1
|
Attachaipanich T, Chattipakorn SC, Chattipakorn N. Cardiovascular toxicities by calcineurin inhibitors: Cellular mechanisms behind clinical manifestations. Acta Physiol (Oxf) 2024; 240:e14199. [PMID: 38984711 DOI: 10.1111/apha.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Calcineurin inhibitors (CNI), including cyclosporine A (CsA) and tacrolimus (TAC), are cornerstones of immunosuppressive therapy in solid organ transplant recipients. While extensively recognized for their capacity to induce nephrotoxicity, hypertension, and dyslipidemia, emerging reports suggest potential direct cardiovascular toxicities associated with CNI. Evidence from both in vitro and in vivo studies has demonstrated direct cardiotoxic impact of CNI, manifesting itself as induction of cardiomyocyte apoptosis, enhanced oxidative stress, inflammatory cell infiltration, and cardiac fibrosis. CNI enhances cellular apoptosis through CaSR via activation of the p38 MAPK pathway and deactivation of the ERK pathway, and enhancement of miR-377 axis. Although CNI could attenuate cardiac hypertrophy in certain animal models, CNI concurrently impaired systolic function, enhanced cardiac fibrosis, and increased the risk of heart failure. Evidence from in vivo studies demonstrated that CNI prolong the duration of action potentials through a decrease in potassium current. CNI also exerted direct effects on endothelial cell injury, inducing apoptosis and enhancing oxidative stress. CNI may induce vascular inflammation through TLR4 via MyD88 and TRIF pathways. In addition, CNI affects vascular function by impairing endothelial-dependent vasodilation and promoting vasoconstriction. Clinical studies in transplant patients also revealed an increased incidence of cardiac remodeling. However, the evidence is constrained by the limited number of participants and potential confounding factors. Several studies indicate differing cardiovascular toxicity profiles between CsA and TAC, and these could be potentially due to their different interactions with calcineurin subunits and calcineurin-independent effects. Further studies are needed to clarify these mechanisms to improve cardiovascular outcomes for transplant patients with CNI.
Collapse
Affiliation(s)
- Tanawat Attachaipanich
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Wilk A, Król M, Kiełbowski K, Bakinowska E, Szumilas K, Surówka A, Kędzierska-Kapuza K. Immunolocalization of Matrix Metalloproteinases 2 and 9 and Their Inhibitors in the Hearts of Rats Treated with Immunosuppressive Drugs-An Artificial Intelligence-Based Digital Analysis. Biomedicines 2024; 12:769. [PMID: 38672125 PMCID: PMC11048150 DOI: 10.3390/biomedicines12040769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Immunosuppressive agents represent a broad group of drugs, such as calcineurin inhibitors, mTOR inhibitors, and glucocorticosteroids, among others. These drugs are widely used in a number of conditions, but lifelong therapy is crucial in the case of organ recipients to prevent rejection. To further increase the safety and efficacy of these agents, their off-target mechanisms of action, as well as processes underlying the pathogenesis of adverse effects, need to be thoroughly investigated. The aim of this study was to examine the impact of various combinations of cyclosporine/tacrolimus/mycophenolate with rapamycin and steroids (CRG, TRG, MRG), on the morphology and morphometry of rats' cardiomyocytes, together with the presence of cardiac collagen and the immunoexpression of MMPs and TIMPs. METHODS Twenty-four rats were divided into four groups receiving different immunosuppressive regiments. After six months of treatment, the hearts were collected and analyzed. RESULTS Cardiomyocytes from the CRG cohorts demonstrated the most pronounced morphological alterations. In addition, chronic immunosuppression reduced the width and length of cardiac cells. However, immunosuppressive therapy did not alter the presence of cardiac collagen fibers. Nevertheless, we observed significant alterations regarding MMP/TIMP homeostasis. CONCLUSIONS Chronic immunosuppression seems to disturb the MMP/TIMP balance in aspects of immunolocalization in the hearts of rats. Further studies are required to analyze other mechanisms and pathways affected by the use of immunosuppressants.
