1
|
Pandit SV, Lampe JW, Silver AE. Recurrence of ventricular fibrillation in out-of-hospital cardiac arrest: Clinical evidence and underlying ionic mechanisms. J Physiol 2024; 602:4649-4667. [PMID: 38661672 DOI: 10.1113/jp284621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/08/2024] [Indexed: 04/26/2024] Open
Abstract
Defibrillation remains the optimal therapy for terminating ventricular fibrillation (VF) in out-of-hospital cardiac arrest (OHCA) patients, with reported shock success rates of ∼90%. A key persistent challenge, however, is the high rate of VF recurrence (∼50-80%) seen during post-shock cardiopulmonary resuscitation (CPR). Studies have shown that the incidence and time spent in recurrent VF are negatively associated with neurologically-intact survival. Recurrent VF also results in the administration of extra shocks at escalating energy levels, which can cause cardiac dysfunction. Unfortunately, the mechanisms underlying recurrent VF remain poorly understood. In particular, the role of chest-compressions (CC) administered during CPR in mediating recurrent VF remains controversial. In this review, we first summarize the available clinical evidence for refibrillation occurring during CPR in OHCA patients, including the postulated contribution of CC and non-CC related pathways. Next, we examine experimental studies highlighting how CC can re-induce VF via direct mechano-electric feedback. We postulate the ionic mechanisms involved by comparison with similar phenomena seen in commotio cordis. Subsequently, the hypothesized contribution of partial cardiac reperfusion (either as a result of CC or CC independent organized rhythm) in re-initiating VF in a globally ischaemic heart is examined. An overview of the proposed ionic mechanisms contributing to VF recurrence in OHCA during CPR from a cellular level to the whole heart is outlined. Possible therapeutic implications of the proposed mechanistic theories for VF recurrence in OHCA are briefly discussed.
Collapse
|
2
|
Sodium-Hydrogen Exchanger Isoform-1 Inhibition: A Promising Pharmacological Intervention for Resuscitation from Cardiac Arrest. Molecules 2019; 24:molecules24091765. [PMID: 31067690 PMCID: PMC6538998 DOI: 10.3390/molecules24091765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 01/14/2023] Open
Abstract
Out-of-hospital sudden cardiac arrest is a major public health problem with an overall survival of less than 5%. Upon cardiac arrest, cessation of coronary blood flow rapidly leads to intense myocardial ischemia and activation of the sarcolemmal Na+-H+ exchanger isoform-1 (NHE-1). NHE-1 activation drives Na+ into cardiomyocytes in exchange for H+ with its exchange rate intensified upon reperfusion during the resuscitation effort. Na+ accumulates in the cytosol driving Ca2+ entry through the Na+-Ca2+ exchanger, eventually causing cytosolic and mitochondrial Ca2+ overload and worsening myocardial injury by compromising mitochondrial bioenergetic function. We have reported clinically relevant myocardial effects elicited by NHE-1 inhibitors given during resuscitation in animal models of ventricular fibrillation (VF). These effects include: (a) preservation of left ventricular distensibility enabling hemodynamically more effective chest compressions, (b) return of cardiac activity with greater electrical stability reducing post-resuscitation episodes of VF, (c) less post-resuscitation myocardial dysfunction, and (d) attenuation of adverse myocardial effects of epinephrine; all contributing to improved survival in animal models. Mechanistically, NHE-1 inhibition reduces adverse effects stemming from Na+–driven cytosolic and mitochondrial Ca2+ overload. We believe the preclinical work herein discussed provides a persuasive rationale for examining the potential role of NHE-1 inhibitors for cardiac resuscitation in humans.
Collapse
|
3
|
Wei L, Zhao W, Hu Y, Wang X, Liu X, Zhang P, Han F. Exploration of the optimal dose of HOE-642 for the protection of neuronal mitochondrial function after cardiac arrest in rats. Biomed Pharmacother 2018; 110:818-824. [PMID: 30554120 DOI: 10.1016/j.biopha.2018.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION It has been demonstrated HOE-642 ameliorates ischemic contracture, prevents post-resuscitation diastolic dysfunction, and favors the earlier return of contractile function. This study is the first report to explore the optimal dose of HOE-642 in protecting the neuronal mitochondrial function after cardiac arrest. METHODS Cardiac arrest was induced by 8 min asphyxia in rats. There were Sham (S), Normothermic (NORM), and Hypothermic (HYPO) groups. The NORM or HYPO groups consist of four subgroups: NORM/HYPO + HOE-642 0, 1, 3, and 5 mg/kg. Survival and NDS were evaluated after 24 h of resuscitation. ΔΨm, mitochondrial swelling, ROS production, and mitochondrial complex IIV activity of the hippocampus were detected. RESULTS Survival in the HYPO + 1 mg group was the best and significantly higher than in the NORM + 0 mg and NORM + 1 mg groups. NDS in the HYPO + 0 mg, HYPO + 1 mg, and HYPO + 3 mg groups was significantly lower than in the NORM + 0 mg group. ΔΨm in the NORM + 1 mg (n = 5) group was significantly higher than in the NORM + 0 mg (n = 8), NORM + 3 mg (n = 5), and NORM + 5 mg (n = 5) groups. The ROS production in the NORM + 1 mg and NORM + 3 mg groups were significantly lower than in the NORM + 0 mg and NORM + 5 mg groups. Complex I and III activities in the HYPO + 1 mg (n = 5) group were significantly higher than in the HYPO + 3 mg (n = 5), and HYPO + 5 mg (n = 5) groups. Complex II and IV activities in the NORM + 3 mg and HYPO + 3 mg groups were significantly higher than in the NORM + 0 mg, NORM + 1 mg, and HYPO + 0 mg (n = 4)groups. CONCLUSIONS HOE-642 1 or 3 mg/kg showed benefits compared to HOE-642 5 mg/kg used when initiating resuscitation. When combined with hypothermia after cardiac arrest, HOE-642 1 or 3 mg/kg improved survival and neurological function compared with hypothermia or HOE-642 alone, however, HOE-642 5 mg/kg plus hypothermia did not.
Collapse
Affiliation(s)
- Lanying Wei
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Wenshuai Zhao
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yanan Hu
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xifan Wang
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xintong Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Pengjiao Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Fei Han
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
4
|
Park SH, Lim YD, Jung YH, Jeung KW. Relationship between hemodynamic parameters and severity of ischemia-induced left ventricular wall thickening during cardiopulmonary resuscitation of consistent quality. PLoS One 2018; 13:e0208140. [PMID: 30485382 PMCID: PMC6261643 DOI: 10.1371/journal.pone.0208140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/11/2018] [Indexed: 11/21/2022] Open
Abstract
Ischemia-induced left ventricular (LV) wall thickening compromises the hemodynamic effectiveness of cardiopulmonary resuscitation (CPR). However, accurate assessment of the severity of ischemia-induced LV wall thickening during CPR is challenging. We investigated, in a swine model, whether hemodynamic parameters, including end-tidal carbon dioxide (ETCO2) level, are linearly associated with the severity of ischemia-induced LV wall thickening during CPR of consistent quality. We retrospectively analyzed 96 datasets for ETCO2 level, arterial pressure, LV wall thickness, and the percent of measured end-diastolic volume (%EDV) relative to EDV at the onset of ventricular fibrillation from eight pigs. Animals underwent advanced cardiovascular life support based on resuscitation guidelines. During CPR, LV wall thickness progressively increased while %EDV progressively decreased. Systolic and diastolic arterial pressure and ETCO2 level were significantly correlated with LV wall thickness and %EDV. Linear mixed effect models revealed that, after adjustment for significant covariates, systolic and diastolic arterial pressure were not associated with LV wall thickness or %EDV. ETCO2 level had a significant linear relationship with %EDV (P = 0.004). However, it could explain only 28.2% of the total variance of %EDV in our model. In conclusion, none of the hemodynamic parameters examined in this study appeared to provide sufficient information on the severity of ischemia-induced LV wall thickening.
Collapse
Affiliation(s)
- Se-hyeok Park
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yong Deok Lim
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yong Hun Jung
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Kyung Woon Jeung
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
5
|
Lamoureux L, Radhakrishnan J, Mason TG, Kraut JA, Gazmuri RJ. Adverse postresuscitation myocardial effects elicited by buffer-induced alkalemia ameliorated by NHE-1 inhibition in a rat model of ventricular fibrillation. J Appl Physiol (1985) 2016; 121:1160-1168. [PMID: 27633736 DOI: 10.1152/japplphysiol.00336.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/12/2016] [Indexed: 11/22/2022] Open
Abstract
Major myocardial abnormalities occur during cardiac arrest and resuscitation including intracellular acidosis-partly caused by CO2 accumulation-and activation of the Na+-H+ exchanger isoform-1 (NHE-1). We hypothesized that a favorable interaction may result from NHE-1 inhibition during cardiac resuscitation followed by administration of a CO2-consuming buffer upon return of spontaneous circulation (ROSC). Ventricular fibrillation was electrically induced in 24 male rats and left untreated for 8 min followed by defibrillation after 8 min of cardiopulmonary resuscitation (CPR). Rats were randomized 1:1:1 to the NHE-1 inhibitor zoniporide or vehicle during CPR and disodium carbonate/sodium bicarbonate buffer or normal saline (30 ml/kg) after ROSC. Survival at 240 min declined from 100% with Zoniporide/Saline to 50% with Zoniporide/Buffer and 25% with Vehicle/Buffer (P = 0.004), explained by worsening postresuscitation myocardial dysfunction. Marked alkalemia occurred after buffer administration along with lactatemia that was maximal after Vehicle/Buffer, attenuated by Zoniporide/Buffer, and minimal with Zoniporide/Saline [13.3 ± 4.8 (SD), 9.2 ± 4.6, and 2.7 ± 1.0 mmol/l; P ≤ 0.001]. We attributed the intense postresuscitation lactatemia to enhanced glycolysis consequent to severe buffer-induced alkalemia transmitted intracellularly by an active NHE-1. We attributed the worsened postresuscitation myocardial dysfunction also to severe alkalemia intensifying Na+ entry via NHE-1 with consequent Ca2+ overload injuring mitochondria, evidenced by increased plasma cytochrome c Both buffer-induced effects were ameliorated by zoniporide. Accordingly, buffer-induced alkalemia after ROSC worsened myocardial function and survival, likely through enhancing NHE-1 activity. Zoniporide attenuated these effects and uncovered a complex postresuscitation acid-base physiology whereby blood pH drives NHE-1 activity and compromises mitochondrial function and integrity along with myocardial function and survival.
