1
|
Sánchez-Aguilar M, Ibarra-Lara L, Cano-Martínez A, Soria-Castro E, Castrejón-Téllez V, Pavón N, Osorio-Yáñez C, Díaz-Díaz E, Rubio-Ruíz ME. PPAR Alpha Activation by Clofibrate Alleviates Ischemia/Reperfusion Injury in Metabolic Syndrome Rats by Decreasing Cardiac Inflammation and Remodeling and by Regulating the Atrial Natriuretic Peptide Compensatory Response. Int J Mol Sci 2023; 24:ijms24065321. [PMID: 36982395 PMCID: PMC10049157 DOI: 10.3390/ijms24065321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of factors that increase the risk of developing diabetes, stroke, and heart failure. The pathophysiology of injury by ischemia/reperfusion (I/R) is highly complex and the inflammatory condition plays an important role by increasing matrix remodeling and cardiac apoptosis. Natriuretic peptides (NPs) are cardiac hormones with numerous beneficial effects mainly mediated by a cell surface receptor named atrial natriuretic peptide receptor (ANPr). Although NPs are powerful clinical markers of cardiac failure, their role in I/R is still controversial. Peroxisome proliferator-activated receptor α agonists exert cardiovascular therapeutic actions; however, their effect on the NPs’ signaling pathway has not been extensively studied. Our study provides important insight into the regulation of both ANP and ANPr in the hearts of MetS rats and their association with the inflammatory conditions caused by damage from I/R. Moreover, we show that pre-treatment with clofibrate was able to decrease the inflammatory response that, in turn, decreases myocardial fibrosis, the expression of metalloprotease 2 and apoptosis. Treatment with clofibrate is also associated with a decrease in ANP and ANPr expression.
Collapse
Affiliation(s)
- María Sánchez-Aguilar
- Department of Pharmacology, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (M.S.-A.); (L.I.-L.); (N.P.)
| | - Luz Ibarra-Lara
- Department of Pharmacology, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (M.S.-A.); (L.I.-L.); (N.P.)
| | - Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (A.C.-M.); (V.C.-T.)
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Vicente Castrejón-Téllez
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (A.C.-M.); (V.C.-T.)
| | - Natalia Pavón
- Department of Pharmacology, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (M.S.-A.); (L.I.-L.); (N.P.)
| | - Citlalli Osorio-Yáñez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Ciudad de México 04510, Mexico;
- Laboratorio de Fisiología Cardiovascular y Transplante Renal, Unidad de Investigación UNAM-INCICH, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Eulises Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y de la Nutrición “Salvador Zubirán”, Vasco de Quiroga 15, Sección XVI, Tlalpan, México City 14000, Mexico;
| | - María Esther Rubio-Ruíz
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (A.C.-M.); (V.C.-T.)
- Correspondence:
| |
Collapse
|
2
|
Abstract
OBJECTIVES The goal of this study was to investigate genes associated with essential hypertension from a system perspective, making use of bioinformatic tools to gain insights that are not evident when focusing at a detail-based resolution. METHODS Using various databases (pathways, Genome Wide Association Studies, knockouts etc.), we compiled a set of about 200 genes that play a major role in hypertension and identified the interactions between them. This enabled us to create a protein-protein interaction network graph, from which we identified key elements, based on graph centrality analysis. Enriched gene regulatory elements (transcription factors and microRNAs) were extracted by motif finding techniques and knowledge-based tools. RESULTS We found that the network is composed of modules associated with functions such as water retention, endothelial vasoconstriction, sympathetic activity and others. We identified the transcription factor SP1 and the two microRNAs miR27 (a and b) and miR548c-3p that seem to play a major role in regulating the network as they exert their control over several modules and are not restricted to specific functions. We also noticed that genes involved in metabolic diseases (e.g. insulin) are central to the network. CONCLUSION We view the blood-pressure regulation mechanism as a system-of-systems, composed of several contributing subsystems and pathways rather than a single module. The system is regulated by distributed elements. Understanding this mode of action can lead to a more precise treatment and drug target discovery. Our analysis suggests that insulin plays a primary role in hypertension, highlighting the tight link between essential hypertension and diseases associated with the metabolic syndrome.
Collapse
|
3
|
Santhekadur PK, Kumar DP, Seneshaw M, Mirshahi F, Sanyal AJ. The multifaceted role of natriuretic peptides in metabolic syndrome. Biomed Pharmacother 2017; 92:826-835. [PMID: 28599248 PMCID: PMC5737745 DOI: 10.1016/j.biopha.2017.05.136] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 12/19/2022] Open
Abstract
Due to globalization and sophisticated western and sedentary lifestyle, metabolic syndrome has emerged as a serious public health challenge. Obesity is significantly increasing worldwide because of increased high calorie food intake and decreased physical activity leading to hypertension, dyslipidemia, atherosclerosis, and insulin resistance. Thus, metabolic syndrome constitutes cardiovascular disease, type 2 diabetes, obesity, and nonalcoholic fatty liver disease (NAFLD) and recently some cancers are also considered to be associated with this syndrome. There is increasing evidence of the involvement of natriuretic peptides (NP) in the pathophysiology of metabolic diseases. The natriuretic peptides are cardiac hormones, which are produced in the cardiac atrium, ventricles of the heart and the endothelium. These peptides are involved in the homeostatic control of body water, sodium intake, potassium transport, lipolysis in adipocytes and regulates blood pressure. The three known natriuretic peptide hormones present in the natriuretic system are atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and c-type natriuretic peptide (CNP). These three peptides primarily function as endogenous ligands and mainly act via their membrane receptors such as natriuretic peptide receptor A (NPR-A), natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C) and regulate various physiological and metabolic functions. This review will shed light on the structure and function of natriuretic peptides and their receptors and their role in the metabolic syndrome.
