1
|
Dugbartey GJ. Physiological role of hydrogen sulfide in the kidney and its therapeutic implications for kidney diseases. Biomed Pharmacother 2023; 166:115396. [PMID: 37647689 DOI: 10.1016/j.biopha.2023.115396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
For over three centuries, hydrogen sulfide (H2S) has been known as a toxic and deadly gas at high concentrations, with a distinctive smell of rotten eggs. However, studies over the past two decades have shown that H2S has risen above its historically notorious label and has now received significant scientific attention as an endogenously produced gaseous signaling molecule that participates in cellular homeostasis and influences a myriad of physiological and pathological processes at low concentrations. Its endogenous production is enzymatically regulated, and when dysregulated, contributes to pathogenesis of renal diseases. In addition, exogenous H2S administration has been reported to exhibit important therapeutic characteristics that target multiple molecular pathways in common renal pathologies in which reduced levels of renal and plasma H2S were observed. This review highlights functional anatomy of the kidney and renal production of H2S. The review also discusses current understanding of H2S in renal physiology and seeks to lay the foundation as a new targeted therapeutic agent for renal pathologies such as hypertensive nephropathy, diabetic kidney disease and water balance disorders.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Accra College of Medicine, Magnolia St, JVX5+FX9, East Legon, Accra, Ghana.
| |
Collapse
|
2
|
Elgazzar YA, Abdel-Rahman TT, Sweed HS, Mahmoud RM, Kamel HY. Relationship between homocysteine and cognitive impairment in elderly patients with chronic kidney disease. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2023. [DOI: 10.29333/ejgm/13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
<b>Aim:</b> To investigate the association of serum homocysteine levels with cognitive function in elderly patients with chronic kidney disease (CKD).<br />
<b>Methods:</b> A case-control study on 200 elderlies >60 years who were distributed into two groups: group 1 (cases): 100 patients with CKD and group 2 (controls): 100 subjects who do not have CKD. All subjects undergo comprehensive geriatric assessment, cognitive assessment, and biochemical investigations including serum homocysteine.<br />
<b>Results:</b> The odds ratio of having impaired clinical dementia rating scores is 3.1 for CKD cases compared to controls. CKD patients have almost 3 times the risk of having cognitive impairment [OR=3.1; 95% CI (1.6-6.0)]. The mean serum homocysteine (18.2 μmol/L) among CKD showed a highly statistically significance compared to controls (10.1 μmol/L). Performance of multiple cognitive domains was reduced in association with elevated homocysteine levels. By using linear regression model for the factors independently related to cognitive performance among studied CKD cases, it was found that diabetes mellitus, educational level, age, and serum homocysteine level were strongly associated with consortium to establish a registry for Alzheimer’s disease neuropsychological battery total scores. Respecting the percentage variance explained by each significant variable (R<sup>2</sup>), serum homocysteine level is an independent significant variable predictor with the total scores.<br />
<b>Conclusion:</b> The main features of cognitive impairment in CKD patients are executive dysfunction and memory impairment. Poor cognitive function in CKD patients was related with a higher homocysteine level independently.
Collapse
Affiliation(s)
- Yumna A Elgazzar
- Geriatrics and Gerontology Department, Faculty of Medicine, Helwan University, Helwan, EGYPT
| | - Tomader T Abdel-Rahman
- Geriatrics and Gerontology Department, Faculty of Medicine, Ain Shams University, Cairo, EGYPT
| | - Hala S Sweed
- Geriatrics and Gerontology Department, Faculty of Medicine, Ain Shams University, Cairo, EGYPT
| | - Ramy M Mahmoud
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, EGYPT
| | - Heba Y Kamel
- Geriatrics and Gerontology Department, Faculty of Medicine, Ain Shams University, Cairo, EGYPT
| |
Collapse
|
3
|
Bełtowski J, Kowalczyk-Bołtuć J. Hydrogen sulfide in the experimental models of arterial hypertension. Biochem Pharmacol 2023; 208:115381. [PMID: 36528069 DOI: 10.1016/j.bcp.2022.115381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Hydrogen sulfide (H2S) is the third member of gasotransmitter family together with nitric oxide and carbon monoxide. H2S is involved in the regulation of blood pressure by controlling vascular tone, sympathetic nervous system activity and renal sodium excretion. Moderate age-dependent hypertension and endothelial dysfunction develop in mice with knockout of cystathionine γ-lyase (CSE), the enzyme involved in H2S production in the cardiovascular system. Decreased H2S concentration as well as the expression and activities of H2S-producing enzymes have been observed in most commonly used animal models of hypertension such as spontaneously hypertensive rats, Dahl salt-sensitive rats, chronic administration of NO synthase inhibitors, angiotensin II infusion and two-kidney-one-clip hypertension, the model of renovascular hypertension. Administration of H2S donors decreases blood pressure in these models but has no major effects on blood pressure in normotensive animals. H2S donors not only reduce blood pressure but also end-organ injury such as vascular and myocardial hypertrophy and remodeling, hypertension-associated kidney injury or erectile dysfunction. H2S level and signaling are modulated by some antihypertensive medications as well as natural products with antihypertensive activity such as garlic polysulfides or plant-derived isothiocyanates as well as non-pharmacological interventions. Modifying H2S signaling is the potential novel therapeutic approach for the management of hypertension, however, more experimental clinical studies about the role of H2S in hypertension are required.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland.
| | - Jolanta Kowalczyk-Bołtuć
- Endocrinology and Metabolism Clinic, Internal Medicine Clinic with Hypertension Department, Medical Institute of Rural Health, Lublin, Poland.
| |
Collapse
|
4
|
Klemens CA, Dissanayake LV, Levchenko V, Zietara A, Palygin O, Staruschenko A. Modulation of blood pressure regulatory genes in the Agtrap-Plod1 locus associated with a deletion in Clcn6. Physiol Rep 2022; 10:e15417. [PMID: 35927940 PMCID: PMC9353118 DOI: 10.14814/phy2.15417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023] Open
Abstract
The AGTRAP-PLOD1 locus is a conserved gene cluster containing several blood pressure regulatory genes, including CLCN6, MTHFR, NPPA, and NPPB. Previous work revealed that knockout of Clcn6 on the Dahl Salt-Sensitive (SS) rat background (SS-Clcn6) resulted in lower diastolic blood pressure compared to SS-WT rats. Additionally, a recent study found sickle cell anemia patients with mutations in CLCN6 had improved survival and reduced stroke risk. We investigated whether loss of Clcn6 would delay the mortality of Dahl SS rats on an 8% NaCl (HS) diet. No significant difference in survival was found. The ability of Clcn6 to affect mRNA expression of nearby Mthfr, Nppa, and Nppb genes was also tested. On normal salt (0.4% NaCl, NS) diets, renal Mthfr mRNA and protein expression were significantly increased in the SS-Clcn6 rats. MTHFR reduces homocysteine to methionine, but no differences in circulating homocysteine levels were detected. Nppa mRNA levels in cardiac tissue from SS-Clcn6 rat in both normotensive and hypertensive conditions were significantly reduced compared to SS-WT. Nppb mRNA expression in SS-Clcn6 rats on a NS diet was also substantially decreased. Heightened Mthfr expression would be predicted to be protective; however, diminished Nppa and Nppb expression could be deleterious and by preventing or blunting vasodilation, natriuresis, and diuresis that ought to normally occur to offset blood pressure increases. The conserved nature of this genetic locus in humans and rats suggests more studies are warranted to understand how mutations in and around these genes may be influencing the expression of their neighbors.
