1
|
Cao J, Wei Z, Nie Y, Chen HZ. Therapeutic potential of alternative splicing in cardiovascular diseases. EBioMedicine 2024; 101:104995. [PMID: 38350330 PMCID: PMC10874720 DOI: 10.1016/j.ebiom.2024.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
RNA splicing is an important RNA processing step required by multiexon protein-coding mRNAs and some noncoding RNAs. Precise RNA splicing is required for maintaining gene and cell function; however, mis-spliced RNA transcripts can lead to loss- or gain-of-function effects in human diseases. Mis-spliced RNAs induced by gene mutations or the dysregulation of splicing regulators may result in frameshifts, nonsense-mediated decay (NMD), or inclusion/exclusion of exons. Genetic animal models have characterised multiple splicing factors required for cardiac development or function. Moreover, sarcomeric and ion channel genes, which are closely associated with cardiovascular function and disease, are hotspots for AS. Here, we summarise splicing factors and their targets that are associated with cardiovascular diseases, introduce some therapies potentially related to pathological AS targets, and raise outstanding questions and future directions in this field.
Collapse
Affiliation(s)
- Jun Cao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China; University of Texas Medical Branch at Galveston, TX, 77555, USA
| | - Ziyu Wei
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Salameh S, Ogueri V, Posnack NG. Adapting to a new environment: postnatal maturation of the human cardiomyocyte. J Physiol 2023; 601:2593-2619. [PMID: 37031380 PMCID: PMC10775138 DOI: 10.1113/jp283792] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/16/2023] [Indexed: 04/10/2023] Open
Abstract
The postnatal mammalian heart undergoes remarkable developmental changes, which are stimulated by the transition from the intrauterine to extrauterine environment. With birth, increased oxygen levels promote metabolic, structural and biophysical maturation of cardiomyocytes, resulting in mature muscle with increased efficiency, contractility and electrical conduction. In this Topical Review article, we highlight key studies that inform our current understanding of human cardiomyocyte maturation. Collectively, these studies suggest that human atrial and ventricular myocytes evolve quickly within the first year but might not reach a fully mature adult phenotype until nearly the first decade of life. However, it is important to note that fetal, neonatal and paediatric cardiac physiology studies are hindered by a number of limitations, including the scarcity of human tissue, small sample size and a heavy reliance on diseased tissue samples, often without age-matched healthy controls. Future developmental studies are warranted to expand our understanding of normal cardiac physiology/pathophysiology and inform age-appropriate treatment strategies for cardiac disease.
Collapse
Affiliation(s)
- Shatha Salameh
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Vanessa Ogueri
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | - Nikki Gillum Posnack
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University, Washington, DC, USA
| |
Collapse
|
3
|
Fandl HK, Garcia VP, Treuth JW, Brewster LM, Greiner JJ, Davy KP, Stauffer BL, Desouza CA. Endothelial-derived extracellular vesicles from obese/hypertensive adults increase factors associated with hypertrophy and fibrosis in cardiomyocytes. Am J Physiol Heart Circ Physiol 2023; 324:H675-H685. [PMID: 36930654 PMCID: PMC10085555 DOI: 10.1152/ajpheart.00035.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Obesity and hypertension, independently and combined, are associated with increased risk of heart failure and heart failure-related morbidity and mortality. Interest in circulating endothelial cell-derived microvesicles (EMVs) has intensified because of their involvement in the development and progression of endothelial dysfunction, atherosclerosis, and cardiomyopathy. The experimental aim of this study was to determine, in vitro, the effects of EMVs isolated from obese/hypertensive adults on key proteins regulating cardiomyocyte hypertrophy [cardiac troponin T (cTnT), α-actinin, nuclear factor-kB (NF-kB)] and fibrosis [transforming growth factor (TGF)-β, collagen1-α1], as well as endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production. EMVs (CD144+ microvesicles) were isolated from plasma by flow cytometry in 12 normal weight/normotensive [8 males/4 females; age: 56 ± 5 yr; body mass index (BMI): 23.3 ± 2.0 kg/m2; blood pressure (BP): 117/74 ± 4/5 mmHg] and 12 obese/hypertensive (8 males/4 females; 57 ± 5 yr; 31.7 ± 1.8 kg/m2; 138/83 ± 8/7 mmHg) adults. Human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were cultured and treated with EMVs from either normal weight/normotensive or obese/hypertensive adults for 24 h. Expression of cTnT (64.1 ± 13.9 vs. 29.5 ± 7.8 AU), α-actinin (66.0 ± 14.7 vs. 36.2 ± 10.3 AU), NF-kB (166.3 ± 13.3 vs. 149.5 ± 8.8 AU), phosphorylated-NF-kB (226.1 ± 25.2 vs. 179.1 ± 25.5 AU), and TGF-β (62.1 ± 13.3 vs. 23.5 ± 8.8 AU) were significantly higher and eNOS activation (16.4 ± 4.3 vs. 24.8 ± 3.7 AU) and nitric oxide production (6.8 ± 1.2 vs. 9.6 ± 1.3 µmol/L) were significantly lower in iPSC-CMs treated with EMVs from obese/hypertensive compared with normal weight/normotensive adults. These data indicate that EMVs from obese/hypertensive adults induce a cardiomyocyte phenotype prone to hypertrophy, fibrosis, and reduced nitric oxide production, central factors associated with heart failure risk and development.NEW & NOTEWORTHY In the present study we determined the effect of endothelial microvesicles (EMVs) isolated from obese/hypertensive adults on mediators of cardiomyocyte hypertrophy [cardiac troponin T (cTnT), α-actinin, nuclear factor-kB (NF-kB)] and fibrosis [transforming growth factor (TGF-β), collagen1-α1] as well as endothelial nitric oxide synthase (eNOS) expression and NO production. EMVs from obese/hypertensive induced significantly higher expression of hypertrophic (cTnT, α-actinin, NF-kB) and fibrotic (TGF-β) proteins as well as significantly lower eNOS activation and NO production in cardiomyocytes than EMVs from normal weight/normotensive adults. EMVs are a potential mediating factor in the increased risk of cardiomyopathy and heart failure with obesity/hypertension.
