Fused Deposition Modeling (FDM), one of the most diffused 3D printing methods. The easy customization of the final products' geometry, composition and physico-chemical properties is particularly interesting for the increasingly personalized approach adopted in modern medicine. Thermoplastic polymers are the preferred choice for FDM applications, and a wide selection of biocompatible and biodegradable materials is available to this aim. Moreover, these polymers can also be easily modified before and after printing to better suit the body environment and the mechanical properties of biological tissues. This review focuses on the use of thermoplastic aliphatic polyesters for FDM applications in the biomedical field. In detail, the use of poly(ε-caprolactone), poly(lactic acid), poly(lactic-co-glycolic acid), poly(hydroxyalkanoate)s, thermo-plastic poly(ester urethane)s and their blends has been thoroughly surveyed, with particular attention to their main features, applicability and workability. The state-of-the-art is presented and current challenges in integrating the additive manufacturing technology in the medical practice are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy.,Department of Surgical Sciences, Università di Torino, Corso Dogliotti 14, Torino, 10126, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| |
Collapse
|
39
|
Truong HAT, Mothe SR, Min JL, Tan HM, Jackson AW, Nguyen DT, Ye DKJ, Kanaujia P, Thoniyot P, Dang TT. Immuno-modulatory Effects of Microparticles Formulated from Degradable Polystyrene Analogue. Macromol Biosci 2022; 22:e2100472. [PMID: 35261175 DOI: 10.1002/mabi.202100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/11/2022]
Abstract
Environmental accumulation of non-degradable polystyrene (PS) microparticles from plastic waste poses potential adverse impact on marine life and human health. Herein, we formulate microparticles from a degradable polystyrene analogue (dePS) and comprehensively evaluate their immuno-modulatory characteristics. Both dePS copolymer and microparticles are chemically degradable under accelerated hydrolytic condition. In vitro studies show that dePS microparticles are non-toxic to three immortalized cell lines. While dePS microparticles do not induce macrophage polarization in vitro, dePS microparticles induce in vivo upregulation of both pro-inflammatory and anti-inflammatory biomarkers in immuno-competent mice, suggesting the coexistence of mixed phenotypes of macrophages in the host immune response to these microparticles. Interestingly, on day 7 post-injection, dePS microparticles induce a lower level of several immuno-modulatory biomarkers (MMPs activity, TNF-α, and arginase activity) compared to that of reference poly(lactic-co-glycolic acid) PLGA microparticles. Remarkably, compared to PS microparticles, dePS microparticles exhibit similar in vitro and in vivo bioactivity while acquiring additional chemical degradability. Overall, our research gains new insights into the host immune response to dePS microparticles and suggests that this degradable polystyrene analogue might be explored as an alternative material choice for biomedical and consumer care applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hong Anh T Truong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Avenue, Singapore, 637459, Singapore
| | - Srinivasa Reddy Mothe
- Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (ASTAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Jaclyn Lee Min
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Avenue, Singapore, 637459, Singapore
| | - Hui Min Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Avenue, Singapore, 637459, Singapore
| | - Alexander W Jackson
- Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (ASTAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Dang Tri Nguyen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Avenue, Singapore, 637459, Singapore
| | - Danson Kwong Jia Ye
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Avenue, Singapore, 637459, Singapore
| | - Parijat Kanaujia
- Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (ASTAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Praveen Thoniyot
- Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (ASTAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Tram Thuy Dang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Avenue, Singapore, 637459, Singapore
| |
Collapse
|
40
|
Pisani S, Genta I, Modena T, Dorati R, Benazzo M, Conti B. Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers. Int J Mol Sci 2022; 23:1290. [PMID: 35163218 PMCID: PMC8835830 DOI: 10.3390/ijms23031290] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/28/2022] Open
Abstract
Shape-Memory Polymers (SMPs) are considered a kind of smart material able to modify size, shape, stiffness and strain in response to different external (heat, electric and magnetic field, water or light) stimuli including the physiologic ones such as pH, body temperature and ions concentration. The ability of SMPs is to memorize their original shape before triggered exposure and after deformation, in the absence of the stimulus, and to recover their original shape without any help. SMPs nanofibers (SMPNs) have been increasingly investigated for biomedical applications due to nanofiber's favorable properties such as high surface area per volume unit, high porosity, small diameter, low density, desirable fiber orientation and nanoarchitecture mimicking native Extra Cellular Matrix (ECM). This review focuses on the main properties of SMPs, their classification and shape-memory effects. Moreover, advantages in the use of SMPNs and different biomedical application fields are reported and discussed.
