1
|
Strickland B, Stuart Harris N. Adapting nitric oxide: A review of its foundation, uses in austere medical conditions, and emerging applications. Nitric Oxide 2024; 146:58-63. [PMID: 38583684 DOI: 10.1016/j.niox.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Nitric oxide was first identified as a novel and effective treatment for persistent pulmonary hypertension of the newborn (PPHN), and has since been found to be efficacious in treating acute respiratory distress syndrome (ARDS) and pulmonary hypertension. Physicians and researchers have also found it shows promise in resource-constrained settings, both within and outside of the hospital, such as in high altitude pulmonary edema (HAPE) and COVID-19. The treatment has been well tolerated in these settings, and is both efficacious and versatile when studied across a variety of clinical environments. Advancements in inhaled nitric oxide continue, and the gas is worthy of investigation as physicians contend with new respiratory and cardiovascular illnesses, as well as unforeseen logistical challenges.
Collapse
Affiliation(s)
- Brian Strickland
- Department of Emergency Medicine, University of Colorado, Aurora, CO, USA.
| | - N Stuart Harris
- Division of Wilderness Medicine, Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Chen M, Yi F, Qi Y, Zhao B, Zhang Z, He X, Yuan D, Jin T. Whole-exome sequencing in searching for novel variants associated with the development of high altitude pulmonary edema. Gene 2023; 870:147384. [PMID: 37001572 DOI: 10.1016/j.gene.2023.147384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND High altitude pulmonary edema (HAPE) is a high-altitude idiopathic disease with serious consequences due to hypoxia at high altitude, and there is individual genetic susceptibility. Whole-exome sequencing (WES) is an effective tool for studying the genetic etiology of HAPE and can identify potentially novel mutations that may cause protein instability and may contribute to the development of HAPE. MATERIALS AND METHODS A total of 50 unrelated HAPE patients were examined using WES, and the available bioinformatics tools were used to perform an analysis of exonic regions. Using the Phenolyzer program, disease candidate gene analysis was carried out. SIFT, PolyPhen-2, Mutation Taster, CADD, DANN, and I-Mutant software were used to assess the effects of genetic variations on protein function. RESULTS The results showed that rs368502694 (p. R1022Q) located in NOS3, rs1595850639 (p. G61S) located in MYBPC3, and rs1367895529 (p. R333H) located in ITGAV were correlated with a high risk of HAPE, and thus could be regarded as potential genetic variations associated with HAPE. CONCLUSION WES was used in this study for the first time to directly screen genetic variations related to HAPE. Notably, our study offers fresh information for the subsequent investigation into the etiology of HAPE.
Collapse
Affiliation(s)
- Mingyue Chen
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Faling Yi
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Yijin Qi
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Beibei Zhao
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Zhanhao Zhang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Xue He
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Dongya Yuan
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China.
| | - Tianbo Jin
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
3
|
Safety and practicality of high dose inhaled nitric oxide in emergency department COVID-19 patients. Am J Emerg Med 2022; 58:5-8. [PMID: 35623183 PMCID: PMC9066706 DOI: 10.1016/j.ajem.2022.04.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator and mild bronchodilator that has been shown to improve systemic oxygenation, but has rarely been administered in the Emergency Department (ED). In addition to its favorable pulmonary vascular effects, in-vitro studies report that NO donors can inhibit replication of viruses, including SARS Coronavirus 2 (SARS-CoV-2). This study evaluated the administration of high-dose iNO by mask in spontaneously breathing emergency department (ED) patients with respiratory symptoms attributed to Coronavirus disease 2019 (COVID-19). METHODS We designed a randomized clinical trial to determine whether 30 min of high dose iNO (250 ppm) could be safely and practically administered by emergency physicians in the ED to spontaneously-breathing patients with respiratory symptoms attributed to COVID-19. Our secondary goal was to learn if iNO could prevent the progression of mild COVID-19 to a more severe state. FINDINGS We enrolled 47 ED patients with acute respiratory symptoms most likely due to COVID-19: 25 of 47 (53%) were randomized to the iNO treatment group; 22 of 47 (46%) to the control group (supportive care only). All patients tolerated the administration of high-dose iNO in the ED without significant complications or symptoms. Five patients receiving iNO (16%) experienced asymptomatic methemoglobinemia (MetHb) > 5%. Thirty-four of 47 (72%) subjects tested positive for SARS-CoV-2: 19 of 34 were randomized to the iNO treatment group and 15 of 34 subjects to the control group. Seven of 19 (38%) iNO patients returned to the ED, while 4 of 15 (27%) control patients did. One patient in each study arm was hospitalized: 5% in iNO treatment and 7% in controls. One patient was intubated in the iNO group. No patients in either group died. The differences between these groups were not significant. CONCLUSION A single dose of iNO at 250 ppm was practical and not associated with any significant adverse effects when administered in the ED by emergency physicians. Local disease control led to early study closure and prevented complete testing of COVID-19 safety and treatment outcomes measures.
Collapse
|
4
|
Relaxin does not prevent development of hypoxia-induced pulmonary edema in rats. Pflugers Arch 2022; 474:1053-1067. [PMID: 35778581 PMCID: PMC9492557 DOI: 10.1007/s00424-022-02720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Acute hypoxia impairs left ventricular (LV) inotropic function and induces development of pulmonary edema (PE). Enhanced and uneven hypoxic pulmonary vasoconstriction is an important pathogenic factor of hypoxic PE. We hypothesized that the potent vasodilator relaxin might reduce hypoxic pulmonary vasoconstriction and prevent PE formation. Furthermore, as relaxin has shown beneficial effects in acute heart failure, we expected that relaxin might also improve LV inotropic function in hypoxia. Forty-two rats were exposed over 24 h to normoxia or hypoxia (10% N2 in O2). They were infused with either 0.9% NaCl solution (normoxic/hypoxic controls) or relaxin at two doses (15 and 75 μg kg−1 day−1). After 24 h, hemodynamic measurements and bronchoalveolar lavage were performed. Lung tissue was obtained for histological and immunohistochemical analyses. Hypoxic control rats presented significant depression of LV systolic pressure by 19% and of left and right ventricular contractility by about 40%. Relaxin did not prevent the hypoxic decrease in LV inotropic function, but re-increased right ventricular contractility. Moreover, hypoxia induced moderate interstitial PE and inflammation in the lung. Contrasting to our hypothesis, relaxin did not prevent hypoxia-induced pulmonary edema and inflammation. In hypoxic control rats, PE was similarly distributed in the apical and basal lung lobes. In relaxin-treated rats, PE index was 35–40% higher in the apical than in the basal lobe, which is probably due to gravity effects. We suggest that relaxin induced exaggerated vasodilation, and hence pulmonary overperfusion. In conclusion, the results show that relaxin does not prevent but rather may aggravate PE formation.
Collapse
|
5
|
Hypoxia and hemorheological properties in older individuals. Ageing Res Rev 2022; 79:101650. [PMID: 35597435 DOI: 10.1016/j.arr.2022.101650] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 12/17/2022]
Abstract
Hypoxia is caused by insufficient oxygen availability for the organism leading to reduced oxygen delivery to tissues and cells. It has been regarded as a severe threat to human health and it is indeed implicated in pathophysiological mechanisms involved in the development and progression of many diseases. Nevertheless, the potential of controlled hypoxia interventions (i.e. hypoxia conditioning) for improving cardio-vascular health is gaining increased attention. However, blood rheology is often a forgotten factor for vascular health while aging and hypoxia exposure are both suspected to alter hemorheological properties. These changes in blood rheology may influence the benefits-risks balance of hypoxia exposure in older individuals. The benefits of hypoxia exposure for vascular health are mainly reported for healthy populations and the combined impact of aging and hypoxia on blood rheology could therefore be deleterious in older individuals. This review discusses evidence of hypoxia-related and aging-related changes in blood viscosity and its determinants. It draws upon an extensive literature search on the effects of hypoxia/altitude and aging on blood rheology. Aging increases blood viscosity mainly through a rise in plasma viscosity, red blood cell (RBC) aggregation and a decrease in RBC deformability. Hypoxia also causes an increase in RBC aggregation and plasma viscosity. In addition, hypoxia exposure may increase hematocrit and modulate RBC deformability, depending on the hypoxic dose, i.e, beneficial effect of intermittent hypoxia with moderate dose vs deleterious effect of chronic continuous or intermittent hypoxia or if the hypoxic dose is too high. Special attention is directed toward the risks vs. benefits of hemorheological changes during hypoxia exposure in older individuals, and its clinical relevance for vascular disorders.
Collapse
|
6
|
Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041692. [PMID: 33578749 PMCID: PMC7916528 DOI: 10.3390/ijerph18041692] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022]
Abstract
Alveolar hypoxia is the most prominent feature of high altitude environment with well-known consequences for the cardio-pulmonary system, including development of pulmonary hypertension. Pulmonary hypertension due to an exaggerated hypoxic pulmonary vasoconstriction contributes to high altitude pulmonary edema (HAPE), a life-threatening disorder, occurring at high altitudes in non-acclimatized healthy individuals. Despite a strong physiologic rationale for using vasodilators for prevention and treatment of HAPE, no systematic studies of their efficacy have been conducted to date. Calcium-channel blockers are currently recommended for drug prophylaxis in high-risk individuals with a clear history of recurrent HAPE based on the extensive clinical experience with nifedipine in HAPE prevention in susceptible individuals. Chronic exposure to hypoxia induces pulmonary vascular remodeling and development of pulmonary hypertension, which places an increased pressure load on the right ventricle leading to right heart failure. Further, pulmonary hypertension along with excessive erythrocytosis may complicate chronic mountain sickness, another high altitude maladaptation disorder. Importantly, other causes than hypoxia may potentially underlie and/or contribute to pulmonary hypertension at high altitude, such as chronic heart and lung diseases, thrombotic or embolic diseases. Extensive clinical experience with drugs in patients with pulmonary arterial hypertension suggests their potential for treatment of high altitude pulmonary hypertension. Small studies have demonstrated their efficacy in reducing pulmonary artery pressure in high altitude residents. However, no drugs have been approved to date for the therapy of chronic high altitude pulmonary hypertension. This work provides a literature review on the role of pulmonary hypertension in the pathogenesis of acute and chronic high altitude maladaptation disorders and summarizes current knowledge regarding potential treatment options.