Collapse
Affiliation(s)
- Aleksandra Wilk
- Department of Histology and Embryology, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.W.); (M.K.); (E.B.)
| | - Małgorzata Król
- Department of Histology and Embryology, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.W.); (M.K.); (E.B.)
| | - Kajetan Kiełbowski
- Department of Histology and Embryology, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.W.); (M.K.); (E.B.)
| | - Estera Bakinowska
- Department of Histology and Embryology, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.W.); (M.K.); (E.B.)
| | - Kamila Szumilas
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Anna Surówka
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, 72-010 Szczecin, Poland;
| | - Karolina Kędzierska-Kapuza
- Department of Gastroenterological Surgery and Transplantology, Center of Postgraduate Medical Education in Warsaw, 137 Wołoska St., 02-507 Warsaw, Poland;
| |
Collapse
|
3
|
Elezaby A, Dexheimer R, Sallam K. Cardiovascular effects of immunosuppression agents. Front Cardiovasc Med 2022; 9:981838. [PMID: 36211586 PMCID: PMC9534182 DOI: 10.3389/fcvm.2022.981838] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Immunosuppressive medications are widely used to treat patients with neoplasms, autoimmune conditions and solid organ transplants. Key drug classes, namely calcineurin inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and purine synthesis inhibitors, have direct effects on the structure and function of the heart and vascular system. In the heart, immunosuppressive agents modulate cardiac hypertrophy, mitochondrial function, and arrhythmia risk, while in vasculature, they influence vessel remodeling, circulating lipids, and blood pressure. The aim of this review is to present the preclinical and clinical literature examining the cardiovascular effects of immunosuppressive agents, with a specific focus on cyclosporine, tacrolimus, sirolimus, everolimus, mycophenolate, and azathioprine.
Collapse
Affiliation(s)
- Aly Elezaby
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Ryan Dexheimer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Karim Sallam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Karim Sallam
| |
Collapse
|
4
|
Yang H, Zeng XJ, Wang HX, Zhang LK, Dong XL, Guo S, Du J, Li HH, Tang CS. Angiotensin IV protects against angiotensin II-induced cardiac injury via AT4 receptor. Peptides 2011; 32:2108-15. [PMID: 21963909 DOI: 10.1016/j.peptides.2011.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Angiotensin II (Ang II) is an important regulator of cardiac function and injury in hypertension. The novel Ang IV peptide/AT4 receptor system has been implicated in several physiological functions and has some effects opposite to those of Ang II. However, little is known about the role of this system in Ang II-induced cardiac injury. Here we studied the effect of Ang IV on Ang II-induced cardiac dysfunction and injury using isolated rat hearts, neonatal cardiomyocytes and cardiac fibroblasts. We found that Ang IV significantly improved Ang II-induced cardiac dysfunction and injury in the isolated heart in response to ischemia/reperfusion (I/R). Moreover, Ang IV inhibited Ang II-induced cardiac cell apoptosis, cardiomyocyte hypertrophy, and proliferation and collagen synthesis of cardiac fibroblasts; these effects were mediated through the AT4 receptor as confirmed by siRNA knockdown. These findings suggest that Ang IV may have a protective effect on Ang II-induced cardiac injury and dysfunction and may be a novel therapeutic target for hypertensive heart disease.
Collapse
MESH Headings
- Angiotensin II/analogs & derivatives
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Animals
- Cell Proliferation
- Cells, Cultured
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/physiology
- Heart/drug effects
- Hypertrophy
- Male
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
Collapse
Affiliation(s)
- Hui Yang
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Department of Pathology School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chan MWC, Arora PD, McCulloch CA. Cyclosporin inhibition of collagen remodeling is mediated by gelsolin. Am J Physiol Cell Physiol 2007; 293:C1049-58. [PMID: 17615162 DOI: 10.1152/ajpcell.00027.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclosporin A (CsA) inhibits collagen remodeling by interfering with the collagen-binding step of phagocytosis. In rapidly remodeling connective tissues such as human periodontium this interference manifests as marked tissue overgrowth and loss of function. Previous data have shown that CsA inhibits integrin-induced release of Ca(2+) from internal stores, which is required for the binding step of collagen phagocytosis. Because gelsolin is a Ca(2+)-dependent actin-severing protein that mediates collagen phagocytosis, we determined whether gelsolin is a CsA target. Compared with vehicle controls, CsA treatment of wild-type mice increased collagen accumulation by 60% in periodontal tissues; equivalent increases were seen in vehicle-treated gelsolin-null mice. Collagen degradation by phagocytosis in cultured gelsolin wild-type fibroblasts was blocked by CsA, comparable to levels of vehicle-treated gelsolin-null fibroblasts. In wild-type cells treated with CsA, collagen binding was similar to that of gelsolin-null fibroblasts transfected with a gelsolin-severing mutant and treated with vehicle. CsA blocked collagen-induced Ca(2+) fluxes subjacent to bound collagen beads, gelsolin recruitment, and actin assembly at bead sites. CsA reduced gelsolin-dependent severing of actin in wild-type cells to levels similar to those in gelsolin-null fibroblasts. We conclude that CsA-induced accumulation of collagen in the extracellular matrix involves disruption of the actin-severing properties of gelsolin, thereby inhibiting the binding step of collagen phagocytosis.