Collapse
Affiliation(s)
- Hannah K Fandl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - John W Treuth
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Lillian M Brewster
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Kevin P Davy
- Human Integrative Physiology Laboratory, Department of Human Nutrition, Foods, and Exercise, Virginia Tech University, Blacksburg, Virginia, United States
| | - Brian L Stauffer
- Division of Cardiology, Denver Health Medical Center, Denver, Colorado, United States
- Division of Cardiology, Anschutz Medical Center, University of Colorado, Denver, Colorado, United States
| | - Christopher A Desouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
- Division of Cardiology, Anschutz Medical Center, University of Colorado, Denver, Colorado, United States
| |
Collapse
|
4
|
Wang H, He L, Li Y, Pu W, Zhang S, Han X, Lui KO, Zhou B. Dual Cre and Dre recombinases mediate synchronized lineage tracing and cell subset ablation in vivo. J Biol Chem 2022; 298:101965. [PMID: 35461809 PMCID: PMC9127367 DOI: 10.1016/j.jbc.2022.101965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 01/03/2023] Open
Abstract
Genetic technology using site-specific recombinases (SSR), such as the Cre-loxP system, has been widely employed for labelling specific cell populations and for studying their functions in vivo. To enhance the precision of cell lineage tracing and functional study, a similar SSR system termed Dre-rox has been recently used in combination with Cre-loxP. To enable more specific cell lineage tracing and ablation through dual recombinase activity, we generated two mouse lines that render Dre- or Dre+Cre-mediated recombination to excise a stop codon sequence that prevents the expression of diphtheria toxin receptor (DTR) knocked into the ubiquitously expressed and safe Rosa26 locus. Using different Dre- and Cre-expressing mouse lines, we showed that the surrogate gene reporter tdTomato and DTR were simultaneously expressed in target cells and in their descendants, and observed efficient ablation of tdTomato+ cells after diphtheria toxin administration. These mouse lines were used to simultaneously trace and deplete target cells of interest through the inducible expression of a reporter and DTR using dual Cre and Dre recombinases, allowing more precise and efficient study of the role of specific cell subsets within a heterogeneous population in pathophysiological conditions in vivo.
Collapse
Affiliation(s)
- Haixiao Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Lingjuan He
- School of Life Science, Westlake University, Shanghai, China
| | - Yan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Pu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Shaohua Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ximeng Han
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Kathy O Lui
- Department of Chemical Pathology; and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
5
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Elhamine F, Iorga B, Krüger M, Hunger M, Eckhardt J, Sreeram N, Bennink G, Brockmeier K, Pfitzer G, Stehle R. Postnatal Development of Right Ventricular Myofibrillar Biomechanics in Relation to the Sarcomeric Protein Phenotype in Pediatric Patients with Conotruncal Heart Defects. J Am Heart Assoc 2016; 5:JAHA.116.003699. [PMID: 27353610 PMCID: PMC4937289 DOI: 10.1161/jaha.116.003699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background The postnatal development of myofibrillar mechanics, a major determinant of heart function, is unknown in pediatric patients with tetralogy of Fallot and related structural heart defects. We therefore determined the mechanical properties of myofibrils isolated from right ventricular tissue samples from such patients in relation to the developmental changes of the isoforms expression pattern of key sarcomere proteins involved in the contractile process. Methods and Results Tissue samples from the infundibulum obtained during surgery from 25 patients (age range 15 days to 11 years, median 7 months) were split into half for mechanical investigations and expression analysis of titin, myosin heavy and light chain 1, troponin‐T, and troponin‐I. Of these proteins, fetal isoforms of only myosin light chain 1 (ALC‐1) and troponin‐I (ssTnI) were highly expressed in neonates, amounting to, respectively, 40% and 80%, while the other proteins had switched to the adult isoforms before or around birth. ALC‐1 and ssTnI expression subsequently declined monoexponentially with a halftime of 4.3 and 5.8 months, respectively. Coincident with the expression of ssTnI, Ca2+ sensitivity of contraction was high in neonates and subsequently declined in parallel with the decline in ssTnI expression. Passive tension positively correlated with Ca2+ sensitivity but not with titin expression. Contraction kinetics, maximal Ca2+‐activated force, and the fast phase of the biphasic relaxation positively correlated with the expression of ALC‐1. Conclusions The developmental changes in myofibrillar biomechanics can be ascribed to fetal‐to‐adult isoform transition of key sarcomeric proteins, which evolves regardless of the specific congenital cardiac malformations in our pediatric patients.
Collapse
Affiliation(s)
- Fatiha Elhamine
- Institute of Vegetative Physiology, University of Cologne, Köln, Germany
| | - Bogdan Iorga
- Institute of Vegetative Physiology, University of Cologne, Köln, Germany Department of Physical Chemistry, University of Bucharest, Romania
| | - Martina Krüger
- Institute of Vegetative Physiology, University of Cologne, Köln, Germany
| | - Mona Hunger
- Clinics for Anesthesiology and Surgical Intensive Care, University of Cologne, Köln, Germany
| | - Jan Eckhardt
- Institute of Vegetative Physiology, University of Cologne, Köln, Germany
| | | | | | | | - Gabriele Pfitzer
- Institute of Vegetative Physiology, University of Cologne, Köln, Germany
| | - Robert Stehle
- Institute of Vegetative Physiology, University of Cologne, Köln, Germany
| |
Collapse
|
7
|
Mamidi R, Mallampalli SL, Wieczorek DF, Chandra M. Identification of two new regions in the N-terminus of cardiac troponin T that have divergent effects on cardiac contractile function. J Physiol 2012. [PMID: 23207592 DOI: 10.1113/jphysiol.2012.243394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract Cardiac troponin T (cTnT) has a highly acidic extended N-terminus, the physiological role of which remains poorly understood. To decipher the physiological role of this unique region, we deleted specific regions within the N-terminus of mouse cTnT (McTnT) to create McTnT1-44 and McTnT45-74 proteins. Contractile function and dynamic force-length measurements were made after reconstituting the McTnT deletion proteins into detergent-skinned cardiac papillary fibres harvested from non-transgenic mice that expressed α-tropomyosin (Tm). To further understand how the functional effects of the N-terminus of cTnT are modulated by Tm isoforms, McTnT deletion proteins were reconstituted into detergent-skinned cardiac papillary fibres harvested from transgenic mice that expressed both α- and β-Tm. McTnT1-44, but not McTnT45-74, attenuated maximal activation of the thin filament. Myofilament Ca(2+) sensitivity, as measured by pCa50 (-log of [Ca(2+)]free required for half-maximal activation), decreased in McTnT1-44 (α-Tm) fibres. The desensitizing effect of McTnT1-44 on pCa50 was ablated in β-Tm fibres. McTnT45-74 enhanced pCa50 in both α- and β-Tm fibres, with β-Tm having a bigger effect. The Hill coefficient of tension development was significantly attenuated by McTnT45-74, suggesting an effect on thin-filament cooperativity. The rate of cross-bridge (XB) detachment and the strained XB-mediated impact on other XBs were augmented by McTnT1-44 in β-Tm fibres. The magnitude of the length-mediated recruitment of XBs was attenuated by McTnT1-44 in β-Tm fibres. Our data demonstrate that the 1-44 region of McTnT is essential for maximal activation, whereas the cardiac-specific 45-74 region of McTnT is essential for augmenting cooperativity. Moreover, our data show that α- and β-Tm isoforms have divergent effects on McTnT deletion mutant's ability to modulate cardiac thin-filament activation and Ca(2+) sensitivity. Our results not only provide the first explicit evidence for the existence of two distinct functional regions within the N-terminus of cTnT, but also offer mechanistic insights into the divergent physiological roles of these regions in mediating cardiac contractile activation.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA-99164, USA.