Collapse
Affiliation(s)
- Lorissa Lamoureux
- Resuscitation Institute at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Jeejabai Radhakrishnan
- Resuscitation Institute at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Thomas G Mason
- Department of Chemistry, University of California, Los Angeles, Los Angeles, California
| | - Jeffrey A Kraut
- Medical and Research Services, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California.,Membrane Biology Laboratory, University of California, Los Angeles, Los Angeles, California; and.,Division of Nephrology, Veterans Affairs Greater Los Angeles Healthcare System and David Geffen School of Medicine, Los Angeles, California
| | - Raúl J Gazmuri
- Resuscitation Institute at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois; .,Section of Critical Care Medicine, Captain James A. Lovell Federal Health Care Center, North Chicago, Illinois
| |
Collapse
|
6
|
Lamoureux L, Radhakrishnan J, Gazmuri RJ. A Rat Model of Ventricular Fibrillation and Resuscitation by Conventional Closed-chest Technique. J Vis Exp 2015:52413. [PMID: 25938619 PMCID: PMC4541594 DOI: 10.3791/52413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A rat model of electrically-induced ventricular fibrillation followed by cardiac resuscitation using a closed chest technique that incorporates the basic components of cardiopulmonary resuscitation in humans is herein described. The model was developed in 1988 and has been used in approximately 70 peer-reviewed publications examining a myriad of resuscitation aspects including its physiology and pathophysiology, determinants of resuscitability, pharmacologic interventions, and even the effects of cell therapies. The model featured in this presentation includes: (1) vascular catheterization to measure aortic and right atrial pressures, to measure cardiac output by thermodilution, and to electrically induce ventricular fibrillation; and (2) tracheal intubation for positive pressure ventilation with oxygen enriched gas and assessment of the end-tidal CO2. A typical sequence of intervention entails: (1) electrical induction of ventricular fibrillation, (2) chest compression using a mechanical piston device concomitantly with positive pressure ventilation delivering oxygen-enriched gas, (3) electrical shocks to terminate ventricular fibrillation and reestablish cardiac activity, (4) assessment of post-resuscitation hemodynamic and metabolic function, and (5) assessment of survival and recovery of organ function. A robust inventory of measurements is available that includes - but is not limited to - hemodynamic, metabolic, and tissue measurements. The model has been highly effective in developing new resuscitation concepts and examining novel therapeutic interventions before their testing in larger and translationally more relevant animal models of cardiac arrest and resuscitation.
Collapse
Affiliation(s)
- Lorissa Lamoureux
- Resuscitation Institute, Rosalind Franklin University of Medicine and Science
| | | | - Raúl J Gazmuri
- Resuscitation Institute, Rosalind Franklin University of Medicine and Science;
| |
Collapse
|
7
|
Effects of the administration of 2,3-butanedione monoxime during conventional cardiopulmonary resuscitation on ischaemic contracture and resuscitability in a pig model of out-of-hospital cardiac arrest. Resuscitation 2015; 87:26-32. [DOI: 10.1016/j.resuscitation.2014.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
|
8
|
Impaired cerebral mitochondrial oxidative phosphorylation function in a rat model of ventricular fibrillation and cardiopulmonary resuscitation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:192769. [PMID: 24696844 PMCID: PMC3947758 DOI: 10.1155/2014/192769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/04/2014] [Indexed: 01/18/2023]
Abstract
Postcardiac arrest brain injury significantly contributes to mortality and morbidity in patients suffering from cardiac arrest (CA). Evidence that shows that mitochondrial dysfunction appears to be a key factor in tissue damage after ischemia/reperfusion is accumulating. However, limited data are available regarding the cerebral mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) and its relationship to the alterations of high-energy phosphate. Here, we sought to identify alterations of mitochondrial morphology and oxidative phosphorylation function as well as high-energy phosphates during CA and CPR in a rat model of ventricular fibrillation (VF). We found that impairment of mitochondrial respiration and partial depletion of adenosine triphosphate (ATP) and phosphocreatine (PCr) developed in the cerebral cortex and hippocampus following a prolonged cardiac arrest. Optimal CPR might ameliorate the deranged phosphorus metabolism and preserve mitochondrial function. No obvious ultrastructural abnormalities of mitochondria have been found during CA. We conclude that CA causes cerebral mitochondrial dysfunction along with decay of high-energy phosphates, which would be mitigated with CPR. This study may broaden our understanding of the pathogenic processes underlying global cerebral ischemic injury and provide a potential therapeutic strategy that aimed at preserving cerebral mitochondrial function during CA.
Collapse
|
9
|
Gazmuri RJ. Targeting Mitochondria During CPR. Resuscitation 2014. [DOI: 10.1007/978-88-470-5507-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
High-dose erythropoietin during cardiac resuscitation lessens postresuscitation myocardial stunning in swine. Transl Res 2013; 162:110-21. [PMID: 23806450 DOI: 10.1016/j.trsl.2013.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/22/2013] [Accepted: 06/03/2013] [Indexed: 11/21/2022]
Abstract
We investigated the metabolic and functional myocardial effects of erythropoietin (EPO) administered during resuscitation from cardiac arrest using an open-chest pig model of ventricular fibrillation and resuscitation by extracorporeal circulation, after having reported in rats a reversal of postresuscitation myocardial dysfunction associated with activation of mitochondrial protective pathways. Ventricular fibrillation was induced in 16 male domestic pigs and left untreated for 8 minutes, after which extracorporeal circulation was started and maintained for 10 additional minutes, adjusting the extracorporeal flow to provide a coronary perfusion pressure of 10 mmHg. Defibrillation was accomplished and the extracorporeal flow was adjusted to secure a mean aortic pressure of 40 mmHg or greater during spontaneous circulation for up to 120 minutes. Pigs were randomized 1:1 to receive EPO (1200 U/kg) or 0.9% NaCl before starting extracorporeal circulation. Severe postresuscitation myocardial dysfunction developed in both groups. However, recovery of myocardial function-comparing baseline with 120 minutes postresuscitation-was better in pigs treated with EPO than NaCl, as shown for left ventricular ejection fraction (from 45 ± 8% to 36 ± 9% in EPO, not significant; and from 46 ± 8% to 26 ± 8% in NaCl, P < 0.001) and for peak systolic pressure/end-systolic volume (from 2.7 ± 0.8 mmHg/mL to 2.4 ± 0.7 mmHg/mL in EPO, not significant; and from 3.0 ± 1.1 mmHg/mL to 1.8 ± 0.6 mmHg/mL, P < 0.001 in NaCl). The EPO effect was associated with significantly higher myocardial O2 consumption (12 ± 6 mL/min/unit of tissue vs 6 ± 2 mL/min/unit of tissue, P < 0.017) without effects on myocardial lactate consumption. Thus, EPO administered during resuscitation from ventricular fibrillation lessened postresuscitation myocardial stunning-an effect that could be useful clinically to help promote postresuscitation hemodynamic stability.