Collapse
|
6
|
Bès S, Vandroux D, Tissier C, Devillard L, Brochot A, Tatou E, Duvillard L, Rochette L, Athias P. Direct, pleiotropic protective effect of cyclosporin A against simulated ischemia-induced injury in isolated cardiomyocytes. Eur J Pharmacol 2005; 511:109-20. [PMID: 15792778 DOI: 10.1016/j.ejphar.2005.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 02/07/2005] [Accepted: 02/09/2005] [Indexed: 11/30/2022]
Abstract
Cyclosporin A is an immunosuppressor that prolongs graft survival but its use is limited by cardiotoxicity. The effects of cyclosporin A on several functional and biological characteristics were thus evaluated in rat cardiomyocytes in normal conditions and in a substrate-free, hypoxia-reoxygenation model of ischemia-reperfusion. Cyclosporin A (100 and 1000 ng/ml) did not induce cardiocytotoxicity in basal conditions. Simulated ischemia gradually decreased and then blocked the spontaneous electromechanical activity. Cyclosporin A at 100 and 1000 ng/ml permitted the maintenance of electromechanical functions that were abolished in control cells. Cyclosporin A also improved the post-"ischemic" functional recovery. Cyclosporin A reduced the "ischemia"-induced lactate dehydrogenase and troponine I releases and the successive rises in heat shock protein mRNA observed after "ischemia" and reoxygenation. Moreover, cyclosporin A improved the resumption of the mitochondrial function. To conclude, cyclosporin A displayed a direct, pleiotropic protection of isolated cardiomyocytes against physiological, metabolic, structural and stress signaling changes induced by ischemia-reperfusion mimicked in vitro.
Collapse
Affiliation(s)
- Sandrine Bès
- Laboratory of Cardiovascular Physiopathology and Pharmacology, Institute of Cardiovascular Research, University Hospital Center, Dijon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yang G, Meguro T, Hong C, Asai K, Takagi G, Karoor VL, Sadoshima J, Vatner DE, Bishop SP, Vatner SF. Cyclosporine reduces left ventricular mass with chronic aortic banding in mice, which could be due to apoptosis and fibrosis. J Mol Cell Cardiol 2001; 33:1505-14. [PMID: 11448138 DOI: 10.1006/jmcc.2001.1413] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A tacit assumption in studies of left ventricular (LV) hypertrophy is that left ventricular/body weight (LV/BW) reflects the extent of myocyte hypertrophy. The goal of the current investigation was to determine if there was another explanation for the reduced LV/BW observed after inhibiting calcineurin with cyclosporine during the development of pressure overload LV hypertrophy as compared with animals that did not receive cyclosporine. Accordingly, we examined the prevalence of fibrosis and apoptosis and measured cell size in the hearts from mice at 1 and 3 weeks after transverse aortic banding with and without chronic cyclosporine. Although LV/BW, compared to aortic banded vehicle treated mice, was reduced by 30% in aortic banded cyclosporine treated mice, myocyte cross sectional area was similar in both banded groups (346+/-9 microm2 v 336+/-13 microm2). The volume percent interstitial fibrosis was greater in aortic banded cyclosporine treated animals (1.4+/-0.2%) compared with aortic banded vehicle treated animals (0.9+/-0.2%, P<0.05) or in sham animals (0.6+/-0.1%). Surprisingly, lesions including myocytes containing iron were observed and were most prominent in aortic banded cyclosporine treated animals. Apoptosis, quantitated with TUNEL staining as percent of myocytes, was increased in aortic banded cyclosporine treated animals at 7 days (1.6+/-0.4%) compared with aortic banded vehicle treated animals (0.4+/-0.1%, P<0.01) and was still increased at 21 days. Immunoblotting demonstrated a decrease in the phosphorylation of Akt and Bad, and also Bcl-2 levels were reduced in aortic banded cyclosporine treated animals at 7 days compared with aortic banded vehicle treated animals. These proteins protect against apoptosis, and support the concept that cyclosporine inhibited the calcineurin pathway, resulting in enhanced apoptosis. Thus, the decrease in LV/BW in the aortic banded cyclosporine treated animals actually may be due, at least in part, to cell loss and death, as reflected by the enhanced fibrosis and apoptosis and the focal iron deposits in myocytes.