| | | | | | | |
Collapse
|
8
|
Chung PW, Won YS, Kwon YJ, Choi CS, Kim BM. Initial troponin level as a predictor of prognosis in patients with intracerebral hemorrhage. J Korean Neurosurg Soc 2009; 45:355-9. [PMID: 19609419 DOI: 10.3340/jkns.2009.45.6.355] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 05/31/2009] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE It has been suggested that elevated cardiac troponin T (cTnT) level is a marker of increased risk of mortality in acute ischemic stroke and subarachnoid hemorrhage (SAH). However, the association of serum cTnT level and prognosis of intracerebral hemorrhage (ICH) has been sparsely investigated. The aim of this study was to identify the relationship between cTnT level and the outcome in patients with spontaneous ICH. METHODS We retrospectively investigated 253 patients identified by a database search from records of patients admitted in our department for ICH between January 1, 2003 and December 31, 2007. The patients were divided into 2 groups; the patients in group 1 (n=225) with serum cTnT values of 0.01 ng/mL or less, and those in group 2 (n=28) with serum cTnT values greater than 0.01 ng/mL. RESULTS The serum cTnT level was elevated in 28 patients. There were significant differences in sex, hypertension, creatine kinase-myocardial band, midline shift, side of hematoma, and presence of intraventricular hemorrhage between the 2 groups. Logistic regression analysis identified the level of consciousness on admission, cTnT and midline shift as independent predictors of hospital mortality. CONCLUSION Theses results suggest that increased serum cTnT level at admission is associated with in-hospital mortality and the addition of a serum cTnT assay to routine admission testing should be considered in patients with ICH.
Collapse
Affiliation(s)
- Pil-Wook Chung
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
9
|
Fortunato G, Carandente Giarrusso P, Martinelli P, Sglavo G, Vassallo M, Tomeo L, Rea M, Paladini D. Cardiac troponin T and amino-terminal pro-natriuretic peptide concentrations in fetuses in the second trimester and in healthy neonates. Clin Chem Lab Med 2006; 44:834-6. [PMID: 16776629 DOI: 10.1515/cclm.2006.144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We measured the concentrations of cardiac troponin T (cTnT) and amino-terminal pro-natriuretic peptide (NT-proBNP) in umbilical cord blood during the second trimester (20-25 weeks of gestation) and at delivery in 109 uncomplicated pregnancies to define reference values. Using the 97.5th percentile, the upper reference limits for cTnT and NT-proBNP were 0.308 ng/mL and 5402 pg/mL in fetuses in the second trimester, and 0.038 ng/mL and 1690 pg/mL in healthy neonates, respectively. We also evaluated whether labor and delivery mode affected the concentrations of the two analytes. We found significantly higher (p<0.001) umbilical blood NT-proBNP and cTnT levels at 20-25 weeks of gestation than at term. In addition, within the term group, NT-proBNP concentrations were significantly higher in women delivering by elective cesarean section than in women delivering spontaneously (p<0.001), and higher than in women delivering by cesarean section during active labor. This indicates that the decrease in NT-proBNP levels is probably due to labor rather than delivery mode. Finally, we confirmed the at-birth reference values previously established for cTnT and NT-proBNP.
Collapse
Affiliation(s)
- Giuliana Fortunato
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
McCall SJ, Nassar R, Malouf NN, Saunders AJ, Oakeley AE, Henderson PM, Solaro RJ, Pielak GJ, Alexander KA, Anderson PAW. Development and cardiac contractility: cardiac troponin T isoforms and cytosolic calcium in rabbit. Pediatr Res 2006; 60:276-281. [PMID: 16857772 DOI: 10.1203/01.pdr.0000233004.95404.1f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cardiac contractility depends on calcium sensitivity of the myofilaments and cytosolic free calcium concentration ([Ca(2+)](i)) during activation. During development, the cardiac troponin T isoform cTnT(1) is replaced by shorter cTnT isoforms, including cTnT(4), and changes occur in other myofibrillar proteins and in calcium regulation. We expressed rabbit recombinant (r)cTnT(1) and rcTnT(4) in Spodoptera frugiperda cells and determined their effect on calcium binding to TnC in solution and on the calcium sensitivity of myofilaments in skinned rabbit ventricular fibers in vitro. We measured [Ca(2+)](i) and L-type calcium current (I(Ca)) in ventricular myocytes from 3-wk-old and adult rabbits. The dissociation constant (K(d)) of Ca-Tn(cTnT1) in solution was smaller than that of Ca-Tn(cTnT4) (mean +/- SE: 0.52 +/- 0.08 mumol/L versus 0.83 +/- 0.09 mumol/L). The Ca(2+) sensitivity of force development was greater in fibers reconstituted with rcTnT(1) (pCa(50) 6.07 +/- 0.04) than those reconstituted with rcTnT(4) (pCa(50) 5.75 +/- 0.07). Systolic [Ca](i) was lower in 3-wk-old than adult cells (443 +/- 35 nmol/L versus 882 +/- 88 nmol/L) as was I(Ca) (5.8 +/- 0.9 pA/pF versus 14.2 +/- 1.6 pA/pF). The higher calcium sensitivity of Tn-Ca binding and of force development conferred by rcTnT(1) suggest that higher neonatal cTnT(1) expression may partially compensate for the lower systolic [Ca(2+)](i).
