1
|
Morris DJ, Brem AS, Odermatt A. Modulation of 11β-hydroxysteroid dehydrogenase functions by the cloud of endogenous metabolites in a local microenvironment: The glycyrrhetinic acid-like factor (GALF) hypothesis. J Steroid Biochem Mol Biol 2021; 214:105988. [PMID: 34464733 DOI: 10.1016/j.jsbmb.2021.105988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/08/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023]
Abstract
11β-Hydroxysteroid dehydrogenase (11β-HSD)-dependent conversion of cortisol to cortisone and corticosterone to 11-dehydrocorticosterone are essential in regulating transcriptional activities of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Inhibition of 11β-HSD by glycyrrhetinic acid metabolites, bioactive components of licorice, causes sodium retention and potassium loss, with hypertension characterized by low renin and aldosterone. Essential hypertension is a major disease, mostly with unknown underlying mechanisms. Here, we discuss a putative mechanism for essential hypertension, the concept that endogenous steroidal compounds acting as glycyrrhetinic acid-like factors (GALFs) inhibit 11β-HSD dehydrogenase, and allow for glucocorticoid-induced MR and GR activation with resulting hypertension. Initially, several metabolites of adrenally produced glucocorticoids and mineralocorticoids were shown to be potent 11β-HSD inhibitors. Such GALFs include modifications in the A-ring and/or at positions 3, 7 and 21 of the steroid backbone. These metabolites may be formed in peripheral tissues or by gut microbiota. More recently, metabolites of 11β-hydroxy-Δ4androstene-3,17-dione and 7-oxygenated oxysterols have been identified as potent 11β-HSD inhibitors. In a living system, 11β-HSD isoforms are not exposed to a single substrate but to several substrates, cofactors, and various inhibitors simultaneously, all at different concentrations depending on physical state, tissue and cell type. We propose that this "cloud" of steroids and steroid-like substances in the microenvironment determines the 11β-HSD-dependent control of MR and GR activity. A dysregulated composition of this cloud of metabolites in the respective microenvironment needs to be taken into account when investigating disease mechanisms, for forms of low renin, low aldosterone hypertension.
Collapse
Affiliation(s)
- David J Morris
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Andrew S Brem
- Division of Kidney Diseases and Hypertension, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
2
|
Devendran S, Méndez-García C, Ridlon JM. Identification and characterization of a 20β-HSDH from the anaerobic gut bacterium Butyricicoccus desmolans ATCC 43058. J Lipid Res 2017; 58:916-925. [PMID: 28314858 PMCID: PMC5408610 DOI: 10.1194/jlr.m074914] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/12/2017] [Indexed: 12/30/2022] Open
Abstract
Members of the gastrointestinal microbiota are known to convert glucocorticoids to androstanes, which are subsequently converted to potent androgens by other members of the gut microbiota or host tissues. Butyricicoccus desmolans and Clostridium cadaveris have previously been reported for steroid-17,20-desmolase and 20β-hydroxysteroid dehydrogenase (HSDH) activities that are responsible for androstane formation from cortisol; however, the genes encoding these enzymes have yet to be reported. In this work, we identified and located a gene encoding 20β-HSDH in both B. desmolans and C. cadaveris The 20β-HSDH of B. desmolans was heterologously overexpressed and purified from Escherichia coli The enzyme was determined to be a homotetramer with subunit molecular mass of 33.8 ± 3.7 kDa. The r20β-HSDH displayed pH optimum in the reductive direction at pH 9.0 and in the oxidative direction at pH 7.0-7.5 with (20β-dihydro)cortisol and NAD(H) as substrates. Cortisol is the preferred substrate with Km , 0.80 ± 0.06 μM; Vmax , 30.36 ± 1.97 μmol·min-1; Kcat , 607 ± 39 μmol·μM-1·min-1; Kcat /Km , 760 ± 7.67. Phylogenetic analysis of the 20β-HSDH from B. desmolans suggested that the 20β-HSDH is found in several Bifidobacterium spp, one of which was shown to express 20β-HSDH activity. Notably, we also identified a novel steroid-17,20-desmolase-elaborating bacterium, Propionimicrobium lymphophilum, a normal inhabitant of the urinary tract.