Collapse
|
11
|
Protecting mitochondrial bioenergetic function during resuscitation from cardiac arrest. Crit Care Clin 2012; 28:245-70. [PMID: 22433486 DOI: 10.1016/j.ccc.2012.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Sodium nitroprusside-enhanced cardiopulmonary resuscitation improves resuscitation rates after prolonged untreated cardiac arrest in two porcine models. Crit Care Med 2012; 39:2705-10. [PMID: 21725236 DOI: 10.1097/ccm.0b013e31822668ba] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Sodium nitroprusside-enhanced cardiopulmonary resuscitation consists of active compression-decompression, an impedance threshold device, abdominal binding, and large intravenous doses of sodium nitroprusside. We hypothesize that sodium nitroprusside-enhanced cardiopulmonary resuscitation will significantly increase carotid blood flow and return of spontaneous circulation compared to standard cardiopulmonary resuscitation after prolonged ventricular fibrillation and pulseless electrical activity cardiac arrest. DESIGN Prospective randomized animal study. SETTING Hennepin County Medical Center Animal Laboratory. SUBJECTS Forty Yorkshire female farm-bred pigs weighing 32 ± 2 kg. INTERVENTIONS In protocol A, 24 isoflurane-anesthetized pigs underwent 15 mins of untreated ventricular fibrillation and were subsequently randomized to receive standard cardiopulmonary resuscitation (n = 6), active compression-decompression cardiopulmonary resuscitation + impedance threshold device (n = 6), or sodium nitroprusside-enhanced cardiopulmonary resuscitation (n = 12) for up to 15 mins. First defibrillation was attempted at minute 6 of cardiopulmonary resuscitation. In protocol B, a separate group of 16 pigs underwent 10 mins of untreated ventricular fibrillation followed by 3 mins of chest compression only cardiopulmonary resuscitation followed by countershock-induced pulseless electrical activity, after which animals were randomized to standard cardiopulmonary resuscitation (n = 8) or sodium nitroprusside-enhanced cardiopulmonary resuscitation (n = 8). MEASUREMENTS AND MAIN RESULTS The primary end point was carotid blood flow during cardiopulmonary resuscitation and return of spontaneous circulation. Secondary end points included end-tidal CO2 as well as coronary and cerebral perfusion pressure. After prolonged untreated ventricular fibrillation, sodium nitroprusside-enhanced cardiopulmonary resuscitation demonstrated superior rates of return of spontaneous circulation when compared to standard cardiopulmonary resuscitation and active compression-decompression cardiopulmonary resuscitation + impedance threshold device (12 of 12, 0 of 6, and 0 of 6 respectively, p < .01). In animals with pulseless electrical activity, sodium nitroprusside-enhanced cardiopulmonary resuscitation increased return of spontaneous circulation rates when compared to standard cardiopulmonary resuscitation. In both groups, carotid blood flow, coronary perfusion pressure, cerebral perfusion pressure, and end-tidal CO2 were increased with sodium nitroprusside-enhanced cardiopulmonary resuscitation. CONCLUSIONS In pigs, sodium nitroprusside-enhanced cardiopulmonary resuscitation significantly increased return of spontaneous circulation rates, as well as carotid blood flow and end-tidal CO2, when compared to standard cardiopulmonary resuscitation or active compression-decompression cardiopulmonary resuscitation + impedance threshold device.
Collapse
|
13
|
Disruption of chronic cariporide treatment abrogates myocardial ion homeostasis during acute ischemia reperfusion. J Cardiovasc Pharmacol 2011; 58:284-94. [PMID: 21697734 DOI: 10.1097/fjc.0b013e318223ebb2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cariporide, an Na/H exchanger inhibitor, is a drug with cardioprotective properties. However, chronic treatment with cariporide may modify the protein phenotype of the cardiomyocytes. Disruption of the equilibrium between a cariporide-modified phenotype and the supply of cariporide could be deleterious. The aim of this study was to test the effects of this equilibrium rupture (EqR) on cardiac function at baseline and acute ischemia reperfusion. Rats were chronically treated with cariporide (2.5 mg·kg·d) or with placebo for 21 days, after which isolated Langendorff-mode heart perfusion experiments utilized cariporide-free buffer. During this type of perfusion, the drug is rapidly cleared from the cellular environment. After 30 minutes of stabilization, the hearts were subjected to global zero-flow ischemia (25 minutes) followed by reperfusion (45 minutes). Measures of mechanical function, oxygen consumption, lactate plus pyruvate, CO2 and proton release into the coronary effluent were determined. The gene and protein expression of proton extruders was also evaluated. Chronic cariporide administration followed by EqR reduced the expression of the Na/H exchanger, increased the expression of the HCO3 or Na exchanger, decreased monocarboxylate/H carrier expression, reduced the lactate plus pyruvate release but did not change the glucose oxidation rate and mechanical function compared with baseline conditions. The resulting low glycolytic rate was associated with a stronger contracture during ischemia. During reperfusion, the early release of acidic forms was higher and redirected toward the use of the Na/H and HCO3 /Na exchangers to the detriment of the safe monocarboxylate/H carrier. Both phenomena were assumed to increase the Na uptake and activate the Na/Ca exchanger, resulting in Na and Ca overload and further cellular damage. This explains the impaired recovery of the contractile function observed in the EqR group during reperfusion. In conclusion, although cariporide is usually cardioprotective, a disruption of its chronic treatment followed by an ischemia/reperfusion event can become deleterious.
Collapse
|
14
|
Radhakrishnan J, Kolarova JD, Ayoub IM, Gazmuri RJ. AVE4454B--a novel sodium-hydrogen exchanger isoform-1 inhibitor--compared less effective than cariporide for resuscitation from cardiac arrest. Transl Res 2011; 157:71-80. [PMID: 21256459 PMCID: PMC3651912 DOI: 10.1016/j.trsl.2010.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
We compared the efficacy of the novel sodium-hydrogen exchanger (NHE-1) inhibitor AVE4454B with cariporide for resuscitation from ventricular fibrillation (VF) assessing the effects on left ventricular myocardial distensibility during chest compression, myocardial function after the return of spontaneous circulation, and survival. Three groups of 10 rats each were subjected to 10 min of untreated VF and resuscitation attempted by providing chest compression for up to 8 min with the depth of compression adjusted to attain an aortic diastolic pressure between 26 and 28 mmHg (to secure a coronary perfusion pressure above 20 mmHg) followed by electrical shocks. Rats received AVE4454B (1 mg/kg), cariporide (1 mg/kg), or vehicle control immediately before chest compression. We observed that NHE-1 inhibition (NHEI) preserved left ventricular myocardial distensibility during chest compression evidenced by less depth of compression required to attain the target aortic diastolic pressure corresponding to (mean ± standard deviation) 14.1 ± 1.1 mm in the AVE4454B group (P < 0.001 versus control), 15.0 ± 1.4 mm in the cariporide group (P < 0.01 versus control), and 17.0 ± 1.2 mm in controls. When the depth of compression was related to the coronary perfusion pressure generated-an index of left ventricular distensibility-only the cariporide group attained statistical significance. Postresuscitation, both compounds ameliorated myocardial dysfunction evidenced by lesser reductions in mean aortic pressure and the maximal rate of left ventricular pressure increase as well as earlier normalization of left ventricular end-diastolic pressure increases. This effect was associated with improved survival corresponding to 55% in the AVE4454B group (not significant) and 70% in the cariporide group (P < 0.01 versus control by Gehan-Breslow analysis) at 240 min postresuscitation. An inverse correlation was found between plasma cytochrome c and indices of left ventricular function at 240 min postresuscitation suggesting that NHEI exerts beneficial effects in part by attenuating mitochondrial injury. We conclude that cariporide is more effective than AVE4454B for resuscitation from cardiac arrest given its more prominent effect on preserving left ventricular myocardial distensibility and promoting survival.
Collapse
Affiliation(s)
- Jeejabai Radhakrishnan
- Resuscitation Institute at Rosalind Franklin University of Medicine and Science and Medical Service, Section of Critical Care Medicine, Captain James A. Lovell Federal Health Care Center, North Chicago, Ill 60064, USA
| | | | | | | |
Collapse
|
15
|
Ayoub IM, Kolarova J, Gazmuri RJ. Cariporide given during resuscitation promotes return of electrically stable and mechanically competent cardiac activity. Resuscitation 2009; 81:106-10. [PMID: 19853351 DOI: 10.1016/j.resuscitation.2009.09.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 09/05/2009] [Accepted: 09/11/2009] [Indexed: 11/15/2022]
Abstract
UNLABELLED Episodes of ventricular fibrillation (VF) and myocardial dysfunction commonly occur after cardiac resuscitation compromising the return of stable circulation. We investigated in a pig model of VF whether limiting Na(+)-induced cytosolic Ca(2+) overload using the sarcolemmal sodium-hydrogen exchanger isoform-1 (NHE-1) inhibitor cariporide promotes resuscitation with stable circulation. METHODS VF was electrically induced in 20 male pigs and left untreated for 6 min after which CPR was initiated and continued for 8 min before attempting defibrillation. Pigs were randomized to receive 3-mg/kg cariporide (n=10) or 0.9%-NaCl (n=10) before chest compression. RESULTS Seven of 10 pigs in each group were successfully resuscitated and survived 2h. Cariporide ameliorated post-resuscitation ventricular ectopic activity such that fewer singlets (5+/-5 vs. 26+/-21; p<0.05) and fewer bigemini (1+/-3 vs. 33+/-25; p<0.05) were observed during the initial 5 min post-resuscitation. Additionally, cariporide-treated pigs did not require additional post-resuscitation shocks for ventricular tachycardia or recurrent VF (0.0+/-0.0 vs. 5.3+/-7.8 shocks; p=0.073). During the initial 60 min cariporide-treated pigs had higher, cardiac index (6.1+/-0.7 vs. 4.4+/-1.1L/min/m(2); p<0.01), left ventricular stroke work index (45+/-9 vs. 36+/-10 gmm/beat/m(2); p<0.05), and numerically higher mean aortic pressure (104+/-11 vs. 91+/-12 mmHg; p=0.054). CONCLUSION Cariporide administered at the start of chest compression may help restore electrically and mechanically stable circulation after resuscitation from cardiac arrest.