Collapse
|
7
|
Behera J, Nagarajan S, Saran U, Kumar R, Keshri GK, Suryakumar G, Chatterjee S. Nitric oxide restores peripheral blood mononuclear cell adhesion against hypoxia via NO-cGMP signalling. Cell Biochem Funct 2020; 38:319-329. [PMID: 31989682 DOI: 10.1002/cbf.3502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/01/2019] [Accepted: 12/12/2019] [Indexed: 11/10/2022]
Abstract
Hypoxia is the most detrimental threat to humans residing at high altitudes, affecting multifaceted cellular responses that are crucial for normal homeostasis. Inhalation of nitric oxide has been successfully implemented to combat the hypoxia effect in the high altitude patients. We hypothesize that nitric oxide (NO) restores the peripheral blood mononuclear cell-matrix deadhesion during hypoxia. In the present study, we investigate the cellular action of exogenous NO in the hypoxia-mediated diminution of cell-matrix adhesion of PBMNC and NO bioavailability in vitro. The result showed that NO level and cell-matrix adhesion of PBMNC were significantly reduced in hypoxia as compared with normoxia, as assessed by the DAF-FM and cell adhesion assay, respectively. In contrast, cellular oxidative damage response was indeed upregulated in hypoxic PBMNC. Further, gene expression analysis revealed that mRNA transcripts of cell adhesion molecules (Integrin α5 and β1) and eNOS expressions were significantly downregulated. The mechanistic study revealed that administration of NO and 8-Br-cGMP and overexpression of eNOS-GFP restored the basal NO level and recovers cell-matrix adhesion in PBMNC via cGMP-dependent protein kinase I (PKG I) signalling. In conclusion, NO-cGMP/PKG signalling may constitute a novel target to recover high altitude-afflicted cellular deadhesion. SIGNIFICANCE OF THIS STUDY: Cellular adhesion is a complex multistep process. The ability of cells to adhere to extracellular matrix is an essential physiological process for normal homeostasis and function. Hypoxia exposure in the PBMNC culture has been proposed to induce oxidative damage and cellular deadhesion and is generally believed to be the key factor in the reduction of NO bioavailability. In the present study, we demonstrated that NO donor or overexpression of eNOS-GFP has a protective effect against hypoxia-induced cellular deadhesion and greatly improves the redox balance by inhibiting the oxidative stress. Furthermore, this protective effect of NO is mediated by the NO-cGMP/PKG signal pathway, which may provide a potential strategy against hypoxia.
Collapse
Affiliation(s)
- Jyotirmaya Behera
- Vascular Biology Lab, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Shunmugam Nagarajan
- Vascular Biology Lab, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Uttara Saran
- Department of Biotechnology, Anna University, Chennai, India
| | - Ravi Kumar
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Gaurav K Keshri
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | | | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India.,Department of Biotechnology, Anna University, Chennai, India
| |
Collapse
|
8
|
Simancas‐Racines D, Arevalo‐Rodriguez I, Osorio D, Franco JVA, Xu Y, Hidalgo R, Cochrane Emergency and Critical Care Group. Interventions for treating acute high altitude illness. Cochrane Database Syst Rev 2018; 6:CD009567. [PMID: 29959871 PMCID: PMC6513207 DOI: 10.1002/14651858.cd009567.pub2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Acute high altitude illness is defined as a group of cerebral and pulmonary syndromes that can occur during travel to high altitudes. It is more common above 2500 metres, but can be seen at lower elevations, especially in susceptible people. Acute high altitude illness includes a wide spectrum of syndromes defined under the terms 'acute mountain sickness' (AMS), 'high altitude cerebral oedema' and 'high altitude pulmonary oedema'. There are several interventions available to treat this condition, both pharmacological and non-pharmacological; however, there is a great uncertainty regarding their benefits and harms. OBJECTIVES To assess the clinical effectiveness, and safety of interventions (non-pharmacological and pharmacological), as monotherapy or in any combination, for treating acute high altitude illness. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, LILACS, ISI Web of Science, CINAHL, Wanfang database and the World Health Organization International Clinical Trials Registry Platform for ongoing studies on 10 August 2017. We did not apply any language restriction. SELECTION CRITERIA We included randomized controlled trials evaluating the effects of pharmacological and non-pharmacological interventions for individuals suffering from acute high altitude illness: acute mountain sickness, high altitude pulmonary oedema or high altitude cerebral oedema. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the eligibility of study reports, the risk of bias for each and performed the data extraction. We resolved disagreements through discussion with a third author. We assessed the quality of evidence with GRADE. MAIN RESULTS We included 13 studies enrolling a total of 468 participants. We identified two ongoing studies. All studies included adults, and two studies included both teenagers and adults. The 13 studies took place in high altitude areas, mostly in the European Alps. Twelve studies included participants with acute mountain sickness, and one study included participants with high altitude pulmonary oedema. Follow-up was usually less than one day. We downgraded the quality of the evidence in most cases due to risk of bias and imprecision. We report results for the main comparisons as follows.Non-pharmacological interventions (3 studies, 124 participants)All-cause mortality and complete relief of AMS symptoms were not reported in the three included trials. One study in 64 participants found that a simulated descent of 193 millibars versus 20 millibars may reduce the average of symptoms to 2.5 vs 3.1 units after 12 hours of treatment (clinical score ranged from 0 to 11 ‒ worse; reduction of 0.6 points on average with the intervention; low quality of evidence). In addition, no complications were found with use of hyperbaric chambers versus supplementary oxygen (one study; 29 participants; low-quality evidence).Pharmacological interventions (11 trials, 375 participants)All-cause mortality was not reported in the 11 included trials. One trial found a greater proportion of participants with complete relief of AMS symptoms after 12 and 16 hours when dexamethasone was administered in comparison with placebo (47.1% versus 0%, respectively; one study; 35 participants; low quality of evidence). Likewise, when acetazolamide was compared with placebo, the effects on symptom severity was uncertain (standardized mean difference (SMD) -1.15, 95% CI -2.56 to 0.27; 2 studies, 25 participants; low-quality evidence). One trial of dexamethasone in comparison with placebo in 35 participants found a reduction in symptom severity (difference on change in the AMS score: 3.7 units reported by authors; moderate quality of evidence). The effects from two additional trials comparing gabapentin with placebo and magnesium with placebo on symptom severity at the end of treatment were uncertain. For gabapentin versus placebo: mean visual analogue scale (VAS) score of 2.92 versus 4.75, respectively; 24 participants; low quality of evidence. For magnesium versus placebo: mean scores of 9 and 10.3 units, respectively; 25 participants; low quality of evidence). The trials did not find adverse events from either treatment (low quality of evidence). One trial comparing magnesium sulphate versus placebo found that flushing was a frequent event in the magnesium sulphate arm (percentage of flushing: 75% versus 7.7%, respectively; one study; 25 participants; low quality of evidence). AUTHORS' CONCLUSIONS There is limited available evidence to determine the effects of non-pharmacological and pharmacological interventions in treating acute high altitude illness. Low-quality evidence suggests that dexamethasone and acetazolamide might reduce AMS score compared to placebo. However, the clinical benefits and harms related to these potential interventions remain unclear. Overall, the evidence is of limited practical significance in the clinical field. High-quality research in this field is needed, since most trials were poorly conducted and reported.
Collapse
Affiliation(s)
- Daniel Simancas‐Racines
- Universidad Tecnológica EquinoccialCochrane Ecuador. Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio EspejoQuitoEcuador
| | - Ingrid Arevalo‐Rodriguez
- Universidad Tecnológica EquinoccialCochrane Ecuador. Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio EspejoQuitoEcuador
- Hospital Universitario Ramon y Cajal (IRYCIS)Clinical Biostatistics UnitMadridSpain
- CIBER Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Dimelza Osorio
- Universidad Tecnológica EquinoccialCochrane Ecuador. Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio EspejoQuitoEcuador
| | - Juan VA Franco
- Instituto Universitario Hospital ItalianoArgentine Cochrane CentrePotosí 4234Buenos AiresBuenos AiresArgentinaC1199ACL
| | - Yihan Xu
- Nanyang Technological UniversityWee Kim Wee School of Communication and InformationRoom 702, Building 5, #1277 Changning RoadSingapore CitySingapore637718
| | - Ricardo Hidalgo
- Universidad Tecnológica EquinoccialCochrane Ecuador. Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio EspejoQuitoEcuador
| | | |
Collapse
|
9
|
Gangwar A, Paul S, Ahmad Y, Bhargava K. Competing trends of ROS and RNS-mediated protein modifications during hypoxia as an alternate mechanism of NO benefits. Biochimie 2018; 148:127-138. [PMID: 29571702 DOI: 10.1016/j.biochi.2018.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023]
Abstract
Hypoxia, especially altitude associated hypoxia is known to cause severe physiological alterations and life-threatening conditions. Impaired redox balance along with oxidative stress, protein carbonylation and instigation of apoptotic events are common sub-cellular events that follow the hypoxic insult. The role of nitric oxide (NO) is very dynamic and versatile in preventing the ill effects of hypoxia vis-a-vis reacting with oxidative species and causing protein nitrosylation. Although several mechanisms of NO-mediated cytoprotection are known during hypoxic insult, limited pieces of evidence are available to support the relationship between two downstream events of oxidative stress, protein carbonylation (caused by carbonyl; CO radical) and protein nitrosylation/nitration (caused by NO/peroxynitrite; ONOO radical). In this study, we investigated an entirely new aspect of NO protection in hypoxia involving crosstalk between carbonylation and nitrosylation. Using standard NO inhibitor l-NAME and simulated hypoxic conditions in hypoxia-sensitive cell line H9c2, we evaluated the levels of radicals, cell death, mitochondrial membrane potential, levels of protein nitrosylation, protein nitration and carbonylation and glutathione content. The results were then carefully analyzed in light of NO bioavailability. Our study shows that reducing NO during hypoxia caused cell death via the increased degree of carbonylation in proteins. This provides a new aspect of NO benefits which furthers opens new possibilities to explore potential mechanisms and effects of cross-talk between nitrosylation, protein nitration and carbonylation, especially through some common antioxidant mediators such as glutathione and thioredoxin.