Collapse
Affiliation(s)
- Christine A. Klemens
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
- Hypertension and Kidney Research CenterUniversity of South FloridaTampaFloridaUSA
| | - Lashodya V. Dissanayake
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
| | - Adrian Zietara
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Oleg Palygin
- Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
- Hypertension and Kidney Research CenterUniversity of South FloridaTampaFloridaUSA
- James A. Haley Veterans' HospitalTampaFloridaUSA
| |
Collapse
|
5
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
6
|
Li Z, Han Q, Ye H, Li J, Wei X, Zhang R, Huang Q, Xu Y, Liu G, Li B, Yang Q. Serum homocysteine is associated with tubular interstitial lesions at the early stage of IgA nephropathy. BMC Nephrol 2022; 23:78. [PMID: 35196994 PMCID: PMC8867621 DOI: 10.1186/s12882-021-02632-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The association between homocysteine (Hcy) and IgA nephropathy (IgAN) is not well understood. We aimed to investigate the relationship between Hcy and clinicopathologic features in IgAN patients. METHODS A total of 337 IgAN patients and 150 sex- and age- matched healthy controls were enrolled in this single-center retrospective study. According to Hcy ≤ 10 μmol/L or > 10 μmol/L, patients were divided into low and high Hcy groups. Multivariate logistic regression was performed to explore the risk factors for elevated Hcy. RESULTS Serum Hcy was higher in IgAN patients than in healthy controls [11.6 (9.1,15.3) vs. 8.8 (7.5,10.6) μmol/L, P < 0.001], unanimously in the subgroup of 156 patients with a normal estimated glomerular filtration rate (eGFR) (≥ 90 ml/min/1.73 m2) [9.9 (7.6,12.4) vs. 8.8 (7.5,10.6) μmol/L, P < 0.001]. Compared to the low Hcy group, serum creatinine (Scr), blood urine nitrogen (BUN), uric acid (UA), endocapillary hypercellularity (E) and tubular atrophy/interstitial fibrosis lesion (T) were higher in the high Hcy group. Hcy levels were positively correlated with Scr, BUN, UA, 24-h urine protein, and E and T lesions, but negatively correlated with eGFR and superoxide dismutase (SOD). In the subgroup with normal eGFR, patients with higher Hcy were persistent with higher Scr, BUN and T lesions. A multivariate logistic regression model showed that the risk of elevated Hcy in patients with pathological T increased by 2.87-fold. T lesions could better predict high Hcy, with an odds ratio (OR) of 14.20 in the subgroup with normal eGFR. CONCLUSIONS Pathologic T was an independent risk factor associated with elevated Hcy, especially at the early stage of IgAN.
Collapse
Affiliation(s)
- Zizhen Li
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, People's Republic of China
| | - Qianqian Han
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, People's Republic of China
| | - Hongbo Ye
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, People's Republic of China
| | - Jiajia Li
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, People's Republic of China
| | - Xiaona Wei
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, People's Republic of China
| | - Rui Zhang
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, People's Republic of China
| | - Qiuyan Huang
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, People's Republic of China
| | - Yanchun Xu
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, People's Republic of China
| | - Guanxian Liu
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, People's Republic of China
| | - Bin Li
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Yuexiu District, Guangzhou, Guangdong, People's Republic of China.
| | - Qiongqiong Yang
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Niu XN, Wen H, Sun N, Yang Y, Du SH, Xie R, Zhang YN, Li Y, Hong XQ. Estradiol and Hyperhomocysteinemia Are Linked Predominantly Through Part Renal Function Indicators. Front Endocrinol (Lausanne) 2022; 13:817579. [PMID: 35663317 PMCID: PMC9157416 DOI: 10.3389/fendo.2022.817579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Previous studies have shown that estrogen, kidney function, and homocysteine (Hcy) or hyperhomocysteinemia (HHcy) are related to each other. However, the underlying biological mechanisms still remain unclear. We aimed to explore the association between estradiol (E2) and HHcy in the female population, and to further evaluate the mediating role of renal function indicators. METHODS This unmatched case-control study consisted of 1,044 female participants who were 60.60 ± 12.46 years old. Data on general demographic characteristics, such as age, smoking and drinking status, menopause and so on were collected in a personal interview, and laboratory examinations were performed by well-trained personnel. The mediating effect model was applied to analyze the direct and indirect effects of E2 on Hcy. RESULTS The average levels of Hcy and E2 of the participants were 12.6 μmol/L and 14.95 pg/ml. There were statistical differences in renal indexes blood urea nitrogen (BUN), serum creatinine (Scr), uric acid (UA), glomerular filtration rate (GFR) and E2 between HHcy group and non-HHcy group. The logistic regression models showed that UA was risk factor for HHcy (P <0.001), GFR and E2 were protective factors for HHcy after adjusting for confounding factors (P <0.001). The indirect effects of E2 on Hcy through UA and GFR accounted for 14.63 and 18.29% of the total impacts of E2 on Hcy. CONCLUSIONS These data indicated that E2 was a protective factor of HHcy, and the effects of E2 on HHcy may be mediated by renal function indicators UA and GFR.