Collapse
Affiliation(s)
- Iyad M Ayoub
- Resuscitation Institute at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | |
Collapse
|
16
|
Grmec S, Strnad M, Kupnik D, Sinkovic A, Gazmuri RJ. Erythropoietin facilitates the return of spontaneous circulation and survival in victims of out-of-hospital cardiac arrest. Resuscitation 2009; 80:631-7. [PMID: 19371997 DOI: 10.1016/j.resuscitation.2009.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 03/04/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND Erythropoietin activates potent protective mechanisms in non-hematopoietic tissues including the myocardium. In a rat model of ventricular fibrillation, erythropoietin preserved myocardial compliance enabling hemodynamically more effective CPR. OBJECTIVE To investigate whether intravenous erythropoietin given within 2 min of physician-led CPR improves outcome from out-of-hospital cardiac arrest. METHODS Erythropoietin (90,000 IU of beta-epoetin, n=24) was compared prospectively with 0.9% NaCl (concurrent controls=30) and retrospectively with a preceding group treated with similar protocol (matched controls=48). RESULTS Compared with concurrent controls, the erythropoietin group had higher rates of ICU admission (92% vs 50%, p=0.004), return of spontaneous circulation (ROSC) (92% vs 53%, p=0.006), 24-h survival (83% vs 47%, p=0.008), and hospital survival (54% vs 20%, p=0.011). However, after adjusting for pretreatment covariates only ICU admission and ROSC remained statistically significant. Compared with matched controls, the erythropoietin group had higher rates of ICU admission (92% vs 65%, p=0.024) and 24-h survival (83% vs 52%, p=0.014) with statistically insignificant higher ROSC (92% vs 71%, p=0.060) and hospital survival (54% vs 31%, p=0.063). However, after adjusting for pretreatment covariates all four outcomes were statistically significant. End-tidal PCO(2) (an estimate of blood flow during chest compression) was higher in the erythropoietin group. CONCLUSIONS Erythropoietin given during CPR facilitates ROSC, ICU admission, 24-h survival, and hospital survival. This effect was consistent with myocardial protection leading to hemodynamically more effective CPR (Trial registration: http://isrctn.org. Identifier: ISRCTN67856342).
Collapse
Affiliation(s)
- Stefek Grmec
- Center for Emergency Medicine Maribor, Health Center Maribor, Slovenia
| | | | | | | | | |
Collapse
|
17
|
Radhakrishnan J, Ayoub IM, Gazmuri RJ. Activation of caspase-3 may not contribute to postresuscitation myocardial dysfunction. Am J Physiol Heart Circ Physiol 2009; 296:H1164-74. [PMID: 19234092 DOI: 10.1152/ajpheart.00338.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that postresuscitation myocardial dysfunction is accompanied by the release of cytochrome c and caspase-3 activation. We now investigated the role of caspase-3 activation by examining whether such process prompts apoptotic DNA fragmentation, whether caspase-3 inhibition attenuates myocardial dysfunction, and whether myocardial protective effects of sodium-hydrogen exchanger isoform-1 (NHE-1) inhibition involve caspase-3 inhibition using a rat model of ventricular fibrillation (VF) of closed-chest resuscitation. Resuscitation after 4 or 8 min of untreated VF caused significant reductions in left ventricular stroke work index averaging 23% of sham control rats at 4 h postresuscitation. Left ventricular dysfunction was accompanied by increases in cytosolic cytochrome c, decreases in pro- and cleaved caspase-9 fragments, increases in 17-kDa caspase-3 fragments, and increases in caspase-3 activity indicating the activation of the mitochondrial apoptotic pathway but without evidence of apoptotic DNA fragmentation. In addition, levels of heat shock protein 70 were increased and levels of X-linked inhibitor of apoptosis protein and alphabeta-crystallin were preserved, all of which can exert antiapoptotic effects. In a separate series, the caspase-3 inhibitor z-Asp-Glu-Val-Asp chloromethyl ketone given before the induction of VF failed to prevent postresuscitation myocardial dysfunction despite reductions in caspase-3 activity (2.3 +/- 0.5 vs. 1.3 +/- 0.5 pmol fluorophore AFC released.mg protein(-1).min-1; P < 0.03). Treatment with the NHE-1 inhibitor cariporide had no effect on caspase-3 activity. Accordingly, in this rat model of VF and severe postresuscitation myocardial dysfunction, activation of caspase-3 did not lead to DNA fragmentation or contribute to myocardial dysfunction. Concomitant activation of intrinsic antiapoptotic mechanisms could play a protective role downstream to caspase-3 activation.
Collapse
Affiliation(s)
- Jeejabai Radhakrishnan
- Medical Service (111F North Chicago VA Medical Center, 3001 Green Bay Road, North Chicago, IL 60064, USA
| | | | | |
Collapse
|
18
|
Abstract
Reversal of cardiac arrest requires reestablishment of aerobic metabolism by reperfusion with oxygenated blood of tissues that have been ischemic for variable periods of time. However, reperfusion concomitantly activates a myriad of pathogenic mechanisms causing what is known as reperfusion injury. At the center of reperfusion injury are mitochondria, playing a critical role as effectors and targets of injury. Studies in animal models of ventricular fibrillation have shown that limiting myocardial cytosolic Na+ overload attenuates mitochondrial Ca2+ overload and maintains oxidative phosphorylation, which is the main bioenergetic function of mitochondria. This effect is associated with functional myocardial benefits such as preservation of myocardial compliance during chest compression and attenuation of myocardial dysfunction after return of spontaneous circulation. Additional studies in similar animal models of ventricular fibrillation have shown that mitochondrial injury leads to activation of the mitochondrial apoptotic pathway, characterized by the release of cytochrome c to the cytosol, reduction of caspase-9 levels, and activation of caspase-3 coincident with marked reduction in left ventricular function. Cytochrome c also "leaks" into the bloodstream attaining levels that are inversely proportional to survival. These data indicate that mitochondria play a key role during cardiac resuscitation by modulating energy metabolism and signaling apoptotic cascades and that targeting mitochondria could represent a promising strategy for cardiac resuscitation.
Collapse
Affiliation(s)
- Iyad M Ayoub
- Department of Medicine, Division of Critical Care Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | |
Collapse
|
19
|
George CH, Barberini-Jammaers SR, Muller CT. Refocussing therapeutic strategies for cardiac arrhythmias: defining viable molecular targets to restore cardiac ion flux. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Abstract
Atrial fibrillation (AF) is the most common encountered sustained arrhythmia in clinical practice. The last decade the result of large 'rate' versus 'rhythm' control trials have been published that have changed the current day practise of AF treatment. It has become clear that rate control is at least equally effective as a rhythm control strategy in ameliorating morbidity as well as mortality. Moreover, in each individual patient the risk of thromboembolic events should be assessed and antithrombotic treatment be initiated. There have also been great advances in understanding the mechanisms of AF. Experimental studies showed that as a result of electrical and structural remodelling of the atria, 'AF begets AF'. Pharmacological prevention of atrial electrical remodelling has been troublesome, but it seems that blockers of the renin angiotensin system, and perhaps statins, may reduce atrial structural remodelling by preventing atrial fibrosis. Clinical studies demonstrated that the pulmonary veins exhibit foci that can act as initiator and perpetuator of the arrhythmia. Isolation of the pulmonary veins using radiofrequency catheter ablation usually abolishes AF. The most promising advances in the pharmacological treatment of AF include atrial specific antiarrhythmic drugs and direct thrombin inhibitors. In the present review we will describe the results of recent experimental studies, discuss the latest clinical trials, and we will focus on novel treatment modalities.
Collapse
Affiliation(s)
- Y Blaauw
- Department of Cardiology, University Hospital Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
21
|
Zoniporide preserves left ventricular compliance during ventricular fibrillation and minimizes postresuscitation myocardial dysfunction through benefits on energy metabolism. Crit Care Med 2007; 35:2329-36. [PMID: 17944021 DOI: 10.1097/01.ccm.0000280569.87413.74] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate whether sodium-hydrogen exchanger isoform-1 (NHE-1) inhibition attenuates myocardial injury during resuscitation from ventricular fibrillation through effects on energy metabolism, using an open-chest pig model in which coronary perfusion was controlled by extracorporeal circulation. DESIGN Randomized controlled animal study. SETTING University research laboratory. SUBJECTS Male domestic pigs. INTERVENTIONS Ventricular fibrillation was electrically induced and left untreated for 8 mins, after which extracorporeal circulation was started and its flow adjusted to maintain a coronary perfusion pressure of 10 mm Hg. After 10 mins of extracorporeal circulation, restoration of spontaneous circulation was attempted by epicardial defibrillation and gradual reduction in extracorporeal flow. Two groups of eight pigs each were randomized to receive the NHE-1 inhibitor zoniporide (3 mg.kg-1) or vehicle control immediately before starting extracorporeal circulation. MEASUREMENTS AND MAIN RESULTS Identical extracorporeal flows (approximately = 9% of baseline cardiac index) were required in zoniporide and control groups to attain the target coronary perfusion pressure, resulting in comparable left anterior descending coronary artery blood flow (9 +/- 1 and 10 +/- 1 mL.min-1) and resistance (0.10 +/- 0.01 and 0.10 +/- 0.01 dyne.sec.cm(-5)). Yet zoniporide prevented reductions in left ventricular volume and wall thickening while favoring higher myocardial creatine phosphate to creatine ratios (0.14 +/- 0.03 vs. 0.06 +/- 0.01, p < .05), lower myocardial adenosine (0.7 +/- 0.1 vs. 1.3 +/- 0.2, p < .05), and lower myocardial lactate (80 +/- 9 vs. 125 +/- 6 mmol.kg-1, p < .001). Postresuscitation, zoniporide-treated pigs had higher left ventricular ejection fraction (0.57 +/- 0.07 vs. 0.29 +/- 0.05, p < .05) and higher cardiac index (4.8 +/- 0.4 vs. 3.4 +/- 0.2 L.min-1.m-2, p < .05). CONCLUSIONS Zoniporide ameliorated myocardial injury during resuscitation from ventricular fibrillation through beneficial effects on energy metabolism without effects on coronary vascular resistance and coronary blood flow.