Collapse
Affiliation(s)
- G Yang
- Cardiovascular Research Institute, University of Medicine & Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Schacherer C, Koops D, Wiemer J, Hartmann A, Weis M, Klepzig H, Zeiher AM, Olbrich HG. Extracellular matrix structure after heart transplantation. Int J Cardiol 1999; 68:115-20. [PMID: 10077408 DOI: 10.1016/s0167-5273(98)00341-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Following heart transplantation remodeling of the donor heart causes changes in the extracellular myocardial matrix. We investigated 20 right ventricular endomyocardial biopsies taken 17+/-4 days (group I, n=9) and 63+/-13 days (group II, n=11) after heart transplantation from 16 patients transplanted for end-stage cardiomyopathy (15 dilated/1 ischemic). Immunohistochemical staining for collagen I, collagen III, collagen IV, and fibronectin was used. Evaluation was performed at a magnification of 400x using a computer-assisted image analyzing system measuring the relative area stained by the immunoperoxidase method, the number of cells in the given area, and the total area. Collagen I per cell was 13.9+/-5.9 microm2 in group I and increased significantly 66+/-13 days after heart transplantation in the perimysium around the myocardial cells as well as in the endocardium to 49.9+/-15.1 microm2 (P<0.05). No quantitative change in collagen III was noted (75.7+/-12.4 versus 75.5+/-16.0 microm2 n.s.). Collagen IV was found in the perimysial, in the capillary bed and in the vascular network. Significant quantitative change in the amount of collagen IV was not found (64.1+/-12.6 versus 61.0+/-8.9 microm2). Fibronectin was found in the entire perimysial extracellular matrix and in the endocardium in relationship with collagen I and III. An increased amount of fibronectin from 87.09+/-9.9 microm2 (group I) to 140.8+/-17.9 microm2 (group II, P<0.05) was found. The cell area and cell diameters were not significantly different (group I; cell area 772+/-227 microm2, diameter 31.3 microm; group II; cell area 776+/-224 microm2, diameter 31.4 microm). It is concluded that remodeling of the donor heart after transplantation is characterized by a specific increase in collagen I and fibronectin, whereas a change in other collagen subtypes was not observed.
Collapse
Affiliation(s)
- C Schacherer
- J.W. Goethe University, Department of Medicine, Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kolár F, Papousek F, MacNaughton C, Pelouch V, Milerová M, Korecky B. Myocardial fibrosis and right ventricular function of heterotopically transplanted hearts in rats treated with cyclosporin. Mol Cell Biochem 1996; 163-164:253-60. [PMID: 8974065 DOI: 10.1007/bf00408666] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim was to determine whether treatment of rats with cyclosporin A (CsA) leads to deleterious side effects on heterotopically iso- or allotransplanted hearts when compared with recipient native in situ hearts. Four experimental groups were employed: inbred (Lewis) rats receiving either no immunosuppression or CsA at a dose of 15 mg.kg-1 per day for 7 days after surgery, and outbred (Wistar) rats receiving CsA at the same daily dose for either 7 or 21 days. One month following surgery, the mass of all transplanted hearts decreased and resulting atrophy was associated with relative myocardial fibrosis. Treatment with CsA significantly increased the concentration and content of collagen in the right and left ventricles of all transplanted and recipient hearts. No appreciable difference was observed between corresponding hearts of inbred and outbred groups receiving the identical dose of CsA, and between hearts in outbred groups treated for either 7 or 21 days. No signs of right ventricular mechanical dysfunction, as assessed on the isolated perfused "working' preparation, were observed after CsA treatment in both transplanted and recipient hearts. The maximal steady state developed pressure (RVDevP) and the rate of its development [(+dP/dt)max] were slightly higher in transplants than in the corresponding recipients, and in CsA-treated versus untreated hearts, while the index of contractile state [(+dP/dt)/P] was similar in all groups. The data suggest that treatment of rats with CsA can induce a similar degree of fibrosis both in heterotopic cardiac transplants and in recipient native hearts without impairment of their contractile performance.