Collapse
Affiliation(s)
- Xiao Na Niu
- First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, China
| | - He Wen
- Department of Cardiology, The Second Affiliated Hospital of Air Force Military Medical University, Tangdu Hospital, Xi An, China
| | - Nan Sun
- Department of Cardiology, The Second Affiliated Hospital of Air Force Military Medical University, Tangdu Hospital, Xi An, China
| | - Yi Yang
- First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, China
| | - Shi Hong Du
- First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, China
| | - Rong Xie
- First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, China
| | - Yan Nan Zhang
- First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, China
| | - Yan Li
- Department of Cardiology, The Second Affiliated Hospital of Air Force Military Medical University, Tangdu Hospital, Xi An, China
- *Correspondence: Xiu Qin Hong, ; Yan Li,
| | - Xiu Qin Hong
- First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, China
- *Correspondence: Xiu Qin Hong, ; Yan Li,
| |
Collapse
|
8
|
Hu G, Zhu Q, Wang W, Xie D, Chen C, Li PL, Ritter JK, Li N. Collecting duct-specific knockout of sphingosine-1-phosphate receptor 1 aggravates DOCA-salt hypertension in mice. J Hypertens 2021; 39:1559-1566. [PMID: 33534341 PMCID: PMC8249314 DOI: 10.1097/hjh.0000000000002809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We have previously reported that renal medullary sphingosine-1-phosphate (S1P) regulates sodium excretion via the S1P type-1 receptor (S1PR1). As S1PR1 is predominantly expressed in collecting ducts (CD), the present study tested the hypothesis that the CD-S1PR1 pathway plays a critical role in sodium excretion and contributes to salt-sensitive hypertension. METHODS CD-specific S1PR1 knockout mice were generated by crossing aquaporin-2-Cre mice with S1PR1-floxed mice. Renal sodium excretion and arterial pressure were compared between wild type and KO mice in response to high-salt challenges and treatment of deoxycorticosterone acetate (DOCA) salt. RESULTS Protein levels of renal medullary S1PR1 were increased by 100% after high-salt intake, whereas DOCA treatment with high-salt intake blocked the increase of S1PR1 levels. Urinary sodium excretions in knockout mice were decreased by 60% compared with wild type mice after acute intravenous sodium loading (0.84 ± 0.16 vs. 2.22 ± 0.62 μmole/min per g kwt). The pressure natriuresis was impaired in knockout mice compared with wild type mice (4.32 ± 1.04 vs. 8.73 ± 0.19 μmole/min per g kwt). The chronic high-salt intake-induced positive sodium balance was enhanced in knockout mice compared with wild type mice (5.27 ± 0.39 vs. 2.38 ± 1.04 mmol/100 g BW per 24 h). After 10-day DOCA-salt treatment, knockout mice developed more severe hypertension than wild type mice (SBP 142 ± 8 vs. 115 ± 4 mmHg). CONCLUSION The deletion of CD-S1PR1 reduced sodium excretion, promoted sodium retention, and accelerated DOCA-salt-induced salt-sensitive hypertension, suggesting that the CD-S1PR1 signaling is an important antihypertensive pathway by promoting sodium excretion and that impairment of renal medullary S1PR1 may represent a novel mechanism for salt-sensitive hypertension.
Collapse
Affiliation(s)
- Gaizun Hu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qing Zhu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weili Wang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dengpiao Xie
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Chaoling Chen
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
9
|
Jiang P, He Y, Zhao Y, Chen L. Hierarchical Surface Architecture of Hemodialysis Membranes for Eliminating Homocysteine Based on the Multifunctional Role of Pyridoxal 5'-phosphate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36837-36850. [PMID: 32705861 DOI: 10.1021/acsami.0c07090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Patients with end-stage renal disease are prone to developing a complication of hyperhomocysteinemia, manifesting as an elevation of the homocysteine (Hcy) concentration in human plasma. However, Hcy as a protein-bound toxin is barely removed by conventional hemodialysis membranes. Here, we report a novel hemodialysis membrane by preparing a bioactive coating of pyridoxal 5'-phosphate (PLP) and adding biocompatible hyperbranched polyglycerol (HPG) brushes to achieve Hcy removal. The dip-applied PLP coating, a coenzyme with a role in Hcy metabolism, dramatically promoted a decrease in the Hcy concentration in human plasma. Moreover, the aldehyde group of PLP had an intrinsic chemical reactivity toward the terminal amino group to immobilize the HPG brushes on the hemodialysis membrane surface. The hierarchical PLP-HPG layer-functionalized membranes had a high efficacy for eliminating Hcy, with a concentration from the initial stage of 150 μmol/L reduced to a nearly normal level of 20 μmol/L in simulated dialysis. By analyzing the impact of HPG brushes with various chain lengths, we found that HPG brushes with a medium length enabled the PLP coating with the bioactive function of Hcy conversion to additionally protect Hcy-attacked target cells by providing excellent hydrophilicity and a dense enough chain volume overlap of the hyperbranched architecture. Simultaneously, the densely packed HPG brushes generated a maximal steric and hydration barrier that significantly improved biofouling resistance against blood proteins. The optimally functionalized membranes showed a clearance of 83.1% urea and 49.6% lysozyme and a rejection of 96.0% bovine serum albumin. The diversely functionalized PLP-HPG layers demonstrate a potential route for a more integrated hemodialysis membrane that can cope with the urgent issue of hyperhomocysteinemia in clinical hemodialysis therapy.
Collapse
Affiliation(s)
- Peng Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yang He
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
10
|
Abstract
In the past, hydrogen sulfide (H2S) was considered as a poisonous gas or waste of the body. Later, researchers found that H2S-producing enzymes exist in mammals. Moreover, their findings indicated that endogenous H2S was associated with the occurrence of many diseases. Therefore, endogenous H2S is able to participate in the regulation of physiological and pathological functions of the body as a gas signaling molecule. In this review, we summarize the regulation mechanism of endogenous H2S on the body, such as proliferation, apoptosis, migration, angiogenesis, as well as vasodilation/vasoconstriction. Furthermore, we also analyze the relationship between H2S and some chronic diseases, including hypoxic pulmonary hypertension, myocardial infarction, ischemic perfusion kidney injury, diabetes, and chronic intestinal diseases. Finally, we discuss dietary restriction and drugs that target for H2S. Hence, H2S is expected to become a potential target for treatment of these chronic diseases.