Collapse
Affiliation(s)
- Anamika Gangwar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Subhojit Paul
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Yasmin Ahmad
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Kalpana Bhargava
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
10
|
Frawley KL, Cronican AA, Pearce LL, Peterson J. Sulfide Toxicity and Its Modulation by Nitric Oxide in Bovine Pulmonary Artery Endothelial Cells. Chem Res Toxicol 2017; 30:2100-2109. [PMID: 29088535 DOI: 10.1021/acs.chemrestox.7b00147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bovine pulmonary artery endothelial cells (BPAEC) respond in a dose-dependent manner to millimolar (0-10) levels of sodium sulfide (NaHS). No measurable increase in caspase-3 activity and no change in the extent of autophagy (or mitophagy) were observed in BPAEC. However, lactate dehydrogenase levels increased in the BPAEC exposed NaHS, which indicated necrotic cell death. In the case of galactose-conditioned BPAEC, the toxicity of NaHS was increased by 30% compared to that observed in BPAEC maintained in the regular glucose-containing culture medium, which indicated a link between mitochondrial oxidative phosphorylation and the mechanism of toxicant action. This is consistent with the widely held view that cytochrome c oxidase (complex IV of the mitochondrial electron-transport system) is the principal molecular target involved in the acute toxicity of "sulfide" (H2S/HS-). In support of this view, elevated NO (which can reverse cytochrome c oxidase inhibition) ameliorated the toxicity of NaHS and, conversely, suppression of endogenous NO production exacerbated the observed toxicity. Respirometric measurements showed the BPAEC to possess a robust sulfide oxidizing system, which was able to out-compete cytochrome c oxidase for available H2S/HS- at micromolar concentrations. This detoxification system has previously been reported by other groups in several cell types, but notably, not neurons. The findings appear to provide some insight into the question of why human survivors of H2S inhalation frequently present at the clinic with respiratory insufficiency/pulmonary edema, while acutely poisoned laboratory animals tend to either succumb to cardiopulmonary paralysis or fully recover without any intervention.
Collapse
Affiliation(s)
- Kristin L Frawley
- Department of Environmental and Occupational Health, Graduate School of Public Health, The University of Pittsburgh , 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Andrea A Cronican
- Department of Environmental and Occupational Health, Graduate School of Public Health, The University of Pittsburgh , 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Linda L Pearce
- Department of Environmental and Occupational Health, Graduate School of Public Health, The University of Pittsburgh , 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Jim Peterson
- Department of Environmental and Occupational Health, Graduate School of Public Health, The University of Pittsburgh , 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
11
|
Petit PC, Fine DH, Vásquez GB, Gamero L, Slaughter MS, Dasse KA. The Pathophysiology of Nitrogen Dioxide During Inhaled Nitric Oxide Therapy. ASAIO J 2017; 63:7-13. [PMID: 27556146 DOI: 10.1097/mat.0000000000000425] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Administration of inhaled nitric oxide (NO) with the existing compressed gas delivery systems is associated with unavoidable codelivery of nitrogen dioxide (NO2), an unwanted toxic contaminant that forms when mixed with oxygen. The NO2 is generated when NO is diluted with O2-enriched air before delivery to the patient. When NO2 is inhaled by the patient, it oxidizes protective antioxidants within the epithelial lining fluid (ELF) and triggers extracellular damage in the airways. The reaction of NO2 within the ELF triggers oxidative stress (OS), possibly leading to edema, bronchoconstriction, and a reduced forced expiratory volume in 1 second. Nitrogen dioxide has been shown to have deleterious effects on the airways of high-risk patients including neonates, patients with respiratory and heart failure, and the elderly. Minimizing co-delivery of NO2 for the next generation delivery systems will be a necessity to fully optimize the pulmonary perfusion of NO because of vasodilation, whereas minimizing the negative ventilatory and histopathological effects of NO2 exposure during inhaled NO therapy.
Collapse
Affiliation(s)
- Priscilla C Petit
- From the *Biomedical Research, GeNO LLC, Cocoa, Florida; and †Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky
| | | | | | | | | | | |
Collapse
|
12
|
Yanamandra U, Nair V, Singh S, Gupta A, Mulajkar D, Yanamandra S, Norgais K, Mukherjee R, Singh V, Bhattachar SA, Patyal S, Grewal R, Chopra B. Managing High-Altitude Pulmonary Edema with Oxygen Alone: Results of a Randomized Controlled Trial. High Alt Med Biol 2016; 17:294-299. [PMID: 27906598 DOI: 10.1089/ham.2015.0120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Yanamandra, Uday, Velu Nair, Surinderpal Singh, Amul Gupta, Deepak Mulajkar, Sushma Yanamandra, Konchok Norgais, Ruchira Mukherjee, Vikrant Singh, Srinivasa A. Bhattachar, Sagarika Patyal, and Rajan Grewal. High-altitude pulmonary edema management: Is anything other than oxygen required? Results of a randomized controlled trial. High Alt Med Biol. 17:294-299, 2016.-Treatment strategies for management of high-altitude pulmonary edema (HAPE) are mainly based on the observational studies with only two randomized controlled trials, thus the practice is very heterogeneous and individualized as per the choice of treating physician. To compare the response to different modalities of therapy in patients with HAPE in a randomized controlled manner. We conducted an open-label, randomized noninferiority trial to compare three modalities of therapy (Therapy 1: supplemental O2 with oral dexamethasone 8 mg q8 hours [n = 42], Therapy 2: supplemental O2 with sustained release oral nifedipine 20 mg q8 hours [n = 41], and Therapy 3: only supplemental O2 [n = 50]). Bed rest was mandated in all patients. The study was conducted in a cohort of previously healthy young lowlander males at an altitude of 3500 m. Baseline characteristics of the patients were comparable in the study arms. Complete response was defined as clinical and radiological resolution of features of HAPE, no oxygen dependency, a normal 6-minute walk test (6MWT) on 2 consecutive days, and normal two-dimensional echocardiography. Results were compared by analysis of variance using SPSS version 16.0. There was no statistical difference in duration of therapy to complete response between the three groups (Therapy 1: 8.1 ± 4.0 days, Therapy 2: 6.7 ± 3.9 days, Therapy 3: 6.8 ± 3.2 days; p = 0.15). There were no deaths in any of the groups. We conclude that oxygen and bed rest alone are adequate therapy for HAPE and that adjuvant pharmacotherapy with either dexamethasone or nifedipine does not hasten recovery.
Collapse
Affiliation(s)
- Uday Yanamandra
- 1 Department of Internal Medicine, PGIMER , Chandigarh, India
| | - Velu Nair
- 2 Director General Medical Services (Army), Integrated Headquarters, Ministry of Defence, New Delhi, India
| | - Surinderpal Singh
- 3 Deparment of Physiology, Armed Forces Medical College , Pune, India
| | - Amul Gupta
- 4 Department of Radiology, Military Hospital , Bhopal, India
| | - Deepak Mulajkar
- 5 Command Hospital, Southern Command, Pune, Maharashtra, India
| | | | - Konchok Norgais
- 7 Internal Medicine Residency, Michigan State University , East Lansing, Michigan
| | - Ruchira Mukherjee
- 8 Department of Radiology Armed Forces Medical College , Pune, India
| | - Vikrant Singh
- 9 Armed Forces Medical College, Pune, Maharashtra, India
| | | | - Sagarika Patyal
- 2 Director General Medical Services (Army), Integrated Headquarters, Ministry of Defence, New Delhi, India
| | - Rajan Grewal
- 5 Command Hospital, Southern Command, Pune, Maharashtra, India
| | - Bhushan Chopra
- 10 Director General Armed Forces Medical Services, New Delhi, India
| |
Collapse
|
13
|
Hennis PJ, Mitchell K, Gilbert-Kawai E, Bountziouka V, Wade A, Feelisch M, Grocott MP, Martin DS. Effects of dietary nitrate supplementation on symptoms of acute mountain sickness and basic physiological responses in a group of male adolescents during ascent to Mount Everest Base Camp. Nitric Oxide 2016; 60:24-31. [DOI: 10.1016/j.niox.2016.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 11/16/2022]
|
14
|
Abstract
High-altitude illness (HAI) encompasses an array of conditions that may occur in individuals who travel to high elevations, including acute mountain sickness, high-altitude cerebral edema, and high-altitude pulmonary edema. Individuals with a history of HAI are predisposed to developing HAI; however, other risk factors are not well defined. The primary method of preventing HAI is acclimatization through gradual ascent to high altitude. In addition, many studies have assessed the use of pharmacologic prophylaxis. The most studied and widely recommended prophylactic agent is acetazolamide; additional agents that have been considered include dexamethasone, Gingko biloba, antioxidant vitamins, nifedipine, aspirin, and salmeterol. The treatment of choice for all forms of HAI is descent to lower altitude. The use of additional treatments, including supplemental oxygen, varies depending on the severity of the clinical presentation. Acetazolamide and dexamethasone have been studied as adjunctive treatments for acute mountain sickness, while nitric oxide and nifedipine have been evaluated for the treatment of high-altitude pulmonary edema. Data with analgesics and phosphodiesterase-5 inhibitors, while limited, are promising. This review will present the evidence supporting the use of pharmacotherapy for prevention and treatment of HAI.