Collapse
Affiliation(s)
- Silvia Pisani
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy or (S.P.); (M.B.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| | - Marco Benazzo
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy or (S.P.); (M.B.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| |
Collapse
|
41
|
Jiang W, Zhao W, Zhou T, Wang L, Qiu T. A Review on Manufacturing and Post-Processing Technology of Vascular Stents. MICROMACHINES 2022; 13:mi13010140. [PMID: 35056305 PMCID: PMC8778070 DOI: 10.3390/mi13010140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023]
Abstract
Percutaneous coronary intervention (PCI) with stent implantation is one of the most effective treatments for cardiovascular diseases (CVDs). However, there are still many complications after stent implantation. As a medical device with a complex structure and small size, the manufacture and post-processing technology greatly impact the mechanical and medical performances of stents. In this paper, the development history, material, manufacturing method, and post-processing technology of vascular stents are introduced. In particular, this paper focuses on the existing manufacturing technology and post-processing technology of vascular stents and the impact of these technologies on stent performance is described and discussed. Moreover, the future development of vascular stent manufacturing technology will be prospected and proposed.
Collapse
Affiliation(s)
- Wei Jiang
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (W.J.); (L.W.)
| | - Wenxiang Zhao
- Key Laboratory of Fundamental Science for Advanced Machining, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (W.Z.); (T.Z.)
| | - Tianfeng Zhou
- Key Laboratory of Fundamental Science for Advanced Machining, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (W.Z.); (T.Z.)
| | - Liang Wang
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (W.J.); (L.W.)
| | - Tianyang Qiu
- Key Laboratory of Fundamental Science for Advanced Machining, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (W.Z.); (T.Z.)
- Correspondence:
| |
Collapse
|
42
|
Fallesen CO, Antonsen L, Maehara A, Noori M, Hougaard M, Hansen KN, Ellert J, Ahlehoff O, Veien KT, Lassen JF, Junker AB, Hansen HS, Jensen LO. Optical coherence tomography versus angiography guided magnesium bioresorbable scaffold implantation in NSTEMI patients. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2021; 40:101-110. [PMID: 34949544 DOI: 10.1016/j.carrev.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The purpose of a bioresorbable scaffold (BRS) is to provide radial support during coronary healing. In this study, coronary artery healing after optical coherence tomography (OCT)- versus angiography-guided magnesium BRS (MBRS) implantation in patients with non-ST-segment-elevation myocardial infarction (NSTEMI) is compared. METHODS 75 patients were randomized 1:1 to OCT- or angiography-guided implantation of a MBRS with protocolled pre- and post-dilation. In the OCT-guided group, prespecified criteria indicating additional intervention were (1) scaffold under-expansion, (2) strut malapposition, (3) edge dissection, and (4) residual stenosis at distal or proximal reference segments. The primary endpoint was OCT-derived healing stage at 6 months. RESULTS At 6 months, there was no difference in average healing stage between OCT- and angiography-guided intervention (4.6 [interquartile range (IQR): 4.5-4.7] versus 4.5 [IQR: 4.3-4.7]; p = 0.54). The MBRSs were completely resolved in 77.0% [IQR: 68.5-85.5] versus 76.5% [IQR: 67.9-85.5]; (p = 0.97). Minimal lumen area (MLA) was reduced at 6 months in both the OCT- (32.3%; p < 0.01) and the angiography-guided group (21.3%; p < 0.01), however OCT-guided implantation was associated with a greater reduction of total lumen volume (-27.1 ± 32.5 mm3 versus -5.0 ± 32.9 mm3; p < 0.01) and MLA (-2.3 ± 1.6 mm2 vs. -1.4 ± 1.4 mm2; p = 0.02). CONCLUSIONS In NSTEMI patients, OCT-guidance with protocolled pre- and post-dilation of MBRS implantation showed similar healing pattern at 6 months compared to angiography-guidance alone. CLINICAL TRIAL REGISTRATION The Coronary Artery Healing Process after Optical Coherence Tomography Guided Percutaneous Coronary Intervention with Magmaris Bioresorbable Scaffold in Patients with Non-ST-Segment-Elevation Myocardial Infarction: (HONEST) trial is registered with ClinicalTrials.gov, NCT03016624.