Collapse
Affiliation(s)
- Prasanna K Santhekadur
- McGuire Research Institute, McGuire Veterans Affairs Medical Center, Richmond, VA, USA; Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Divya P Kumar
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mulugeta Seneshaw
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Faridoddin Mirshahi
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Arun J Sanyal
- McGuire Research Institute, McGuire Veterans Affairs Medical Center, Richmond, VA, USA; Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
4
|
Thompson IR, Chand AN, King PJ, Ansorge O, Karavitaki N, Jones CA, Rahmutula D, Gardner DG, Zivkovic V, Wheeler-Jones CP, McGonnell IM, Korbonits M, Anderson RA, Wass JAH, McNeilly AS, Fowkes RC. Expression of guanylyl cyclase-B (GC-B/NPR2) receptors in normal human fetal pituitaries and human pituitary adenomas implicates a role for C-type natriuretic peptide. Endocr Relat Cancer 2012; 19:497-508. [PMID: 22645228 DOI: 10.1530/erc-12-0129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
C-type natriuretic peptide (CNP/Nppc) is expressed at high levels in the anterior pituitary of rats and mice and activates guanylyl cyclase B receptors (GC-B/Npr2) to regulate hormone secretion. Mutations in NPR2/Npr2 can cause achondroplasia, GH deficiency, and female infertility, yet the normal expression profile within the anterior pituitary remains to be established in humans. The current study examined the expression profile and transcriptional regulation of NPR2 and GC-B protein in normal human fetal pituitaries, normal adult pituitaries, and human pituitary adenomas using RT-PCR and immunohistochemistry. Transcriptional regulation of human NPR2 promoter constructs was characterized in anterior pituitary cell lines of gonadotroph, somatolactotroph, and corticotroph origin. NPR2 was detected in all human fetal and adult pituitary samples regardless of age or sex, as well as in all adenoma samples examined regardless of tumor origin. GC-B immunoreactivity was variable in normal pituitary, gonadotrophinomas, and somatotrophinomas. Maximal transcriptional regulation of the NPR2 promoter mapped to a region within -214 bp upstream of the start site in all anterior pituitary cell lines examined. Electrophoretic mobility shift assays revealed that this region contains Sp1/Sp3 response elements. These data are the first to show NPR2 expression in normal human fetal and adult pituitaries and adenomatous pituitary tissue and suggest a role for these receptors in both pituitary development and oncogenesis, introducing a new target to manipulate these processes in pituitary adenomas.
Collapse
Affiliation(s)
- Iain R Thompson
- Endocrine Signalling Group, Veterinary Basic Sciences, University of London, Royal College Street, London NW1 0TU, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Buttgereit J, Qadri F, Monti J, Langenickel TH, Dietz R, Braunewell KH, Bader M. Visinin-like protein 1 regulates natriuretic peptide receptor B in the heart. ACTA ACUST UNITED AC 2010; 161:51-7. [DOI: 10.1016/j.regpep.2009.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/23/2009] [Accepted: 12/30/2009] [Indexed: 11/17/2022]
|
6
|
Involvement of Sp1 binding sequences in basal transcription of the rat fibroblast growth factor-2 gene in neonatal cardiomyocytes. Life Sci 2009; 84:421-7. [DOI: 10.1016/j.lfs.2009.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 12/21/2008] [Accepted: 01/14/2009] [Indexed: 11/17/2022]
|
7
|
Affiliation(s)
- A Mark Richards
- Department of Medicine, Christchurch School of Medicine and Health Sciences, Christchurch, New Zealand.
| |
Collapse
|
8
|
Affiliation(s)
- David G Gardner
- Diabetes Center, University of California at San Francisco, San Francisco, CA 94143-0540, USA.
| | | | | | | |
Collapse
|
9
|
Christoffersen C, Bartels ED, Nielsen LB. Heart specific up-regulation of genes for B-type and C-type natriuretic peptide receptors in diabetic mice. Eur J Clin Invest 2006; 36:69-75. [PMID: 16436087 DOI: 10.1111/j.1365-2362.2006.01596.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diabetes may cause cardiomyopathy characterized by cardiac fibrosis. Recent studies of genetically modified mice have elucidated a role of the natriuretic peptides (NP), type-A and type-B (ANP and BNP), and their common receptor [natriuretic peptide receptor (NPR), type-A] in development of cardiac fibrosis. The role of NP type-C (CNP) and NPR type-B (NPR-B) in the heart is less well established. In this study we examined if diabetes alters heart expression of the genes encoding the NP and its receptors. MATERIALS AND METHODS Cardiac mRNA was quantified by real-time PCR in diabetic streptozotocin (STZ)-treated and ob/ob-mice and nondiabetic control mice. RESULTS The ob/ob-mice with type-II diabetes displayed highly significant increases of the cardiac mRNA expression of NPR-B and NPR-C while the expression levels of NPR-A, ANP, BNP, and CNP mRNA were similar in ob/ob-mice and controls. Mice with STZ-induced type-I diabetes also showed an increase of heart NPR-B mRNA expression at 12 weeks, but not at 3, 6 or 9 weeks after STZ-treatment. The ANP and NPR-C mRNA expressions were only altered after 3 weeks, whereas BNP, CNP and NPR-A mRNA expressions were not altered in STZ-treated-mouse hearts at any of the time points. CONCLUSIONS The results show that diabetes in mice confers increased NPR-B gene expression in the heart, suggesting that increased NPR-B signalling may affect development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- C Christoffersen
- Department of Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| | | | | |
Collapse
|