1
|
Maslov LN, Popov SV, Naryzhnaya NV, Mukhomedzyanov AV, Kurbatov BK, Derkachev IA, Boshchenko AA, Prasad NR, Ma H, Zhang Y, Sufianova GZ, Fu F, Pei JM. K ATP channels are regulators of programmed cell death and targets for the creation of novel drugs against ischemia/reperfusion cardiac injury. Fundam Clin Pharmacol 2023; 37:1020-1049. [PMID: 37218378 DOI: 10.1111/fcp.12924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/29/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND The use of percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI) is associated with a mortality rate of 5%-7%. It is clear that there is an urgent need to develop new drugs that can effectively prevent cardiac reperfusion injury. ATP-sensitive K+ (KATP ) channel openers (KCOs) can be classified as such drugs. RESULTS KCOs prevent irreversible ischemia and reperfusion injury of the heart. KATP channel opening promotes inhibition of apoptosis, necroptosis, pyroptosis, and stimulation of autophagy. KCOs prevent the development of cardiac adverse remodeling and improve cardiac contractility in reperfusion. KCOs exhibit antiarrhythmic properties and prevent the appearance of the no-reflow phenomenon in animals with coronary artery occlusion and reperfusion. Diabetes mellitus and a cholesterol-enriched diet abolish the cardioprotective effect of KCOs. Nicorandil, a KCO, attenuates major adverse cardiovascular event and the no-reflow phenomenon, reduces infarct size, and decreases the incidence of ventricular arrhythmias in patients with acute myocardial infarction. CONCLUSION The cardioprotective effect of KCOs is mediated by the opening of mitochondrial KATP (mitoKATP ) and sarcolemmal KATP (sarcKATP ) channels, triggered free radicals' production, and kinase activation.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alexandr V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Galina Z Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jian-Ming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Ma H, Zhang Y, Prasad NR, Singh N, Fu F, Pei JM, Sarybaev A, Sydykov A. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J Biomed Res 2022:1-25. [PMID: 37183617 PMCID: PMC10387748 DOI: 10.7555/jbr.36.20220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The acute myocardial infarction (AMI) and sudden cardiac death (SCD), both associated with acute cardiac ischemia, are one of the leading causes of adult death in economically developed countries. The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine. A study on the cardiovascular effects of chronic hypoxia (CH) may contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, vasoprotective, and antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms, which can lead to future development of the cardioprotective effect of CH. A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.
Collapse
|
3
|
Chen L, Shi D, Guo M. The roles of PKC-δ and PKC-ε in myocardial ischemia/reperfusion injury. Pharmacol Res 2021; 170:105716. [PMID: 34102229 DOI: 10.1016/j.phrs.2021.105716] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/01/2021] [Accepted: 06/03/2021] [Indexed: 01/14/2023]
Abstract
Ischemia and reperfusion (I/R) cause a reduction in arterial blood supply to tissues, followed by the restoration of perfusion and consequent reoxygenation. The reestablishment of blood flow triggers further damage to ischemic tissue through reactive oxygen species (ROS) accumulation, interference with cellular ion homeostasis, opening of mitochondrial permeability transition pores (mPTPs) and promotion of cell death (apoptosis or necrosis). PKC-δ and PKC-ε, belonging to a family of serine/threonine kinases, have been demonstrated to play important roles during I/R injury in cardiovascular diseases. However, the cardioprotective mechanisms of PKC-δ and PKC-ε in I/R injury have not been elaborated until now. This article discusses the roles of PKC-δ and PKC-ε during myocardial I/R in redox regulation (redox signaling and oxidative stress), cell death (apoptosis and necrosis), Ca2+ overload, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Li Chen
- Peking University Traditional Chinese Medicine Clinical Medical School (Xi yuan), Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ming Guo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Gevi F, Campolo F, Naro F, Zolla L. The cardioprotective effect of sildenafil is mediated by the activation of malate dehydrogenase and an increase in the malate-aspartate shuttle in cardiomyocytes. Biochem Pharmacol 2017; 127:60-70. [DOI: 10.1016/j.bcp.2016.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
|
5
|
Anttila V, Haapanen H, Yannopoulos F, Herajärvi J, Anttila T, Juvonen T. Review of remote ischemic preconditioning: from laboratory studies to clinical trials. SCAND CARDIOVASC J 2016; 50:355-361. [PMID: 27595164 DOI: 10.1080/14017431.2016.1233351] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In remote ischemic preconditioning (RIPC) short periods of non-lethal ischemia followed by reperfusion of tissue or organ prepare remote tissue or organ to resist a subsequent more severe ischemia-reperfusion injury. The signaling mechanism of RIPC can be humoral communication, neuronal stimulation, systemic modification of circulating immune cells, and activation of hypoxia inducible genes. Despite promising evidence from experimental studies, the clinical effects of RIPC have been controversial. Heterogeneity of inclusion and exclusion criteria and confounding factors such as comedication, anesthesia, comorbidities, and other risk factors may have influenced the efficacy of RIPC. Although the cardioprotective pathways of RIPC are more widely studied, there is also evidence of benefits in CNS, kidney and liver protection. Future research should explore the potential of RIPC, not only in cardiac protection, but also in patients with threatening ischemia of the brain, organ transplantation of the heart, liver and kidney and extensive cardiovascular surgery. RIPC is generally well-tolerated, safe, effective, and easily feasible. It has a great prospect for ischemic protection of the heart and other organs.
Collapse
Affiliation(s)
- Vesa Anttila
- a Heart Center, Turku University Hospital , Turku , Finland
| | - Henri Haapanen
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Fredrik Yannopoulos
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Johanna Herajärvi
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Tuomas Anttila
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Tatu Juvonen
- c Department of Cardiac Surgery , Heart and Lung Center HUCH , Helsinki , Finland
| |
Collapse
|
6
|
Diazoxide Attenuates Postresuscitation Brain Injury in a Rat Model of Asphyxial Cardiac Arrest by Opening Mitochondrial ATP-Sensitive Potassium Channels. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1253842. [PMID: 27648441 PMCID: PMC5018309 DOI: 10.1155/2016/1253842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/03/2016] [Indexed: 01/28/2023]
Abstract
Objective. We investigated whether and how diazoxide can attenuate brain injury after cardiopulmonary resuscitation (CPR) by selective opening of mitochondrial ATP-sensitive potassium (mitoKATP) channels. Methods. Adult male Sprague-Dawley rats with induced cerebral ischemia (n = 10 per group) received an intraperitoneal injection of 0.1% dimethyl sulfoxide (1 mL; vehicle group), diazoxide (10 mg/kg; DZ group), or diazoxide (10 mg/kg) plus 5-hydroxydecanoate (5 mg/kg; DZ + 5-HD group) 30 min after CPR. The control group (sham group, n = 5) underwent sham operation, without cardiac arrest. Mitochondrial respiratory control rate (RCR) was determined. Brain cell apoptosis was assessed using TUNEL staining. Expression of Bcl-2, Bax, and protein kinase C epsilon (PKCε) in the cerebral cortex was determined by Western blotting and immunohistochemistry. Results. The neurological deficit scores (NDS) in the vehicle group decreased significantly at 24 h and 48 h after CPR. Diazoxide significantly improved NDS and mitochondrial RCR after CPR at both time points; 5-HD cotreatment abolished these effects. Diazoxide decreased TUNEL-positive cells following CPR, upregulated Bcl-2 and PKCε, downregulated Bax, and increased the Bcl-2/Bax ratio; 5-HD cotreatment reversed these effects. Conclusions. Diazoxide attenuates postresuscitation brain injury, protects mitochondrial function, inhibits brain cell apoptosis, and activates the PKC pathway by opening mitoKATP channels.
Collapse
|
7
|
Kiraz HA, Poyraz F, Kip G, Erdem Ö, Alkan M, Arslan M, Özer A, Şivgin V, Çomu FM. The effect of levosimendan on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats. Libyan J Med 2015; 10:29269. [PMID: 26649830 PMCID: PMC4673913 DOI: 10.3402/ljm.v10.29269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective Ischemia/reperfusion (I/R) injury is an important cause of myocardial damage by means of oxidative, inflammatory, and apoptotic mechanisms. The aim of the present study was to examine the potential cardio protective effects of levosimendan in a diabetic rat model of myocardial I/R injury. Methods A total of 18 streptozotocin-induced diabetic Wistar Albino rats (55 mg/kg) were randomly divided into three equal groups as follows: the diabetic I/R group (DIR) in which myocardial I/R was induced following left thoracotomy, by ligating the left anterior descending coronary artery for 60 min, followed by 2 h of reperfusion; the diabetic I/R levosimendan group (DIRL), which underwent I/R by the same method while taking levosimendan intraperitoneal 12 µg kg−1; and the diabetic control group (DC) which underwent sham operations without tightening of the coronary sutures. As a control group (C), six healthy age-matched Wistar Albino rats underwent sham operations similar to the DC group. Two hours after the operation, the rats were sacrificed and the myocardial tissue samples were examined by light microscopy for evidence of myonecrosis and inflammatory cell infiltration. Results Myonecrosis findings were significantly different among groups (p=0.008). Myonecrosis was more pronounced in the DIR group compared with the C, DC, and DIRL groups (p=0.001, p=0.007 and p=0.037, respectively). Similarly, the degree of inflammatory cell infiltration showed significant difference among groups (p<0.0001). Compared with C, DC, and DIRL groups, the inflammatory cell infiltration was significantly higher among the DIR group (p<0.0001, p<0.0001, and p=0.020, respectively). Also, myocardial tissue edema was significantly different among groups (p=0.006). The light microscopic myocardial tissue edema levels were significantly higher in the DIR group than the C, DC, and DIRL groups (p=0.001, p=0.037, and p=0.014, respectively). Conclusion Taken together, our data indicate that levosimendan may be helpful in reducing myocardial necrosis, myocardial inflammation, and myocardial tissue edema resulting from ischemia–reperfusion injury.