Collapse
Affiliation(s)
- F Kolár
- Department of Developmental Cardiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
10
|
Qi M, Ojamaa K, Eleftheriades EG, Klein I, Samarel AM. Regulation of rat ventricular myosin heavy chain expression by serum and contractile activity. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C520-8. [PMID: 8074187 DOI: 10.1152/ajpcell.1994.267.2.c520] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To quantitatively analyze the effects of serum stimulation and contractile activity and their interaction on cellular growth and cardiac myosin heavy chain (MHC) gene expression, spontaneously contracting neonatal rat ventricular myocytes in primary culture were maintained in serum-free growth medium or growth medium supplemented with fetal bovine serum. Contractile activity in paired cultures was inhibited by addition of the calcium channel blocker verapamil (10 microM) to the culture medium. Both serum stimulation and contractile activity produced myocyte hypertrophy as assessed by increases in total protein, total RNA, protein-to-DNA ratios, and total MHC protein content. MHC isoenzyme analysis indicated that both MHC-alpha and MHC-beta proteins accumulated in response to serum stimulation and/or contractile activity. The increases in MHC-beta protein resulting from serum stimulation and contractile activity occurred in parallel with increases in MHC-beta mRNA. In contrast, MHC-alpha mRNA levels were relatively unaffected by serum stimulation but appeared to decrease in response to contractile activity. The protein kinase inhibitor staurosporine (5 nM) reduced MHC-beta expression in serum-free, contracting cultures and also prevented the serum-induced increase in MHC-beta mRNA observed in both contracting and arrested myocytes. Staurosporine also increased MHC-alpha mRNA levels in serum-free, contracting, and verapamil-arrested myocytes. These data suggest that both humoral and mechanical factors regulate MHC isoenzyme expression and cellular growth in neonatal ventricular myocytes.
Collapse
Affiliation(s)
- M Qi
- Department of Medicine, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | | | | | | | | |
Collapse
|
11
|
Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation 1993; 88:2849-61. [PMID: 8252698 DOI: 10.1161/01.cir.88.6.2849] [Citation(s) in RCA: 218] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Cardiac hypertrophy results in an increased deposition of the extracellular matrix (ECM) proteins fibronectin and collagen. Recent evidence indicates that angiotensin II (Ang II) might have an important role in the development of myocardial fibrosis accompanying cardiac hypertrophy. We sought to determine whether fibroblasts of cardiac origin (isolated from neonatal and adult animals) express receptors for Ang II and to examine the ability of this peptide to regulate fibronectin and collagen gene expression in a cultured adult cardiac fibroblast cell preparation. METHODS AND RESULTS Binding of 125I-Ang II to both neonatal and adult cardiac fibroblasts in culture was specific, reversible, and saturable, with the receptor evenly distributed over the cell population. Competition binding experiments with receptor-specific antagonists indicate that Ang II receptors found on both fibroblast types were of the AT1 subtype. Analysis of mRNA levels for the AT1 receptor indicates that adult cardiac fibroblasts express higher levels of the message than neonatal fibroblasts or cardiac myocytes. Addition of 10(-9) mol/L Ang II to adult cardiac fibroblasts resulted in an induction of ECM proteins above control levels, as determined through Northern blots and total collagen assays. CONCLUSIONS Results from this study indicate that neonatal and adult rat cardiac fibroblasts in culture express AT1 receptors for Ang II. Ang II stimulation of AT1 receptors results in an increased gene expression for ECM proteins. These data suggest that Ang II might have important regulatory roles over cardiac fibroblast function under normal and pathological conditions.
Collapse
Affiliation(s)
- F J Villarreal
- Department of Medicine, University of California San Diego
| | | | | | | | | |
Collapse
|