Collapse
Affiliation(s)
- Shannon J McCall
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Adamcová M, Stĕrba M, Simůnek T, Potácová A, Popelová O, Gersl V. Myocardial regulatory proteins and heart failure. Eur J Heart Fail 2006; 8:333-42. [PMID: 16309957 DOI: 10.1016/j.ejheart.2005.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 07/01/2005] [Accepted: 09/22/2005] [Indexed: 10/25/2022] Open
Abstract
Cardiac troponin T (cTnT) and cardiac troponin I (cTnI) are considered to be the most specific and sensitive biochemical markers of myocardial damage. Troponins have been studied in a wide range of clinical settings, including heart failure; however, there are few data on the role of regulatory proteins in the pathogenesis of heart failure, although a few interesting hypotheses have been proposed. A considerable body of evidence favours the view that alteration of the myocardial thin filament is the primary event leading to defective contractility of the failing myocardium, while the changes in Ca(2+) handling are a compensatory response. A better understanding of the role of regulatory proteins under different physiological and pathological conditions could lead to new therapeutic approaches in heart failure. Recently, calcium sensitisation has been proposed as a novel method by which cardiac performance may be enhanced via an increase in the affinity of troponin C for calcium but without affecting intracellular calcium concentration. To date, the only calcium sensitizer used in clinical practice is levosimendan.
Collapse
Affiliation(s)
- Michaela Adamcová
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Simkova 870, 500 38 Hradec Králové, Czech Republic.
| | | | | | | | | | | |
Collapse
|
12
|
Gaze DC, Collinson PO. Cardiac troponins as biomarkers of drug- and toxin-induced cardiac toxicity and cardioprotection. Expert Opin Drug Metab Toxicol 2005; 1:715-25. [PMID: 16863435 DOI: 10.1517/17425255.1.4.715] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cardiac troponin T and I (cTnT, cTnI) are sensitive biochemical markers of myocardial cell necrosis and have been adopted as the gold standard tests for acute myocardial infarction. Subtle elevations in cTn above the detection limits of the currently available commercial assays confers poor prognosis. These markers are superior to classical enzyme markers of necrosis due to their cardiospecificity. The diagnosis of drug-induced cardiac toxicity using the classical enzymes is problematic due to the high elevations of these markers in skeletal muscle necrosis. cTnT and cTnI are now being adopted as sensitive biomarkers of drug-induced cardiac toxicity.
Collapse
Affiliation(s)
- David C Gaze
- St George's Hospital, Chemical Pathology, Blackshaw Road, Tooting, London SW17 0QT, UK.
| | | |
Collapse
|
13
|
Abstract
While the remodeling process in myocardial failure involves changes in ventricular structure and performance, it is now appreciated that it is also associated with changes in thin filament composition and function. As is discussed, changes at the level thick filament may affect thin filament activation in heart failure. Alterations in actin, troponin and tropomyosin isoform composition do not appear to be significant factors in human heart failure. In contrast, proteolytic degradation of troponin subunits are likely to be playing a functional role in some forms of cardiomyopathy (e.g. ischemic). Finally, phosphorylation of troponin I and troponin T by kinases (most notably protein kinase C) substantially affect thin filament function in failing human myocardium. These findings indicate that functional deficits in thin filament function in failing myocardium are largely reversible and create the potential for future targeted therapies in the treatment of this deadly disease.
Collapse
Affiliation(s)
- Peter VanBuren
- Department of Medicine, College of Medicine, University of Vermont, VT 05405, USA.
| | | |
Collapse
|
14
|
Nassar R, Malouf NN, Mao L, Rockman HA, Oakeley AE, Frye JR, Herlong JR, Sanders SP, Anderson PAW. cTnT1, a cardiac troponin T isoform, decreases myofilament tension and affects the left ventricular pressure waveform. Am J Physiol Heart Circ Physiol 2004; 288:H1147-56. [PMID: 15513965 DOI: 10.1152/ajpheart.00140.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four isoforms of cardiac troponin T (cTnT), a protein essential for calcium-dependent myocardial force development, are expressed in the human; they differ in charge and length. Their expression is regulated developmentally and is affected by disease states. Human cTnT (hcTnT) isoform effects have been examined in reconstituted myofilaments. In this study, we evaluated the modulatory effects of overexpressing one cTnT isoform on in vitro and in vivo myocardial function. A hcTnT isoform, hcTnT(1), expressed during development and in heart disease but not in the normal adult heart, was expressed in transgenic (TG) mice (1-30% of total cTnT). Maximal active tension measured in skinned myocardium decreased as a function of relative hcTnT(1) expression. The pCa at half-maximal force development, Hill coefficient, and rate of redevelopment of force did not change significantly with hcTnT(1) expression. In vivo maximum rates of rise and fall of left ventricular pressure decreased, and the half-time of isovolumic relaxation increased, with hcTnT(1) expression. Substituting total cTnT charge for hcTnT(1) expression resulted in similar conclusions. Morphometric analysis and electron microscopy revealed no differences between wild-type (non-TG) and TG myocardium. No differences in isoform expression of tropomyosin, myosin heavy chain, essential and regulatory myosin light chains (MLC), TnI, or in posttranslational modifications of mouse cTnT, cTnI, or regulatory MLC were observed. These results support the hypothesis that cTnT isoform amino-terminal differences affect myofilament function and suggest that hcTnT(1) expression levels present during human development and in human heart disease can affect in vivo ventricular function.
Collapse
Affiliation(s)
- Rashid Nassar
- Department of Pediatrics, Duke University, Durham, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Komamura K, Iwai N, Kokame K, Yasumura Y, Kim J, Yamagishi M, Morisaki T, Kimura A, Tomoike H, Kitakaze M, Miyatake K. The role of a common TNNT2 polymorphism in cardiac hypertrophy. J Hum Genet 2004; 49:129-133. [PMID: 14986170 DOI: 10.1007/s10038-003-0121-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 12/04/2003] [Indexed: 01/19/2023]
Abstract
We found a five-basepair insertion/deletion polymorphism in intron 3 of TNNT2, one of the genes responsible for hypertrophic cardiomyopathy. These five bases may be part of an intronic polypyrimidine tract sequence that may affect splicing. The purpose of the study was to examine the association of the polymorphism with cardiac hypertrophy. The study population consisted of 151 subjects with prominent concentric left ventricular hypertrophy, and 987 healthy subjects recruited from medical checkups (control population). The deletion/deletion genotype tended to be associated with a larger left ventricular mass/height ratio in the HCM population ( p<0.0001). Multiple regression analyses indicated that the left ventricular mass/height ratio was determined ( p<0.0001, R=0.738) by the TNNT2 genotype. Moreover, the frequency of the deletion allele was significantly higher in the hypertrophy population than in the control population ( p<0.0001). In vitro expression study revealed the deletion allele significantly affected the mRNA expression pattern by skipping exon 4 during splicing. In conclusion, TNNT2 deletion allele could be associated with a predisposition to prominent left ventricular hypertrophy.