Collapse
Affiliation(s)
- Linda M. Spooner
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy-Worcester/Manchester, Worcester, Massachusetts
| | - Jacqueline L. Olin
- Ernest Mario School of Pharmacy at Rutgers University, Piscataway, New Jersey
| | - Ronald J. Debellis
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy-Worcester/Manchester, Worcester, Massachusetts
| |
Collapse
|
15
|
Fan PC, Ma HP, Jiang W, Li L, Ren J, Jing LL, Jia ZP. Anti-hypoxia Activity of the Novel NO Donor Acetyl Ferulic Isosorbide Mononitrate in Acute High-Altitude Hypoxia Mice. Biol Pharm Bull 2016; 38:1280-9. [PMID: 26328483 DOI: 10.1248/bpb.b15-00131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) may act as either a pro-oxidant or an antioxidant in biological systems. Previous work has found inhalation of NO improved survival in a high altitude rat model. NO donor isosorbide mononitrate derivants might have a protective effect against hypoxia. We synthesized a series of isosorbide mononitrate derivant compounds to test their anti-hypoxia activities. Normobaric hypoxia and hypobaric hypoxia models were used to study the protective role of NO donor in mice. The results showed isosorbide mononitrate derivants had protective effects in hypoxia mice. Among those compounds, acetyl ferulic isosorbide mononitrate (AFIM) was the most effective. It prolonged the survival time during the normobaric hypoxia test. It decreased malondialdehyde (MDA) and H2O2 in hypobaric hypoxia mice. The antioxidase activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) remained in normal ranges in the AFIM group. As a sign of mitochondrial dysfunction, the activities of ATPase were down regulated in mice under hypobaric hypoxia conditions. AFIM also protected ATPase activities. The protective effects of AFIM might come from a sustained NO supply and the release of acetyl ferulic acid with anti-oxidant activity.
Collapse
Affiliation(s)
- Peng-Cheng Fan
- Department of Pharmacy, General Hospital of Lanzhou Command of PLA
| | | | | | | | | | | | | |
Collapse
|
16
|
Mirrakhimov AE, Strohl KP. High-altitude Pulmonary Hypertension: an Update on Disease Pathogenesis and Management. Open Cardiovasc Med J 2016; 10:19-27. [PMID: 27014374 PMCID: PMC4780514 DOI: 10.2174/1874192401610010019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/20/2015] [Accepted: 10/22/2015] [Indexed: 12/18/2022] Open
Abstract
High-altitude pulmonary hypertension (HAPH) affects individuals residing at altitudes of 2,500 meters and higher. Numerous pathogenic variables play a role in disease inception and progression and include low oxygen concentration in inspired air, vasculopathy, and metabolic abnormalities. Since HAPH affects only some people living at high altitude genetic factors play a significant role in its pathogenesis. The clinical presentation of HAPH is nonspecific and includes fatigue, shortness of breath, cognitive deficits, cough, and in advanced cases hepatosplenomegaly and overt right-sided heart failure. A thorough history is important and should include a search for additional risk factors for lung disease and pulmonary hypertension (PH) such as smoking, indoor air pollution, left-sided cardiac disease and sleep disordered breathing. Twelve-lead electrocardiogram, chest X-ray and echocardiography can be used as screening tools. A definitive diagnosis should be made with right-sided heart catheterization using a modified mean pulmonary artery pressure of at least 30 mm Hg, differing from the 25 mm Hg used for other types of PH. Treatment of HAPH includes descent to a lower altitude whenever possible, oxygen therapy and the use of medications such as endothelin receptor antagonists, phosphodiesterase 5 blockers, fasudil and acetazolamide. Some recent evidence suggests that iron supplementation may also be beneficial. However, it is important to note that the scientific literature lacks long-term randomized controlled data on the pharmacologic treatment of HAPH. Thus, an individualized approach to treatment and informing the patients regarding the benefits and risks of the selected treatment regimen are essential.
Collapse
Affiliation(s)
- Aibek E Mirrakhimov
- University of Kentucky College of Medicine, Department of Medicine, Lexington, Kentucky, 40508, USA
| | - Kingman P Strohl
- Case Western Reserve University, Division of Pulmonary, Critical Care and Sleep Medicine, 11100 Euclid Ave, Cleve-land, Ohio 44106, USA
| |
Collapse
|
17
|
Sikri G. Role of dexamethasone in prevention of high altitude pulmonary edema. J Occup Health 2015; 57:200. [DOI: 10.1539/joh.l-14-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Gaurav Sikri
- Department of PhysiologyArmed Forces Medical CollegeIndia
| |
Collapse
|
18
|
Abstract
Neurogenic pulmonary edema (NPE) is a life-threatening complication of central nervous system (CNS) injuries. This review summarizes current knowledge about NPE etiology and pathophysiology with an emphasis on its experimental models, including our spinal cord compression model. NPE may develop as a result of activation of specific CNS trigger zones located in the brainstem, leading to a rapid sympathetic discharge, rise in systemic blood pressure, baroreflex-induced bradycardia, and enhanced venous return resulting in pulmonary vascular congestion characterized by interstitial edema, intra-alveolar accumulation of transudate, and intra-alveolar hemorrhages. The potential etiological role of neurotransmitter changes in NPE trigger zones leading to enhanced sympathetic nerve activity is discussed. Degree of anesthesia is a crucial determinant for the extent of NPE development in experimental models because of its influence on sympathetic nervous system activity. Sympathetic hyperactivity is based on the major activation of either ascending spinal pathways by spinal cord injury or NPE trigger zones by increased intracranial pressure. Attenuation of sympathetic nerve activity or abolition of reflex bradycardia completely prevent NPE development in our experimental model. Suggestions for future research into NPE pathogenesis as well as therapeutic potential of particular drugs and interventions are discussed.
Collapse
Affiliation(s)
- Jiří Šedý
- Institute of Physiology , Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Physiology , Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Josef Zicha
- Institute of Physiology , Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
19
|
Reducing TRPC1 Expression through Liposome-Mediated siRNA Delivery Markedly Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension in a Murine Model. Stem Cells Int 2014; 2014:316214. [PMID: 25587286 PMCID: PMC4281407 DOI: 10.1155/2014/316214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022] Open
Abstract
We tested the hypothesis that Lipofectamine siRNA delivery to deplete transient receptor potential cation channel (TRPC) 1 protein expression can suppress hypoxia-induced pulmonary arterial hypertension (PAH) in mice. Adult male C57BL/6 mice were equally divided into group 1 (normal controls), group 2 (hypoxia), and group 3 (hypoxia + siRNA TRPC1). By day 28, right ventricular systolic pressure (RVSP), number of muscularized arteries, right ventricle (RV), and lung weights were increased in group 2 than in group 1 and reduced in group 3 compared with group 2. Pulmonary crowded score showed similar pattern, whereas number of alveolar sacs exhibited an opposite pattern compared to that of RVSP in all groups. Protein expressions of TRPCs, HIF-1α, Ku-70, apoptosis, and fibrosis and pulmonary mRNA expressions of inflammatory markers were similar pattern, whereas protein expressions of antifibrosis and VEGF were opposite to the pattern of RVSP. Cellular markers of pulmonary DNA damage, repair, and smooth muscle proliferation exhibited a pattern similar to that of RVSP. The mRNA expressions of proapoptotic and hypertrophy biomarkers displayed a similar pattern, whereas sarcomere length showed an opposite pattern compared to that of RVSP in all groups. Lipofectamine siRNA delivery effectively reduced TRPC1 expression, thereby attenuating PAH-associated RV and pulmonary arteriolar remodeling.
Collapse
|
20
|
Sharma RK, Choudhary RC, Reddy MK, Ray A, Ravi K. Role of posterior hypothalamus in hypobaric hypoxia induced pulmonary edema. Respir Physiol Neurobiol 2014; 205:66-76. [PMID: 25448396 DOI: 10.1016/j.resp.2014.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 01/10/2023]
Abstract
To investigate the role of posterior hypothalamus and central neurotransmitters in the pulmonary edema due to hypobaric hypoxia, rats were placed in a high altitude simulation chamber (barometric pressure-294.4 mmHg) for 24 h. Exposure to hypobaric hypoxia resulted in increases in mean arterial blood pressure, renal sympathetic nerve activity, right ventricular systolic pressure, lung wet to dry weight ratio and Evans blue dye leakage. There was a significant attenuation in these responses to hypobaric hypoxia (a) after lesioning posterior hypothalamus and (b) after chronic infusion of GABAA receptor agonist muscimol into posterior hypothalamus. No such attenuation was evident with the chronic infusion of the nitric oxide donor SNAP into the posterior hypothalamus. It is concluded that in hypobaric hypoxia, there is over-activity of posterior hypothalamic neurons probably due to a local decrease in GABA-ergic inhibition which increases the sympathetic drive causing pulmonary hypertension and edema.
Collapse
Affiliation(s)
- R K Sharma
- Department of Physiology, V. P. Chest Institute, University of Delhi, Delhi, India
| | - R C Choudhary
- Department of Physiology, V. P. Chest Institute, University of Delhi, Delhi, India
| | - M K Reddy
- Defence Institute of Physiology & Allied Sciences, Timarpur, Delhi, India
| | - A Ray
- Department of Pharmacology, V. P. Chest Institute, University of Delhi, Delhi, India
| | - K Ravi
- Department of Physiology, V. P. Chest Institute, University of Delhi, Delhi, India.
| |
Collapse
|
21
|
Beall CM, Laskowski D, Erzurum SC. Nitric oxide in adaptation to altitude. Free Radic Biol Med 2012; 52:1123-34. [PMID: 22300645 PMCID: PMC3295887 DOI: 10.1016/j.freeradbiomed.2011.12.028] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/29/2011] [Accepted: 12/29/2011] [Indexed: 11/20/2022]
Abstract
This review summarizes published information on the levels of nitric oxide gas (NO) in the lungs and NO-derived liquid-phase molecules in the acclimatization of visitors newly arrived at altitudes of 2500 m or more and adaptation of populations whose ancestors arrived thousands of years ago. Studies of acutely exposed visitors to high altitude focus on the first 24-48 h with just a few extending to days or weeks. Among healthy visitors, NO levels in the lung, plasma, and/or red blood cells fell within 2h, but then returned toward baseline or slightly higher by 48 h and increased above baseline by 5 days. Among visitors ill with high-altitude pulmonary edema at the time of the study or in the past, NO levels were lower than those of their healthy counterparts. As for highland populations, Tibetans had NO levels in the lung, plasma, and red blood cells that were at least double and in some cases orders of magnitude greater than other populations regardless of altitude. Red blood cell-associated nitrogen oxides were more than 200 times higher. Other highland populations had generally higher levels although not to the degree shown by Tibetans. Overall, responses of those acclimatized and those presumed to be adapted are in the same direction, although the Tibetans have much larger responses. Missing are long-term data on lowlanders at altitude showing how similar they become to the Tibetan phenotype. Also missing are data on Tibetans at low altitude to see the extent to which their phenotype is a response to the immediate environment or expressed constitutively. The mechanisms causing the visitors' and the Tibetans' high levels of NO and NO-derived molecules at altitude remain unknown. Limited data suggest processes including hypoxic upregulation of NO synthase gene expression, hemoglobin-NO reactions, and genetic variation. Gains in understanding will require integrating appropriate methods and measurement techniques with indicators of adaptive function under hypoxic stress.