Collapse
Affiliation(s)
| | - Lisbeth Antonsen
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Akiko Maehara
- Cardiovascular Research Foundation, NY Presbyterian Hospital, New York, USA
| | - Manijeh Noori
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Mikkel Hougaard
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | | | - Julia Ellert
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Ole Ahlehoff
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | | | | | - Anders Bo Junker
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | | | | |
Collapse
|
43
|
Mahmud Z, Nasrin A, Hassan M, Gomes VG. 3D‐printed polymer
nanocomposites with carbon quantum dots for enhanced properties and in situ monitoring of cardiovascular stents. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zaheri Mahmud
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales Australia
| | - Aklima Nasrin
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales Australia
| | - Mahbub Hassan
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales Australia
| | - Vincent G. Gomes
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales Australia
- Nano Institute The University of Sydney Sydney New South Wales Australia
| |
Collapse
|
44
|
D’Alessandro D, Ricci C, Milazzo M, Strangis G, Forli F, Buda G, Petrini M, Berrettini S, Uddin MJ, Danti S, Parchi P. Piezoelectric Signals in Vascularized Bone Regeneration. Biomolecules 2021; 11:1731. [PMID: 34827729 PMCID: PMC8615512 DOI: 10.3390/biom11111731] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
The demand for bone substitutes is increasing in Western countries. Bone graft substitutes aim to provide reconstructive surgeons with off-the-shelf alternatives to the natural bone taken from humans or animal species. Under the tissue engineering paradigm, biomaterial scaffolds can be designed by incorporating bone stem cells to decrease the disadvantages of traditional tissue grafts. However, the effective clinical application of tissue-engineered bone is limited by insufficient neovascularization. As bone is a highly vascularized tissue, new strategies to promote both osteogenesis and vasculogenesis within the scaffolds need to be considered for a successful regeneration. It has been demonstrated that bone and blood vases are piezoelectric, namely, electric signals are locally produced upon mechanical stimulation of these tissues. The specific effects of electric charge generation on different cells are not fully understood, but a substantial amount of evidence has suggested their functional and physiological roles. This review summarizes the special contribution of piezoelectricity as a stimulatory signal for bone and vascular tissue regeneration, including osteogenesis, angiogenesis, vascular repair, and tissue engineering, by considering different stem cell sources entailed with osteogenic and angiogenic potential, aimed at collecting the key findings that may enable the development of successful vascularized bone replacements useful in orthopedic and otologic surgery.
Collapse
Affiliation(s)
- Delfo D’Alessandro
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Claudio Ricci
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.R.); (P.P.)
| | - Mario Milazzo
- The BioRobotics Intitute, Scuola Superiore Sant’Anna, 56024 Pontedera, Italy;
| | - Giovanna Strangis
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Francesca Forli
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Gabriele Buda
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.B.); (M.P.)
| | - Mario Petrini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.B.); (M.P.)
| | - Stefano Berrettini
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Mohammed Jasim Uddin
- Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Serena Danti
- The BioRobotics Intitute, Scuola Superiore Sant’Anna, 56024 Pontedera, Italy;
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Paolo Parchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.R.); (P.P.)