Collapse
Affiliation(s)
- Saravanan Devendran
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Celia Méndez-García
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
3
|
Hunter RW, Bailey MA. Glucocorticoids and 11β-hydroxysteroid dehydrogenases: mechanisms for hypertension. Curr Opin Pharmacol 2015; 21:105-14. [DOI: 10.1016/j.coph.2015.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 11/26/2022]
|
4
|
Morris DJ, Latif SA, Brem AS. An alternative explanation of hypertension associated with 17α-hydroxylase deficiency syndrome. Steroids 2014; 79:44-8. [PMID: 24176792 DOI: 10.1016/j.steroids.2013.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/18/2013] [Accepted: 10/17/2013] [Indexed: 11/26/2022]
Abstract
The syndrome of 17α-hydroxylase deficiency is due to the inability to synthesize cortisol and is associated with enhanced secretion of both corticosterone and 11-deoxy-corticosterone (DOC). In humans, corticosterone and its 5α-Ring A-reduced metabolites are excreted via the bile into the intestine and transformed by anaerobic bacteria to 21-dehydroxylated products: 11β-OH-progesterone or 11β-OH-(allo)-5α-preganolones (potent inhibitors of 11β-HSD2 and 11β-HSD1 dehydrogenase). Neomycin blocks the formation of these steroid metabolites and can blunt the hypertension in rats induced by either ACTH or corticosterone. 3α,5α-Tetrahydro-corticosterone, 11β-hydroxy-progesterone, and 3α,5α-tetrahydro-11β-hydroxy-progesterone strongly inhibit 11β-HSD2 and 11β-HSD1 dehydrogenase activity; all these compounds are hypertensinogenic when infused in adrenally intact rats. Urine obtained from a patient with 17α-hydroxylase deficiency demonstrated markedly elevated levels of endogenous glycyrrhetinic acid-like factors (GALFs) that inhibit 11β-HSD2 and 11β-HSD1 dehydrogenase activity (>300 times greater, and >400 times greater, respectively, than those in normotensive controls). Thus, in addition to DOC, corticosterone and its 5α-pathway products as well as the 11-oxygenated progesterone derivatives may play a previously unrecognized role in the increased Na(+) retention and BP associated with patients with 17α-hydroxylase deficiency.
Collapse
Affiliation(s)
- David J Morris
- Department of Laboratory Medicine and Pathology, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States.
| | - Syed A Latif
- Department of Laboratory Medicine and Pathology, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Andrew S Brem
- Division of Kidney Diseases and Hypertension, Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
5
|
Hu GX, Liang G, Chu Y, Li X, Lian QQ, Lin H, He Y, Huang Y, Hardy DO, Ge RS. Curcumin derivatives inhibit testicular 17beta-hydroxysteroid dehydrogenase 3. Bioorg Med Chem Lett 2010; 20:2549-51. [PMID: 20346654 DOI: 10.1016/j.bmcl.2010.02.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 11/26/2022]
Abstract
Non-steroidal compounds that inhibit 17beta-hydroxysteroid dehydrogenase isoform 3 (17beta-HSD3), an enzyme catalyzing the final step in testosterone biosynthesis in Leydig cells, are under development for male contraceptive or treatment of androgen dependent diseases including prostate cancer. A series of curcumin analogues with more stable chemical structures were compared to curcumin as inhibitors of 17beta-HSD3 in rat intact Leydig cells as well as rat and human testis microsomes.