Collapse
Affiliation(s)
- Cynthia M Beall
- Case Western Reserve University, Department of Anthropology, 10900 Euclid Avenue, Cleveland, OH 44106, USA, telephone 216 368 2277, telephone during academic year 2011-2012: 216 509 5021, fax 216 368 5334
| | - Daniel Laskowski
- Cleveland Clinic, Department of Pathobiology, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Serpil C. Erzurum
- Cleveland Clinic, Department of Pathobiology, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
22
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
High altitude pulmonary oedema (HAPE) is an important and preventable cause of death at high altitudes. However, little is known about the global incidence of HAPE, in part because most cases occur in remote environments where no records are kept. Furthermore, despite international efforts to achieve consensus, there is wide disparity in the diagnostic criteria in clinical and research use. We have reviewed the literature on the incidence and epidemiology of HAPE. There is broad agreement between studies that HAPE incidence at 2500m is around 0.01%, and increases to 1.9% at 3600m and 2.5-5% at 4300m. Risk factors for HAPE include rate of ascent, intensity of exercise and absolute altitude attained, although an individual pre-disposition to developing the condition is also well described and suggests an underlying genetic susceptibility. It is increasingly recognised that clinically-detectable HAPE is an extreme of a continuous spectrum of excess pulmonary fluid accumulation, which has been demonstrated in asymptomatic individuals. There is a continued need to ensure awareness of the diagnosis and treatment of HAPE among visitors to high altitude. It is likely that HAPE is preventable in all cases by progressive acclimatisation, and we advocate a pragmatic "golden rules" approach. Our understanding of the epidemiology and underlying genetic susceptibility to HAPE may be advanced if susceptible individuals register with the International HAPE Database: http://www.altitude.org/hape.php. HAPE has direct relevance to military training and operations and is likely to be the leading cause of death at high altitude.
Collapse
Affiliation(s)
- D P Hall
- Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
24
|
Yu-jing S, Ming-wu F, Wen-quan N, Guang-ping L, Jing-liang L, Shou-quan D, Ying X, Guo-shu Y, Jian-qun D, Yun-jun P, Wei-ya D, Tian W, Jing-wen C, Xiao-bo L, Zhong-xiang W, Guang-Xue Y, Hui-cheng S, Zhong-hou J, Jun L, Xiao-ming W, Qin S, Qi-xia W, Wen-yu Z, Tong-chun Z, Chang-chun Q. Endothelial nitric oxide synthase gene polymorphisms associated with susceptibility to high altitude pulmonary edema in Chinese railway construction workers at Qinghai-Tibet over 4 500 meters above sea level. ACTA ACUST UNITED AC 2011; 25:215-21. [PMID: 21232181 DOI: 10.1016/s1001-9294(11)60005-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To examine whether the polymorphisms of endothelial nitric oxide synthase (eNOS) gene are associated with the susceptibility to high altitude pulmonary edema (HAPE) in Chinese railway construction workers at Qinghai-Tibet where the altitude is over 4 500 m above sea level. METHODS A case-control study was conducted including 149 HAPE patients in the construction workers and 160 healthy controls randomly recruited from their co-workers, matching the patients in ethnicity, age, sex, lifestyle, and working conditions. Three polymorphisms of eNOS gene, T-786C in promoter, 894G/T in exon 7, and 27bp variable number tandem repeat (VNTR) in intron 4, were genotyped using polymerase chain reaction (PCR) and confirmed with DNA sequencing. RESULTS The frequencies of 894T allele and heterozygous G/T of the 894G/T variant were significantly higher in HAPE patients group than in the control group (P=0.0028 and P=0.0047, respectively). However, the frequencies of the T-786C in promoter and the 27bp VNTR in intron 4 were not significantly different between the two groups. Haplotypic analysis revealed that the frequencies of two haplotypes (H3,T-T-b, b indicates 5 repeats of 27 bp VNTR; H6, C-G-a, a indicates 4 repeats of 27 bp VNTR) were significantly higher in HAPE patients (both Pü0.0001). On the contrary, the frequencies of H1 (T-G-b) and H2 (T-G-a) were lower in HAPE patients than in healthy controls (both Pü0.001). CONCLUSIONS Two haplotypes (T-T-b and C-G-a) may be strongly associated with susceptibility to HAPE. Compared with the individual alleles of eNOS gene, the interaction of multiple genetic markers within a haplotype may be a major determinant for the susceptibility to HAPE.
Collapse
Affiliation(s)
- Sun Yu-jing
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Sildenafil limits monocrotaline-induced pulmonary hypertension in rats through suppression of pulmonary vascular remodeling. J Cardiovasc Pharmacol 2010; 55:574-84. [PMID: 20224427 DOI: 10.1097/fjc.0b013e3181d9f5f4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We hypothesize that sildenafil attenuates pulmonary hypertension through suppressing pulmonary vascular remodeling. Thirty male adult Sprague-Dawley rats were randomized to receive saline injection (Group 1), subcutaneous monocrotaline (MCT) (60 mg/kg) (Group 2), and MCT plus oral sildenafil (30 g/kg per day) (Group 3) 5 days after MCT administration. By Day 35, Western blot showed lower connexin43 and membranous protein kinase C epsilon expressions but higher oxidative stress in right ventricle in Group 2 compared with the other groups. Additionally, pulmonary Smad1/5 was lowest, whereas connexin43 and Smad3 were highest in Group 2. Pulmonary mRNA expressions of tumor necrosis factor-alpha, caspase-3, plasminogen activator inhibitor-1, and transforming growth factor-beta were higher, whereas bone morphogenetic protein Type II receptor, Bcl-2, and endothelial nitric oxide synthase were lower in Group 2 than in the other groups. Similarly, mRNA expressions of tumor necrosis factor-alpha, caspase-3, and beta-myosin heavy chain were increased, whereas Bcl-2, endothelial nitric oxide synthase, and alpha-myosin heavy chain expressions in right ventricle were reduced in Group 2 compared with the other groups. Number of lung arterioles was lowest, whereas number of arterioles with muscularization of the medial layer was highest in Group 2. Right ventricle systolic pressure and weight were elevated in Group 2 compared with the other groups. In conclusion, sildenafil effectively alleviates MCT-induced pulmonary hypertension through suppressing pulmonary vascular remodeling.
Collapse
|
27
|
Leissner KB, Mahmood FU. Physiology and pathophysiology at high altitude: considerations for the anesthesiologist. J Anesth 2009; 23:543-53. [DOI: 10.1007/s00540-009-0787-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
|
28
|
Šedý J, Zicha J, Kuneš J, Hejčl A, Syková E. The role of nitric oxide in the development of neurogenic pulmonary edema in spinal cord-injured rats: the effect of preventive interventions. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1111-7. [DOI: 10.1152/ajpregu.00251.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurogenic pulmonary edema (NPE) is an acute life-threatening complication following an injury of the spinal cord or brain, which is associated with sympathetic hyperactivity. The role of nitric oxide (NO) in NPE development in rats subjected to balloon compression of the spinal cord has not yet been examined. We, therefore, pretreated Wistar rats with the NO synthase inhibitor N G-nitro-l-arginine methyl ester (l-NAME) either acutely (just before the injury) or chronically (for 4 wk prior to the injury). Acute (but not chronic) l-NAME administration enhanced NPE severity in rats anesthetized with 1.5% isoflurane, leading to the death of 83% of the animals within 10 min after injury. Pretreatment with either the ganglionic blocker pentolinium (to reduce blood pressure rise) or the muscarinic receptor blocker atropine (to lessen heart rate decrease) prevented or attenuated NPE development in these rats. We did not observe any therapeutic effects of atropine administered 2 min after spinal cord compression. Our data indicate that NPE development is dependent upon a marked decrease of heart rate under the conditions of high blood pressure elicited by the activation of the sympathetic nervous system. These hemodynamic alterations are especially pronounced in rats subjected to acute NO synthase inhibition. In conclusion, nitric oxide has a partial protective effect on NPE development because it attenuates sympathetic vasoconstriction and consequent baroreflex-induced bradycardia following spinal cord injury.
Collapse
Affiliation(s)
- Jiří Šedý
- Institute of Experimental Medicine and
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Dental Research, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Josef Zicha
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Center for Cardiovascular Research, Prague, Czech Republic; and
| | - Jaroslav Kuneš
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Center for Cardiovascular Research, Prague, Czech Republic; and
| | | | - Eva Syková
- Institute of Experimental Medicine and
- Center for Cell Therapy and Tissue Repair and Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
29
|
Sun CK, Lee FY, Sheu JJ, Yuen CM, Chua S, Chung SY, Chai HT, Chen YT, Kao YH, Chang LT, Yip HK. Early combined treatment with cilostazol and bone marrow-derived endothelial progenitor cells markedly attenuates pulmonary arterial hypertension in rats. J Pharmacol Exp Ther 2009; 330:718-26. [PMID: 19528354 DOI: 10.1124/jpet.109.154328] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We investigated whether early combined cilostazol and bone marrow-derived endothelial progenitor cell (BMDEPC) treatment offers synergistic benefit in ameliorating monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats. Male Sprague-Dawley rats (n = 10/group) were randomized to receive saline injection only (group 1), MCT (70 mg/kg) (group 2), and MCT plus cilostazol (20 mg/kg/day) (group 3), MCT plus BMDEPCs (2.0 x 10(6) cells) (group 4), and MCT plus combined cilostazol/BMDEPCs (group 5). Intravenous BMDEPCs and oral cilostazol were given on day 3 after MCT administration. By day 42, connexin43 protein expression in right ventricle (RV) was reduced in group 2 compared with other groups and also was decreased in groups 3 and 4 compared with groups 1 and 5 (all p < 0.05). In addition, mRNA expressions of matrix metalloproteinase-9, tumor necrosis factor-alpha, and caspase-3 were higher, whereas Bcl-2 and endothelial nitric-oxide synthase were lower in lung and RV in group 2 compared with the other groups (all p < 0.05). The number of alveolar sacs and lung arterioles was lower in group 2 than in other groups and lower in groups 3 and 4 than in group 5 (all p < 0.05). RV systolic pressure (RVSP) and weight were increased in group 2 compared with the other groups (all p < 0.0001). Moreover, RVSP and RV-to-left ventricle plus septum weight ratio were higher in groups 3 and 4 than in groups 1 and 5 (p < 0.001) but showed no difference between groups 1 and 5. In conclusion, early combined autologous BMDEPC/cilostazol treatment is superior to BMDEPC or cilostazol only for preventing MCT-induced PAH.