Collapse
Affiliation(s)
- Na Yang
- Office of Educational Administration, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Yuan Liu
- Medical College, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Tianping Li
- Office of Educational Administration, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Qinhui Tuo
- Medical College, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
11
|
Wang Z, Zhu Q, Wang W, Hu J, Li PL, Yi F, Li N. Downregulation of microRNA-429 contributes to angiotensin II-induced profibrotic effect in rat kidney. Am J Physiol Renal Physiol 2018; 315:F1536-F1541. [PMID: 30132344 DOI: 10.1152/ajprenal.00478.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MicroRNA (miR) 429 has been shown to inhibit epithelial-to-mesenchymal transition (EMT) in cancer cells. However, the role of miR429 in EMT in non-cancer cells has not been defined, especially in the kidneys. The present study determined whether miR429 participated in angiotensin (ANG) II-induced EMT and fibrogenesis in renal cells. In NRK-52E cells, a rat proximal tubular cell line, incubation of ANG II (10-9 M) for 24 h significantly reduced the level of miR429 by 60% and increased the protein levels of mesenchymal markers α-smooth muscle actin and fibroblast-specific protein-1 by threefold and decreased epithelial marker E-cadherin by 60%, which was blocked by losartan, an AT1 receptor antagonist. Treatment of cells with miR429 inhibitor produced similar changes in the above EMT markers to that induced by ANG II. In cells overexpressed with miR429 transgene, ANG II-induced increases in collagen were abolished. Male Sprague-Dawley rats were infused with ANG II (200 ng·kg-1·min-1) for 12 days, and the levels of miR429 in the kidneys were reduced by 75%. Intrarenal transfection of lentivirus expressing miR429 also reversed the ANG II-induced changes in the EMT markers and collagen in the kidneys. The ANG II-induced increase in urinary albumin was significantly inhibited by miR429 transgene. There was no difference in the increases of blood pressure between ANG II- and ANG II+miR429 transgene-treated rats. These data suggest that ANG II-induced inhibition of miR429 contributes to ANG II-induced transdifferentiation and fibrogenesis in renal cells and that miR429 protects against ANG II-induced kidney damages.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University , Richmond, Virginia.,Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University , Fuzhou , People's Republic of China
| | - Qing Zhu
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University , Richmond, Virginia.,Metabolic Disease Research Center, Guangdong Pharmaceutical University , Guangzhou , People's Republic of China
| | - Weili Wang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University , Richmond, Virginia
| | - Junping Hu
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University , Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University , Richmond, Virginia
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine , Jinan , People's Republic of China
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
12
|
Wan Z, Ren K, Wen W, Zhou D, Liu J, Fan Y, Wu Y, Mu J, Yuan Z, Gao F. Potassium supplementation ameliorates increased plasma homocysteine induced by salt loading in normotensive salt-sensitive subjects. Clin Exp Hypertens 2018; 39:769-773. [PMID: 28682116 DOI: 10.1080/10641963.2017.1334793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The mechanism by which high-salt and low-potassium diet contributes to hypertension remains poorly understood. Plasma homocysteine (Hcys) is recognized as a primary mediator of blood pressure (BP) response to some diets. Therefore, the present study tried to investigate whether plasma Hcys and BP could be regulated by salt loading in normotensive salt-sensitive (SS) persons, and further explored whether potassium supplementation could reverse the effect. We enrolled 47 normotensive subjects, aged 29-65 years. The protocol included 7 days on a low-salt diet (3g/day, NaCl), 7 days on a high-salt diet (18g/day), and then a high-salt diet with potassium supplementation (4.5g/day) for 7 days. After high-salt intake, BP was significantly increased and potassium supplementation lowered it in the SS group. Plasma Hcys were higher in SS subjects than in salt-resistant (SR) subjects after salt loading (34.4 ± 17.0 μmol/L versus 19.16 ± 6.4 μmol/L, P < 0.01). Plasma Hcys in SS subjects was increased on a high-salt diet than on a low-salt diet (34.4 ± 17.0 μmol/L versus 16.5 ± 8.3 μmol/L, P < 0.01), but plasma Hcys was ameliorated by potassium supplementation (34.4 ± 17.0 μmol/L versus 20.9 ± 10.4 μmol/L, P < 0.01). In SS subjects, the change of mean arterial blood pressure (MBP) correlated significantly and positively with the alteration of plasma Hcys during low-salt to high-salt intake and high-salt to high-salt with potassium supplementation (r = 0.75, P < 0.001; r = 0.74, P < 0.001, respectively). Our results indicate that Hcys may partly mediate the impact of high-salt intake and potassium supplementation on BP in SS subjects.
Collapse
Affiliation(s)
- Zhaofei Wan
- a Department of Cardiovascular Medicine , Affiliated Hospital of Yan'an University , Yan'an , Shaanxi , China.,b Department of Cardiovascular Medicine , First Affiliated Hospital of Medical College, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Keyu Ren
- b Department of Cardiovascular Medicine , First Affiliated Hospital of Medical College, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Wen Wen
- b Department of Cardiovascular Medicine , First Affiliated Hospital of Medical College, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Dong Zhou
- b Department of Cardiovascular Medicine , First Affiliated Hospital of Medical College, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Junhui Liu
- b Department of Cardiovascular Medicine , First Affiliated Hospital of Medical College, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Yan Fan
- b Department of Cardiovascular Medicine , First Affiliated Hospital of Medical College, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Yue Wu
- b Department of Cardiovascular Medicine , First Affiliated Hospital of Medical College, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Jianjun Mu
- b Department of Cardiovascular Medicine , First Affiliated Hospital of Medical College, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Zuyi Yuan
- b Department of Cardiovascular Medicine , First Affiliated Hospital of Medical College, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Feng Gao
- a Department of Cardiovascular Medicine , Affiliated Hospital of Yan'an University , Yan'an , Shaanxi , China
| |
Collapse
|
13
|
Chen Y, Zhao L, Jiang S, Hu Z, Hu B, Tong F, Shen R. Cystathionine γ-Lyase Is Involved in the Renoprotective Effect of Brief and Repeated Ischemic Postconditioning After Renal Ischemia/Reperfusion Injury in Diabetes Mellitus. Transplant Proc 2018; 50:1549-1557. [PMID: 29880385 DOI: 10.1016/j.transproceed.2018.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of this study was to determine whether the protective effects of brief and repeated ischemic postconditioning (IPoC) are associated with the modulation of cystathionine γ-lyase (CSE) expression after renal ischemia/reperfusion (I/R) injury in diabetes mellitus (DM). METHODS We subjected diabetic rats to 45 minutes of ischemia followed by reperfusion at 24 hours. Before reperfusion, diabetic rats were treated with 3 cycles of 6 seconds of reperfusion, followed by 6 seconds of ischemia. DL-Propargylglycine (PAG, a CSE inhibitor) was administered to the diabetic rats to investigate its effects on the severity of renal I/R injury in diabetes mellitus (DM). Blood samples and left kidneys were collected for the measurement of blood urea nitrogen (BUN) and serum creatinine (SCr) levels and renal pathologic changes. Western blot and immunochemistry techniques were also performed for the localization of CSE. Levels of superoxidase dismutase (SOD), malonyldialdehyde (MDA), tumor necrosis-alpha (TNF-α), and hydrogen sulfide (H2S) were quantified using commercially available kits. RESULTS The results showed that BUN and SCr levels increased on renal ischemia/reperfusion injury (RI/RI) in the DM group. Diabetic rats treated with IPoC exhibited significantly less renal damage on I/R. Kit measurements showed that IPoC could markedly inhibit the levels of MDA and TNF-α and also improve SOD and H2S levels. Western blot and immunochemistry showed that expression of CSE was downregulated on I/R in the DM group and IPoC upregulated CSE expression, whereas PAG treatment resulted in opposite effects. CONCLUSION Our findings show that brief and repeated IPoC increased the expression of CSE after I/R in DM, and the modulation of CSE may underlie the renoprotective effect of IPoC.
