1
|
Ormerod JOM, Arif S, Mukadam M, Evans JDW, Beadle R, Fernandez BO, Bonser RS, Feelisch M, Madhani M, Frenneaux MP. Short-term intravenous sodium nitrite infusion improves cardiac and pulmonary hemodynamics in heart failure patients. Circ Heart Fail 2015; 8:565-71. [PMID: 25838311 PMCID: PMC4435579 DOI: 10.1161/circheartfailure.114.001716] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/25/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Nitrite exhibits hypoxia-dependent vasodilator properties, selectively dilating capacitance vessels in healthy subjects. Unlike organic nitrates, it seems not to be subject to the development of tolerance. Currently, therapeutic options for decompensated heart failure (HF) are limited. We hypothesized that by preferentially dilating systemic capacitance and pulmonary resistance vessels although only marginally dilating resistance vessels, sodium nitrite (NaNO2) infusion would increase cardiac output but reduce systemic arterial blood pressure only modestly. We therefore undertook a first-in-human HF proof of concept/safety study, evaluating the hemodynamic effects of short-term NaNO2 infusion. METHODS AND RESULTS Twenty-five patients with severe chronic HF were recruited. Eight received short-term (5 minutes) intravenous NaNO2 at 10 μg/kg/min and 17 received 50 μg/kg/min with measurement of cardiac hemodynamics. During infusion of 50 μg/kg/min, left ventricular stroke volume increased (from 43.22±21.5 to 51.84±23.6 mL; P=0.003), with marked falls in pulmonary vascular resistance (by 29%; P=0.03) and right atrial pressure (by 40%; P=0.007), but with only modest falls in mean arterial blood pressure (by 4 mm Hg; P=0.004). The increase in stroke volume correlated with the increase in estimated trans-septal gradient (=pulmonary capillary wedge pressure-right atrial pressure; r=0.67; P=0.003), suggesting relief of diastolic ventricular interaction as a contributory mechanism. Directionally similar effects were observed for the above hemodynamic parameters with 10 μg/kg/min; this was significant only for stroke volume, not for other parameters. CONCLUSIONS This first-in-human HF efficacy/safety study demonstrates an attractive profile during short-term systemic NaNO2 infusion that may be beneficial in decompensated HF and warrants further evaluation with longer infusion regimens.
Collapse
Affiliation(s)
- Julian O M Ormerod
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Sayqa Arif
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Majid Mukadam
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Jonathan D W Evans
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Roger Beadle
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Bernadette O Fernandez
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Robert S Bonser
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Martin Feelisch
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Melanie Madhani
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Michael P Frenneaux
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.).
| |
Collapse
|
3
|
Tohmo H, Karanko M, Klossner J, Scheinin M, Viinamäki O, Neuvonen P, Ruskoaho H. Enalaprilat decreases plasma endothelin and atrial natriuretic peptide levels and preload in patients with left ventricular dysfunction after cardiac surgery. J Cardiothorac Vasc Anesth 1997; 11:585-90. [PMID: 9263090 DOI: 10.1016/s1053-0770(97)90009-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To study the acute effects of angiotensin-converting enzyme inhibition by intravenous enalaprilat infusion in patients with left ventricular dysfunction after cardiac surgery. DESIGN Prospective, consecutive sample, before-after trial. SETTING Surgical intensive care unit in a tertiary care university hospital. PARTICIPANTS Eight patients with left ventricular dysfunction after cardiac surgery. Patients were defined as having left ventricular dysfunction if the pulmonary capillary wedge pressure persisted above 18 mmHg in spite of conventional vasoactive medication (inotropic or vasodilating and diuretic drugs) and intermittent mandatory ventilation during the first postoperative week. INTERVENTIONS Enalaprilat was infused initially at 1 mg/ hour. The rate was doubled every 30 minutes until pulmonary capillary wedge pressure decreased at least 20% or until a maximum total dose of 10 mg was achieved. MEASUREMENTS AND RESULTS Central hemodynamics, systemic oxygenation, and hormonal regulation of circulation (plasma renin activity, plasma endothelin, atrial natriuretic peptide, norepinephrine, epinephrine, and vasopressin concentrations, serum angiotensin-converting enzyme activity, and serum levels of aldosterone) were assessed at baseline before enalaprilat infusion, and repeatedly over 2 hours after the infusion. Enalaprilat infusion (median dose, 2.0 mg; infusion time, 48 minutes) caused a significant decrease in pulmonary capillary wedge pressure (p = 0.004), lasting until the end of the 2 hours' follow-up. This coincided with inhibition of serum angiotensin-converting enzyme activity (p < 0.001), an increase in plasma renin activity (p = 0.022), and decreases in plasma endothelin (p = 0.035), atrial natriuretic peptide (p = 0.005), and serum aldosterone (p = 0.001) concentrations. Cardiac output, venous admixture, and oxygen delivery and consumption remained unchanged. CONCLUSIONS Adding enalaprilat to conventional therapy makes it possible to unload the left ventricle and to relieve overt neurohormonal activation temporarily while maintaining cardiac function and systemic oxygenation.
Collapse
Affiliation(s)
- H Tohmo
- Department of Anesthesiology, Turku University Central Hospital, University of Turku, Finland
| | | | | | | | | | | | | |
Collapse
|