Collapse
Affiliation(s)
- Cheuk-Kwan Sun
- Division of General , Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kaufmann BA, Bernheim AM, Kiencke S, Fischler M, Sklenar J, Mairbäurl H, Maggiorini M, Brunner-La Rocca HP. Evidence supportive of impaired myocardial blood flow reserve at high altitude in subjects developing high-altitude pulmonary edema. Am J Physiol Heart Circ Physiol 2008; 294:H1651-7. [DOI: 10.1152/ajpheart.00760.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An exaggerated increase in pulmonary arterial pressure is the hallmark of high-altitude pulmonary edema (HAPE) and is associated with endothelial dysfunction of the pulmonary vasculature. Whether the myocardial circulation is affected as well is not known. The aim of this study was, therefore, to investigate whether myocardial blood flow reserve (MBFr) is altered in mountaineers developing HAPE. Healthy mountaineers taking part in a trial of prophylactic treatment of HAPE were examined at low (490 m) and high altitude (4,559 m). MBFr was derived from low mechanical index contrast echocardiography, performed at rest and during submaximal exercise. Among 24 subjects evaluated for MBFr, 9 were HAPE-susceptible individuals on prophylactic treatment with dexamethasone or tadalafil, 6 were HAPE-susceptible individuals on placebo, and 9 persons without HAPE susceptibility served as controls. At low altitude, MBFr did not differ between groups. At high altitude, MBFr increased significantly in HAPE-susceptible individuals on treatment (from 2.2 ± 0.8 at low to 2.9 ± 1.0 at high altitude, P = 0.04) and in control persons (from 1.9 ± 0.8 to 2.8 ± 1.0, P = 0.02), but not in HAPE-susceptible individuals on placebo (2.5 ± 0.3 and 2.0 ± 1.3 at low and high altitude, respectively, P > 0.1). The response to high altitude was significantly different between the two groups ( P = 0.01). There was a significant inverse relation between the increase in the pressure gradient across the tricuspid valve and the change in myocardial blood flow reserve. HAPE-susceptible individuals not taking prophylactic treatment exhibit a reduced MBFr compared with either treated HAPE-susceptible individuals or healthy controls at high altitude.
Collapse
|
31
|
Stream JO, Grissom CK. Update on High-Altitude Pulmonary Edema: Pathogenesis, Prevention, and Treatment. Wilderness Environ Med 2008; 19:293-303. [DOI: 10.1580/07-weme-rev-173.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Nitric oxide/cGMP protects endothelial cells from hypoxia-mediated leakiness. Eur J Cell Biol 2007; 87:147-61. [PMID: 18023499 DOI: 10.1016/j.ejcb.2007.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 10/06/2007] [Accepted: 10/08/2007] [Indexed: 11/21/2022] Open
Abstract
Leakiness of the endothelial bed is attributed to the over-perfusion of the pulmonary bed, which leads to high altitude pulmonary edema (HAPE). Inhalation of nitric oxide has been successfully employed to treat HAPE patients. We hypothesize that nitric oxide intervenes in the permeability of the pulmonary macrovascular endothelial bed to rectify the leaky bed under hypoxia. Our present work explores the underlying mechanism of 'hypoxia-mediated' endothelial malfunction by using human umbilical cord-derived immortalized endothelial cells, ECV-304, and bovine pulmonary artery primary endothelial cells. The leakiness of the endothelial monolayer was increased by two-fold under hypoxia in comparison to cells under normoxia, while optical tweezers-based tethering assays reported a higher membrane tension of endothelial cells under hypoxia. Phalloidin staining demonstrated depolymerization of F-actin stress fibers and highly polarized F-actin patterns in endothelial cells under hypoxia. Nitric oxide, 8-Br-cGMP and sildenafil citrate (phosphodiesterase type 5 inhibitor) led to recovery from hypoxia-induced leakiness of the endothelial monolayers. Results of the present study also suggest that 'hypoxia-induced' cytoskeletal rearrangements and membrane leakiness are associated with the low nitric oxide availability under hypoxia. We conclude that nitric oxide-based recovery of hypoxia-induced leakiness of endothelial cells is a cyclic guanosine monophosphate (cGMP)-dependent phenomenon.
Collapse
|
33
|
Dehnert C, Berger MM, Mairbäurl H, Bärtsch P. High altitude pulmonary edema: a pressure-induced leak. Respir Physiol Neurobiol 2007; 158:266-73. [PMID: 17602898 DOI: 10.1016/j.resp.2007.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/30/2007] [Accepted: 05/01/2007] [Indexed: 10/23/2022]
Abstract
High altitude pulmonary edema (HAPE) is a non-cardiogenic pulmonary edema that can occur in healthy individuals who ascend rapidly to altitudes above 3000-4000m. Excessive pulmonary artery pressure (PAP) is crucial for the development of HAPE, since lowering pulmonary artery pressure by nifedipine or tadalafil (phosphodiesterase-5-inhibitor) will in most cases prevent HAPE. Recent studies using microspheres in swine and magnetic resonance imaging in humans strongly support the concept and primacy of nonuniform hypoxic arteriolar vasoconstriction to explain how hypoxic pulmonary vasoconstriction occurring predominantly at the arteriolar level can cause leakage. Evidence is accumulating that the excessive PAP response in HAPE-susceptible individuals is due to a reduced NO bioavailability. HAPE-susceptible individuals show an endothelial dysfunction in the systemic circulation in hypoxia. Lower levels of exhaled NO in hypoxia before and during HAPE suggest that this abnormality also occurs in the lungs and polymorphisms of the eNOS gene are associated with susceptibility to HAPE in the Indian and Japanese population.
Collapse
Affiliation(s)
- Christoph Dehnert
- Medical University Clinic, Department of Internal Medicine, Div. of Sports Medicine, Im Neuenheimer Feld 410, D - 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
34
|
Abstract
This article briefly reviews the background of endothelium-dependent vasorelaxation, describes the nitric oxide/cGMP/protein kinase pathway and its role in modulating pulmonary vascular tone and remodeling, and describes three approaches that target the nitric oxide/cGMP pathway in the treatment of patients with pulmonary arterial hypertension.
Collapse
Affiliation(s)
- James R Klinger
- Division of Pulmonary Sleep and Critical Care Medicine, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA.
| |
Collapse
|
35
|
Rivera-Ch M, León-Velarde F, Huicho L. Treatment of chronic mountain sickness: critical reappraisal of an old problem. Respir Physiol Neurobiol 2007; 158:251-65. [PMID: 17580125 DOI: 10.1016/j.resp.2007.05.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 04/29/2007] [Accepted: 05/01/2007] [Indexed: 11/19/2022]
Abstract
A review is made on the different treatment strategies essayed to date in the management of chronic mountain sickness (CMS). After a brief presentation of the epidemiology and of the pathophysiological mechanisms proposed for explaining the disease, the advantages and drawbacks of the different treatment approaches are discussed, along with their pathopysiological rationale. A particular emphasis is dedicated to the scientific foundations underlying the development of acetazolamide and angiotensin-converting enzyme inhibitors as promising therapeutic agents for CMS, as well as the clinical evidence existing so far on their usefulness in the treatment of CMS. Various methodological issues that need to be addressed in future clinical studies on efficacy of therapies for CMS are discussed. There is also a brief discussion on potential treatment options for chronic high altitude pulmonary hypertension. Closing remarks on the need of taking increasingly into account the development and implementation of preventive measures are made.
Collapse
Affiliation(s)
- María Rivera-Ch
- Departamento de Ciencias Biológicas, Facultad de Ciencias y Filosofía, Instituto de Investigaciones de Altura, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Lima LI 31, Peru.
| | | | | |
Collapse
|
36
|
Ahsan A, Mohd G, Norboo T, Baig MA, Pasha MAQ. Heterozygotes of NOS3 Polymorphisms Contribute to Reduced Nitrogen Oxides in High-Altitude Pulmonary Edema. Chest 2006; 130:1511-9. [PMID: 17099031 DOI: 10.1378/chest.130.5.1511] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVES High-altitude pulmonary edema (HAPE), which develops on exertion under hypoxic conditions, aggravates due to endothelial dysfunction. Repeat events of the disorder suggests of genetic susceptibility. Endothelial nitric oxide synthase gene (NOS3), a regulator of vasodilation, has emerged as a strong candidate marker. In the present study, we investigated G894T, 27-base-pair 4b/4a (variable number of tandem repeat), -922A/G, and -786T/C polymorphisms of NOS3, individually or in combination, for an association with HAPE. DESIGN A cross-sectional case control study. SETTINGS Blood samples of HAPE-resistant lowlanders (HAPE-r) were obtained at sea level, and blood samples of patients with HAPE (HAPE-p) were obtained at Sonam Norboo Memorial Hospital, Leh, at 3,500 m. PARTICIPANTS The study groups consisted of 60 HAPE-r inducted two to three times to altitudes > 3,600 m; and 72 HAPE-p, who had HAPE on their first visit to high altitude. RESULTS Nitrogen oxides (NOx) at 77.9 +/- 28.6 micromol/L were significantly elevated in HAPE-r as compared to 42.39 +/- 12.93 micromol/L in HAPE-p (p < 0.0001). Genotype distribution of G894T and 4b/4a polymorphisms was significantly different in the two groups (p = 0.001 and 0.009, respectively). Haplotype analysis revealed -922A/G and -786T/C polymorphisms in complete linkage disequilibrium. The wild-type haplotypes G-b (G894T, 4b/4a), G-A (G894T, -922A/G), and G-b-A (G894T, 4b/4a, -922A/G) were significantly overrepresented in HAPE-r (p < 0.0001, p = 0.03, and p = 0.02, respectively). The heterozygote genotype combination GTba as compared to wild-type combination GGbb was significantly higher in HAPE-p (chi2 = 18.62, p = 0.00009; odds ratio, 7.20; 95% confidence interval, 2.82 to 18.38). The combination of four heterozygotes GTbaAGTC was overrepresented in HAPE-p (p = 0.04), whereas the wild-type genotype combination GGbbAATT was overrepresented in HAPE-r (p = 0.002). Furthermore, the GGbb combination correlated with significantly elevated NOx as compared to remaining combinations as a whole in both HAPE-r and HAPE-p (p = 0.01 and 0.004, respectively). CONCLUSIONS Reduced NOx and combination of heterozygotes associate with the susceptibility to HAPE. The study impels another step toward application of NOx as a diagnostic marker for HAPE. The NOS3 GTba and GTbaAGTC genotype combinations may find application as genetic markers for predicting the risk for HAPE.