Collapse
|
22
|
Singh D, Kolarova JD, Wang S, Ayoub IM, Gazmuri RJ. Myocardial protection by erythropoietin during resuscitation from ventricular fibrillation. Am J Ther 2007; 14:361-8. [PMID: 17667212 DOI: 10.1097/01.pap.0000249957.35673.f0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human recombinant erythropoietin (rhEPO) can protect the myocardium during ischemia and reperfusion. We investigated whether rhEPO could ameliorate previously identified functional myocardial abnormalities that develop during resuscitation from cardiac arrest, using a rat model of ventricular fibrillation (VF) and closed-chest resuscitation. VF was electrically induced and maintained, untreated, for 10 minutes. Chest compression and ventilation were then started and electrical defibrillation was attempted 8 minutes later. Rats were randomized to receive rhEPO (5000 U/kg) in the right atrium at baseline, 15 minutes before induction of VF (rhEPOBL -15-min), or at 10 minutes of VF, immediately before the start of chest compression (rhEPOVF 10-min), or to receive 0.9% NaCl solution instead (control). rhEPO given at the time of resuscitation (rhEPOVF 10-min group) -- but not at baseline -- prompted more effective chest compression, yielding higher coronary perfusion pressures for a given compression depth (1.95 +/- 0.27 mm Hg/mm; P < 0.05 in comparison with rhEPOBL -15-min [1.63 +/- 0.23 mm Hg/mm] and control [1.62 +/- 0.26 mm Hg/mm], by Dunnett's multicomparison method). Post-resuscitation, rats in the rhEPOVF 10-min group displayed higher mean aortic pressure associated with numerically higher cardiac index, stroke work index, and systemic vascular resistance index. rhEPO may rapidly induce myocardial protection during resuscitation from cardiac arrest.
Collapse
Affiliation(s)
- Dinesh Singh
- Advocate Lutheran General Children's Hospital, Park Ridge, IL, USA
| | | | | | | | | |
Collapse
|
23
|
Wang S, Radhakrishnan J, Ayoub IM, Kolarova JD, Taglieri DM, Gazmuri RJ. Limiting sarcolemmal Na+ entry during resuscitation from ventricular fibrillation prevents excess mitochondrial Ca2+ accumulation and attenuates myocardial injury. J Appl Physiol (1985) 2007; 103:55-65. [PMID: 17431086 DOI: 10.1152/japplphysiol.01167.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND intracellular Na+ accumulation during ischemia and reperfusion leads to cytosolic Ca2+ overload through reverse-mode operation of the sarcolemmal Na+ -Ca2+ exchanger. Cytosolic Ca2+ accumulation promotes mitochondrial Ca2+ (Ca2+ m) overload, leading to mitochondrial injury. We investigated whether limiting sarcolemmal Na+ entry during resuscitation from ventricular fibrillation (VF) attenuates Ca2+ m overload and lessens myocardial dysfunction in a rat model of VF and closed-chest resuscitation. METHODS hearts were harvested from 10 groups of 6 rats each representing baseline, 15 min of untreated VF, 15 min of VF with chest compression given for the last 5 min (VF/CC), and 60 min postresuscitation (PR). VF/CC and PR included four groups each randomized to receive before starting chest compression the new NHE-1 inhibitor AVE4454B (1.0 mg/kg), the Na+ channel blocker lidocaine (5.0 mg/kg), their combination, or vehicle control. The left ventricle was processed for intracellular Na+ and Ca2+ m measurements. RESULTS limiting sarcolemmal Na+ entry attenuated cytosolic Na+ increase during VF/CC and the PR phase and prevented Ca2+ m overload yielding levels that corresponded to 77% and 71% of control hearts at VF/CC and PR, without differences among specific Na+ -limiting interventions. Limiting sarcolemmal Na+ entry attenuated reductions in left ventricular compliance during VF and prompted higher mean aortic pressure (110 +/- 7 vs. 95 +/- 11 mmHg, P < 0.001) and higher cardiac work index (159 +/- 34 vs. 126 +/- 29 g x m x min(-1) x kg(-1), P < 0.05) with lesser increases in circulating cardiac troponin I at 60 min PR. CONCLUSIONS Na+ -limiting interventions prevented excess Ca2+ m accumulation induced by ischemia and reperfusion and ameliorated myocardial injury and dysfunction.
Collapse
Affiliation(s)
- Sufen Wang
- Department of Medicine, Division of Critical Care Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
24
|
Rottenberg EM. The need for a leftward shift in the flow-depth relationship during cardiopulmonary resuscitation. Resuscitation 2007; 72:350-2. [PMID: 17307619 DOI: 10.1016/j.resuscitation.2007.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 01/08/2007] [Accepted: 01/08/2007] [Indexed: 11/25/2022]
|
25
|
Radhakrishnan J, Wang S, Ayoub IM, Kolarova JD, Levine RF, Gazmuri RJ. Circulating levels of cytochrome c after resuscitation from cardiac arrest: a marker of mitochondrial injury and predictor of survival. Am J Physiol Heart Circ Physiol 2006; 292:H767-75. [PMID: 17040974 PMCID: PMC1796625 DOI: 10.1152/ajpheart.00468.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ca(2+) overload and reactive oxygen species can injure mitochondria during ischemia and reperfusion. We hypothesized that mitochondrial injury occurs during cardiac resuscitation, causing release of cytochrome c to the cytosol and bloodstream while activating apoptotic pathways. Plasma cytochrome c was measured using reverse-phase HPLC and Western immunoblotting in rats subjected to 4 or 8 min of untreated ventricular fibrillation and 8 min of closed-chest resuscitation followed by 240 min of postresuscitation hemodynamic observation. A sham group served as control. Plasma cytochrome c rose progressively to levels 10-fold higher than in sham rats 240 min after resuscitation (P < 0.01), despite reversal of whole body ischemia (decreases in arterial lactate). Cytochrome c levels were inversely correlated with left ventricular stroke work (r = -0.40, P = 0.02). Western immunoblotting of left ventricular tissue demonstrated increased levels of 17-kDa cleaved caspase-3 fragments in the cytosol. Plasma cytochrome c was then serially measured in 12 resuscitated rats until the rat died or cytochrome c returned to baseline. In three survivors, cytochrome c rose slightly to <or=2 microg/ml and returned to baseline within 96 h. In nine nonsurvivors, cytochrome c rose progressively to significantly higher maximal levels [4.6 (SD 2.0) vs. 1.6 (SD 0.3) microg/ml, P = 0.029] and at faster rates [0.7 (SD 0.5) vs. 0.1 (SD 0.1) microg.ml(-1).h(-1), P = 0.046] than in survivors. Plasma cytochrome c may represent a novel in vivo marker of mitochondrial injury after resuscitation from cardiac arrest that relates inversely with survival outcome.
Collapse
Affiliation(s)
| | | | | | | | | | - Raúl J. Gazmuri
- Please address correspondence to: Raúl J. Gazmuri, MD, PhD, FCCM, Medical Service (111F), North Chicago VA Medical Center, 3001 Green Bay Road; North Chicago, Illinois, 60064, Phone: (224) 610-3681, Fax: (224) 610-3741, E-mail:
| |
Collapse
|
26
|
Gazmuri RJ, Ayoub IM. The Case for Sodium-Hydrogen Exchanger Isoform-1 Inhibition During Cardiac Resuscitation Remains Strong. Crit Care Med 2006; 34:1580-2; author reply 1582. [PMID: 16633277 DOI: 10.1097/01.ccm.0000216687.86553.ec] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Ayoub IM, Kolarova J, Kantola RL, Sanders R, Gazmuri RJ. Cariporide minimizes adverse myocardial effects of epinephrine during resuscitation from ventricular fibrillation. Crit Care Med 2005; 33:2599-605. [PMID: 16276186 DOI: 10.1097/01.ccm.0000186773.88576.83] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Epinephrine given during closed-chest resuscitation increases blood flow across the coronary and cerebral circuits. However, epinephrine worsens reperfusion arrhythmias and intensifies postresuscitation myocardial dysfunction. We investigated whether cariporide-a selective sodium-hydrogen exchanger isoform-1 inhibitor-could ameliorate such adverse effects without diminishing its vasopressor actions. DESIGN Randomized animal study. SETTING University-based animal laboratory. SUBJECTS Twenty-four anesthetized male domestic pigs (29-43 kg). INTERVENTIONS Ventricular fibrillation was electrically induced and left untreated for 8 mins. Pigs were randomized to receive after 2 mins of chest compression a 3 mg/kg bolus of cariporide (n = 8), a 0.02 mg/kg bolus of epinephrine (n = 8), or a combination of cariporide and epinephrine (n = 8). Additional doses of epinephrine were given if the coronary perfusion pressure decreased below 15 mm Hg. Successfully resuscitated pigs were observed for 72 hrs. MEASUREMENTS AND MAIN RESULTS The averaged coronary perfusion pressure was higher in the epinephrine (34 +/- 11 mm Hg, p = .001) and cariporide/epinephrine (35 +/- 10 mm Hg, p < .001) groups compared with the cariporide group (15 +/- 6 mm Hg). All pigs in the epinephrine and cariporide/epinephrine groups but only six in the cariporide group were successfully resuscitated and survived 72 hrs. During the immediate postresuscitation period, four of eight pigs in the epinephrine group had episodes of recurrent ventricular fibrillation or pulseless ventricular tachycardia requiring additional electrical shocks (7.0 +/- 6.4) but none in the cariporide and cariporide/epinephrine groups (chi-square, p = .008). Myocardial dysfunction occurred early after return of spontaneous circulation but only in the epinephrine group. CONCLUSIONS The combined administration of cariporide and epinephrine prompted adequate pressor effects during chest compression and facilitated reestablishment of cardiac activity without episodes of recurrent ventricular fibrillation or transient myocardial dysfunction as with epinephrine alone.