Collapse
Affiliation(s)
- Y Chen
- Clinical Medicine 2016, Jiaxing University Medical College, Jiaxing, Zhejiang Province, PR China
| | - L Zhao
- Clinical Medicine 2016, Jiaxing University Medical College, Jiaxing, Zhejiang Province, PR China
| | - S Jiang
- Clinical Medicine 2016, Jiaxing University Medical College, Jiaxing, Zhejiang Province, PR China
| | - Z Hu
- Clinical Medicine 2016, Jiaxing University Medical College, Jiaxing, Zhejiang Province, PR China
| | - B Hu
- Department of Pathology, Diabetes Institute, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - F Tong
- Department of Pathology, Diabetes Institute, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| | - R Shen
- Department of Pathology, Diabetes Institute, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| |
Collapse
|
14
|
Cao X, Bian JS. The Role of Hydrogen Sulfide in Renal System. Front Pharmacol 2016; 7:385. [PMID: 27803669 PMCID: PMC5067532 DOI: 10.3389/fphar.2016.00385] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/03/2016] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide has gained recognition as the third gaseous signaling molecule after nitric oxide and carbon monoxide. This review surveys the emerging role of H2S in mammalian renal system, with emphasis on both renal physiology and diseases. H2S is produced redundantly by four pathways in kidney, indicating the abundance of this gaseous molecule in the organ. In physiological conditions, H2S was found to regulate the excretory function of the kidney possibly by the inhibitory effect on sodium transporters on renal tubular cells. Likewise, it also influences the release of renin from juxtaglomerular cells and thereby modulates blood pressure. A possible role of H2S as an oxygen sensor has also been discussed, especially at renal medulla. Alternation of H2S level has been implicated in various pathological conditions such as renal ischemia/reperfusion, obstructive nephropathy, diabetic nephropathy, and hypertensive nephropathy. Moreover, H2S donors exhibit broad beneficial effects in renal diseases although a few conflicts need to be resolved. Further research reveals that multiple mechanisms are underlying the protective effects of H2S, including anti-inflammation, anti-oxidation, and anti-apoptosis. In the review, several research directions are also proposed including the role of mitochondrial H2S in renal diseases, H2S delivery to kidney by targeting D-amino acid oxidase/3-mercaptopyruvate sulfurtransferase (DAO/3-MST) pathway, effect of drug-like H2S donors in kidney diseases and understanding the molecular mechanism of H2S. The completion of the studies in these directions will not only improves our understanding of renal H2S functions but may also be critical to translate H2S to be a new therapy for renal diseases.
Collapse
Affiliation(s)
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| |
Collapse
|
15
|
Cystathione gamma lyase/Hydrogen Sulphide Pathway Up Regulation Enhances the Responsiveness of α1A and α1B-Adrenoreceptors in the Kidney of Rats with Left Ventricular Hypertrophy. PLoS One 2016; 11:e0154995. [PMID: 27191852 PMCID: PMC4871510 DOI: 10.1371/journal.pone.0154995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/22/2016] [Indexed: 01/19/2023] Open
Abstract
The purpose of the present study was to investigate the interaction between H2S and NO (nitric oxide) in the kidney and to evaluate its impact on the functional contribution of α1A and α1B-adrenoreceptors subtypes mediating the renal vasoconstriction in the kidney of rats with left ventricular hypertrophy (LVH). In rats the LVH induction was by isoprenaline administration and caffeine in the drinking water together with intraperitoneal administration of H2S. The responsiveness of α1A and α1B to exogenous noradrenaline, phenylephrine and methoxaminein the absence and presence of 5-methylurapidil (5-MeU) and chloroethylclonidine (CEC) was studied. Cystathione gamma lyase (CSE), cystathione β synthase (CBS), 3-mercaptopyruvate sulphar transferase (3-MST) and endothelial nitric oxide synthase (eNOS) were quantified. There was significant up regulation of CSE and eNOS in the LVH-H2S compared to the LVH group (P<0.05). Baseline renal cortical blood perfusion (RCBP) was increased (P<0.05) in the LVH-H2S compared to the LVH group. The responsiveness of α1A-adrenergic receptors to adrenergic agonists was increased (P<0.05) after administration of low dose 5-Methylurapidil in the LVH-H2S group while α1B-adrenergic receptors responsiveness to adrenergic agonists were increased (P<0.05) by both low and high dose chloroethylclonidine in the LVH-H2S group. Treatment of LVH with H2S resulted in up-regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways in the kidney. These up regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways enhanced the responsiveness of α1A and α1B-adrenoreceptors subtypes to adrenergic agonists in LVH-H2S. These findings indicate an important role for H2S in modulating deranged signalling in the renal vasculature resulting from LVH development.
Collapse
|
16
|
Ahmad A, Sattar MA, Rathore HA, Khan SA, Lazhari MI, Afzal S, Hashmi F, Abdullah NA, Johns EJ. A critical review of pharmacological significance of Hydrogen Sulfide in hypertension. Indian J Pharmacol 2016; 47:243-7. [PMID: 26069359 PMCID: PMC4450547 DOI: 10.4103/0253-7613.157106] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/08/2013] [Accepted: 04/20/2015] [Indexed: 11/04/2022] Open
Abstract
In the family of gas transmitters, hydrogen sulfide (H2S) is yet not adequately researched. Known for its rotten egg smell and adverse effects on the brain, lungs, and kidneys for more than 300 years, the vasorelaxant effects of H2S on blood vessel was first observed in 1997. Since then, research continued to explore the possible therapeutic effects of H2S in hypertension, inflammation, pancreatitis, different types of shock, diabetes, and heart failure. However, a considerable amount of efforts are yet needed to elucidate the mechanisms involved in the therapeutic effects of H2S, such as nitric oxide-dependent or independent vasodilation in hypertension and regression of left ventricular hypertrophy. More than a decade of good repute among researchers, H2S research has certain results that need to be clarified or reevaluated. H2S produces its response by multiple modes of action, such as opening the ATP-sensitive potassium channel, angiotensin-converting enzyme inhibition, and calcium channel blockade. H2S is endogenously produced from two sulfur-containing amino acids L-cysteine and L-methionine by the two enzymes cystathionine γ lyase and cystathionine β synthase. Recently, the third enzyme, 3-mercaptopyruvate sulfur transferase, along with cysteine aminotransferase, which is similar to aspartate aminotransferase, has been found to produce H2S in the brain. The H2S has interested researchers, and a great deal of information is being generated every year. This review aims to provide an update on the developments in the research of H2S in hypertension amid the ambiguity in defining the exact role of H2S in hypertension because of insufficient number of research results on this area. This critical review on the role of H2S in hypertension will clarify the gray areas and highlight its future prospects.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Physiology, School of Pharmaceutical Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | - Munavvar A Sattar
- Department of Physiology, School of Pharmaceutical Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | - Hassaan A Rathore
- Department of Physiology, School of Pharmaceutical Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | - Safia Akhtar Khan
- Department of Physiology, School of Pharmaceutical Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | - M I Lazhari
- Department of Physiology, School of Pharmaceutical Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | - Sheryar Afzal
- Department of Physiology, School of Pharmaceutical Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | - F Hashmi
- Department of Physiology, School of Pharmaceutical Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | - Nor A Abdullah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Edward J Johns
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Long Y, Nie J. Homocysteine in Renal Injury. KIDNEY DISEASES 2016; 2:80-7. [PMID: 27536696 DOI: 10.1159/000444900] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/23/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Homocysteine (Hcy) is an intermediate of methionine metabolism. Hyperhomocysteinemia (HHcy) can result from a deficiency in the enzymes or vitamin cofactors required for Hcy metabolism. Patients with renal disease tend to be hyperhomocysteinemic, particularly as renal function declines, although the underlying cause of HHcy in renal disease is not entirely understood. SUMMARY HHcy is considered a risk or pathogenic factor in the progression of chronic kidney disease (CKD) as well as the cardiovascular complications. KEY MESSAGES In this review, we summarize both clinical and experimental findings that reveal the contribution of Hcy as a pathogenic factor to the development of CKD. In addition, we discuss several important mechanisms mediating the pathogenic action of Hcy in the kidney, such as local oxidative stress, endoplasmic reticulum stress, inflammation and hypomethylation.