| |
Collapse
|
45
|
Vascular Response Toward an Absorbable Sirolimus-eluting Polymeric Scaffold for Vascular Application in a Model of Normal Porcine Carotid Arteries. Ann Vasc Surg 2021; 79:324-334. [PMID: 34648854 DOI: 10.1016/j.avsg.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fully absorbable polymeric scaffolds, as a potential alternative to permanent metallic stents, are entering the clinical field. The aim of this study is to assess the in vivo biocompatibility of a novel Sirolimus-eluting (SIR) absorbable scaffold based on poly(L-lactide) (PLLA) and poly(4-hydroxybutyrate) (P4HB) for interventional application. METHODS Absorbable PLLA/P4HB scaffolds either loaded with SIR coating or unloaded scaffolds were implanted interventionally into common carotid arteries of 14 female. Bare metal stents (BMS) served as control. Peroral dual anti-platelet therapy was administered throughout the study. Stented common carotid arteries segments were explanted after 4 weeks, and assessed histomorphometrically. RESULTS The absorbable scaffolds showed a decreased residual lumen area and higher stenosis after 4 weeks (PLLA/P4HB: 6.56 ± 0.41 mm² and 37.56 ± 4.67%; SIR-PLLA/P4HB: 6.90 ± 0.58 mm² and 35.60 ± 3.15%) as compared to BMS (15.29 ± 1.86 mm² and 7.65 ± 2.27%). Incorporation of SIR reduced the significantly higher inflammation of unloaded scaffolds however not to a level compared to bare metal stent (PLLA/P4HB: 1.20 ± 0.19; SIR-PLLA/P4HB: 0.96 ± 0.24; BMS: 0.54 ± 0.12). In contrast, the BMS showed a slightly elevated vascular injury score (0.74 ± 0.15), as compared to the PLLA/P4HB (0.54 ± 0.20) and the SIR-PLLA/P4HB (0.48 ± 0.15) groups. CONCLUSION In this preclinical model, the new absorbable polymeric (SIR-) scaffolds showed similar technical feasability and safety for vascular application as the permanent metal stents. The higher inflammatory propensity of the polymeric scaffolds was slightly reduced by SIR-coating. A smaller strut thickness of the polymeric scaffolds might have been a positive effect on tissue ingrowth between the struts and needs to be addressed in future work on the stent design.
Collapse
|
46
|
Hasanpur E, Ghazavizadeh A, Sadeghi A, Haboussi M. In vitro corrosion study of PLA/Mg composites for cardiovascular stent applications. J Mech Behav Biomed Mater 2021; 124:104768. [PMID: 34607299 DOI: 10.1016/j.jmbbm.2021.104768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
The present investigation explores the impact of Mg volume fraction (VMg) as a controlling parameter of degradation rate in designing patient-specific cardiovascular stents made of PLA/Mg composites. For the purpose of this research, PLA/Mg composite plates containing 1, 3, 5, and 10% VMg are produced by melt blending and hot press molding. Characterization techniques such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) are employed to study the microstructure of PLA/Mg composites. For in vitro corrosion tests, stent prototypes and composite samples are immersed in baths of simulated body fluid (SBF). According to in vitro corrosion tests, increasing VMg increases the corrosion rate of the composites by accelerating the corrosion of the particles and the crystalline zones surrounding them. In addition, a 2% raise in the Mg content (from 1% to 3%), increases the overall Mg weight loss by more than 4 times. Composite samples and prototype stents containing more than 5% VMg exhibit cracking and brittleness after 7 days of immersion in SBF. In light of the compression tests results and also the failures and cracks observed during immersions, the upper limit of Mg content for PLA/Mg stent fabrication purposes is found to be below 3%.
Collapse
Affiliation(s)
- Ehsan Hasanpur
- School of Mechanical Engineering, College of Engineering, University of Tehran, Iran
| | - Akbar Ghazavizadeh
- Université Sorbonne Paris Nord, CNRS, UPR3407, LSPM, Sorbonne Paris Cité, avenue Jean-Baptiste Clément, 93430, Villetaneuse, France.
| | - Alireza Sadeghi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Iran
| | - Mohamed Haboussi
- Université Sorbonne Paris Nord, CNRS, UPR3407, LSPM, Sorbonne Paris Cité, avenue Jean-Baptiste Clément, 93430, Villetaneuse, France
| |
Collapse
|
47
|
Wang L, Jiao L, Pang S, Yan P, Wang X, Qiu T. The Development of Design and Manufacture Techniques for Bioresorbable Coronary Artery Stents. MICROMACHINES 2021; 12:mi12080990. [PMID: 34442612 PMCID: PMC8398368 DOI: 10.3390/mi12080990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 02/02/2023]
Abstract
Coronary artery disease (CAD) is the leading killer of humans worldwide. Bioresorbable polymeric stents have attracted a great deal of interest because they can treat CAD without producing long-term complications. Bioresorbable polymeric stents (BMSs) have undergone a sustainable revolution in terms of material processing, mechanical performance, biodegradability and manufacture techniques. Biodegradable polymers and copolymers have been widely studied as potential material candidates for bioresorbable stents. It is a great challenge to find a reasonable balance between the mechanical properties and degradation behavior of bioresorbable polymeric stents. Surface modification and drug-coating methods are generally used to improve biocompatibility and drug loading performance, which are decisive factors for the safety and efficacy of bioresorbable stents. Traditional stent manufacture techniques include etching, micro-electro discharge machining, electroforming, die-casting and laser cutting. The rapid development of 3D printing has brought continuous innovation and the wide application of biodegradable materials, which provides a novel technique for the additive manufacture of bioresorbable stents. This review aims to describe the problems regarding and the achievements of biodegradable stents from their birth to the present and discuss potential difficulties and challenges in the future.