Collapse
Affiliation(s)
- Iyad M Ayoub
- Department of Medicine, Rosalind Franklin University of Medicine and Science, USA
| | | | | | | | | |
Collapse
|
28
|
Kolarova J, Yi Z, Ayoub IM, Gazmuri RJ. Cariporide Potentiates the Effects of Epinephrine and Vasopressin by Nonvascular Mechanisms During Closed-Chest Resuscitation. Chest 2005. [DOI: 10.1016/s0012-3692(15)34483-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
29
|
Karmazyn M. Inhibitors of sodium-hydrogen exchange as therapeutic agents for the treatment of heart disease. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.9.1411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Kolarova JD, Ayoub IM, Gazmuri RJ. Cariporide enables hemodynamically more effective chest compression by leftward shift of its flow-depth relationship. Am J Physiol Heart Circ Physiol 2005; 288:H2904-11. [PMID: 15708960 DOI: 10.1152/ajpheart.01181.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When given during closed-chest resuscitation, cariporide (4-isopropyl-methylsulfonylbenzoyl-guanidine methanesulfonate; a selective inhibitor of the Na(+)/H(+) exchanger isoform-1) enables generation of viable perfusion pressures with less depth of compression. We hypothesized that this effect results from greater blood flows generated for a given depth of compression. Two series of 14 rats each underwent 10 min of untreated ventricular fibrillation followed by 8 min of chest compression before defibrillation was attempted. Compression depth was adjusted to maintain an aortic diastolic pressure (ADP) between 26 and 28 mmHg in the first series and between 36 and 38 mmHg in the second series. Within each series, rats were randomized to receive cariporide (3 mg/kg) or NaCl (0.9%; control) before chest compression was started. Blood flow was measured using 15-mum fluorescent microspheres. Less depth of compression was required to maintain the target ADP when cariporide was present in both series 1 (13.6 +/- 1.2 vs. 16.6 +/- 1.2 mm; P < 0.001) and series 2 (15.3 +/- 1.0 vs. 18.9 +/- 1.5 mm; P < 0.001). Despite less compression depth, the cardiac index in cariporide-treated rats was comparable to control rats in series 1 (11.1 +/- 0.7 vs. 11.3 +/- 1.4 ml.min(-1).kg(-1); P = not significant) but higher in series 2 (15.5 +/- 2.3 vs. 9.9 +/- 1.4 ml.min(-1).kg(-1); P < 0.05). Increases in compression depth (from series 1 to series 2) increased myocardial, cerebral, and adrenal blood flow in cariporide-treated rats. We conclude that cariporide enhances the efficacy of closed-chest resuscitation by leftward shift of the flow-depth relationship.
Collapse
Affiliation(s)
- Julieta D Kolarova
- Medical Service (111F North Chicago VA Medical Center, 3001 Green Bay Rd., North Chicago, IL 60064, USA
| | | | | |
Collapse
|
31
|
Blaauw Y, Beier N, van der Voort P, van Hunnik A, Schotten U, Allessie MA. Inhibitors of the Na+/H+ Exchanger Cannot Prevent Atrial Electrical Remodeling in the Goat. J Cardiovasc Electrophysiol 2004; 15:440-6. [PMID: 15089994 DOI: 10.1046/j.1540-8167.2004.03498.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION It has been suggested that blockade of the Na+/H+ exchanger (NHE1) can prevent atrial fibrillation (AF)-induced electrical remodeling and the development of AF. METHODS AND RESULTS AF was maintained by burst pacing in 10 chronically instrumented conscious goats. Intravenous and oral dosages of two NHE1 blockers (EMD87580 and EMD125021) resulted in plasma levels several magnitudes higher than required for effective NHE1 blockade. Shortening of atrial refractoriness immediately after 5 minutes of AF was not prevented by NHE1 blockade. In remodeled atria, increasing dosages of EMD87580 and EMD125021 did not reverse shortening of the atrial refractory period or reduce the duration of AF episodes. The cycle length during persistent AF also was not affected. Oral pretreatment with EMD87580 (8 mg/kg bid) starting 3 days before AF could not prevent electrical remodeling. After 24 and 48 hours of remodeling, the duration of AF paroxysms was 47 +/- 32 seconds and 135 +/- 63 seconds compared to 56 +/- 17 seconds and 136 +/- 52 seconds in placebo-treated animals (P > 0.8), respectively. CONCLUSION In the goat model of AF, the Na+/H+ exchanger inhibitors EMD87580 and EMD125021 did not prevent or revert AF-induced electrical remodeling. This indicates that activation of the Na+/H+ exchanger is not involved in the intracellular pathways of electrical remodeling. This does not support the suggestion that blockers of the Na+/H+ exchanger may be beneficial for prevention and treatment of AF.
Collapse
Affiliation(s)
- Yuri Blaauw
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Stevens RM, Salik Jahania M, Mentzer RM, Lasley RD. Sodium-hydrogen exchange inhibition attenuates in vivo porcine myocardial stunning. Ann Thorac Surg 2004; 77:651-7. [PMID: 14759454 DOI: 10.1016/s0003-4975(03)01355-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2003] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inhibition of the sodium-hydrogen exchanger isoform 1 with HOE-642 (cariporide) has been shown to protect against ischemia-reperfusion injury and to decrease myocardial cell death in numerous animal preparations; however the effects of cariporide in stunned myocardium are not as well understood. We sought to determine whether cariporide attenuated myocardial stunning in vivo. METHODS Open chest anesthetized pigs (22-33 kg) were subjected to 15 min of left anterior descending coronary artery (LAD) occlusion followed by 3 h of reperfusion. Regional ventricular function was assessed by segment shortening. Contractility was measured by stroke work and by load-insensitive preload recruitable stroke work and preload recruitable stroke work area. Vehicle or HOE-642 (1 mg/kg, IV) was administered 10 min before LAD occlusion. RESULTS Cariporide treatment significantly improved postischemic segment shortening, stroke work, preload recruitable stroke work, and preload recruitable stroke work area and had no systemic hemodynamic effects. After 3 h of reperfusion, control animals recovered 33% +/- 4% and 33% +/- 3% of preischemic LAD segment shortening and preload recruitable stroke work area values, respectively, whereas animals treated with HOE-642 recovered 59% +/- 6% and 57% +/- 6%, respectively (p < 0.05). Seven (39%) of 17 control animals exhibited ventricular fibrillation during reperfusion; none of the cariporide-treated pigs fibrillated. CONCLUSIONS Sodium-hydrogen exchange inhibition can attenuate postischemic myocardial stunning in addition to its well-described anti-infarct properties. Inhibition of the sodium-hydrogen exchanger may be beneficial in patients susceptible to postischemic myocardial dysfunction associated with cardiac surgery.
Collapse
Affiliation(s)
- Randy M Stevens
- Department of Surgery, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
33
|
Slepkov E, Fliegel L. Regulation of Expression of the Na+/H+ Exchanger by Thyroid Hormone. VITAMINS AND HORMONES 2004; 69:249-69. [PMID: 15196885 DOI: 10.1016/s0083-6729(04)69009-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The Na+/H+ exchanger is a pH regulatory protein with a ubiquitous distribution in eukaryotic cells. Several isoforms of the Na+/H+ exchanger are known. The first isoform to be characterized and cloned, NHE1, is present on the plasma membrane of cells and functions to remove one intracellular proton in exchange for one extracellular sodium ion. It is involved in pH regulation, cell growth, differentiation, and cell migration. NHE1 is also involved in the cycle of damage that occurs in the heart with ischemic heart disease. Recent studies have shown that the Na+/H+ exchanger is regulated in response to thyroid hormone. Reduction in circulating thyroid hormone levels reduces the amount of both protein and mRNA of NHE1. Conversely, an elevation of thyroid hormone levels has the opposite effects. Transcriptional regulation of NHE1 expression has been demonstrated. The NHE1 promoter contains a TR alpha(1) binding site located between -841 to -800 bp. This element responds positively to TR alpha(1). This regulation of the NHE1 promoter by thyroid hormone is proposed to be responsible for postnatal changes in expression of the Na+/H+ exchanger.