Collapse
Affiliation(s)
- Yanjun Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guiyang, PR China; Division of Nephrology, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic and Urinary Disease, Guiyang, PR China
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guiyang, PR China
| |
Collapse
|
18
|
Koning AM, Frenay ARS, Leuvenink HG, van Goor H. Hydrogen sulfide in renal physiology, disease and transplantation – The smell of renal protection. Nitric Oxide 2015; 46:37-49. [DOI: 10.1016/j.niox.2015.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 01/08/2023]
|
19
|
Lobb I, Sonke E, Aboalsamh G, Sener A. Hydrogen sulphide and the kidney: Important roles in renal physiology and pathogenesis and treatment of kidney injury and disease. Nitric Oxide 2015; 46:55-65. [DOI: 10.1016/j.niox.2014.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 01/04/2023]
|
20
|
H2S, a novel therapeutic target in renal-associated diseases? Clin Chim Acta 2014; 438:112-8. [PMID: 25149103 DOI: 10.1016/j.cca.2014.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/29/2014] [Accepted: 08/03/2014] [Indexed: 12/19/2022]
Abstract
For more than a century, hydrogen sulfide (H2S) has been regarded as a toxic gas. Recently, the understanding of the biological effects of H2S has been changed. This review surveys the growing recognition of H2S as an endogenous signaling molecule in mammals, with emphasis on its physiological and pathological pathways in the urinary system. This article reviews recent progress of basic and pharmacological researches related to endogenous H2S in urinary system, including the regulatory effects of H2S in the process of antioxidant, inflammation, cellular matrix remodeling and ion channels, and the role of endogenous H2S pathway in the pathogenesis of renal and urogenital disorders.
Collapse
|
21
|
Xia M, Conley SM, Li G, Li PL, Boini KM. Inhibition of hyperhomocysteinemia-induced inflammasome activation and glomerular sclerosis by NLRP3 gene deletion. Cell Physiol Biochem 2014; 34:829-41. [PMID: 25171193 DOI: 10.1159/000363046] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Hyperhomocysteinemia (hHcys) has been reported to initiate Nod-like receptor protein 3 (NLRP3) inflammasome formation and activation in podocytes, leading to glomerular dysfunction and sclerosis. However, it remains unknown whether Nlrp3 gene is critical for the formation and activation of inflammasomes in glomeruli of hHcys mice. METHODS Plasma homocysteine concentration was estimated utilizing HPLC, inflammasome formation and immunofluorescence expression from confocal microscopy, IL-1β production from ELISA. RESULTS Uninephrectomized Nlrp3 knockout (Nlrp3(-/-)) and wild type (Nlrp3(+/+)) and intra renal Nlrp3 shRNA-transfected wild type mice (Nlrp3 shRNA) were fed a folate free (FF) diet or normal chow (ND) for 4 weeks to produce hHcys. The plasma Hcys levels were significantly elevated in both Nlrp3(-/-) and Nlrp3(+/+) mice fed a FF diet compared to ND fed mice. The FF diet significantly increased the colocalization of Nlrp3 with apoptosis-associated speck-like protein (ASC) or caspase-1, caspase-1 activity and IL-1β production in glomeruli of Nlrp3(+/+), but not in Nlrp3(-/-) mice and local Nlrp3 shRNA transfected mice. Correspondingly, the glomerular damage index (GDI) and urinary protein excretion were significantly higher in Nlrp3(+/+) mice compared to ND fed mice. However, the hHcys-induced increase in GDI and proteinuria were significantly lower in Nlrp3(-/-) and local Nlrp3 shRNA transfected mice than in Nlrp3(+/+) mice. Immunocytochemical analysis showed that hHcys decreased expression of podocin and nephrin, but increased desmin expression in glomeruli of Nlrp3(+/+) mice compared to Nlrp3(-/-) mice. CONCLUSION Nlrp3 gene is an essential component of Nlrp3 inflammasomes and that targeting Nlrp3 may be important therapeutic strategy to prevent inflammasome activation and thereby protect podocytes and glomeruli from hHcys-induced injury.
Collapse
Affiliation(s)
- Min Xia
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | | | | | | | | |
Collapse
|
22
|
Wang L, Hou E, Wang Z, Sun N, He L, Chen L, Liang M, Tian Z. Analysis of metabolites in plasma reveals distinct metabolic features between Dahl salt-sensitive rats and consomic SS.13(BN) rats. Biochem Biophys Res Commun 2014; 450:863-9. [PMID: 24971531 DOI: 10.1016/j.bbrc.2014.06.089] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 06/17/2014] [Indexed: 11/26/2022]
Abstract
Salt-sensitive hypertension is a major risk factor for cardiovascular disorders. Our previous proteomic study revealed substantial differences in several proteins between Dahl salt-sensitive (SS) rats and salt-insensitive consomic SS.13(BN) rats. Subsequent experiments indicated a role of fumarase insufficiency in the development of hypertension in SS rats. In the present study, a global metabolic profiling study was performed using gas chromatography/mass spectrometry (GC/MS) in plasma of SS rats (n=9) and SS.13(BN) rats (n=8) on 0.4% NaCl diet, designed to gain further insights into the relationship between alterations in cellular intermediary metabolism and predisposition to hypertension. Principal component analysis of the data sets revealed a clear clustering and separation of metabolic profiles between SS rats and SS.13(BN) rats. 23 differential metabolites were identified (P<0.05). Higher levels of five TCA cycle metabolites, fumarate, cis-aconitate, isocitrate, citrate and succinate, were observed in SS rats. Pyruvate, which connects TCA cycle and glycolysis, was also increased in SS rats. Moreover, lower activity levels of fumarase, aconitase, α-ketoglutarate dehydrogenase and succinyl-CoA synthetase were detected in the heart, liver or skeletal muscles of SS rats. The distinct metabolic features in SS and SS.13(BN) rats indicate abnormalities of TCA cycle in SS rats, which may play a role in predisposing SS rats to developing salt-sensitive hypertension.