Collapse
Affiliation(s)
- Kazuo Komamura
- Department of Cardiovascular Dynamics, Research Institute, National Cardiovascular Center, 5-7-1 Fujishirodai, Suita 565-8565, Japan.
| | - Naoharu Iwai
- Department of Epidemiology, Research Institute, National Cardiovascular Center, Suita, Japan
| | - Koichi Kokame
- Department of Vascular Physiology, Research Institute, National Cardiovascular Center, Suita, Japan
| | - Yoshio Yasumura
- Department of Cardiology, National Cardiovascular Center, Suita, Japan
| | - Jiyoong Kim
- Department of Cardiology, National Cardiovascular Center, Suita, Japan
| | | | - Takayuki Morisaki
- Department of Bioscience, Research Institute, National Cardiovascular Center, Suita, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hitonobu Tomoike
- Department of Cardiology, National Cardiovascular Center, Suita, Japan
| | - Masafumi Kitakaze
- Department of Cardiology, National Cardiovascular Center, Suita, Japan
| | - Kunio Miyatake
- Department of Cardiology, National Cardiovascular Center, Suita, Japan
| |
Collapse
|
16
|
Anant S, Blanc V, Davidson NO. Molecular regulation, evolutionary, and functional adaptations associated with C to U editing of mammalian apolipoproteinB mRNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 75:1-41. [PMID: 14604008 DOI: 10.1016/s0079-6603(03)75001-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RNA editing encompasses an important class of co- or posttranscriptional nucleic acid modification that has expanded our understanding of the range of mechanisms that facilitate genetic plasticity. Since the initial description of RNA editing in trypanosome mitochondria, a model of gene regulation has emerged that now encompasses a diverse range of biochemical and genetic mechanisms by which nuclear, mitochondrial, and t-RNA sequences are modified from templated versions encoded in the genome. RNA editing is genetically and biochemically distinct from other RNA modifications such as splicing, capping, and polyadenylation although, as discussed in Section I, these modifications may have relevance to the regulation of certain types of mammalian RNA editing. This review will focus on C to U RNA editing, in particular, the biochemical and genetic mechanisms that regulate this process in mammals. These mechanisms will be examined in the context of the prototype model of C to U RNA editing, namely the posttranscriptional cytidine deamination targeting a single nucleotide in mammalian apolipoproteinB (apoB). Other examples of C to U RNA editing will be discussed and the molecular mechanisms--where known--contrasted with those regulating apoB RNA editing.
Collapse
Affiliation(s)
- Shrikant Anant
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
17
|
Speth M, Seibold K, Katz N. Interaction between heparin and cardiac troponin T and troponin I from patients after coronary bypass surgery. Clin Biochem 2002; 35:355-62. [PMID: 12270764 DOI: 10.1016/s0009-9120(02)00328-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Heparin is thought to play a crucial role in the clinical monitoring of patients with acute coronary syndrome as well as after coronary bypass surgery in that it interferes with different commercial immunoassay test systems for cardiac troponin T (cTnT) and troponin I (cTnI). The mechanism, however, by which heparin apparently affects the cTnT and cTnI levels in plasma is not yet resolved. DESIGN AND METHODS We analyzed the effect of heparin by simultaneously collecting serum and heparin plasma samples from 32 patients after coronary bypass surgery. The cTnT and cTnI levels were determined using the Roche/Elecsys, the Dade-Behring/Opus and the Bayer/ACS:Centaur immunoassay systems in the absence or in the presence of either heparinase or protamine. Association between the cardiac troponins and the anticoagulant has been demonstrated by affinity chromatography using heparin as the ligand. RESULTS The data obtained indicate that heparin produces an apparent decrease in cTnT as well as of cTnI levels, analyzed either by the Elecsys, the Opus or the ACS:Centaur immunoassay systems. Individual patients show a wide variation in the discrepancies between serum and heparin plasma troponin especially in the cTnT immunoassay. Pretreatment of the heparin plasma samples either with heparinase or protamine cannot completely reverse the heparin-induced decrease in cTnT and cTnI levels and therefore addition of these reagents to the commercial test systems could not significantly improve the performance of the assay. When serum is supplemented with increasing concentrations of heparin, and cardiac troponin levels were reanalysed, significantly lower recoveries for the cTnT than for the cTnI immunoassays were detectable. Affinity chromatography with heparin Sepharose demonstrates that cTnT and cTnI interact differentially with the negatively charged ligand. Whereas cTnI shows minor affinity to the immobilized heparin and is eluted at near physiological conditions, cTnT is bound and can be quantitatively recovered only by solutions of high ionic strength. CONCLUSIONS We conclude, therefore, that the apparent decrease in cTnT values by addition of heparin is a result of direct molecular interaction between the negatively charged glycosaminoglycan and clusters of basic residues within the sequence of the cardiac protein. In contrast, the effect of heparin on the cTnI immunoassay systems, is primarily indirect, most possibly induced by changes within the sample matrix itself.
Collapse
Affiliation(s)
- Maria Speth
- Institut für Klinische Chemie und Pathobiochemie am Klinikum der Justus-Liebig-Universität Giessen, Gaffkystrabetae 11, D-35392 Giessen, Germany. maria.speth@klinchemie
| | | | | |
Collapse
|
18
|
Knott A, Purcell I, Marston S. In vitro motility analysis of thin filaments from failing and non-failing human heart: troponin from failing human hearts induces slower filament sliding and higher Ca(2+) sensitivity. J Mol Cell Cardiol 2002; 34:469-82. [PMID: 11991735 DOI: 10.1006/jmcc.2002.1528] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contractility of the myocardium is altered in end-stage heart failure. We investigated whether this was related to functional changes in troponin. We isolated troponin from 1 g samples of end-stage failing, non-failing and foetal human heart and studied its regulation of actin-tropomyosin movement over immobilised HMM by in vitro motility assay. At pCa5.4 the sliding velocity of thin filaments reconstituted with non-failing heart troponin was 52+/-4% more than actin-tropomyosin, with failing heart troponin velocity increased by 35+/-2% and with foetal heart troponin velocity increased by 11+/-4%. Thin filaments containing troponin from failing hearts were more Ca(2+)-sensitive than non-failing heart troponin. EC(50) for the fraction of filaments motile and filament velocity decreased 1.76+/-0.20 and 1.89+/-0.62-fold respectively relative to non-failing heart troponin. With foetal heart troponin the EC(50) decreased 2.16+/-0.23 and 3.50+/-1.73-fold for fraction and velocity respectively. Western blots revealed no difference in troponin T or troponin I isoform expression in troponin from failing and non-failing adult hearts but foetal isoforms of troponin I and T were observed in troponin from foetal heart. The level of PKA phosphorylation of troponin from failing and non-failing heart was not significantly different, however, complete non-specific dephosphorylation of troponin abolished most of the difference between failing and non-failing heart troponin. These findings show functional alterations in troponin in failing hearts which could account for the reduced contractile function but there is no change in troponin isoform expression or PKA phosphorylation. Differential phosphorylation by other kinases may account for altered troponin function.