Collapse
Affiliation(s)
- Hasan Ali Kiraz
- a Department of Anaesthesiology and Reanimation Onsekiz Mart University Medical Faculty , Canakkale , Turkey
| | - Fatih Poyraz
- b Department of Cardiology Kirikkale University Medical Faculty , Afyonkarahisar , Turkey
| | - Gülay Kip
- c Department of Paediatric Dentistry (Anaesthesiology and Reanimation specialist) Gazi University Dentistry Faculty , Ankara , Turkey
| | - Özlem Erdem
- d Department of Pathology Gazi University Medical Faculty , Ankara , Turkey
| | - Metin Alkan
- e Department of Anaesthesiology and Reanimation Gazi University Medical Faculty , Ankara , Turkey
| | - Mustafa Arslan
- e Department of Anaesthesiology and Reanimation Gazi University Medical Faculty , Ankara , Turkey
| | - Abdullah Özer
- f Department of Cardiovascular Surgery Gazi University Medical Faculty , Ankara , Turkey
| | - Volkan Şivgin
- e Department of Anaesthesiology and Reanimation Gazi University Medical Faculty , Ankara , Turkey
| | - Faruk Metin Çomu
- g Department of Physiology Kirikkale University Medical Faculty , Afyonkarahisar , Turkey
| |
Collapse
|
8
|
ZÁLEŠÁK M, BLAŽÍČEK P, GABLOVSKÝ I, LEDVÉNYIOVÁ V, BARTEKOVÁ M, ZIEGELHÖFFER A, RAVINGEROVÁ T. Impaired PI3K/Akt Signaling as a Potential Cause of Failure to Precondition Rat Hearts Under Conditions of Simulated Hyperglycemia. Physiol Res 2015; 64:633-41. [DOI: 10.33549/physiolres.932883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The aim of the study was to evaluate the impact of simulated acute hyperglycemia (HG) on PI3K/Akt signaling in preconditioned and non-preconditioned isolated rat hearts perfused with Krebs-Henseleit solution containing normal (11 mmol/l) or elevated (22 mmol/l) glucose subjected to ischemia-reperfusion. Ischemic preconditioning (IP) was induced by two 5-min cycles of coronary occlusion followed by 5-min reperfusion. Protein levels of Akt, phosphorylated (activated) Akt (P-Akt), as well as contents of BAX protein were assayed (Western blotting) in cytosolic fraction of myocardial tissue samples taken prior to and after 30-min global ischemia and 40-min reperfusion. In “normoglycemic” conditions (NG), IP significantly increased P-Akt at the end of long-term ischemia, while reperfusion led to its decrease together with the decline of BAX levels as compared to non-preconditioned hearts. On the contrary, under HG conditions, P-Akt tended to decline in IP-hearts after long-term ischemia, and it was significantly higher after reperfusion than in non-preconditioned controls. No significant influence of IP on BAX levels at the end of I/R was observed under HG conditions. It seems that high glucose may influence IP-induced activation of Akt and its downstream targets, as well as maintain persistent Akt activity that may be detrimental for the heart under above conditions.
Collapse
Affiliation(s)
- M. ZÁLEŠÁK
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
9
|
Risk Factors Associated with Cognitive Decline after Cardiac Surgery: A Systematic Review. Cardiovasc Psychiatry Neurol 2015; 2015:370612. [PMID: 26491558 PMCID: PMC4605208 DOI: 10.1155/2015/370612] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022] Open
Abstract
Modern day cardiac surgery evolved upon the advent of cardiopulmonary bypass machines (CPB) in the 1950s. Following this development, cardiac surgery in recent years has improved significantly. Despite such advances and the introduction of new technologies, neurological sequelae after cardiac surgery still exist. Ischaemic stroke, delirium, and cognitive impairment cause significant morbidity and mortality and unfortunately remain common complications. Postoperative cognitive decline (POCD) is believed to be associated with the presence of new ischaemic lesions originating from emboli entering the cerebral circulation during surgery. Cardiopulmonary bypass was thought to be the reason of POCD, but randomised controlled trials comparing with off-pump surgery show contradictory results. Attention has now turned to the growing evidence that perioperative risk factors, as well as patient-related risk factors, play an important role in early and late POCD. Clearly, identifying the mechanism of POCD is challenging. The purpose of this systematic review is to discuss the literature that has investigated patient and perioperative risk factors to better understand the magnitude of the risk factors associated with POCD after cardiac surgery.
Collapse
|
10
|
Ali M, Mehmood A, Anjum MS, Tarrar MN, Khan SN, Riazuddin S. Diazoxide preconditioning of endothelial progenitor cells from streptozotocin-induced type 1 diabetic rats improves their ability to repair diabetic cardiomyopathy. Mol Cell Biochem 2015; 410:267-79. [PMID: 26359087 DOI: 10.1007/s11010-015-2560-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023]
Abstract
Type 1 diabetes mellitus (DM) is a strong risk factor for the development of diabetic cardiomyopathy (DCM) which is the leading cause of morbidity and mortality in the type 1 diabetic patients. Stem cells may act as a therapeutic agent for the repair of DCM. However, deteriorated functional abilities and survival of stem cells derived from type 1 diabetic subjects need to be overcome for obtaining potential outcome of the stem cell therapy. Diazoxide (DZ) a highly selective mitochondrial ATP-sensitive K(+) channel opener has been previously shown to improve the ability of mesenchymal stem cells for the repair of heart failure. In the present study, we evaluated the effects of DZ preconditioning in improving the ability of streptozotocin-induced type 1 diabetes affected bone marrow-derived endothelial progenitor cells (DM-EPCs) for the repair of DCM in the type 1 diabetic rats. DM-EPCs were characterized by immunocytochemistry, flow cytometry, and reverse transcriptase PCR for endothelial cell-specific markers like vWF, VE cadherin, VEGFR2, PECAM, CD34, and eNOS. In vitro studies included preconditioning of DM-EPCs with 200 μM DZ for 30 min followed by exposure to either 200 μM H2O2 for 2 h (for oxidative stress induction) or 30 mM glucose media (for induction of hyperglycemic stress) for 48 h. Non-preconditioned EPCs with and without exposure to H2O2 and 30 mM high glucose served as controls. These cells were then evaluated for survival (by MTT and XTT cell viability assays), senescence, paracrine potential (by ELISA for VEGF), and alteration in gene expression [VEGF, stromal derived factor-1α (SDF-1α), HGF, bFGF, Bcl2, and Caspase-3]. DZ preconditioned DM-EPCs demonstrated significantly increased survival and VEGF release while reduced cell injury and senescence. Furthermore, DZ preconditioned DM-EPCs exhibited up-regulated expression of prosurvival genes (VEGF, SDF-1α, HGF, bFGF, and Bcl2) on exposure to H2O2, and VEGF and Bcl2 on exposure to hyperglycemia while down regulation of Caspase-3 gene. Eight weeks after type 1 diabetes induction, DZ preconditioned, and non-preconditioned DM-EPCs were transplanted into left ventricle of diabetic rats (at a dose of 2 × 10(6) DM-EPCs/70 μl serum free medium). After 4 weeks, DZ preconditioned DM-EPCs transplantation improved cardiac function as assessed by Millar's apparatus. There was decrease in collagen content estimated by Masson's trichrome and sirius red staining. Furthermore, reduced cell injury was observed as evidenced by decreased expression of Caspase-3 and increased expression of prosurvival genes Bcl2, VEGF, and bFGF by semi-quantitative real-time PCR. In conclusion, the present study demonstrated that DZ preconditioning enhanced EPCs survival under oxidative and hyperglycemic stress and their ability to treat DCM.
Collapse
Affiliation(s)
- Muhammad Ali
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | - Muhammad Sohail Anjum
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | | | - Shaheen N Khan
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan. .,Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
11
|
Mehmood A, Ali M, Khan SN, Riazuddin S. Diazoxide preconditioning of endothelial progenitor cells improves their ability to repair the infarcted myocardium. Cell Biol Int 2015; 39:1251-63. [PMID: 26032287 DOI: 10.1002/cbin.10498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Azra Mehmood
- National Centre of Excellence in Molecular Biology; 87-West Canal Bank Road; University of Punjab; Lahore Pakistan
| | - Muhammad Ali
- National Centre of Excellence in Molecular Biology; 87-West Canal Bank Road; University of Punjab; Lahore Pakistan
| | - Shaheen N. Khan
- National Centre of Excellence in Molecular Biology; 87-West Canal Bank Road; University of Punjab; Lahore Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology; 87-West Canal Bank Road; University of Punjab; Lahore Pakistan
- Allama Iqbal Medical College; University of Health Sciences; Lahore Pakistan
| |
Collapse
|
12
|
Wang C, Hu SM, Xie H, Qiao SG, Liu H, Liu CF. Role of mitochondrial ATP-sensitive potassium channel-mediated PKC-ε in delayed protection against myocardial ischemia/reperfusion injury in isolated hearts of sevoflurane-preconditioned rats. ACTA ACUST UNITED AC 2015; 48:528-36. [PMID: 25831209 PMCID: PMC4470312 DOI: 10.1590/1414-431x20143876] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/07/2014] [Indexed: 01/23/2023]
Abstract
This study aimed to determine the role of mitochondrial adenosine
triphosphate-sensitive potassium (mitoKATP) channels and protein kinase C
(PKC)-ε in the delayed protective effects of sevoflurane preconditioning using
Langendorff isolated heart perfusion models. Fifty-four isolated perfused rat hearts
were randomly divided into 6 groups (n=9). The rats were exposed for 60 min to 2.5%
sevoflurane (the second window of protection group, SWOP group) or 33% oxygen
inhalation (I/R group) 24 h before coronary occlusion. The control group (CON) and
the sevoflurane group (SEVO) group were exposed to 33% oxygen and 2.5% sevoflurane
for 60 min, respectively, without coronary occlusion. The mitoKATP channel
inhibitor 5-hydroxydecanoate (5-HD) was given 30 min before sevoflurane
preconditioning (5-HD+SWOP group). Cardiac function indices, infarct sizes, serum
cardiac troponin I (cTnI) concentrations, and the expression levels of phosphorylated
PKC-ε (p-PKC-ε) and caspase-8 were measured. Cardiac function was unchanged, p-PKC-ε
expression was upregulated, caspase-8 expression was downregulated, cTnI
concentrations were decreased, and the infarcts were significantly smaller
(P<0.05) in the SWOP group compared with the I/R group. Cardiac function was
worse, p-PKC-ε expression was downregulated, caspase-8 expression was upregulated,
cTnI concentration was increased and infarcts were larger in the 5-HD+SWOP group
(P<0.05) compared with the SWOP group. The results suggest that
mitoKATP channels are involved in the myocardial protective effects of
sevoflurane in preconditioning against I/R injury, by regulating PKC-ε
phosphorylation before ischemia, and by downregulating caspase-8 during
reperfusion.