Collapse
Affiliation(s)
- Le Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Entai Hou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhengjun Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Na Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liqing He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lan Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
23
|
Akahoshi N, Kamata S, Kubota M, Hishiki T, Nagahata Y, Matsuura T, Yamazaki C, Yoshida Y, Yamada H, Ishizaki Y, Suematsu M, Kasahara T, Ishii I. Neutral aminoaciduria in cystathionine β-synthase-deficient mice, an animal model of homocystinuria. Am J Physiol Renal Physiol 2014; 306:F1462-76. [DOI: 10.1152/ajprenal.00623.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidney is one of the major loci for the expression of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH). While CBS-deficient ( Cbs−/−) mice display homocysteinemia/methioninemia and severe growth retardation, and rarely survive beyond the first 4 wk, CTH-deficient ( Cth−/−) mice show homocysteinemia/cystathioninemia but develop with no apparent abnormality. This study examined renal amino acid reabsorption in those mice. Although both 2-wk-old Cbs−/− and Cth−/− mice had normal renal architecture, their serum/urinary amino acid profiles largely differed from wild-type mice. The most striking feature was marked accumulation of Met and cystathionine in serum/urine/kidney samples of Cbs−/− and Cth−/− mice, respectively. Levels of some neutral amino acids (Val, Leu, Ile, and Tyr) that were not elevated in Cbs−/− serum were highly elevated in Cbs−/− urine, and urinary excretion of other neutral amino acids (except Met) was much higher than expected from their serum levels, demonstrating neutral aminoaciduria in Cbs−/− (not Cth−/−) mice. Because the bulk of neutral amino acids is absorbed via a B0AT1 transporter and Met has the highest substrate affinity for B0AT1 than other neutral amino acids, hypermethioninemia may cause hyperexcretion of neutral amino acids.
Collapse
Affiliation(s)
- Noriyuki Akahoshi
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan; and
| | - Shotaro Kamata
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Masashi Kubota
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Takako Hishiki
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Yoshiko Nagahata
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Tomomi Matsuura
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Chiho Yamazaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yuka Yoshida
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hidenori Yamada
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Makoto Suematsu
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Tadashi Kasahara
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Isao Ishii
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
24
|
|
25
|
Cheng X. Updating the Relationship between Hyperhomocysteinemia Lowering Therapy and Cardiovascular Events. Cardiovasc Ther 2013; 31:e19-26. [PMID: 23082962 DOI: 10.1111/1755-5922.12014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xiaoshu Cheng
- Department of Cardiology; Second Affiliated Hospital; Nanchang University; Nanchang; China
| |
Collapse
|
26
|
TOF-SIMS imaging of halide/thiocyanate anions and hydrogen sulfide in mouse kidney sections using silver-deposited plates. Anal Bioanal Chem 2011; 402:1859-64. [DOI: 10.1007/s00216-011-5647-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/25/2011] [Accepted: 12/07/2011] [Indexed: 11/26/2022]
|
27
|
Zhu Q, Xia M, Wang Z, Li PL, Li N. A novel lipid natriuretic factor in the renal medulla: sphingosine-1-phosphate. Am J Physiol Renal Physiol 2011; 301:F35-41. [PMID: 21478479 DOI: 10.1152/ajprenal.00014.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite formed by phosphorylation of sphingosine. S1P has been indicated to play a significant role in the cardiovascular system. It has been shown that the enzymes for S1P metabolism are expressed in the kidneys. The present study characterized the expression of S1P receptors in the kidneys and determined the role of S1P in the control of renal hemodynamics and sodium excretion. Real-time RT-PCR analyses showed that S1P receptors S1P1, S1P2, and S1P3 were most abundantly expressed in the renal medulla. Immunohistochemistry revealed that all three types of S1P receptors were mainly located in collecting ducts. Intramedullary infusion of FTY720, an S1P agonist, produced a dramatic increase in sodium excretion by twofold and a small but significant increase in medullary blood flow (16%). Administration of W146, an S1P1 antagonist, into the renal medulla blocked the effect of FTY720 and decreased the sodium excretion by 37% when infused alone. The antagonists of S1P2 and S1P3 had no effect. FTY720 produced additive natriuretic effects in combination with different sodium transporter inhibitors except amiloride, an epithelial sodium channel blocker. In the presence of nitric oxide synthase inhibitor l-NAME, FTY720 still increased sodium excretion. These data suggest that S1P produces natriuretic effects via activation of S1P1 in the renal medulla and this natriuretic effect may be through inhibition of epithelial sodium channel, which is nitric oxide independent. It is concluded that S1P is a novel diuretic factor in the renal medulla and may be an important regulator of sodium homeostasis.
Collapse
Affiliation(s)
- Qing Zhu
- Dept. of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
28
|
Bełtowski J. Hypoxia in the renal medulla: implications for hydrogen sulfide signaling. J Pharmacol Exp Ther 2010; 334:358-63. [PMID: 20427475 DOI: 10.1124/jpet.110.166637] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Hydrogen sulfide (H(2)S) is enzymatically generated in mammalian tissues from either L-cysteine or L-homocysteine. H(2)S possesses multiple biological activities, including regulation of vascular tone and blood pressure. Hydrogen sulfide produced in endothelial cells, vascular smooth muscle cells, and perivascular adipose tissue dilates blood vessels by activating ATP-sensitive potassium channels. In addition, H(2)S produced locally within the kidney stimulates natriuresis and diuresis by increasing glomerular filtration and inhibiting tubular sodium reabsorption. Because H(2)S is oxidized in mitochondria in pO(2)-dependent manner and ambient pO(2) is physiologically low in the renal medulla, it is expected that the activity of H(2)S is higher in the medullary region than the cortical region. H(2)S, accumulating in increased amounts in the renal medulla under hypoxic conditions, may function as an oxygen sensor that restores O(2) balance by increasing medullary blood flow, reducing energy requirements for tubular transport, and directly inhibiting mitochondrial respiration. Hypoxia is an important pathogenic factor in many renal diseases, such as ischemia/reperfusion- or nephrotoxin-induced acute renal failure, progression of chronic nephropathies, diabetic nephropathy, and arterial hypertension. Deficiency of endogenous H(2)S may contribute to the pathogenesis of these pathologies by compromising medullary oxygenation, and administration of H(2)S donors may be of therapeutic value in these disorders.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland.