Collapse
Affiliation(s)
- Adam Knott
- Imperial College of Science, Technology and Medicine, National Heart and Lung Institute, Department of Cardiac Medicine, Dovehouse Street, London, SW3 6LY, UK.
| | | | | |
Collapse
|
19
|
|
20
|
Peterson JN, Nassar R, Anderson PA, Alpert NR. Altered cross-bridge characteristics following haemodynamic overload in rabbit hearts expressing V3 myosin. J Physiol 2001; 536:569-82. [PMID: 11600690 PMCID: PMC2278872 DOI: 10.1111/j.1469-7793.2001.0569c.xd] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Our goal in this study was to evaluate the effect of haemodynamic overload on cross-bridge (XBr) kinetics in the rabbit heart independently of myosin heavy chain (MHC) isoforms, which are known to modulate kinetics in small mammals. We applied a myothermal-mechanical protocol to isometrically contracting papillary muscles from two rabbit heart populations: (1) surgically induced right ventricular pressure overload (PO), and (2) sustained treatment with propylthiouracil (PTU). Both treatments resulted in a 100 % V3 MHC profile. 2. XBr force-time integral (FTI), evaluated during the peak of the twitch from muscle FTI and tension-dependent heat, was greater in the PO hearts (0.80 +/- 0.10 versus 0.45 +/- 0.05 pN s, means +/- S.E.M., P = 0.01). 3. Within the framework of a two-state XBr model, the PO XBr developed more force while attached (5.8 +/- 0.9 versus 2.7 +/- 0.3 pN), with a lower cycling rate (0.89 +/- 0.10 versus 1.50 +/- 0.14 s(-1)) and duty cycle (0.14 +/- 0.03 versus 0.24 +/- 0.02). 4. Only the ventricular isoforms of myosin light chain 1 and 2 and cardiac troponin I (cTnI) were expressed, with no difference in cTnI phosphorylation between the PO and PTU samples. The troponin T (TnT) isoform compositions in the PO and PTU samples were significantly different (P = 0.001), with TnT2 comprising 2.29 +/- 0.03 % in PO hearts versus 0.98 +/- 0.01 % in PTU hearts of total TnT. 5. This study demonstrates that MHC does not mediate dramatic alterations in XBr function induced by haemodynamic overload. Our findings support the likelihood that differences among other thick and thin filament proteins underlie these XBr alterations.
Collapse
Affiliation(s)
- J N Peterson
- Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
21
|
Jin JP, Chen A, Ogut O, Huang QQ. Conformational modulation of slow skeletal muscle troponin T by an NH(2)-terminal metal-binding extension. Am J Physiol Cell Physiol 2000; 279:C1067-77. [PMID: 11003587 DOI: 10.1152/ajpcell.2000.279.4.c1067] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Troponin T (TnT) is an essential element in the thin filament Ca(2+)-regulatory system controlling striated muscle contraction. Alternative RNA splicing generates developmental and muscle type-specific TnT isoforms differing in the hypervariable NH(2)-terminal region. Using avian fast skeletal muscle TnT containing a metal-binding segment, we have demonstrated a role of the NH(2)-terminal domain in modulating the conformation of TnT (Wang J and Jin JP. Biochemistry 37: 14519-14528, 1998). To further investigate the structure-function relationship of TnT, the present study constructed and characterized a recombinant protein in which the metal-binding peptide present in avian fast skeletal muscle TnT was fused to the NH(2) terminus of mouse slow skeletal muscle TnT. Metal ion or monoclonal antibody binding to the NH(2)-terminal extension induced conformational changes in other domains of the model TnT molecule. This was shown by the altered affinity to a monoclonal antibody against the COOH-terminal region and a polyclonal antiserum recognizing multiple epitopes. Protein binding assays showed that metal binding to the NH(2)-terminal extension had effects on the interaction of TnT with troponin I, troponin C, and most significantly, tropomyosin. The data indicate that the NH(2)-terminal Tx [4-7 repeats of a sequence motif His-(Glu/Ala)-Glu-Ala-His] extension confers a specific conformational modulation in the slow skeletal muscle TnT.
Collapse
Affiliation(s)
- J P Jin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106-4970, USA.
| | | | | | | |
Collapse
|
22
|
Huang QQ, Brozovich FV, Jin JP. Fast skeletal muscle troponin T increases the cooperativity of transgenic mouse cardiac muscle contraction. J Physiol 1999; 520 Pt 1:231-42. [PMID: 10517814 PMCID: PMC2269565 DOI: 10.1111/j.1469-7793.1999.00231.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. To investigate the functional significance of different troponin T (TnT) isoforms in the Ca2+ activation of muscle contraction, transgenic mice have been constructed with a chicken fast skeletal muscle TnT transgene driven by a cardiac alpha-myosin heavy chain gene promoter. 2. Cardiac muscle-specific expression of the fast skeletal muscle TnT has been obtained with significant myofibril incorporation. Expression of the endogenous cardiac muscle thin filament regulatory proteins, such as troponin I and tropomyosin, was not altered in the transgenic mouse heart, providing an authentic system for the functional characterization of TnT isoforms. 3. Cardiac muscle contractility was analysed for the force vs. Ca2+ relationship in skinned ventricular trabeculae of transgenic mice in comparison with wild-type litter-mates. The results showed unchanged pCa50 values (5.1 +/- 0.04 and 5.1 +/- 0.1, respectively) but significantly steeper slopes (the Hill coefficient was 2.0 +/- 0.2 vs. 1.0 +/- 0.2, P < 0.05). 4. The results demonstrate that the structural and functional variation of different TnT isoforms may contribute to the difference in responsiveness and overall cooperativity of the thin filament-based Ca2+ regulation between cardiac and skeletal muscles.