Collapse
Affiliation(s)
- C Wang
- Department of Anesthesiology and Critical Care, The Second Affiliate Hospital, Soochow University, Suzhou, China
| | - S M Hu
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - H Xie
- Department of Anesthesiology and Critical Care, The Second Affiliate Hospital, Soochow University, Suzhou, China
| | - S G Qiao
- Department of Anesthesiology and Critical Care, The Second Affiliate Hospital, Soochow University, Suzhou, China
| | - H Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Davis, CA, USA
| | - C F Liu
- Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
14
|
Costa JF, Fontes-Carvalho R, Leite-Moreira AF. Myocardial remote ischemic preconditioning: From pathophysiology to clinical application. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2013. [DOI: 10.1016/j.repce.2013.10.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
15
|
Costa JF, Fontes-Carvalho R, Leite-Moreira AF. Pré-condicionamento isquémico remoto do miocárdio: dos mecanismos fisiopatológicos à aplicação na prática clínica. Rev Port Cardiol 2013; 32:893-904. [DOI: 10.1016/j.repc.2013.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/14/2022] Open
|
16
|
Alizadeh AM, Mirzabeglo P. Is oxytocin a therapeutic factor for ischemic heart disease? Peptides 2013; 45:66-72. [PMID: 23659864 DOI: 10.1016/j.peptides.2013.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 12/20/2022]
Abstract
Ischemic heart disease (IHD) is among the most important and top ranked causes of death in the world, and its preventive and interventional mechanisms are actively being investigated. Preconditioning may still be beneficial in some situations such as IHD. Development of cardioprotective agents to improve myocardial function, to decrease the incidence of arrhythmias, to delay the onset of necrosis, and to limit the total extent of infarction during IHD is of great clinical importance. In order to reduce morbidity, a new treatment modality must be developed, and oxytocin may indeed be one of the candidates. There is increasing experimental evidence indicating that oxytocin may have cardioprotective effects either by decreasing the extent of reperfusion injury or by pharmacologic preconditioning activity. This review shows that in the presence of oxytocin, the cardioprotective effects may be increased to some extent. The presented board of evidence focuses on the valuable effects of oxytocin on myocardial function and candidates it for future clinical studies in the realm of ischemic heart diseases.
Collapse
|
17
|
Sobhia ME, Grewal BK, Paul MLS, Patel J, Kaur A, Haokip T, Kokkula A. Protein kinase C inhibitors: a patent review (2010 – present). Expert Opin Ther Pat 2013; 23:1451-68. [DOI: 10.1517/13543776.2013.812073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Lenkin AI, Zaharov VI, Lenkin PI, Smetkin AA, Bjertnaes LJ, Kirov MY. Normothermic cardiopulmonary bypass increases cerebral tissue oxygenation during combined valve surgery: a single-centre, randomized trial. Interact Cardiovasc Thorac Surg 2013; 16:595-601. [PMID: 23407696 DOI: 10.1093/icvts/ivt016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES In cardiac surgery, the choice of temperature regimen during cardiopulmonary bypass (CPB) remains a subject of debate. Hypothermia reduces tissue metabolic demands, but may impair the autoregulation of cerebral blood flow and contribute to neurological morbidity. The aim of this study was to evaluate the effect of two different temperature regimens during CPB on the systemic oxygen transport and the cerebral oxygenation during surgical correction of acquired heart diseases. METHODS In a prospective study, we randomized 40 adult patients with combined valvular disorders requiring surgical correction of two or more valves into two groups: (i) a normothermic (NMTH) group (n = 20), in which the body core temperature was maintained at 36.6°C during CPB and (ii) a hypothermic (HPTH) group (n = 20), in which the body was cooled to a core temperature of 32°C maintained throughout the period of CPB. The systemic oxygen transport and the cerebral oxygen saturation (SctO2) were assessed by means of a PiCCO2 haemodynamic monitor and a cerebral oximeter, respectively. All the patients received standard perioperative monitoring. We assessed haemodynamic and oxygen transport parameters, the duration of mechanical ventilation and the length of the ICU and the hospital stays. RESULTS During CPB, central venous oxygen saturation was significantly higher in the HPTH group but SctO2 was increased in the NMTH group (P < 0.05). Cardiac index, systemic oxygen delivery and consumption increased postoperatively in both groups. However, oxygen delivery and consumption were significantly higher in the NMTH group (P < 0.05). The duration of respiratory support and the length of ICU and hospital stays did not differ between the groups. CONCLUSIONS During combined valve surgery, normothermic CPB provides lower central venous oxygen saturation, but increases cerebral tissue oxygenation when compared with the hypothermic regimen.
Collapse
Affiliation(s)
- Andrey I Lenkin
- Department of Anesthesiology and Intensive Care Medicine, City Hospital #1 of Arkhangelsk, Arkhangelsk, Russian Federation
| | | | | | | | | | | |
Collapse
|
19
|
Idris NM, Ashraf M, Ahmed RPH, Shujia J, Haider KH. Activation of IL-11/STAT3 pathway in preconditioned human skeletal myoblasts blocks apoptotic cascade under oxidant stress. Regen Med 2012; 7:47-57. [PMID: 22168497 DOI: 10.2217/rme.11.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To determine whether our novel approach of diazoxide-induced stem cell preconditioning might be extrapolated to human skeletal myoblasts to support their survival under lethal oxidant stress. METHODS & RESULTS Using an in vitro model of H(2)O(2) treatment of human skeletal myoblasts, we report the ability of diazoxide-preconditioned human skeletal myoblasts to express cytokines and growth factors, which act in an autocrine and paracrine fashion to promote their own survival. Preconditioning of skeletal myoblasts was cytoprotective and significantly reduced their apoptotic index (p < 0.05). IL-11 gene and protein expression was significantly increased in preconditioned skeletal myoblasts. Transfection of skeletal myoblasts with IL-11-specific siRNA incurred their death under oxidant stress. The cytoprotective effect of diazoxide preconditioning was blocked by Erk1/2 inhibitor PD98059 (20-100 µM), which abrogated STAT-3 phosphorylation, thus confirming a possible involvement of Erk1/2/STAT3 signaling downstream of IL-11 in cell survival. We also investigated the time course of subcellular changes and signaling pathway of skeletal myoblasts apoptosis under oxidant stress before and after preconditioning. Apoptosis was induced in skeletal myoblasts with 100-500 µM H(2)O(2) for time points ranging from 1 to 24 h. Release of lactate dehydrogenase, disruption of the mitochondrial membrane potential and cytochrome-c translocation into cytoplasm were the earliest signs of apoptosis. Total Akt protein remained unchanged whereas marked reduction in pAkt was observed in the native skeletal myoblasts. Terminal dUTP nick end-labeling and annexin-V positivity were significantly increased after 4 h. Ultra-structure studies showed condensed chromatin, shriveled nuclei and swollen mitochondria. CONCLUSION These data suggest that skeletal myoblasts undergo apoptosis under oxidant stress in a time-dependent manner and preconditioning of skeletal myoblasts significantly prevented their apoptosis via IL-11/STAT3 signaling.
Collapse
Affiliation(s)
- Niagara Muhammad Idris
- Department of Pathology, 231 Albert Sabin Way, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
20
|
Haider KH, Ashraf M. Preconditioning approach in stem cell therapy for the treatment of infarcted heart. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:323-56. [PMID: 22917238 DOI: 10.1016/b978-0-12-398459-3.00015-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nearly two decades of research in regenerative medicine have been focused on the development of stem cells as a therapeutic option for treatment of the ischemic heart. Given the ability of stem cells to regenerate the damaged tissue, stem-cell-based therapy is an ideal approach for cardiovascular disorders. Preclinical studies in experimental animal models and clinical trials to determine the safety and efficacy of stem cell therapy have produced encouraging results that promise angiomyogenic repair of the ischemically damaged heart. Despite these promising results, stem cell therapy is still confronted with issues ranging from uncertainty about the as-yet-undetermined "ideal" donor cell type to the nonoptimized cell delivery strategies to harness optimal clinical benefits. Moreover, these lacunae have significantly hampered the progress of the heart cell therapy approach from bench to bedside for routine clinical applications. Massive death of donor cells in the infarcted myocardium during acute phase postengraftment is one of the areas of prime concern, which immensely lowers the efficacy of the procedure. An overview of the published data relevant to stem cell therapy is provided here and the various strategies that have been adopted to develop and optimize the protocols to enhance donor stem cell survival posttransplantation are discussed, with special focus on the preconditioning approach.
Collapse
Affiliation(s)
- Khawaja Husnain Haider
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | |
Collapse
|
21
|
Cardioprotection by remote ischemic preconditioning exhibits a signaling pattern different from local ischemic preconditioning. Shock 2011; 36:45-53. [PMID: 21478813 DOI: 10.1097/shk.0b013e31821d8e77] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Remote ischemic preconditioning (RIPC) and local ischemic preconditioning (IPC) protect the myocardium from subsequent ischemia/reperfusion (I/R) injury. In this study, the protective effects of early RIPC, IPC, and the combination of both (RIPC-IPC) were characterized. Furthermore, the hypothesis was tested that protein kinase C (PKC) and mitogen-activated protein kinases (MAPKs), important mediators of IPC, are activated in RIPC. Infarct size, serum troponin T, and creatine kinase levels were assessed after 4 × 5-min noninvasive RIPC, local IPC, or a combination of both and 35 min of regional ischemia and 120 min of reperfusion. Protein kinase C ε and the MAPKs extracellular signal-regulated MAPK (ERK), c-jun N-terminal kinase (JNK), and p38 MAPK were analyzed by Western blot analysis and activity assays in the myocardium and skeletal muscle immediately after the preconditioning protocol. Remote ischemic preconditioning, IPC, and RIPC-IPC significantly reduced myocardial infarct size (RIPC-I/R: 54% ± 15%; IPC-I/R: 33% ± 15%; RIPC-IPC-I/R: 33% ± 15%; P < 0.05 vs. I/R [76% ± 14%]) and troponin T release (RIPC-I/R: 15.4 ± 6.4 ng/mL; IPC-I/R: 10.9 ± 7.0 ng/mL; RIPC-IPC-I/R: 9.8 ± 5.6 ng/mL; P < 0.05 vs. I/R [27.1 ± 12.0 ng/mL]) after myocardial I/R. Ischemic preconditioning led to an activation of PKCε and ERK 1/2, whereas RIPC did not lead to a translocation of PKCε to the mitochondria or phosphorylation of the MAPKs ERK 1/2, JNK 1/2, and p38 MAPK. Remote ischemic preconditioning did not induce translocation of PKCε to the mitochondria or phosphorylation of MAPKs in the preconditioned muscle tissue. Remote ischemic preconditioning, IPC, and RIPC-IPC exert early protection against myocardial I/R injury. Remote ischemic preconditioning and local IPC exhibit different activation dynamics of signal transducers in the myocardium. The studied PKC-MAPK pathway is likely not involved in the protective effects of RIPC.