Collapse
Affiliation(s)
- Emily Slepkov
- Department of Biochemistry, University of Alberta, Edmonton, Canada T6G 2H7
| | | |
Collapse
|
34
|
Rabkin DG, Cabreriza SE, Cheema FH, Hill AA, Curtis LJ, Sciacca RR, Mosca RS, Spotnitz HM. Cariporide is cardioprotective after iatrogenic ventricular fibrillation in the intact swine heart. Ann Thorac Surg 2003; 76:1264-9; discussion 1269. [PMID: 14530023 DOI: 10.1016/s0003-4975(03)00826-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND We sought to introduce sodium-hydrogen exchange inhibition as prophylaxis against the development of ventricular dysfunction in the setting of implantable cardioverter defibrillator insertion in high-risk patients. Cariporide, shown to be safe in humans, was used to reproduce previous results in our laboratory that demonstrated that sodium-hydrogen exchange inhibition preserves left ventricular (LV) function after ventricular fibrillation (VF) and reperfusion. METHODS Twelve pigs (weight, 35 to 55 kg) were divided into two groups of six. Baseline ventricular function studies were based on echocardiography, conductance, aortic flow, and LV pressure. Animals were given vehicle (control) or cariporide (3 mg/kg intravenously). Ten minutes later, hearts underwent 80 seconds of VF. After reperfusion for 40 minutes, function studies were repeated. RESULTS Postmortem examination included measuring passive pressure-volume curves and myocardial water content. Systolic indices, including preload recruitable stroke work and ejection fraction, were significantly depressed from baseline after VF and reperfusion for control animals (preload recruitable stroke work, 30.13 +/- 0.59 [standard error of the mean] versus 43.85 +/- 2.60 mm Hg; ejection fraction, 25.7% +/- 2.4% versus 33.5% +/- 3.0%) but not for those in the cariporide group (preload recruitable stroke work, 38.36 +/- 1.87 versus 40.86 +/- 1.45 mm Hg; ejection fraction, 33.9% +/- 3.5% versus 32.8% +/- 3.9%). In vivo diastolic indices demonstrated trends toward diminished ventricular compliance in control animals but not in the cariporide group after VF and reperfusion. Control animals had significantly increased postmortem LV stiffness, myocardial water content, and normalized LV mass. CONCLUSIONS Cariporide preserves LV function after 80 seconds of VF and 40 minutes of reperfusion. Cariporide may prove useful in patients with severe LV dysfunction undergoing VF for implantable cardioverter defibrillator testing.
Collapse
Affiliation(s)
- David G Rabkin
- Department of Surgery, Columbia College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Al-Qattan KK, Khan I, Alnaqeeb MA, Ali M. Mechanism of garlic (Allium sativum) induced reduction of hypertension in 2K-1C rats: a possible mediation of Na/H exchanger isoform-1. Prostaglandins Leukot Essent Fatty Acids 2003; 69:217-22. [PMID: 12907130 DOI: 10.1016/s0952-3278(03)00087-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Garlic causes reduction in blood pressure (BP), however the role of Na/H exchanger (NHE) which mediates hypertension and related tissue-damage is poorly understood. In this study the effect of an established dose of raw garlic extract was investigated on the expression of NHE-1 and -3 and sodium pump activity in a 2K-1C model of hypertension in rats. 2K-1C animals showed high BP, increased serum concentration of PGE2 and TxB2, hypertrophy of the unclipped kidneys, but not in the clipped kidneys In addition, NHE-1 and NHE-3 isoforms were increased in both the 2K-1C kidneys, whereas alpha-actin was increased in the clipped but not in unclipped kidneys. Sodium pump activity was decreased in the clipped kidneys, but remained unchanged in the unclipped kidneys. Garlic treatment reduced the induction of NHE-1 only in the unclipped 2K-1C kidneys, whereas garlic treatment increased the sodium pump activity in both the 2K-1C kidneys. These findings demonstrate that the antihypertensive action of garlic is associated with a reversal of NHE-1 induction in the unclipped kidneys. Induction of NHE isoforms together with a reduced sodium pump activity might cause necrosis in the 2K-1C clipped kidneys due to cellular retention of Na+. On the other hand, activation of sodium pump by garlic extract in the kidneys should reduce intracellular Na+ concentration and normalize BP. These findings signify the use of garlic in the treatment of hypertension.
Collapse
Affiliation(s)
- K K Al-Qattan
- Department of Biological Sciences, Faculty of Sciences, Kuwait University, Kuwait
| | | | | | | |
Collapse
|
36
|
Doggrell SA, Hancox JC. Is timing everything? Therapeutic potential of modulators of cardiac Na(+) transporters. Expert Opin Investig Drugs 2003; 12:1123-42. [PMID: 12831348 DOI: 10.1517/13543784.12.7.1123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sodium ion (Na(+)) transporters have roles in the modulation of cardiomyocyte pH and Na(+) and Ca(2+) handling. Activation of the cardiac Na(+)-H(+) exchanger 1 (NHE1) during ischaemia induces arrhythmias, myocardial stunning and irreversible cell injury. As the benefits of NHE1 inhibitors (e.g., amiloride, cariporide) in models of myocardial infarction are usually much greater when used as pretreatment, rather than during or after ischaemia, it is probably not surprising that clinical trials with cariporide in ischaemia have shown little shortterm benefit. NHE1 inhibitors have been shown to be beneficial in animal models of ventricular fibrillation and resuscitation, cardioplegia, hypertrophy and heart failure, and their therapeutic potential in these conditions should be further developed. The Na(+)-HCO(3)(-) cotransporter (NBC) is also stimulated by intracellular acidification, and part of the benefit of angiotensin-converting enzyme inhibitors after myocardial infarction may be due to inhibition of the NBC. Selective inhibitors of the NBC are required to determine the therapeutic potential of this mechanism. The Na(+)-Ca(2+) exchanger (NCX) has a major role in cardiac Na(+) and Ca(2+) homeostasis and influences cardiac electrical activity. The NCX also has a role in ischaemia/infarction, arrhythmias, hypertrophy and heart failure. NCX inhibitors may have beneficial effects in animal models of ischaemia and reperfusion injury and the therapeutic benefit of these should be further studied in animal models.
Collapse
Affiliation(s)
- Sheila A Doggrell
- School of Biomedical Sciences, The University of Queensland, QLD 4072, Australia.
| | | |
Collapse
|
37
|
Kolarova J, Ayoub IM, Yi Z, Gazmuri RJ. Optimal timing for electrical defibrillation after prolonged untreated ventricular fibrillation. Crit Care Med 2003; 31:2022-8. [PMID: 12847399 DOI: 10.1097/01.ccm.0000070446.84095.f4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE It currently is recommended that electrical shocks be delivered immediately on recognition of ventricular fibrillation. However, decreased effectiveness of this approach has been reported after prolonged intervals of untreated ventricular fibrillation. We investigated the optimal strategy for successful defibrillation after prolonged untreated ventricular fibrillation by using a rat model of ventricular fibrillation and closed-chest resuscitation. DESIGN Controlled, randomized, laboratory study. SETTING Research laboratory at a VA hospital. SUBJECTS Seventy pentobarbital anesthetized Sprague-Dawley rats. INTERVENTIONS After 10 mins of untreated ventricular fibrillation, four groups of rats were randomized to receive electrical shocks (which we designated as "experimental shocks") immediately before or at 2, 4, or 6 mins of chest compression. Unsuccessfully defibrillated rats received additional shocks (which we designated as "rescue shocks") after 8 mins of chest compression. MEASUREMENTS AND MAIN RESULTS The number of rats that restored spontaneous circulation after the experimental shocks increased with increasing duration of the predefibrillatory interval of chest compression (0 of 8, 0 of 8, 2 of 8, and 7 of 8, respectively, p <.005). Two additional groups then were randomized to receive repetitive experimental shocks at 2, 4, and 6 mins or a single attempt at 6 mins of chest compression. Although a comparable number of rats restored spontaneous circulation in each group, rats subjected to repetitive defibrillation attempts had more intense postresuscitation ectopic activity and worse survival. Two final groups were used to investigate whether inhibition of the sarcolemmal sodium-hydrogen exchanger isoform-1 (NHE-1) could facilitate return of spontaneous circulation during repetitive defibrillation attempts. Although spontaneous circulation was restored earlier in more rats subjected to NHE-1 inhibition, the differences were statistically insignificant. NHE-1 inhibition, however, replicated previously reported resuscitation and postresuscitation benefits. The optimal predefibrillation interval of chest compression was approximately 6 mins, and this coincided with partial return of the amplitude and frequency characteristics of the ventricular fibrillation waveform to those present immediately after induction of ventricular fibrillation. CONCLUSIONS Improved outcome after prolonged untreated ventricular fibrillation may result from strategies that provide chest compression before attempting defibrillation and avoid early and repetitive defibrillation attempts. The amplitude and frequency characteristics of the ventricular fibrillation waveform could help identify the optimal timing for attempting electrical defibrillation.