Collapse
Affiliation(s)
- Aarif Ahsan
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, Mall Rd, Delhi-110 007, India
| | | | | | | | | |
Collapse
|
37
|
Peth S, Karle C, Dehnert C, Bärtsch P, Mairbäurl H. K+ channel activation with minoxidil stimulates nasal-epithelial ion transport and blunts exaggerated hypoxic pulmonary hypertension. High Alt Med Biol 2006; 7:54-63. [PMID: 16544967 DOI: 10.1089/ham.2006.7.54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Increased pulmonary capillary pressure and inhibition of alveolar Na+ transport putatively contribute to the formation of pulmonary edema in alveolar hypoxia such as at high altitude. Since both events might be linked to the inhibition of K+ channels, we studied whether in vivo application of minoxidil, a stimulator of ATP-gated K channels (K+ ATP channel activator) prevents both effects. In a double- blind, placebo-controlled crossover study on 17 volunteers with no known susceptibility to high altitude pulmonary edema, we tested whether a single dose of minoxidil (5 mg) prevents pulmonary hypertension and inhibition of nasal-epithelial Na+ transport in normobaric hypoxia (12% O2, 2 h). In hypoxia, arterial SO2 was decreased to about 80%, and systolic pulmonary artery pressure (PAP) measured by Doppler echocardiography increased significantly from approximately 25 mmHg (normoxia) to approximately 38 mmHg (hypoxia; range 22 to 61 mmHg). Minoxidil decreased PAP in hypoxia in those individuals who had the highest increase in PAP in hypoxia when taking placebo. Nasal potentials decreased by about 10% in hypoxia. Although minoxidil had no effect on nasal potentials in normoxia, it increased nasal potentials significantly above normoxic control values after 2-h hypoxia. These results show that the K+ ATP activator minoxidil prevents the decrease in nasal-epithelial potential by hypoxia and seems to blunt an exaggerated increase in PAP in acute hypoxia.
Collapse
Affiliation(s)
- Simon Peth
- Medical Clinic VII, Sports Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
38
|
Smith EMD, Baillie JK, Thompson AAR, Irving JB, Porteous D, Webb DJ. Endothelial Nitric Oxide Synthase Polymorphisms Do Not Influence Pulmonary Artery Systolic Pressure at Altitude. High Alt Med Biol 2006; 7:221-7. [PMID: 16978134 DOI: 10.1089/ham.2006.7.221] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous genetic association studies in high-risk subjects have suggested that polymorphisms in the gene encoding endothelial nitric oxide synthase (eNOS) may be associated with susceptibility to high altitude pulmonary edema (HAPE). We aimed to determine whether eNOS polymorphisms influence systolic pulmonary artery pressure measurements (PASP) in healthy trekkers ascending to high altitude. We examined two polymorphisms of the eNOS gene in Caucasian volunteers: Glu298Asp variant and 27-base pair (bp) variable number of tandem repeats polymorphism (27-bp VNTR). In 33 subjects, the relationships between polymorphisms and absolute pulmonary artery systolic pressure measurements (PASP), determined by echocardiography, were assessed at sea level and 1, 3, and 7 days after acute ascent by vehicle transport to 5200 m. As expected, there was a significant rise in pulmonary artery pressure on ascent to high altitude. By contrast, at sea level and at each time point at high altitude, no difference was found in mean PASP according to eNOS polymorphism. We found no association of Glu298Asp and 27-bp VNTR polymorphisms in the eNOS gene with PASP in a population of healthy trekkers at low or high altitude.
Collapse
Affiliation(s)
- Eve M D Smith
- Western Infirmary, 56 Dumbarton Road, Glasgow, Scotland
| | | | | | | | | | | |
Collapse
|
39
|
Ahsan A, Norboo T, Baig MA, Qadar Pasha MA. Simultaneous Selection of the Wild-type Genotypes of the G894T and 4B/ 4A Polymorphisms ofNOS3Associate with High-altitude Adaptation. Ann Hum Genet 2005. [DOI: 10.1046/j.1469-1809.2005.00158.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
León-Velarde F, Maggiorini M, Reeves JT, Aldashev A, Asmus I, Bernardi L, Ge RL, Hackett P, Kobayashi T, Moore LG, Penaloza D, Richalet JP, Roach R, Wu T, Vargas E, Zubieta-Castillo G, Zubieta-Calleja G. Consensus statement on chronic and subacute high altitude diseases. High Alt Med Biol 2005; 6:147-57. [PMID: 16060849 DOI: 10.1089/ham.2005.6.147] [Citation(s) in RCA: 421] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This is an international consensus statement of an ad hoc committee formed by the International Society for Mountain Medicine (ISMM) at the VI World Congress on Mountain Medicine and High Altitude Physiology (Xining, China; 2004) and represents the committee's interpretation of the current knowledge with regard to the most common chronic and subacute high altitude diseases. It has been developed by medical and scientific authorities from the committee experienced in the recognition and prevention of high altitude diseases and is based mainly on published, peer-reviewed articles. It is intended to include all legitimate criteria for choosing to use a specific method or procedure to diagnose or manage high altitude diseases. However, the ISMM recognizes that specific patient care decisions depend on the different geographic circumstances involved in the development of each chronic high altitude disease. These guidelines are established to inform the medical services on site who are directed to solve high altitude health problems about the definition, diagnosis, treatment, and prevention of the most common chronic high altitude diseases. The health problems associated with life at high altitude are well documented, but health policies and procedures often do not reflect current state-of-the-art knowledge. Most of the cases of high altitude diseases are preventable if on-site personnel identify the condition and implement appropriate care.
Collapse
Affiliation(s)
- Fabiola León-Velarde
- Cayetano Heredia University/IIA, Department of Biological and Physiological Sciences, Oxygen Transport Laboratory, Lima 100, Perú.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Basnyat B. High altitude cerebral and pulmonary edema. Travel Med Infect Dis 2005; 3:199-211. [PMID: 17292039 DOI: 10.1016/j.tmaid.2004.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 06/17/2004] [Indexed: 11/17/2022]
Abstract
Altitude illness, which comprises of acute mountain sickness (AMS) and its life threatening complications, high altitude cerebral edema (HACE) and high altitude pulmonary edema (HAPE) is now a well recognized disease process. AMS and HACE are generally thought to be a continuum. Some historical facts about the illness, its new intriguing pathophysiological processes, and clinical picture are discussed here. Although the review deals with both HACE and HAPE, HAPE is covered in greater detail due to the recent important findings related to its pathophysiology and prevention mechanisms. Relevant clinical correlation, the differential diagnosis of altitude sickness for a more sophisticated approach to the disease phenomenon, the possibility of dehydration being a risk factor for altitude sickness, the hypothetical role of angiogenesis in cerebral edema, and the emphasis on some vulnerable groups at high altitude are some of the other newer material discussed in this review. A clear-cut treatment and basic prevention guidelines are included in two panels, and finally the limited literature on the role of genetic factors on susceptibility to altitude sickness is briefly discussed.
Collapse
Affiliation(s)
- Buddha Basnyat
- Nepal International Clinic and Himalayan Rescue Association, Patan Hospital, Lal Durbar, GPO Box: 3596, Kathmandu, Nepal
| |
Collapse
|
42
|
Aldashev AA, Kojonazarov BK, Amatov TA, Sooronbaev TM, Mirrakhimov MM, Morrell NW, Wharton J, Wilkins MR. Phosphodiesterase type 5 and high altitude pulmonary hypertension. Thorax 2005; 60:683-7. [PMID: 16061711 PMCID: PMC1747498 DOI: 10.1136/thx.2005.041954] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND This study explored phosphodiesterase type 5 (PDE5) inhibition as a strategy for treating high altitude pulmonary arterial hypertension (HAPH). METHODS 689 subjects (313 men) of mean (SD) age 44 (0.6) years living above 2500 m were screened for HAPH by medical examination and electrocardiography, and 188 (27%) met the criteria for right ventricular hypertrophy. 44 underwent cardiac catheterisation and 29 (66%) had a resting mean pulmonary artery pressure (PAP) above 25 mmHg. 22 patients with a raised mean PAP were randomised to receive sildenafil (25 or 100 mg) or matching placebo taken 8 hourly for 12 weeks. RESULTS At 3 months, patients on sildenafil 25 mg 8 hourly (n = 9) had a significantly (p = 0.018) lower mean PAP (-6.9 mmHg) at the end of the dosing interval than those on placebo (n = 8) (95% CI -12.4 to -1.3). The treatment effect for sildenafil 100 mg 8 hourly (n = 5) compared with placebo was -6.4 mm Hg (95% CI -12.9 to 0.1). Both doses improved 6 minute walk distance, the lower dose by 45.4 m (95% CI 11.5 to 79.4; p = 0.011) and the higher dose by 40.0 m (95% CI 0.2 to 79.8; p = 0.049). Sildenafil was well tolerated. Necroscopic lung specimens from three subjects with HAPH showed abundant PDE5 in the muscular coat of remodelled pulmonary arterioles. CONCLUSIONS PDE5 is an attractive drug target for the treatment of HAPH and a larger study of the long term effects of PDE5 inhibition in HAPH is warranted.