Collapse
|
22
|
Lader JM, Vasquez C, Bao L, Maass K, Qu J, Kefalogianni E, Fishman GI, Coetzee WA, Morley GE. Remodeling of atrial ATP-sensitive K⁺ channels in a model of salt-induced elevated blood pressure. Am J Physiol Heart Circ Physiol 2011; 301:H964-74. [PMID: 21724863 DOI: 10.1152/ajpheart.00410.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypertension is associated with the development of atrial fibrillation; however, the electrophysiological consequences of this condition remain poorly understood. ATP-sensitive K(+) (K(ATP)) channels, which contribute to ventricular arrhythmias, are also expressed in the atria. We hypothesized that salt-induced elevated blood pressure (BP) leads to atrial K(ATP) channel activation and increased arrhythmia inducibility. Elevated BP was induced in mice with a high-salt diet (HS) for 4 wk. High-resolution optical mapping was used to measure atrial arrhythmia inducibility, effective refractory period (ERP), and action potential duration at 90% repolarization (APD(90)). Excised patch clamping was performed to quantify K(ATP) channel properties and density. K(ATP) channel protein expression was also evaluated. Atrial arrhythmia inducibility was 22% higher in HS hearts compared with control hearts. ERP and APD(90) were significantly shorter in the right atrial appendage and left atrial appendage of HS hearts compared with control hearts. Perfusion with 1 μM glibenclamide or 300 μM tolbutamide significantly decreased arrhythmia inducibility and prolonged APD(90) in HS hearts compared with untreated HS hearts. K(ATP) channel density was 156% higher in myocytes isolated from HS animals compared with control animals. Sulfonylurea receptor 1 protein expression was increased in the left atrial appendage and right atrial appendage of HS animals (415% and 372% of NS animals, respectively). In conclusion, K(ATP) channel activation provides a mechanistic link between salt-induced elevated BP and increased atrial arrhythmia inducibility. The findings of this study have important implications for the treatment and prevention of atrial arrhythmias in the setting of hypertensive heart disease and may lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Joshua M Lader
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Giorgi C, Agnoletto C, Baldini C, Bononi A, Bonora M, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Zavan B, Pinton P. Redox control of protein kinase C: cell- and disease-specific aspects. Antioxid Redox Signal 2010; 13:1051-85. [PMID: 20136499 DOI: 10.1089/ars.2009.2825] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hormones, growth factors, electrical stimulation, and cell-cell interactions regulate numerous cellular processes by altering the levels of second messengers, thus influencing biochemical reactions inside the cells. The Protein Kinase C family (PKCs) is a group of serine/threonine kinases that are dependent on calcium (Ca(2+)), diacylglycerol, and phospholipids. Signaling pathways that induce variations on the levels of PKC activators have been implicated in the regulation of diverse cellular functions and, in turn, PKCs are key regulators of a plethora of cellular processes, including proliferation, differentiation, and tumorigenesis. Importantly, PKCs contain regions, both in the N-terminal regulatory domain and in the C-terminal catalytic domain, that are susceptible to redox modifications. In several pathophysiological conditions when the balance between oxidants, antioxidants, and alkylants is compromised, cells undergo redox stress. PKCs are cell-signaling proteins that are particularly sensitive to redox stress because modification of their redox-sensitive regions interferes with their activity and, thus, with their biological effects. In this review, we summarize the involvement of PKCs in health and disease and the importance of redox signaling in the regulation of this family of kinases.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), BioPharmaNet, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ruiz CE, Cohen H, Del Valle-Fernandez R, Jelnin V, Perk G, Kronzon I. Closure of prosthetic paravalvular leaks: a long way to go. Eur Heart J Suppl 2010. [DOI: 10.1093/eurheartj/suq009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
25
|
Huang C, Yitzhaki S, Perry CN, Liu W, Giricz Z, Mentzer RM, Gottlieb RA. Autophagy induced by ischemic preconditioning is essential for cardioprotection. J Cardiovasc Transl Res 2010; 3:365-73. [PMID: 20559777 PMCID: PMC2899015 DOI: 10.1007/s12265-010-9189-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/22/2010] [Indexed: 12/11/2022]
Abstract
Based on growing evidence linking autophagy to preconditioning, we tested the hypothesis that autophagy is necessary for cardioprotection conferred by ischemic preconditioning (IPC). We induced IPC with three cycles of 5 min regional ischemia alternating with 5 min reperfusion and assessed the induction of autophagy in mCherry-LC3 transgenic mice by imaging of fluorescent autophagosomes in cryosections. We found a rapid and significant increase in the number of autophagosomes in the risk zone of the preconditioned hearts. In Langendorff-perfused hearts subjected to an IPC protocol of 3 x 5 min ischemia, we also observed an increase in autophagy within 10 min, as assessed by Western blotting for p62 and cadaverine dye binding. To establish the role of autophagy in IPC cardioprotection, we inhibited autophagy with Tat-ATG5(K130R), a dominant negative mutation of the autophagy protein Atg5. Cardioprotection by IPC was reduced in rat hearts perfused with recombinant Tat-ATG5(K130R). To extend the potential significance of autophagy in cardioprotection, we also assessed three structurally unrelated cardioprotective agents--UTP, diazoxide, and ranolazine--for their ability to induce autophagy in HL-1 cells. We found that all three agents induced autophagy; inhibition of autophagy abolished their protective effect. Taken together, these findings establish autophagy as an end-effector in ischemic and pharmacologic preconditioning.
Collapse
Affiliation(s)
- Chengqun Huang
- BioScience Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4650 USA
| | - Smadar Yitzhaki
- BioScience Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4650 USA
| | - Cynthia N. Perry
- BioScience Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4650 USA
- Molecular Pathology Graduate Program, University of California San Diego, San Diego, CA USA
| | - Wayne Liu
- BioScience Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4650 USA
| | - Zoltan Giricz
- BioScience Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4650 USA
| | - Robert M. Mentzer
- BioScience Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4650 USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI USA
| | - Roberta A. Gottlieb
- BioScience Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4650 USA
| |
Collapse
|
26
|
Suzuki Y, Kim HW, Ashraf M, Haider HK. Diazoxide potentiates mesenchymal stem cell survival via NF-kappaB-dependent miR-146a expression by targeting Fas. Am J Physiol Heart Circ Physiol 2010; 299:H1077-82. [PMID: 20656888 DOI: 10.1152/ajpheart.00212.2010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that preconditioning of bone marrow-derived mesenchymal stem cells (MSCs) with diazoxide (DZ) significantly improved cell survival via NF-κB signaling. Since micro-RNAs (miRNAs) are critical regulators of a wide variety of biological events, including apoptosis, proliferation, and differentiation, it is likely that DZ-induced survival is mediated by miRNAs. Here we show that miR-146a expressed during preconditioning with DZ is a key regulator of stem cell survival. Treatment of MSCs with DZ (200 μM) markedly increased miR-146a expression and promoted cell survival, as evaluated by lactate dehydrogenase release and transferase-mediated dUTP nick-end labeling staining. Interestingly, blocking NF-κB by IKK-γ NEMO binding domain inhibitor peptide did not induce miR-146a expression, indicating NF-κB regulates miR-146a expression. Moreover, blockade of miR-146a expression by antisense miR-146a inhibitor abolished DZ-induced cytoprotective effects, suggesting a critical role of miR-146a in MSC survival. Computational analysis found a consensus putative target site of miR-146a relevant to apoptosis in the 3' untranslated region of Fas mRNA. The role of Fas as a target gene was substantiated by abrogation of miR-146a, which markedly increased Fas protein expression. This was verified by luciferase reporter assay, which showed that forced expression of miR-146a downregulated Fas expression via targeting its 3'-UTR of this gene. Taken together, these data demonstrated that cytoprotection afforded by preconditioning of MSCs with DZ was regulated by miR-146a induction, which may be a novel therapeutic target in cardiac ischemic diseases.
Collapse
Affiliation(s)
- Yoko Suzuki
- Department of Pathology and Lab Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
27
|
Nguyen TT, Ogbi M, Yu Q, Fishman JB, Thomas W, Harvey BJ, Fulton D, Johnson JA. Modulation of the protein kinase Cdelta interaction with the "d" subunit of F1F0-ATP synthase in neonatal cardiac myocytes: development of cell-permeable, mitochondrially targeted inhibitor and facilitator peptides. J Biol Chem 2010; 285:22164-73. [PMID: 20460381 PMCID: PMC2903377 DOI: 10.1074/jbc.m109.077578] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 05/10/2010] [Indexed: 11/06/2022] Open
Abstract
The F(1)F(0)-ATP synthase provides approximately 90% of cardiac ATP, yet little is known regarding its regulation under normal or pathological conditions. Previously, we demonstrated that protein kinase Cdelta (PKCdelta) inhibits F(1)F(0) activity via an interaction with the "d" subunit of F(1)F(0)-ATP synthase (dF(1)F(0)) in neonatal cardiac myocytes (NCMs) (Nguyen, T., Ogbi, M., and Johnson, J. A. (2008) J. Biol. Chem. 283, 29831-29840). We have now identified a dF(1)F(0)-derived peptide (NH(2)-(2)AGRKLALKTIDWVSF(16)-COOH) that inhibits PKCdelta binding to dF(1)F(0) in overlay assays. We have also identified a second dF(1)F(0)-derived peptide (NH(2)-(111)RVREYEKQLEKIKNMI(126)-COOH) that facilitates PKCdelta binding to dF(1)F(0). Incubation of NCMs with versions of these peptides containing HIV-Tat protein transduction and mammalian mitochondrial targeting sequences resulted in their delivery into mitochondria. Preincubation of NCMs, with 10 nm extracellular concentrations of the mitochondrially targeted PKCdelta-dF(1)F(0) interaction inhibitor, decreased 100 nm 4beta-phorbol 12-myristate 13-acetate (4beta-PMA)-induced co-immunoprecipitation of PKCdelta with dF(1)F(0) by 50 +/- 15% and abolished the 30 nm 4beta-PMA-induced inhibition of F(1)F(0)-ATPase activity. A scrambled sequence (inactive) peptide, which contained HIV-Tat and mitochondrial targeting sequences, was without effect. In contrast, the cell-permeable, mitochondrially targeted PKCdelta-dF(1)F(0) facilitator peptide by itself induced the PKCdelta-dF(1)F(0) co-immunoprecipitation and inhibited F(1)F(0)-ATPase activity. In in vitro PKC add-back experiments, the PKCdelta-F(1)F(0) inhibitor blocked PKCdelta-mediated inhibition of F(1)F(0)-ATPase activity, whereas the facilitator induced inhibition. We have developed the first cell-permeable, mitochondrially targeted modulators of the PKCdelta-dF(1)F(0) interaction in NCMs. These novel peptides will improve our understanding of cardiac F(1)F(0) regulation and may have potential as therapeutics to attenuate cardiac injury.