Collapse
Affiliation(s)
- Liang Wang
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.W.); (S.P.)
| | - Li Jiao
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
| | - Shuoshuo Pang
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.W.); (S.P.)
| | - Pei Yan
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
| | - Xibin Wang
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
| | - Tianyang Qiu
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
- Correspondence:
| |
Collapse
|
48
|
van Geuns RJ. Thin-Strut BRS: Revival of a Failed Revolution? JACC Cardiovasc Interv 2021; 14:1463-1465. [PMID: 34238556 DOI: 10.1016/j.jcin.2021.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 10/20/2022]
|
49
|
Pan C, Han Y, Lu J. Structural Design of Vascular Stents: A Review. MICROMACHINES 2021; 12:mi12070770. [PMID: 34210099 PMCID: PMC8305143 DOI: 10.3390/mi12070770] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022]
Abstract
Percutaneous Coronary Intervention (PCI) is currently the most conventional and effective method for clinically treating cardiovascular diseases such as atherosclerosis. Stent implantation, as one of the ways of PCI in the treatment of coronary artery diseases, has become a hot spot in scientific research with more and more patients suffering from cardiovascular diseases. However, vascular stent implanted into vessels of patients often causes complications such as In-Stent Restenosis (ISR). The vascular stent is one of the sophisticated medical devices, a reasonable structure of stent can effectively reduce the complications. In this paper, we introduce the evolution, performance evaluation standards, delivery and deployment, and manufacturing methods of vascular stents. Based on a large number of literature pieces, this paper focuses on designing structures of vascular stents in terms of “bridge (or link)” type, representative volume unit (RVE)/representative unit cell (RUC), and patient-specific stent. Finally, this paper gives an outlook on the future development of designing vascular stents.
Collapse
Affiliation(s)
- Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No. 5, Haidian District, Beijing 100081, China; (C.P.); (J.L.)
- Institute of Engineering Medicine, Beijing Institute of Technology, Zhongguancun South Street No. 5, Haidian District, Beijing 100081, China
| | - Yafeng Han
- School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No. 5, Haidian District, Beijing 100081, China; (C.P.); (J.L.)
- Correspondence:
| | - Jiping Lu
- School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No. 5, Haidian District, Beijing 100081, China; (C.P.); (J.L.)
| |
Collapse
|
50
|
Lee J, Kang SK. Principles for Controlling the Shape Recovery and Degradation Behavior of Biodegradable Shape-Memory Polymers in Biomedical Applications. MICROMACHINES 2021; 12:757. [PMID: 34199036 PMCID: PMC8305960 DOI: 10.3390/mi12070757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Polymers with the shape memory effect possess tremendous potential for application in diverse fields, including aerospace, textiles, robotics, and biomedicine, because of their mechanical properties (softness and flexibility) and chemical tunability. Biodegradable shape memory polymers (BSMPs) have unique benefits of long-term biocompatibility and formation of zero-waste byproducts as the final degradable products are resorbed or absorbed via metabolism or enzyme digestion processes. In addition to their application toward the prevention of biofilm formation or internal tissue damage caused by permanent implant materials and the subsequent need for secondary surgery, which causes secondary infections and complications, BSMPs have been highlighted for minimally invasive medical applications. The properties of BSMPs, including high tunability, thermomechanical properties, shape memory performance, and degradation rate, can be achieved by controlling the combination and content of the comonomer and crystallinity. In addition, the biodegradable chemistry and kinetics of BSMPs, which can be controlled by combining several biodegradable polymers with different hydrolysis chemistry products, such as anhydrides, esters, and carbonates, strongly affect the hydrolytic activity and erosion property. A wide range of applications including self-expending stents, wound closure, drug release systems, and tissue repair, suggests that the BSMPs can be applied as actuators on the basis of their shape recovery and degradation ability.
Collapse
Affiliation(s)
- Junsang Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|