Collapse
Affiliation(s)
- A A Aldashev
- Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hampl V, Bíbová J, Banasová A, Uhlík J, Miková D, Hnilicková O, Lachmanová V, Herget J. Pulmonary vascular iNOS induction participates in the onset of chronic hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2005; 290:L11-20. [PMID: 16113050 DOI: 10.1152/ajplung.00023.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pathogenesis of hypoxic pulmonary hypertension is initiated by oxidative injury to the pulmonary vascular wall. Because nitric oxide (NO) can contribute to oxidative stress and because the inducible isoform of NO synthase (iNOS) is often upregulated in association with tissue injury, we hypothesized that iNOS-derived NO participates in the pulmonary vascular wall injury at the onset of hypoxic pulmonary hypertension. An effective and selective dose of an iNOS inhibitor, L-N6-(1-iminoethyl)lysine (L-NIL), for chronic peroral treatment was first determined (8 mg/l in drinking water) by measuring exhaled NO concentration and systemic arterial pressure after LPS injection under ketamine+xylazine anesthesia. A separate batch of rats was then exposed to hypoxia (10% O2) and given L-NIL or a nonselective inhibitor of all NO synthases, N(G)-nitro-L-arginine methyl ester (L-NAME, 500 mg/l), in drinking water. Both inhibitors, applied just before and during 1-wk hypoxia, equally reduced pulmonary arterial pressure (PAP) measured under ketamine+xylazine anesthesia. If hypoxia continued for 2 more wk after L-NIL treatment was discontinued, PAP was still lower than in untreated hypoxic controls. Immunostaining of lung vessels showed negligible iNOS presence in control rats, striking iNOS expression after 4 days of hypoxia, and return of iNOS immunostaining toward normally low levels after 20 days of hypoxia. Lung NO production, measured as NO concentration in exhaled air, was markedly elevated as early as on the first day of hypoxia. We conclude that transient iNOS induction in the pulmonary vascular wall at the beginning of chronic hypoxia participates in the pathogenesis of pulmonary hypertension.
Collapse
Affiliation(s)
- Václav Hampl
- Department of Physiology, Charles University Second Medical School, Plzenska 130/221, 150 00 Prague 5, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ricart A, Maristany J, Fort N, Leal C, Pagés T, Viscor G. Effects of sildenafil on the human response to acute hypoxia and exercise. High Alt Med Biol 2005; 6:43-9. [PMID: 15772499 DOI: 10.1089/ham.2005.6.43] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We examined the effects of the 5-phosphodiesterase (5-PDE) inhibitor sildenafil on pulmonary arterial pressure and some oxygen transport and cardiopulmonary parameters in humans during exposure to hypobaric hypoxia at rest and after exercise. In a double-blind study, 100 mg sildenafil or placebo was administered orally to 14 healthy volunteers 45 min before exposure to 5,000 m of simulated altitude. Arterial oxygen saturation (SaO2), heart rate (HR), tidal volume (VT), respiratory rate (RR), left ventricular ejection fraction (EF), and pulmonary arterial pressure (PAP) were measured first at rest in normoxia, at rest and immediately after exercise during hypoxia, and after exercise in normoxia. The increase in systolic PAP produced by hypoxia was significantly decreased by sildenafil at rest from 40.9 +/- 2.6 to 34.9 +/- 3.0 mmHg (-14.8%; p = 0.0046); after exercise, from 49.0 +/- 3.9 to 42.9 +/- 2.6 mmHg (-12.6%; p = 0.003). No significant changes were found in normoxia either at rest or after exercise. Measurements of the effect of sildenafil on exercise capacity during hypoxia did not provide conclusive data: a slight increase in SaO2 was observed with exercise during hypoxia, and sildenafil did not cause significant changes in ventilatory parameters under any condition. Sildenafil diminishes the pulmonary hypertension induced by acute exposure to hypobaric hypoxia at rest and after exercise. Further studies are needed to determine the benefit from this treatment and to further understand the effects of sildenafil on exercise capacity at altitude.
Collapse
Affiliation(s)
- Antoni Ricart
- Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain., Institut d'Estudis de Medicina de Muntanya, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
45
|
Bärtsch P, Mairbäurl H, Maggiorini M, Swenson ER. Physiological aspects of high-altitude pulmonary edema. J Appl Physiol (1985) 2005; 98:1101-10. [PMID: 15703168 DOI: 10.1152/japplphysiol.01167.2004] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-altitude pulmonary edema (HAPE) develops in rapidly ascending nonacclimatized healthy individuals at altitudes above 3,000 m. An excessive rise in pulmonary artery pressure (PAP) preceding edema formation is the crucial pathophysiological factor because drugs that lower PAP prevent HAPE. Measurements of nitric oxide (NO) in exhaled air, of nitrites and nitrates in bronchoalveolar lavage (BAL) fluid, and forearm NO-dependent endothelial function all point to a reduced NO availability in hypoxia as a major cause of the excessive hypoxic PAP rise in HAPE-susceptible individuals. Studies using right heart catheterization or BAL in incipient HAPE have demonstrated that edema is caused by an increased microvascular hydrostatic pressure in the presence of normal left atrial pressure, resulting in leakage of large-molecular-weight proteins and erythrocytes across the alveolarcapillary barrier in the absence of any evidence of inflammation. These studies confirm in humans that high capillary pressure induces a high-permeability-type lung edema in the absence of inflammation, a concept first introduced under the term “stress failure.” Recent studies using microspheres in swine and magnetic resonance imaging in humans strongly support the concept and primacy of nonuniform hypoxic arteriolar vasoconstriction to explain how hypoxic pulmonary vasoconstriction occurring predominantly at the arteriolar level can cause leakage. This compelling but as yet unproven mechanism predicts that edema occurs in areas of high blood flow due to lesser vasoconstriction. The combination of high flow at higher pressure results in pressures, which exceed the structural and dynamic capacity of the alveolar capillary barrier to maintain normal alveolar fluid balance.
Collapse
Affiliation(s)
- Peter Bärtsch
- Department of Internal Medicine VII, Division of Sports Medicine, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
46
|
Abstract
During the last decade, major advances in the understanding of the mechanism of high altitude pulmonary edema (HAPE) have supplemented the landmark work done in the previous 30 years. A brief review of the earlier studies will be described, which will then be followed by a more complete treatise on the subsequent research, which has elucidated the role of accentuated pulmonary hypertension in the development of HAPE. Vasoactive mediators, such as nitric oxide (NO) and endothelin-1, have played a major role in this understanding and have led to preventive and therapeutic interventions. Additionally, the role of the alveolar epithelium and the Na-K ATPase pump in alveolar fluid clearance has also more recently been understood. Direction for future work will be given as well.
Collapse
Affiliation(s)
- Robert B Schoene
- University of California, San Diego School of Medicine, 92103, USA.
| |
Collapse
|
47
|
Abstract
High-altitude illness is the collective term for acute mountain sickness (AMS), high-altitude cerebral oedema (HACE), and high-altitude pulmonary oedema (HAPE). The pathophysiology of these syndromes is not completely understood, although studies have substantially contributed to the current understanding of several areas. These areas include the role and potential mechanisms of brain swelling in AMS and HACE, mechanisms accounting for exaggerated pulmonary hypertension in HAPE, and the role of inflammation and alveolar-fluid clearance in HAPE. Only limited information is available about the genetic basis of high-altitude illness, and no clear associations between gene polymorphisms and susceptibility have been discovered. Gradual ascent will always be the best strategy for preventing high-altitude illness, although chemoprophylaxis may be useful in some situations. Despite investigation of other agents, acetazolamide remains the preferred drug for preventing AMS. The next few years are likely to see many advances in the understanding of the causes and management of high-altitude illness.
Collapse
|
48
|
Ten Harkel ADJ, Blom NA, Ottenkamp J. Isolated unilateral absence of a pulmonary artery: a case report and review of the literature. Chest 2002; 122:1471-7. [PMID: 12377882 DOI: 10.1378/chest.122.4.1471] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVE The purpose of the present study was to determine the symptomatology, diagnostic procedures, and therapeutic strategies of patients with an isolated unilateral absence of a pulmonary artery (UAPA). BACKGROUND Isolated UAPA is a rare anomaly. Some case reports exist, but the best diagnostic and therapeutic approaches to these patients remain unclear. METHODS A retrospective analysis was made of 108 cases reported between 1978 and 2000. The database of the National Library of Medicine (MEDLINE) was used to identify cases that were published in any language from 1978 onward. RESULTS Of the 108 patients identified, 14 were asymptomatic. The median age was 14 years (range, 0.1 to 58 years). Most patients had symptoms such as frequent pulmonary infections (37%), dyspnea or limited exercise tolerance (40%), or hemoptysis (20%). Pulmonary hypertension was present in 44% of the patients. Surgical procedures were performed in 17% of patients, and the overall mortality rate was 7%. CONCLUSION Only a few patients with isolated UAPA remain asymptomatic during follow-up. The diagnosis can be made by chest radiograph, echocardiography, CT scan, and MRI. Hilar arteries can be shown by cardiac catheterization and pulmonary venous wedge angiography. This is important since revascularization may improve pulmonary hypertension. The avoidance of high altitudes and pregnancy may further improve outcomes.
Collapse
Affiliation(s)
- A Derk Jan Ten Harkel
- Department of Pediatric Cardiology, Sophia Children's Hospital, Dr Molewaterplein 60, 3015 GJ Rotterdam, the Netherlands.
| | | | | |
Collapse
|
49
|
Affiliation(s)
- I S Anand
- Department of Cardiology, VA Medical Center and University of Minnesota, Minneapolis, MN 55417, USA.
| |
Collapse
|
50
|
|