Collapse
Affiliation(s)
- Tiffany T. Nguyen
- From the Department of Pharmacology and Toxicology, School of Medicine, and Program in Regenerative Medicine, Institute of Molecular Medicine and Genetics, and
| | - Mourad Ogbi
- From the Department of Pharmacology and Toxicology, School of Medicine, and Program in Regenerative Medicine, Institute of Molecular Medicine and Genetics, and
| | - Qilin Yu
- From the Department of Pharmacology and Toxicology, School of Medicine, and Program in Regenerative Medicine, Institute of Molecular Medicine and Genetics, and
| | | | - Warren Thomas
- the Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Brian J. Harvey
- the Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - David Fulton
- From the Department of Pharmacology and Toxicology, School of Medicine, and Program in Regenerative Medicine, Institute of Molecular Medicine and Genetics, and
- The Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912-2300
| | - John A. Johnson
- From the Department of Pharmacology and Toxicology, School of Medicine, and Program in Regenerative Medicine, Institute of Molecular Medicine and Genetics, and
| |
Collapse
|
28
|
Lemoine S, Puddu PE, Durand C, Lepage O, Babatasi G, Ivascau C, Massetti M, Gérard JL, Hanouz JL. Signaling pathways involved in postconditioning-induced cardioprotection of human myocardium, in vitro. Exp Biol Med (Maywood) 2010; 235:768-76. [PMID: 20511681 DOI: 10.1258/ebm.2010.009342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examined the respective role and relationship between protein kinase C (PKC), mitochondrial adenosine triphosphate-sensitive potassium (mitoK(ATP)) channel and p38 mitogen-activated protein kinase (MAPK) in postconditioning of human myocardium, in vitro. Isometrically contracting, isolated human right atrial trabeculae were exposed to 30 min hypoxia and 60 min reoxygenation. Phorbol 12-myristate 13-acetate (a PKC activator), diazoxide (a mitoK(ATP) opener) and anisomycin (a p38 MAPK activator) were superfused in early reoxygenation alone and with calphostin C (a PKC inhibitor), 5-hydroxy-decanoate (5-HD, a mitoK(ATP) channel inhibitor) and SB 202190 (a p38 MAPK inhibitor). Developed force at the end of the 60 min reoxygenation (FoC(60)) period was compared between groups (mean +/- SD). Phorbol 12-myristate 13-acetate (91 +/- 4% of baseline), diazoxide (85 +/- 5% of baseline) and anisomycin (90 +/- 4% of baseline) enhanced the FoC(60) as compared with the control group (53 +/- 7% of baseline, P < 0.0001). The enhanced FoC(60) induced by phorbol 12-myristate 13-acetate was abolished by calphostin C (52 +/- 5% of baseline) and 5-HD (56 +/- 3% of baseline), but not by SB 202190 (90 +/- 8%). The diazoxide-induced recovery of FoC(60) was attenuated by 5-HD (55 +/- 6% of baseline), but was not modified by calphostin C (87 +/- 5% of baseline) and SB 202190 (90 +/- 8% of baseline). The anisomycin-induced recovery of FoC(60) was abolished by calphostin C (61 +/- 9% of baseline) and SB 202190 (52 +/- 8% of baseline), but not by 5-HD (88 +/- 6% of baseline). In conclusion, PKC activation, opening of mitoK(ATP) channels and p38 MAPK activation in early reoxygenation induced the postconditioning of human myocardium, in vitro. Furthermore, PKC activation was upstream of the opening of mitoK(ATP) channels; p38 MAPK acted on PKC. Therefore, mitoK(ATP) and p38 MAPK seemed to be involved in two independent pathways.
Collapse
Affiliation(s)
- Sandrine Lemoine
- Laboratory of Experimental Anesthesiology and Cellular Physiology EA3212, Institut Fédératif de Recherche ICORE146 Université de Caen Basse Normandie, CHU de Caen, 14033 Caen Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Haider KH, Idris NM, Kim HW, Ahmed RPH, Shujia J, Ashraf M. MicroRNA-21 is a key determinant in IL-11/Stat3 anti-apoptotic signalling pathway in preconditioning of skeletal myoblasts. Cardiovasc Res 2010; 88:168-78. [PMID: 20498256 DOI: 10.1093/cvr/cvq151] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS We have previously shown that preconditioning of stem and progenitor cells promotes their survival post-engraftment in the infarcted heart. The present study was designed to (i) delineate the role of microRNA-21 (miR-21) in interleukin-11 (IL-11) signalling during preconditioning of skeletal myoblasts (MY) and (ii) study the long-term fate of preconditioned MY ((PC)MY) post-transplantation in the infarcted heart. METHODS AND RESULTS We report that pharmacological preconditioning of MY with diazoxide showed robust expression of IL-11 and activation of extracellular signal-regulated kinase 1/2 (Erk1/2) and signal transducers and activators of transcription-3 (Stat3) with concomitantly increased miR-21. These molecular events improved cytoprotection of (PC)MY under oxidant stress in vitro which was compromised by pre-treatment of (PC)MY with IL-11-specific siRNA, Erk1/2 blocker, or anti-miR-21. In vivo studies for sry-gene detection in a female rat heart model of acute myocardial infarction showed two-fold higher survival of male donor (PC)MY 4 and 7 days post-engraftment. Long-term fate of the engrafted cells was determined at 4 months after transplantation. Immunohistological studies revealed that in comparison with (non-PC)MY, (PC)MY improved angiogenic response in the heart which was evident from a higher number of blood vessels per surface area (0.155 mm(2)) and myogenic differentiation of (PC)MY in the heart. Indices of myocardial contractility including ejection fraction and fractional shortening showed significant improvement in (PC)MY-treated animals. CONCLUSION miR-21 is a key regulator of Erk1/2-Stat3 signalling downstream of IL-11 during preconditioning of MY. The therapeutic benefits of (PC)MY were stable and persisted until 4 months of observation.
Collapse
|
30
|
Afzal MR, Haider HK, Idris NM, Jiang S, Ahmed RPH, Ashraf M. Preconditioning promotes survival and angiomyogenic potential of mesenchymal stem cells in the infarcted heart via NF-kappaB signaling. Antioxid Redox Signal 2010; 12:693-702. [PMID: 19751147 PMCID: PMC2834442 DOI: 10.1089/ars.2009.2755] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We proposed that pharmacological manipulation of mesenchymal stem cells (MSCs) with diazoxide enhanced their survival and regenerative potential via NFkappaB regulation. MSCs preconditioned ((PC)MSCs) with diazoxide and later subjected to oxidant stress with 100 micromol/L H(2)O(2) either immediately or after 24 h exhibited higher survival (p < 0.01 vs nonpreconditioned MSCs; (Non-PC)MSCs) with concomitantly increased phosphorylation of PI3K, Akt, GSK3beta (cytoplasmic), and NF-kappaB (p65) (nuclear). Akt kinase activity was determined as a function of GSK3beta activity. Pretreatment of (PC)MSCs with Wortmannin (Wt), NEMO-binding domain (NBD), or NF-kappaB (p50) siRNA abolished NF-kappaB (p65) activity. Preconditioning increased NF-kappaB-dependent elevation of secretable growth factors associated with their paracrine effects. Inhibition of PI3K activity with Wt reduced (PC)MSCs viability at both early and 24 h time-points. However, inhibition of NF-kappaB reduced viability of (PC)MSCs only at 24 h time-point. For in vivo studies, DMEM without cells (group-1) or containing 1 x 10(6) male (Non-PC)MSCs (group-2), (PC)MSCs (group-3), (PC)MSCs pretreated with Wortmannin (group-4) or NF-kappaB decoy (group-5) were transplanted in a female rat model of acute myocardial infarction. Group-3 showed highest cell survival and growth factor expression, increased angiomyogenesis, and functional improvement. We conclude that activation of NF-kappaB by preconditioning promoted (PC)MSCs survival and angiomyogenic potential in the infarcted heart.
Collapse
Affiliation(s)
- Muhammad R Afzal
- Department of Pathology and Lab Medicine, 231 Albert Sabin Way, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0529, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Haider HK, Ashraf M. Preconditioning and stem cell survival. J Cardiovasc Transl Res 2009; 3:89-102. [PMID: 20560023 DOI: 10.1007/s12265-009-9161-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 11/24/2009] [Indexed: 01/01/2023]
Abstract
The harsh ischemic and cytokine-rich microenvironment in the infarcted myocardium, infiltrated by the inflammatory and immune cells, offers a significant challenge to the transplanted donor stem cells. Massive cell death occurs during transplantation as well as following engraftment which significantly lowers the effectiveness of the heart cell therapy. Various approaches have been adopted to overcome this problem nevertheless with multiple limitations with each of these current approaches. Cellular preconditioning and reprogramming by physical, chemical, genetic, and pharmacological manipulation of the cells has shown promise and "prime" the cells to the "state of readiness" to withstand the rigors of lethal ischemia in vitro as well as posttransplantation. This review summarizes the past and present novel approaches of ischemic preconditioning, pharmacological and genetic manipulation using preconditioning mimetics, recombinant growth factor protein treatment, and reprogramming of stem cells to overexpress survival signaling molecules, microRNAs, and trophic factors for intracrine, autocrine, and paracrine effects on cytoprotection.
Collapse
Affiliation(s)
- Husnain Kh Haider
- Department of Pathology and Laboratory Medicine, University of Cincinnati, 231-Albert, Sabin Way, OH 45267-0529, USA.
| | | |
Collapse
|
32
|
Xiang F, Huang YS, Zhang DX, Chu ZG, Zhang JP, Zhang Q. Adenosine A1 receptor activation reduces opening of mitochondrial permeability transition pores in hypoxic cardiomyocytes. Clin Exp Pharmacol Physiol 2009; 37:343-9. [PMID: 19793110 DOI: 10.1111/j.1440-1681.2009.05300.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Adenosine A(1) receptors (A(1)R) play an important role in cardioprotection against hypoxic damage and the opening of mitochondrial permeability transition pores (MPTP) is central to the regulation of cell apoptosis and necrosis. However, it is still unclear whether A(1)R open MPTP in hypoxic cardiomyocytes. 2. The present study used primary cardiomyocyte cultures from neonatal rats to investigate the mechanisms of A(1)R activation and the effects of A(1)R on MPTP opening under hypoxic conditions. 3. Hypoxia increased both MPTP opening and the production of reactive oxygen species (ROS), while decreasing cell viability and mitochondrial membrane potential (Deltapsi). The A(1)R agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA; 500 nmol/L) blocked the increase in MPTP opening and ROS production and maintained cell viability and Deltapsi under hypoxic conditions. 4. The protective effects of CCPA were eliminated by both the protein kinase C (PKC) inhibitor chelerythine (2 micromol/L) and the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)) inhibitor 5-hydroxydecanoate (500 micromol/L). Moreover, CCPA significantly increased the PKC content in both total protein and membrane protein of cardiomyocytes. 5-Hydroxydecanoate did not prevent these CCPA-induced increases in PKC. 5. These results demonstrate that CCPA reduces MPTP opening in hypoxic cardiomyocytes, possibly by activating PKC, stabilizing Deltapsi and reducing ROS production following the opening of mitoK(ATP). Consequently, fewer MPTP open.