Collapse
Affiliation(s)
- Q Q Huang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4970, USA
| | | | | |
Collapse
|
23
|
Huang QQ, Chen A, Jin JP. Genomic sequence and structural organization of mouse slow skeletal muscle troponin T gene. Gene 1999; 229:1-10. [PMID: 10095098 DOI: 10.1016/s0378-1119(99)00051-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Three muscle type-specific troponin T (TnT) genes are present in vertebrate to encode a number of protein isoforms via alternative mRNA splicing. While the genomic structures of cardiac and fast skeletal muscle TnT genes have been documented, this study cloned and characterized the slow skeletal muscle TnT (sTnT) gene. Complete nucleotide sequence and genomic organization revealed that the mouse sTnT gene spans 11.1kb and contains 14 exons, which is smaller and simpler than the fast skeletal muscle and cardiac TnT genes. Potentially representing a prototype of the TnT gene family, the 5'-region of the sTnT gene contains fewer unsplit large exons, among which two alternatively spliced exons are responsible for the NH2-terminal variation of three sTnT isoforms. The sTnT gene structure shows that the alternatively spliced central segment found in human sTnT cDNAs may be a result from splicing using an alternative acceptor site at the intron 11-exon 12 boundary. Together with the well-conserved protein structure, the highly specific expression of sTnT in slow skeletal muscles indicates a differentiated function of this member of the TnT gene family. The determination of genomic structure and alternative splicing pathways of sTnT gene lays a foundation to further understand the TnT structure-function evolution as well as contractile characteristics of different types of muscle fiber.
Collapse
Affiliation(s)
- Q Q Huang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA
| | | | | |
Collapse
|
24
|
Jin JP, Chen A, Huang QQ. Three alternatively spliced mouse slow skeletal muscle troponin T isoforms: conserved primary structure and regulated expression during postnatal development. Gene 1998; 214:121-9. [PMID: 9651500 DOI: 10.1016/s0378-1119(98)00214-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have cloned and sequenced full-length cDNAs encoding mouse slow skeletal muscle troponin T (sTnT). Alternative mRNA splicing-generated two high Mr isoforms and one low Mr sTnT isoform differing in the NH2-terminal primary structure have been identified by Western blotting, reverse transcription-polymerase chain reaction and cDNA cloning/expression analyses. Together with a 5'-alternative exon that was also found in human sTnT encoding an 11-amino-acid acidic segment, the results revealed a novel alternative splicing pathway to include or exclude a three-base segment to generate additional sTnT isoforms with NH2-terminal charge variations. Overriding the phylogenetic divergence, primary structure of sTnT is better conserved between mammalian and avian species than that of cardiac, fast and skeletal muscle TnTs from one species. Western blots demonstrate four expression patterns of sTnT during postnatal skeletal muscle development: (1) a decrease to a non-detectable level in mouse masseter, (2) an increase to become the sole TnT in sheep masseter, (3) an increase of the total level as well as the proportion of the low Mr isoform in sheep diaphragm and, (4) no significant change in total level or high/low Mr isoform ratio in sheep gastrocnemius. The highly conserved primary structure and fiber type-specific and developmentally regulated expression of sTnT indicate a physiological importance of this under-studied member of the TnT gene family.
Collapse
Affiliation(s)
- J P Jin
- Department of Physiology, Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4970, USA.
| | | | | |
Collapse
|
25
|
Wang J, Jin JP. Primary structure and developmental acidic to basic transition of 13 alternatively spliced mouse fast skeletal muscle troponin T isoforms. Gene 1997; 193:105-14. [PMID: 9249073 DOI: 10.1016/s0378-1119(97)00100-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Large samples of original cDNAs encoding neonatal and adult mouse fast skeletal muscle troponin T (fTnT) have been isolated and characterized. The results demonstrate expression relationships of 8 alternatively spliced exons of the fTnT gene and reveal the primary structure of as many as 13 fTnT isoforms that diverge into acidic and basic classes due to differential mRNA splicing in the N-terminal variable region. In the C-terminal variable region encoded by the mutually exclusive exons 16 and 17, the splicing pathway and structure of exon 16 appears to be adult fTnT-specific, suggesting an adaptation to the functional demands of mature fast skeletal muscle. The cloned cDNAs were expressed in E. coli as standards to identify a high M(r) to low M(r), acidic to basic fTnT isoform transition in postnatal developing skeletal muscles. Different from the developmental cardiac TnT switch generated by alternative splicing of a single exon, the fTnT isoform transition is an additive effect of alternative splicing of multiple N-terminal-coding exons, especially exons 4, 8 and fetal that are expressed at higher frequencies in the neonatal than in the adult muscle. The developmental fTnT isoform primary structure transition in both N- and C-terminal variable regions suggest a physiological importance of the apparently complex TnT isoform expression.
Collapse
Affiliation(s)
- J Wang
- Department of Medical Biochemistry, University of Calgary Faculty of Medicine, Alberta, Canada
| | | |
Collapse
|
26
|
Ricchiuti V, Zhang J, Apple FS. Cardiac troponin I and T alterations in hearts with severe left ventricular remodeling. Clin Chem 1997. [DOI: 10.1093/clinchem/43.6.990] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractCardiac troponin T (cTnT) and troponin I (cTnI) have been suggested as new, more specific markers of myocardial cellular damage. The objective of this study was to examine how the distributions of cTnI and cTnT were affected in postinfarction left ventricular remodeled (LVR) myocardium. At 2 months postinfarct in a porcine heart failure model, both Western blot and biochemical assay analyses were performed on left ventricular myocardium remote from the infarct zone in ligation animals (n = 8). Results were compared with data from the left ventricular myocardium from similar sized healthy (control) pigs (n = 7). Autoradiograms from Western blot analysis showed that the protein mass for cTnI and cTnT in LVR hearts decreased 80% (P <0.001) and 40% (P <0.02), respectively, when compared with nondiseased tissue. Similarly, the concentrations for cTnI and cTnT in LVR hearts decreased 42% (P <0.05) and 70% (P <0.001), respectively, compared with nondiseased normal tissue. The clinical assumption is that the appearance of cTnI and cTnT in the blood is proportional to chronic loss of cTnI and cTnT from injured myocardium associated with left ventricular remodeling.