Collapse
Affiliation(s)
- Julieta Kolarova
- CPR Research Laboratories, North Chicago VA Medical Center, IL, USA
| | | | | | | |
Collapse
|
38
|
Rabkin DG, Cabreriza SE, Lacorte JC, Weinberg AD, Coku L, Walsh R, Mosca R, Spotnitz HM. Sodium-hydrogen exchange inhibition preserves ventricular function after ventricular fibrillation in the intact swine heart. J Thorac Cardiovasc Surg 2003; 125:1499-509. [PMID: 12830072 DOI: 10.1016/s0022-5223(02)73404-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We tested the hypothesis that sodium-hydrogen exchange inhibition attenuates ventricular dysfunction after ischemia-reperfusion injury in the intact porcine heart. METHODS Twelve pigs (weight, 30-45 kg) were evenly divided into 2 groups. Baseline ventricular function studies were based on echocardiography, conductance, aortic flow, and left ventricular pressure. Animals were given vehicle (control) or benzamide-N-(aminoiminomethl)-4-(4-[2-furanylcarbonyl]-1-piperazinyl)-3-(methylsulfonyl)methanesulfonate (BIIB 513; 3 mg/kg administered intravenously). Ten minutes later, hearts were subjected to 75 seconds of ventricular fibrillation. After reperfusion for 40 minutes, function studies were repeated. Hearts were arrested and excised. Postmortem data included passive pressure-volume curves and myocardial water content. RESULTS Preload recruitable stroke work was significantly decreased from baseline after ischemia and reperfusion in the control group (27.7 +/- 2.5 vs 48.0 +/- 5.6 mm Hg [+/- SEM], P =.001) but not in the BIIB 513 group (43.0 +/- 5.8 vs 45.5 +/- 4.1 mm Hg, P = not significant). In vivo diastolic and postmortem passive left ventricular compliance were reduced after ischemia and reperfusion for control animals but remained unchanged for animals receiving BIIB 513. Time required to recover baseline blood pressure after ventricular fibrillation was significantly longer for control animals (159 +/- 15 vs 88 +/- 14 seconds [+/- SEM], P =.008). Myocardial water content (78.97% +/- 0.94% vs 77.86% +/- 0.46% [+/- SEM]) and normalized left ventricular mass (137.24 +/- 6.17 vs 128.41 +/- 1.96 g [+/- SEM]) were insignificantly increased in control animals. CONCLUSIONS Sodium-hydrogen exchange inhibition attenuates ventricular dysfunction after 75 seconds of ventricular fibrillation and 40 minutes of reperfusion. This family of agents might prove useful in patients with severe left ventricular dysfunction undergoing ventricular fibrillation for implantable cardioverter defibrillator testing.
Collapse
Affiliation(s)
- David G Rabkin
- Department of Surgery, Columbia College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Successful treatment of cardiac arrest requires that an electrically stable and mechanically competent cardiac activity be promptly reestablished. However, many interventions used to attempt to reestablish cardiac activity may also inflict additional myocardial injury and, in turn, compromise resuscitability. In this review, we examine mechanisms of such myocardial injury and discuss potential new strategies for myocardial protection during resuscitation from cardiac arrest. RECENT FINDINGS Efforts are currently directed at understanding underlying mechanisms of myocardial injury associated with current resuscitation methods, with the purpose of developing alternative approaches that are safer and more effective. These new approaches include, among others, the development of alternative low-energy defibrillation waveforms, methods for optimizing the timing for attempting defibrillation, and the use of vasopressor agents devoid of beta-agonist effects. There is also interest in understanding the role that activation of pathways of ischemic and reperfusion injury could play during resuscitation from cardiac arrest. To this end, activation of the sarcolemmal sodium-hydrogen exchanger isoform 1 seems to play an important role. Other potentially important pathways involve adenosine metabolism, activation of potassium ATP channels, and generation of oxygen radical species. These pathways may become novel pharmacologic targets for cardiac resuscitation. SUMMARY The growing body of research in these areas is bringing hope that in a not so distant future new approaches and interventions for cardiac resuscitation could be available for resuscitation of humans in various clinical settings.
Collapse
Affiliation(s)
- Raúl J Gazmuri
- Department of Medicine, Finch University of Health Sciences/The Chicago Medical School, North Chicago, Illinois, USA.
| | | | | |
Collapse
|
40
|
Shinagawa K, Derakhchan K, Nattel S. Pharmacological prevention of atrial tachycardia induced atrial remodeling as a potential therapeutic strategy. Pacing Clin Electrophysiol 2003; 26:752-64. [PMID: 12698678 DOI: 10.1046/j.1460-9592.2003.00128.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia requiring medical therapy, and present treatment modalities are inadequate. Over the past few years, we have learned a great deal about the phenomenon of electrical remodeling, by which rapid atrial activation leads to changes in atrial electrical properties that promote AF initiation and maintenance. This knowledge opens up the possibility that electrical remodeling may itself be a novel therapeutic target in AF. The present paper reviews what is known about the basic mechanisms of atrial electrical remodeling and then discusses the experimental and clinical evidence that remodeling can be prevented by drug therapy. Despite great potential value, the development of pharmacological interventions to prevent atrial electrical remodeling is still in its infancy.
Collapse
Affiliation(s)
- Kaori Shinagawa
- Montreal Heart Institute, Research Center, 5000 Belanger Street East, Montreal, Quebec, Canada H1T 1C8
| | | | | |
Collapse
|
41
|
Inhibition of the Sarcolemmal Sodium-Hydrogen Exchanger: A Potential Treatment for Resuscitation from Cardiac Arrest. Intensive Care Med 2003. [DOI: 10.1007/978-1-4757-5548-0_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
|
43
|
Wann SR, Weil MH, Sun S, Tang W, Yu T. Cariporide for pharmacologic defibrillation after prolonged cardiac arrest. J Cardiovasc Pharmacol Ther 2002; 7:161-9. [PMID: 12232565 DOI: 10.1177/107424840200700306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND We hypothesized that cariporide, a sodium-hydrogen exchange inhibitor, would be as cardioprotective during the global myocardial ischemia of prolonged cardiac arrest as it is in settings of coronary occlusion. METHODS AND RESULTS Fifteen Sprague-Dawley rats were randomized to receive bolus injections of cariporide or placebo in a dose of 3 mgxkg(-1) into the right atrium either 5 minutes before, or at 8 minutes after, onset of ventricular fibrillation. Ventricular fibrillation was electrically induced and untreated for 8 minutes. Precordial compression, together with mechanical ventilation, was then started and continued for an interval of 8 minutes prior to attempted resuscitation. All but one placebo-treated animal were successfully resuscitated. Spontaneous defibrillation with restoration of circulation was observed in both cariporide-pretreatment and post-treatment groups but in none of the placebo-treated animals. Postresuscitation cardiac index, end-tidal CO(2), mean aortic pressure, left ventricular systolic pressure, left ventricular end-diastolic pressure, and left ventricular contractile and lusitropic functions (dP/dt(40), and -dP/dt) were significantly less impaired after cariporide, especially in the pretreated group, compared to electrically defibrillated controls. Postresuscitation ventricular premature beats were significantly reduced after cariporide. The duration of post-resuscitation survival was significantly increased in animals pretreated with cariporide. CONCLUSIONS Cariporide, when administered prior to and during cardiac arrest, improved both the success of resuscitation and postresuscitation myocardial function.
Collapse
Affiliation(s)
- Shue-ren Wann
- Institute of Critical Care Medicine, Palm Springs, CA 92264, USA
| | | | | | | | | |
Collapse
|
44
|
Gazmuri RJ, Ayoub IM, Kolarova JD, Karmazyn M. Myocardial protection during ventricular fibrillation by inhibition of the sodium-hydrogen exchanger isoform-1. Crit Care Med 2002; 30:S166-71. [PMID: 11940795 DOI: 10.1097/00003246-200204001-00010] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Activation of the sarcolemmal sodium-hydrogen exchanger isoform-1 (NHE-1) in response to the intense intracellular acidosis that develops during ischemia has been identified as an important mechanism of myocardial cell injury. NHE-1 inhibition in the quiescent (nonfibrillating) heart ameliorates functional manifestation of ischemia and reperfusion injury. We investigated in isolated heart and intact rat models of ventricular fibrillation whether NHE-1 inhibition, by using the selective inhibitor cariporide, could ameliorate myocardial abnormalities that develop during ventricular fibrillation and limit resuscitability and survival. In the isolated rat heart, cariporide significantly reduced the magnitude of ischemic contracture during ventricular fibrillation and the accompanying increases in coronary vascular resistance. Hearts that had received cariporide during ventricular fibrillation had no diastolic dysfunction after resuscitation and recovered their systolic function earlier. In intact rats, cariporide given immediately before starting chest compression allowed generation of a coronary perfusion pressure and end-tidal Pco2 comparable with control rats but with significantly less depth of compression. Cariporide had an unprecedented effect in this rat model, prompting spontaneous defibrillation after approximately 8 mins of chest compression. After resuscitation, rats treated with cariporide had significantly less ventricular ectopic activity, better hemodynamic function, and higher survival rates (22 of 24 [94%] vs. 15 of 24 [63%] in control rats, p <.05). We conclude that NHE-1 inhibition may represent a novel and highly effective form of treatment for resuscitation from ventricular fibrillation.
Collapse
Affiliation(s)
- Raúl J Gazmuri
- Section of Critical Care Medicine, North Chicago VA Medical Center, North Chicago, IL 60064, USA.
| | | | | | | |
Collapse
|
45
|
|