Collapse
Affiliation(s)
- Fei Xiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
33
|
Zhou F, Yao HH, Wu JY, Ding JH, Sun T, Hu G. Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation. J Cell Mol Med 2009; 12:1559-70. [PMID: 19012619 PMCID: PMC3918072 DOI: 10.1111/j.1582-4934.2007.00144.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
As activated microglia (MG) is an early sign that often precedes and triggers neuronal death, inhibition of microglial activation and reduction of subsequent neurotoxicity may offer therapeutic benefit. The present study demonstrates that rat primary cultured MG expressed Kir6.1 and SUR2 subunits of KATP channel, which was identical to that expressed in BV-2 microglial cell line. The classic KATP channel opener pinacidil and selective mitochondrial KATP (mito-KATP) channel opener diazoxide prevented rotenone-induc microglial activation and production of pro-inflammatory factors (tumour necrosis factor[TNF]-α and prostaglandin E2[PGE2]). And the effects of pinacidil and diazoxide were reversed by mito-KATP blocker 5-hydroxydecanoate (5-HD), indicating that mito-KATP channels participate in the regulation of microglial activation. Moreover, the underlying mechanisms involved the stabilization of mitocho drial membrane potential and inhibition of p38/c-Jun-N-terminal kinase (JNK) activation in microglia. Furthermore, the in vivo study confirmed that diazoxide exhibited neuroprotective effects against rotenone along with the inhibition of microglial activation and neuroinflammation. Thus, microglial mito-KATP channel might be a novel prospective target for the treatment of neuroinflammation-related degenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Fang Zhou
- *Correspondence to: Gang HU, MD, PhD, Jiangsu Key Laboratory of Neurodegeneration, Department of Anatomy, Histology & Pharmacology Nanjing Medical University, 140 Hanzhong Road Nanjing, Jiangsu 210029, P. R. China. Tel.: +86-25-86 86 31 69 Fax: +86-25-86 86 31 08 E-mail:
| | | | | | | | | | - Gang Hu
- *Correspondence to: Gang HU, MD, PhD, Jiangsu Key Laboratory of Neurodegeneration, Department of Anatomy, Histology & Pharmacology Nanjing Medical University, 140 Hanzhong Road Nanjing, Jiangsu 210029, P. R. China. Tel.: +86-25-86 86 31 69 Fax: +86-25-86 86 31 08 E-mail:
| |
Collapse
|
34
|
Abstract
Not only the prevalence, but also the mortality due to ischaemic cardiovascular disease is higher in older than in young humans, and the demographic shift towards an ageing population will further increase the prevalence of age-related cardiovascular disease. In order to develop strategies aimed to limit reversible and irreversible myocardial damage in older patients, there is a need to better understand age-induced alterations in protein expression and cell signalling. Cardioprotective phenomena such as ischaemic and pharmacological pre and postconditioning attenuate ischaemia/reperfusion injury in young hearts. Whether or not pre and postconditioning are still effective in aged organs, animals, or patients, i.e. under conditions where such cardioprotection is most relevant, is still a matter of debate; most studies suggest a loss of protection in aged hearts. The present review discusses changes in protein expression and cell signalling important to ischaemia/reperfusion injury with myocardial ageing. The efficacy of cardioprotective manoeuvres, e.g. ischaemic pre and postconditioning in aged organs and animals will be discussed, and the development of strategies aimed to antagonize the age-induced loss of protection will be addressed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institut für Pathophysiologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | |
Collapse
|
35
|
Larsen JR, Aagaard S, Lie RH, Sloth E, Hasenkam JM. Sevoflurane improves myocardial ischaemic tolerance in a closed-chest porcine model. Acta Anaesthesiol Scand 2008; 52:1400-10. [PMID: 19025534 DOI: 10.1111/j.1399-6576.2008.01755.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS Volatile anaesthetics prevent experimental myocardial ischaemia-reperfusion injury (I/R) in several species, but this finding is partially inconsistent with clinical evidence. Some experimental models may not accurately represent the complex signal transduction pathways triggered by volatile anaesthetics. We therefore investigated sevoflurane I/R prevention in vivo in a porcine model with greater likeness to human physiology than models previously used and compared it with neutral anaesthetic. METHODS AND RESULTS Myocardial infarct size [IS/AAR] was compared in three groups of pigs (N=35) randomised to Control anaesthesia (pentobarbital infusion, n=12), sevoflurane inhalation alone (end-tidal concentration 3.2%) (Sevo, n=9), or both Combined (n=14), throughout ischaemia and reperfusion. Anterior/septal myocardial infarcts resulted from distal LAD coronary artery occlusion by balloon catheter for 45 min followed by 120 min of reperfusion. [IS/AAR] was measured in tetrazolium-stained heart slices after standardised image processing with computer-assisted planimetry. Measurements included full invasive monitoring. Control animals developed infarction in 55.0 +/- 3.9% (SEM) of the area at risk, Sevo in 17.5 +/- 4.4% (P=0.0002), and Combined with pentobarbital in 24.3 +/- 3.8% (P=0.0001) of the AAR, sevoflurane reducing infarct size significantly (68% and 60%, respectively). CONCLUSIONS Sevoflurane markedly decreased myocardial infarct size after prolonged coronary occlusion in a porcine model. In addition to novel sevoflurane cardioprotection in the closed-chest model, which is more comparable to normal human hearts than models previously used, sevoflurane cardioprotection is substantiated in the juvenile intact organism. The perspectives underline recommending volatile anaesthetics in risk patients and in cardiac surgery.
Collapse
Affiliation(s)
- J R Larsen
- Department of Anaesthesiology-Intensive Care, Aarhus University Hospital, Skejby, Aarhus N, Denmark.
| | | | | | | | | |
Collapse
|
36
|
Haider HK, Ashraf M. Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol 2008; 45:554-66. [PMID: 18561945 DOI: 10.1016/j.yjmcc.2008.05.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/18/2008] [Accepted: 05/02/2008] [Indexed: 12/22/2022]
Abstract
Stem cell transplantation has emerged as a potential modality in cardiovascular therapeutics due to their inherent characteristics of self-renewal, unlimited capacity for proliferation and ability to cross lineage restrictions and adopt different phenotypes. Constrained by extensive death in the unfriendly milieu of ischemic myocardium, the results of heart cell therapy in experimental animal models as well as clinical studies have been less than optimal. Several factors which play a role in early cell death after engraftment in the ischemic myocardium include: absence of survival factors in the transplanted heart, disruption of cell-cell interaction coupled with loss of survival signals from matrix attachments, insufficient vascular supply and elaboration of inflammatory cytokines resulting from ischemia and/or cell death. This article reviews various signaling pathways involved in triggering highly complex forms of cell death and provides critical appreciation of different novel anti-death strategies developed from the knowledge gained from using an ischemic preconditioning approach. The use of pharmacological preconditioning for up-regulation of pro-survival proteins and cardiogenic markers in the transplanted stem cells will be discussed.
Collapse
Affiliation(s)
- Husnain Kh Haider
- Department of Pathology and Laboratory Medicine, 231-Albert Sabin Way, University of Cincinnati, OH-45267-0529, USA
| | | |
Collapse
|
37
|
Pasdois P, Beauvoit B, Tariosse L, Vinassa B, Bonoron-Adèle S, Dos Santos P. Effect of diazoxide on flavoprotein oxidation and reactive oxygen species generation during ischemia-reperfusion: a study on Langendorff-perfused rat hearts using optic fibers. Am J Physiol Heart Circ Physiol 2008; 294:H2088-97. [PMID: 18296562 DOI: 10.1152/ajpheart.01345.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study analyzed the oxidant generation during ischemia-reperfusion protocols of Langendorff-perfused rat hearts, preconditioned with a mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) opener (i.e., diazoxide). The autofluorescence of mitochondrial flavoproteins, and that of the total NAD(P)H pool on the one hand and the fluorescence of dyes sensitive to H(2)O(2) or O(2)(*-) [i.e., the dihydrodichlorofluoroscein (H(2)DCF) and dihydroethidine (DHE), respectively] on the other, were noninvasively measured at the surface of the left ventricular wall by means of optic fibers. Isolated perfused rat hearts were subjected to an ischemia-reperfusion protocol. Opening mitoK(ATP) with diazoxide (100 microM) 1) improved the recovery of the rate-pressure product after reperfusion (72 +/- 2 vs. 16.8 +/- 2.5% of baseline value in control group, P < 0.01), and 2) attenuated the oxidant generation during both ischemic (-46 +/- 5% H(2)DCF oxidation and -40 +/- 3% DHE oxidation vs. control group, P < 0.01) and reperfusion (-26 +/- 2% H(2)DCF oxidation and -23 +/- 2% DHE oxidation vs. control group, P < 0.01) periods. All of these effects were abolished by coperfusion of 5-hydroxydecanoic acid (500 microM), a mitoK(ATP) blocker. During the preconditioning phase, diazoxide induced a transient, reversible, and 5-hydroxydecanoic acid-sensitive flavoprotein and H(2)DCF (but not DHE) oxidation. In conclusion, the diazoxide-mediated cardioprotection is supported by a moderate H(2)O(2) production during the preconditioning phase and a strong decrease in oxidant generation during the subsequent ischemic and reperfusion phases.
Collapse
|
38
|
Jiang MT, Nakae Y, Ljubkovic M, Kwok WM, Stowe DF, Bosnjak ZJ. Isoflurane Activates Human Cardiac Mitochondrial Adenosine Triphosphate-Sensitive K+ Channels Reconstituted in Lipid Bilayers. Anesth Analg 2007; 105:926-32, table of contents. [PMID: 17898367 DOI: 10.1213/01.ane.0000278640.81206.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Activation of the mitochondrial adenosine triphosphate (ATP)-sensitive K+ channel (mitoK(ATP)) has been proposed as a critical step in myocardial protection by isoflurane-induced preconditioning in humans and animals. Recent evidence suggests that reactive oxygen species (ROS) may mediate isoflurane-mediated myocardial protection. In this study, we examined the direct effect of isoflurane and ROS on human cardiac mitoK(ATP) channels reconstituted into the lipid bilayers. METHODS Inner mitochondrial membranes were isolated from explanted human left ventricles not suitable for heart transplantation and fused into lipid bilayers in symmetrical potassium glutamate solution (150 mM). ATP-sensitive K+ currents were recorded before and after exposure to isoflurane and H2O2 under voltage clamp. RESULTS The human mitoK(ATP) was identified by its sensitivity to inhibition by ATP and 5-hydroxydecanoate. Addition of isoflurane (0.8 mM) increased the open probability of the mitoK(ATP) channels, either in the presence or absence of ATP inhibition (0.5 mM). The isoflurane-mediated increase in K+ currents was completely inhibited by 5-hydroxydecanoate. Similarly, H2O2 (200 microM) was able to activate the mitoK(ATP) previously inhibited by ATP. CONCLUSIONS These data confirm that isoflurane, as well as ROS, directly activates reconstituted human cardiac mitoK(ATP) channel in vitro, without apparent involvement of cytosolic protein kinases, as commonly proposed. Activation of the mitoK(ATP) channel may contribute to the myocardial protective effect of isoflurane in the human heart.