Collapse
Affiliation(s)
| | - Jianyi Zhang
- Medicine, Hennepin County Medical Center and the University of Minnesota, Minneapolis, MN 55415
| | - Fred S Apple
- Departments of Laboratory Medicine and Pathology and
| |
Collapse
|
27
|
McLaurin MD, Apple FS, Voss EM, Herzog CA, Sharkey SW. Cardiac troponin I, cardiac troponin T, and creatine kinase MB in dialysis patients without ischemic heart disease: evidence of cardiac troponin T expression in skeletal muscle. Clin Chem 1997. [DOI: 10.1093/clinchem/43.6.976] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractSerum cardiac troponin T (cTnT) concentrations are frequently increased in chronic dialysis patients as measured by the first-generation ELISA immunoassay, as is creatine kinase (CK) MB mass in the absence of acute ischemic heart disease. We designed this study to compare four serum markers of myocardial injury [CK-MB mass, first-generation ELISA cTnT, second-generation Enzymun cTnT, and cardiac troponin I (cTnI)] in dialysis patients without acute ischemic heart disease. We also evaluated skeletal muscle from dialysis patients as a potential source of serum cTnT. No patients in the clinical evaluation group (n = 24) studied by history and by physical examination, electrocardiography, and two-dimensional echocardiography had evidence of ischemic heart disease. Biochemical markers were measured in serial predialysis blood samples with specific monoclonal antibody-based immunoassays. For several patients at least one sample measured above the upper reference limit: CK-MB, 7 of 24 (30%); ELISA cTnT, 17 of 24 (71%); Enzymun cTnT, 3 of 18 (17%); and cTnI, 1 of 24 (4%). In a separate group of dialysis patients (n = 5), expression of cTnT, but not cTnI, was demonstrated by Western blot analysis in 4 of 5 skeletal muscle biopsies. Chronic dialysis patients without acute ischemic heart disease frequently had increased serum CK-MB and cTnT. The specificity of the second-generation cTnT (Enzymun) assay was improved over that of the first-generation (ELISA) assay; cTnI was the most specific of the currently available biochemical markers. cTnT, but not cTnI, was expressed in the skeletal muscle of dialysis patients.
Collapse
Affiliation(s)
| | - Fred S Apple
- Laboratory Medicine and Pathology, Hennepin County Medical Center, and University of Minnesota Medical School, Minneapolis, MN 55415
| | - Ellen M Voss
- Laboratory Medicine and Pathology, Hennepin County Medical Center, and University of Minnesota Medical School, Minneapolis, MN 55415
| | | | | |
Collapse
|
28
|
Bodor GS, Survant L, Voss EM, Smith S, Porterfield D, Apple FS. Cardiac troponin T composition in normal and regenerating human skeletal muscle. Clin Chem 1997. [DOI: 10.1093/clinchem/43.3.476] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractCardiac troponin T (cTnT), measurement of which has been recommended for diagnosing myocardial infarction, was initially believed to be specific for the heart. However, recent publications have reported cTnT in sera of patients without cardiac disease; therefore, we investigated whether cTnT could be found in human skeletal muscle tissues. Using immunohistochemistry, Western blot, and quantitative cTnT ELISA, we assayed human heart (n = 3), normal human skeletal muscle (n = 6), and diseased skeletal muscle samples from patients with polymyositis (PM, n = 13) and Duchenne muscular dystrophy (DMD, n = 6). All heart specimens contained cTnT, but the expression of cTnT in normal skeletal muscle samples varied widely, ranging from no expression (quadriceps femoris) to expression by up to 20% of the muscle fibers (diaphragm). Immunohistochemistry detected cTnT in skeletal muscle of 8 of the PM patients and all of the DMD patients. Mean myofibrillar cTnT concentrations (mg/g myofibrillar protein) were: cardiac = 10.0, normal skeletal = 0.8, PM skeletal = 0.7, and DMD skeletal = 4.37, confirming the results of immunohistochemistry. Western blot analysis also confirmed the expression of cTnT in muscle from DMD patients. These findings provide evidence that cTnT is not 100% cardiac-specific but also is expressed in regenerating (PM and DMD) as well as in normal (nonregenerating) skeletal muscle.
Collapse
Affiliation(s)
- Geza S Bodor
- Department of Pathology, Vanderbilt University School of Medicine, 4605 TVC, Nashville, TN 37232-5310
| | - Libby Survant
- Department of Pathology, Vanderbilt University School of Medicine, 4605 TVC, Nashville, TN 37232-5310
| | | | | | - Diane Porterfield
- Department of Pathology, Vanderbilt University School of Medicine, 4605 TVC, Nashville, TN 37232-5310
| | | |
Collapse
|
29
|
Abstract
The perspective from which the developing heart is viewed can lead to differing conclusions about the effects of development on cardiac function. The hearts of the embryo, fetus and adult, viewed from a global perspective, sustain the circulation through the same basic mechanisms of developing pressure and ejecting blood. The failure of the embryonic heart to perform these tasks results in growth failure, edema, and embryonic death, just as in the infant and adult such failure results in premature death. Furthermore, from the viewpoint of gross anatomy, following embryonic morphogenesis, the developing and adult hearts appear in general to be structurally similar, differing only in size and mass. However, a closer view shows, in the molecular and structural makeup of the myocardium, richly complex changes that can modulate the basic physiological properties of the cardiac myocyte. This article focuses on how these changes and the effects of birth and development alter ventricular function.
Collapse
Affiliation(s)
- P A Anderson
- Department of Pediatric Cardiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
30
|
Jweied EE, McKinney RD, Walker LA, Brodsky I, Geha AS, Massad MG, Buttrick PM, de Tombe PP. Oncology nurse practitioner provides continuity of care. Am J Physiol Heart Circ Physiol 1992; 289:H2478-83. [PMID: 16085678 DOI: 10.1152/ajpheart.00638.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus is associated with a distinct cardiomyopathy. Whether cardiac myofilament function is altered in human diabetes mellitus is unknown. Myocardial biopsies were obtained from seven diabetic patients and five control, nondiabetic patients undergoing coronary artery bypass surgery. Myofilament function was assessed by determination of the developed force-Ca2+ concentration relation in skinned cardiac cells from flash-frozen human biopsies. Separate control experiments revealed that flash freezing of biopsy specimens did not affect myofilament function. All patients in the diabetes mellitus cohort were classified as Type 2 diabetes mellitus patients, and most showed signs of diastolic dysfunction. Diabetes mellitus was associated with depressed myofilament function, that is, decreased Ca2+ sensitivity (29%, P < 0.05 vs. control) and a trend toward reduction of maximum Ca2+-saturated force (29%, P = 0.08 vs. control). The slope of the force-Ca2+ concentration relation (Hill coefficient) was not affected by diabetes, however. We conclude that human diabetes mellitus is associated with decreased cardiac myofilament function. Depressed cardiac myofilament Ca2+ responsiveness may underlie the decreased ventricular function characteristic of human diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Eias E Jweied
- Dept. of Physiology and Biophysics, (M/C 901 College of Medicine, Univ. of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|