| |
Collapse
|
29
|
Xia M, Chen L, Muh RW, Li PL, Li N. Production and actions of hydrogen sulfide, a novel gaseous bioactive substance, in the kidneys. J Pharmacol Exp Ther 2009; 329:1056-62. [PMID: 19246614 PMCID: PMC2683781 DOI: 10.1124/jpet.108.149963] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/25/2009] [Indexed: 11/22/2022] Open
Abstract
Hydrogen sulfide (H(2)S), a novel endogenous gaseous bioactive substance, has recently been implicated in the regulation of cardiovascular and neuronal functions. However, its role in the control of renal function is unknown. In the present study, incubation of renal tissue homogenates with L-cysteine (L-Cys) (as a substrate) produced H(2)S in a concentration-dependent manner. This H(2)S production was completely abolished by inhibition of both cystathionine beta-synthetase (CBS) and cystathionine gamma-lyase (CGL), two major enzymes for the production of H(2)S, using amino-oxyacetic acid (AOAA), an inhibitor of CBS, and propargylglycine (PPG), an inhibitor of CGL. However, inhibition of CBS or CGL alone induced a small decrease in H(2)S production. In anesthetized Sprague-Dawley rats, intrarenal arterial infusion of an H(2)S donor (NaHS) increased renal blood flow, glomerular filtration rate (GFR), urinary sodium (U(Na) x V), and potassium (U(K) x V) excretion. Consistently, infusion of both AOAA and PPG to inhibit the endogenous H(2)S production decreased GFR, U(Na) x V, and U(K) x V, and either one of these inhibitors alone had no significant effect on renal functions. Infusion of L-Cys into renal artery to increase the endogenous H(2)S production also increased GFR, U(Na) x V, and U(K) x V, which was blocked by AOAA plus PPG. It was shown that H(2)S had both vascular and tubular effects and that the tubular effect of H(2)S might be through inhibition of Na(+)/K(+)/2Cl(-) cotransporter and Na(+)/K(+)/ATPase activity. These results suggest that H(2)S participates in the control of renal function and increases urinary sodium excretion via both vascular and tubular actions in the kidney.
Collapse
Affiliation(s)
- Min Xia
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, P.O. Box 980613, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
30
|
Pin-Lan L, Fan Y, Ningjun L. Hyperhomocysteinemia: association with renal transsulfuration and redox signaling in rats. Clin Chem Lab Med 2008; 45:1688-93. [PMID: 18067450 DOI: 10.1515/cclm.2007.344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite substantial evidence indicating the association of hyperhomocysteinemia (hHcys) and end-stage renal disease (ESRD), the pathogenic role of increased plasma homocysteine (Hcys) levels in the progression of ESRD remains unclear. This review will briefly summarize recent findings regarding the role of hHcys in the development of glomerulosclerosis, the association of hHcys with reduced renal transsulfuration and Hcys-induced changes of redox signaling in the development of glomerulosclerosis in rat kidneys. Based on these results, it is concluded that hHcys is implicated in glomerular sclerosis in hypertension, elevated plasma Hcys in Dahl salt-sensitive (SS) hypertensive rats is due to downregulation of cystathionine beta-synthase (CBS) expression and consequent abnormality of transsulfuration in the kidney compared with normotensive rats. Hcys-induced superoxide (O(2)(*-)) production by activation of NADPH oxidase as a triggering mechanism contributes to the effects of Hcys on the homeostasis of extracellular matrix and consequent sclerosis in the glomeruli, and NADPH oxidase activation by Hcys is associated with enhanced Rac GTPase activity.
Collapse
Affiliation(s)
- Li Pin-Lan
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | |
Collapse
|
31
|
Shankar A, Wang JJ, Chua B, Rochtchina E, Flood V, Mitchell P. Positive association between plasma homocysteine level and chronic kidney disease. Kidney Blood Press Res 2008; 31:55-62. [PMID: 18230914 DOI: 10.1159/000114300] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 12/06/2007] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Increasing experimental evidence, including recently developed animal models, supports a role for homocysteine in the development of chronic kidney disease (CKD). However, relatively few clinical/epidemiological studies have examined this hypothesis in humans. We examined the relationship between plasma homocysteine level and CKD in a population-based study of older Australians. METHODS Community-based study (1992-1994) among 2,609 individuals (58.6% women), aged 49-98 years, free of clinical cardiovascular disease in the Blue Mountains region, west of Sydney, Australia. The main outcome-of-interest was CKD (n = 461), defined as estimated glomerular filtration rate of <60 ml/min/1.73 m(2). RESULTS Higher plasma homocysteine levels were positively associated with CKD, independent of smoking, body mass index, diabetes mellitus, hypertension, cholesterol levels, and other confounders. The multivariable odds ratio (OR; 95% confidence intervals, CI) comparing quartile 4 of plasma homocysteine (>14 micromol/l) to quartile 1 (< or =9 micromol/l) was 10.44 (6.99-15.60), p-trend <0.0001. This association persisted in both men and women separately. The results were also consistent in subgroup analyses by categories of diabetes mellitus and hypertension. CONCLUSIONS Higher plasma homocysteine levels are associated with CKD in a community-based sample of older Australians. This association appeared to be independent of diabetes mellitus and hypertension.
Collapse
Affiliation(s)
- Anoop Shankar
- Division of Epidemiology, Department of Community, Occupational, and Family Medicine, National University of Singapore, Singapore.
| | | | | | | | | | | |
Collapse
|
32
|
Yi F, Li PL. Mechanisms of homocysteine-induced glomerular injury and sclerosis. Am J Nephrol 2007; 28:254-64. [PMID: 17989498 DOI: 10.1159/000110876] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 09/13/2007] [Indexed: 12/25/2022]
Abstract
Hyperhomocysteinemia (hHcys) has been recognized as a critical risk or pathogenic factor in the progression of end-stage renal disease (ESRD) and in the development of cardiovascular complications related to ESRD. Recently, evidence is accumulating that hHcys may directly act on glomerular cells to induce glomerular dysfunction and consequent glomerular sclerosis, leading to ESRD. In this review, we summarize recent findings that reveal the contribution of homocysteine as a pathogenic factor to the development of glomerular sclerosis or ESRD. In addition, we discuss several important mechanisms mediating the pathogenic action of homocysteine in the glomeruli or in the kidney, such as local oxidative stress, endoplasmic reticulum stress, homocysteinylation, and hypomethylation. Understanding these mechanisms may help design new approaches to develop therapeutic strategies for treatment of hHcys-associated end-organ damage and for prevention of deterioration of kidney function and ultimate ESRD in patients with hypertension and diabetes mellitus or even in aged people with hHcys.
Collapse
Affiliation(s)
- Fan Yi
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | |
Collapse
|