Collapse
Affiliation(s)
- Ming T Jiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Background—
Reinfusion of unprocessed cardiotomy blood during cardiac surgery can introduce particulate material into the cardiopulmonary bypass circuit, which may contribute to postoperative cognitive dysfunction. On the other hand, processing of this blood by centrifugation and filtration removes coagulation factors and may potentially contribute to coagulopathy. We sought to evaluate the effects of cardiotomy blood processing on blood product use and neurocognitive functioning after cardiac surgery.
Methods and Results—
Patients undergoing coronary and/or aortic valve surgery using cardiopulmonary bypass were randomized to receive unprocessed blood (control, n=134) or cardiotomy blood that had been processed by centrifugal washing and lipid filtration (treatment, n=132). Patients and treating physicians were blinded to treatment assignment. A strict transfusion protocol was followed. Blood transfusion data were analyzed using Poisson regression models. The treatment group received more intraoperative red blood cell transfusions (0.23±0.69 U versus 0.08±0.34 U,
P
=0.004). Both red blood cell and nonred blood cell blood product use was greater in the treatment group and postoperative bleeding was greater in the treatment group. Patients were monitored intraoperatively by transcranial Doppler and they underwent neuropsychometric testing before surgery and at 5 days and 3 months after surgery. There was no difference in the incidence of postoperative cognitive dysfunction in the 2 groups (relative risk: 1.16, 95% CI: 0.86 to 1.57 at 5 days postoperatively; relative risk: 1.05, 95% CI: 0.58 to 1.90 at 3 months). There was no difference in the quality of life nor was there a difference in the number of emboli detected in the 2 groups.
Conclusions—
Contrary to expectations, processing of cardiotomy blood before reinfusion results in greater blood product use with greater postoperative bleeding in patients undergoing cardiac surgery. There is no clinical evidence of any neurologic benefit with this approach in terms of postoperative cognitive function.
Collapse
Affiliation(s)
- Fraser D Rubens
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
40
|
Ussia GP, Scandura S, Calafiore AM, Mangiafico S, Meduri R, Galassi AR, Tamburino C. Late Device Dislodgement After Percutaneous Closure of Mitral Prosthesis Paravalvular Leak With Amplatzer Muscular Ventricular Septal Defect Occluder. Circulation 2007; 115:e208-10. [PMID: 17325248 DOI: 10.1161/circulationaha.106.656454] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Mayr M, Madhu B, Xu Q. Proteomics and Metabolomics Combined in Cardiovascular Research. Trends Cardiovasc Med 2007; 17:43-8. [PMID: 17292045 DOI: 10.1016/j.tcm.2006.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 11/28/2006] [Accepted: 11/29/2006] [Indexed: 11/22/2022]
Abstract
Proteomics and metabolomics offer a nonbiased suite of tools to address pathophysiologic mechanisms from various levels by integrating signal transduction, cellular metabolism, and phenotype analysis. To link alterations of cellular proteins to metabolism and function, we have recently combined proteomic and metabolomic techniques. Examples, including genetic manipulation, ischemic preconditioning, atherosclerosis, and stem cell differentiation, are discussed to illustrate how the combination of these updated technologies may advance our understanding of cardiovascular biology.
Collapse
Affiliation(s)
- Manuel Mayr
- Cardiovascular Division, King's College, London SE5 9NU, UK.
| | | | | |
Collapse
|
42
|
Niagara MI, Haider HK, Jiang S, Ashraf M. Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ Res 2007; 100:545-55. [PMID: 17234963 DOI: 10.1161/01.res.0000258460.41160.ef] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Strategies to enhance skeletal myoblast (SkM) survival after transplantation in the ischemic heart have achieved little success. We posit that preconditioned (PC) SkMs show improved survival and promote repair of the infarcted myocardium via paracrine signaling after transplantation. SkMs from male Fischer-344 rats (rSkMs) were PC for 30 minutes with 200 micromol/L diazoxide. Treatment of PC rSkMs with 100 micromol/L H(2)O(2) for 2 hours resulted in significantly reduced cell injury, as shown by lactate dehydrogenase-release assay, and prevented apoptosis, as demonstrated by cytochrome c translocation, TUNEL, annexin V staining, and preservation of mitochondrial membrane potential. PC rSkMs expressed elevated phospho-Akt (1.85-fold), basic fibroblast growth factor (1.44-fold), hepatocyte growth factor (2.26-fold), and cyclooxygenase-2 (1.33-fold) as compared with non-PC rSkMs. For in vivo studies, female Fischer-344 rats after permanent coronary artery ligation were grouped (n=12/group) to receive 80 microL of basal medium without rSkMs (group 1) or containing 1.5 x 10(6) non-PC (group 2) or PC (group 3) rSkMs. Real-time PCR for sry gene 4 days after transplantation (n=4/group) showed 1.93-fold higher survival of rSkMs in group 3 as compared with group 2. Four weeks later, echocardiography revealed improved indices of left ventricular function, including ejection fraction and fractional shortening in group 3 (P<0.02) as compared with groups 1 and 2. Blood vessel count per surface area (at x400 magnification) was highest in scar and periscar areas in group 3 as compared with the other groups (P<0.05). We conclude that activation of signaling pathways of preconditioning in SkMs promoted their survival by release of paracrine factors to promote angiomyogenesis in the infarcted heart. Transplantation of PC SkMs for heart cell therapy is an innovative approach in the clinical perspective.
Collapse
Affiliation(s)
- Muhammad Idris Niagara
- Department of Pathology and Laboratory Medicine, University of Cincinnati, OH 45267-0529, USA
| | | | | | | |
Collapse
|
43
|
Kim MY, Kim MJ, Yoon IS, Ahn JH, Lee SH, Baik EJ, Moon CH, Jung YS. Diazoxide acts more as a PKC-epsilon activator, and indirectly activates the mitochondrial K(ATP) channel conferring cardioprotection against hypoxic injury. Br J Pharmacol 2006; 149:1059-70. [PMID: 17043673 PMCID: PMC2014640 DOI: 10.1038/sj.bjp.0706922] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Diazoxide, a well-known opener of the mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel, has been demonstrated to exert cardioprotective effect against ischemic injury through the mitoK(ATP) channel and protein kinase C (PKC). We aimed to clarify the role of PKC isoforms and the relationship between the PKC isoforms and the mitoK(ATP) channel in diazoxide-induced cardioprotection. EXPERIMENTAL APPROACH In H9c2 cells and neonatal rat cardiomyocytes, PKC-epsilon activation was examined by Western blotting and kinase assay. Flavoprotein fluorescence, mitochondrial Ca(2+) and mitochondrial membrane potential were measured by confocal microscopy. Cell death was determined by TUNEL assay. KEY RESULTS Diazoxide (100 microM) induced translocation of PKC-epsilon from the cytosolic to the mitochondrial fraction. Specific blockade of PKC-epsilon by either epsilonV1-2 or dominant negative mutant PKC-epsilon (PKC-epsilon KR) abolished the anti-apoptotic effect of diazoxide. Diazoxide-induced flavoprotein oxidation was inhibited by either epsilonV1-2 or PKC-epsilon KR transfection. Treatment with 5-hydroxydecanoate (5-HD) did not affect translocation and activation of PKC-epsilon induced by diazoxide. Transfection with wild type PKC-epsilon mimicked the flavoprotein-oxidizing effect of diazoxide, and this effect was completely blocked by epsilonV1-2 or 5-HD. Diazoxide prevented the increase in mitochondrial Ca(2+), mitochondrial depolarization and cytochrome c release induced by hypoxia and all these effects of diazoxide were blocked by epsilonV1-2 or 5-HD. CONCLUSIONS AND IMPLICATIONS Diazoxide induced isoform-specific translocation of PKC-epsilon as an upstream signaling molecule for the mitoK(ATP) channel, rendering cardiomyocytes resistant to hypoxic injury through inhibition of the mitochondrial death pathway.
Collapse
Affiliation(s)
- M-Y Kim
- Department of Physiology, School of Medicine, Ajou University, Suwon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
HEIN RALPH, LANG KLAUS, WUNDERLICH NINA, WILSON NEIL, SIEVERT HORST. Percutaneous Closure of Paravalvular Leaks. J Interv Cardiol 2006. [DOI: 10.1111/j.1540-8183.2006.00174.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
45
|
Boodhwani M, Rubens FD, Wozny D, Rodriguez R, Alsefaou A, Hendry PJ, Nathan HJ. Predictors of early neurocognitive deficits in low-risk patients undergoing on-pump coronary artery bypass surgery. Circulation 2006; 114:I461-6. [PMID: 16820619 DOI: 10.1161/circulationaha.105.001354] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Postoperative cognitive deficits (POCDs) are a source of morbidity and occur frequently even in low-risk patients undergoing cardiac surgery. Predictors of neurocognitive deficits can identify potentially modifiable risk factors as well as high-risk patients in whom alternate revascularization strategies may be considered. METHODS AND RESULTS 448 patients undergoing coronary surgery (coronary artery bypass graft [CABG]) underwent standardized preoperative and postoperative neurocognitive testing as part of 2 randomized trials evaluating the effects of mild hypothermia during coronary surgery. Prospectively collected data were used to identify univariate predictors of POCDs and multivariable logistic regression models were constructed. Models were bootstrapped 1000 times. POCDs occurred in 59% of patients. Significant univariate predictors included intraoperative normothermia, impaired left ventricular (LV) function, higher educational level, elevated serum creatinine and reduced creatinine clearance, prolonged intubation time, intensive care unit (ICU) stay, and hospital stay. Advanced age, presence of carotid disease, and cardiopulmonary bypass time were not associated with increased POCDs in this cohort. Multivariable modeling identified intraoperative normothermia (odds ratio [95% confidence interval] -1.15 [1.01, 1.31]), poor LV function (1.53 [1.02, 2.30]), and elevated preoperative creatinine (1.01 [1.00 to 1.03] for every 1 mmol/L increase), prolonged (>24 hours) ICU stay (1.88 [1.27 to 2.79]), and higher educational level (1.52 [1.01 to 2.28]) as independent predictors of POCD occurrence. CONCLUSIONS Mild hypothermia, in the intraoperative and perioperative period, may be a protective strategy for the prevention of POCDs. Patients with elevated pre-operative creatinine and poor LV function carry a higher risk of POCDs and may benefit from revascularization strategies other than conventional on-pump CABG.
Collapse
Affiliation(s)
- Munir Boodhwani
- Divisions of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhu M, Ackerman JJH, Sukstanskii AL, Yablonskiy DA. How the body controls brain temperature: the temperature shielding effect of cerebral blood flow. J Appl Physiol (1985) 2006; 101:1481-8. [PMID: 16840581 PMCID: PMC2094117 DOI: 10.1152/japplphysiol.00319.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Normal brain functioning largely depends on maintaining brain temperature. However, the mechanisms protecting brain against a cooler environment are poorly understood. Reported herein is the first detailed measurement of the brain-temperature profile. It is found to be exponential, defined by a characteristic temperature shielding length, with cooler peripheral areas and a warmer brain core approaching body temperature. Direct cerebral blood flow (CBF) measurements with microspheres show that the characteristic temperature shielding length is inversely proportional to the square root of CBF in excellent agreement with a theoretical model. This "temperature shielding effect" quantifies the means by which CBF prevents "extracranial cold" from penetrating deep brain structures. The effect is crucial for research and clinical applications; the relationship between brain, body, and extracranial temperatures can now be quantitatively predicted.
Collapse
Affiliation(s)
- Mingming Zhu
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
47
|
Ahmad N, Wang Y, Haider KH, Wang B, Pasha Z, Uzun O, Ashraf M. Cardiac protection by mitoKATP channels is dependent on Akt translocation from cytosol to mitochondria during late preconditioning. Am J Physiol Heart Circ Physiol 2006; 290:H2402-8. [PMID: 16687609 DOI: 10.1152/ajpheart.00737.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This investigation elucidates the Akt/mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel signaling pathway in late pharmacological preconditioning, using the mitoK(ATP) channel openers BMS-191095 (BMS) and diazoxide (DE). BMS (1 mg/kg ip) and DE (7 mg/kg ip) alone or BMS plus wortmannin (WTN, 15 microg/kg ip), an inhibitor of phosphatidylinositol 3-kinase, and BMS plus 5-hydroxydecanoic acid (5-HD, 5 mg/kg ip), an inhibitor of mitoK(ATP) channels, were administered to male mice. Twenty-four hours later, hearts were isolated and subjected to 40 min of ischemia and 120 min of reperfusion via Langendorff's apparatus. Both BMS and DE reduced left ventricular end-diastolic pressure and increased left ventricular developed pressure as well as reduced LDH release. Coadministration of BMS and WTN abolished the beneficial effects of BMS on cardiac function. Moreover, BMS and DE accelerated Akt phosphorylation in cardiac tissue as determined by Western blot analysis and also significantly reduced apoptosis compared with ischemic control. WTN significantly suppressed BMS-induced Akt phosphorylation, whereas 5-HD had no effect on Akt phosphorylation in cytosol, and the effect of BMS on apoptosis was abolished. It is concluded that the cardioprotective effect by mitoK(ATP) channels is attributed to the translocation of phosphorylated Akt from cytosol to mitochondria.
Collapse
Affiliation(s)
- Nauman Ahmad
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G, Pagliaro P. Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res Cardiol 2006; 101:180-9. [PMID: 16450075 DOI: 10.1007/s00395-006-0584-5] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/19/2005] [Accepted: 12/20/2005] [Indexed: 12/18/2022]
Abstract
Post-conditioning (Post-C) induced cardioprotection involves activation of guanylyl-cyclase. In the ischemic preconditioning scenario, the downstream targets of cGMP include mitochondrial ATP-sensitive K(+) (mK(ATP)) channels and protein kinase C (PKC), which involve reactive oxygen species (ROS) production. This study tests the hypothesis that mK(ATP), PKC and ROS are also involved in the Post-C protection. Isolated rat hearts underwent 30 min global ischemia (I) and 120 min reperfusion (R) with or without Post-C (i.e., 5 cycles of 10 s R/I immediately after the 30 min ischemia). In 6 groups (3 with and 3 without Post-C) either mK(ATP) channel blocker, 5- hydroxydecanoate (5-HD), or PKC inhibitor, chelerythrine (CHE) or ROS scavenger, N-acetyl-cysteine (NAC), were given during the entire reperfusion (120 min). In other 6 groups (3 with and 3 without Post-C), 5-HD, CHE or NAC were infused for 117 min only starting after 3 min of reperfusion not to interfere with the early effects of Post-C and/or reperfusion. In an additional group NAC was given during Post-C maneuvers (i.e., 3 min only). Myocardial damage was evaluated using nitro-blue tetrazolium staining and lactate dehydrogenase (LDH) release. Post-C attenuated myocardial infarct size (21 +/- 3% vs. 64 +/- 5% in control; p < 0.01). Such an effect was abolished by 5-HD or CHE given during either the 120 or 117 min of reperfusion as well as by NAC given during the 120 min or the initial 3 min of reperfusion. However, delayed NAC (i.e., 117 min infusion) did not alter the protective effect of Post- C (infarct size 32 +/- 5%; p < 0.01 vs. control, NS vs. Post-C). CHE, 5-HD or NAC given in the absence of Post-C did not alter the effects of I/R. Similar results were obtained in terms of LDH release. Our data show that Post-C induced protection involves an early redox-sensitive mechanism as well as a persistent activation of mK(ATP) and PKC, suggesting that the mK(ATP)/ROS/PKC pathway is involved in post-conditioning.
Collapse
Affiliation(s)
- Claudia Penna
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Ospedale S. Luigi, Regione Gonzole, 10043, Orbassano, TO, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Jiang MT, Ljubkovic M, Nakae Y, Shi Y, Kwok WM, Stowe DF, Bosnjak ZJ. Characterization of human cardiac mitochondrial ATP-sensitive potassium channel and its regulation by phorbol ester in vitro. Am J Physiol Heart Circ Physiol 2005; 290:H1770-6. [PMID: 16361367 DOI: 10.1152/ajpheart.01084.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of the mitochondrial ATP-sensitive K+ channel (mitoKATP) and its regulation by PKC are critical events in preconditioning induced by ischemia or pharmaceutical agents in animals and humans. The properties of the human cardiac mitoKATP channel are unknown. Furthermore, there is no evidence that cytosolic PKC can directly regulate the mitoKATP channel located in the inner mitochondrial membrane (IMM) due to the physical barrier of the outer mitochondrial membrane. In the present study, we characterized the human cardiac mitoKATP channel and its potential regulation by PKC associated with the IMM. IMM fractions isolated from human left ventricles were fused into lipid bilayers in symmetrical potassium glutamate (150 mM). The conductance of native mitoKATP channels was usually below 80 pS ( approximately 70%), which was reduced by ATP and 5-hydroxydecanoic acid (5-HD) in a dose- and time-dependent manner. The native mitoKATP channel is activated by diazoxide and inhibited by ATP and 5-HD. The PKC activator phorbol 12-myristate 13-acetate (2 microM) increased the cumulative open probability of the mitoKATP channel previously inhibited by ATP (P < 0.05), but its inactive analog 4alpha-phorbol 12,13-didecanoate had no effect. Western blot analysis detected an inward rectifying K+ channel (Kir6.2) immunoreactive protein at 56 kDa and PKC-delta in the IMM. These data provide the first characterization of the human cardiac mitoKATP channel and its regulation by PKC(s) in IMM. This local PKC control mechanism may represent an alternative pathway to that proposed previously for cytosolic PKC during ischemic/pharmacological preconditioning.
Collapse
Affiliation(s)
- Ming Tao Jiang
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Roberts NA, Haworth RS, Avkiran M. Effects of bisindolylmaleimide PKC inhibitors on p90RSK activity in vitro and in adult ventricular myocytes. Br J Pharmacol 2005; 145:477-89. [PMID: 15821757 PMCID: PMC1576162 DOI: 10.1038/sj.bjp.0706210] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 Bisindolylmaleimide inhibitors of protein kinase C (PKC), such as GF109203X and Ro31-8220, have been used to investigate the roles of PKC isoforms in many cellular processes in cardiac myocytes, but these agents may also inhibit p90RSK activity. 2 In in vitro kinase assays utilising 50 microM [ATP], GF109203X and Ro31-8220 inhibited p90RSK isoforms (IC50 values for inhibition of RSK1, RSK2 and RSK3, respectively, were 610, 310 and 120 nM for GF109203X, and 200, 36 and 5 nM for Ro31-8220) as well as classical and novel PKC isoforms (IC50 values for inhibition of PKCalpha and PKCepsilon, respectively, were 8 and 12 nM for GF109203X, and 4 and 8 nM for Ro31-8220). 3 At physiological [ATP] (5 mM), both GF109203X and Ro31-8220 exhibited reduced potency as inhibitors of RSK2, PKCalpha and PKCepsilon (IC50 values of 7400, 310 and 170 nM, respectively, for GF109203X, and 930, 150 and 140 nM, respectively, for Ro31-8220), with the latter agent retaining its relatively greater potency. 4 To determine the effects of GF109203X and Ro31-8220 on p90RSK activity in cultured adult rat ventricular myocytes (ARVM), phosphorylation of the eukaryotic elongation factor 2 kinase (eEF2K) at Ser366, a known p90RSK target, was used as the index of such activity. Adenoviral expression of a constitutively active form of mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase (ERK) kinase 1 (MEK1) was used to induce PKC-independent p90RSK activation and downstream phosphorylation of eEF2K. 5 eEF2K phosphorylation was abolished by U0126 (1 microM), a selective inhibitor of MEK1, and was significantly reduced by GF109203X at > or =3 microM and by Ro31-8220 at > or =1 microM. At 1 microM, both agents inhibited PMA-induced PKC activity in ARVM. 6 These data show that GF109203X and Ro31-8220 inhibit various isoforms of PKC and p90RSK in vitro and in intact ARVM, with the former agent exhibiting relatively greater selectivity for PKC.
Collapse
Affiliation(s)
- Neil A Roberts
- Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, Lambeth Palace Road, London SE1 7EH
| | - Robert S Haworth
- Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, Lambeth Palace Road, London SE1 7EH
| | - Metin Avkiran
- Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, Lambeth Palace Road, London SE1 7EH
- Author for correspondence:
| |
Collapse
|