Collapse
Affiliation(s)
- Guo-Xin Hu
- School of Pharmacy, Wenzhou Medical College, Wenzhou 325000, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Morris DJ, Latif SA, Lo YH, Abrampah K, Brem AS, Lichtfield WR, Williams GH. Correlation of glycyrrhetinic acid–like factors (kidney 11β-HSD2-GALFs) with urinary free cortisol and plasma renin activity in essential hypertension. ACTA ACUST UNITED AC 2008; 2:286-93. [DOI: 10.1016/j.jash.2008.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/13/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
|
7
|
Morris DJ, Latif SA, Hardy MP, Brem AS. Endogenous inhibitors (GALFs) of 11beta-hydroxysteroid dehydrogenase isoforms 1 and 2: derivatives of adrenally produced corticosterone and cortisol. J Steroid Biochem Mol Biol 2007; 104:161-8. [PMID: 17459698 DOI: 10.1016/j.jsbmb.2007.03.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two isoforms of 11beta-HSD exist; 11beta-HSD1 is bi-directional (the reductase usually being predominant) and 11beta-HSD2 functions as a dehydrogenase, conferring kidney mineralocorticoid specificity. We have previously described endogenous substances in human urine, "glycyrrhetinic acid-like factors (GALFs)", which like licorice, inhibit the bi-directional 11beta-HSD1 enzyme as well as the dehydrogenase reaction of 11beta-HSD2. Many of the more potent GALFs are derived from two major families of adrenal steroids, corticosterone and cortisol. For example, 3alpha5alpha-tetrahydro-corticosterone, its derivative, 3alpha5alpha-tetrahydro-11beta-hydroxy-progesterone (produced by 21-deoxygenation of corticosterone in intestinal flora); 3alpha5alpha-tetrahydro-11beta-hydroxy-testosterone (produced by side chain cleavage of cortisol); are potent inhibitors of 11beta-HSD1 and 11beta-HSD2-dehydrogenase, with IC50's in range 0.26-3.0 microM, whereas their 11-keto-3alpha5alpha-tetrahydro-derivatives inhibit 11beta-HSD1 reductase, with IC50's in range 0.7-0.8 microM (their 3alpha5beta-derivatives being completely inactive). Inhibitors of 11beta-HSD2 increase local cortisol levels, permitting it to act as a mineralocorticoid in kidney. Inhibitors of 11beta-HSD1 dehydrogenase/11beta-HSD1 reductase serve to adjust the set point of local deactivation/reactivation of cortisol in vascular and other glucocorticoid target tissues, including adipose, vascular, adrenal tissue, and the eye. These adrenally derived 11-oxygenated C21- and C19 -steroidal substances may serve as 11beta-HSD1- or 11beta-HSD2-GALFs. We conclude that adrenally derived products are likely regulators of local cortisol bioactivity in humans.
Collapse
Affiliation(s)
- D J Morris
- Brown University Medical School, Providence, RI 02906, USA.
| | | | | | | |
Collapse
|
8
|
Abstract
Corticosteroids are critically involved in blood pressure regulation. Lack of adrenal steroids in Addison's disease causes life-threatening hypotension, whereas glucocorticoid excess in Cushing's syndrome invariably results in high blood pressure. At a pre-receptor level, glucocorticoid action is modulated by 11beta-hydroxysteroid dehydrogenases (11beta-HSDs). 11Beta-HSD1 activates cortisone to cortisol to facilitate glucocorticoid receptor (GR)-mediated action. By contrast, 11beta-HSD2 plays a pivotal role in aldosterone target tissues where it catalyses the opposite reaction (i.e. inactivation of cortisol to cortisone) to prevent activation of the mineralocorticoid receptor (MR) by cortisol. Mutations in the 11beta-HSD2 gene cause a rare form of inherited hypertension, the syndrome of apparent mineralocorticoid excess (AME), in which cortisol activates the MR resulting in severe hypertension and hypokalemia. Ingestion of competitive inhibitors of 11beta-HSD2 such as liquorice and carbenoxolone result in a similar but milder clinical phenotype. Epidemiological data suggests that polymorphic variability in the HSD11B2 gene determines salt sensitivity in the general population, which is a key predisposing factor to adult onset hypertension in some patients. Extrarenal sites of glucocorticoid action and metabolism that might impact on blood pressure include the vasculature and the central nervous system. Intriguingly, increased exposure to glucocorticoids during fetal life promotes high blood pressure in adulthood suggesting an early programming effect. Thus, metabolism and action in many peripheral tissues might contribute to the pathophysiology of human hypertension.
Collapse
Affiliation(s)
- Fabian Hammer
- Division of Medical Sciences, University of Birmingham, Institute of Biomedical Research, Birmingham B15 2TT, UK
| | | |
Collapse
|
9
|
|
10
|
Kong S, McKinnon RA, Mojarrabi B, Stupans I. Absence of type 1 11beta-hydroxysteroid dehydrogenase enzyme in koala liver. Comp Biochem Physiol C Toxicol Pharmacol 2002; 131:39-50. [PMID: 11796324 DOI: 10.1016/s1532-0456(01)00278-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The 11beta-hydroxysteroid dehydrogenases (11beta-HSDs) interconvert 11beta-hydroxysteroids such as cortisol into 11-oxosteroids such as cortisone. In most mammals, 11beta-HSD 1 is expressed predominantly in the liver and is active in both the oxidative (cortisol to cortisone) and dehydrogenase (cortisone to cortisol) directions, whilst 11beta-HSD 2 is expressed predominantly in the kidney and functions as a pure oxidative enzyme. We have investigated 11beta-HSD 1 activity in the Australian koala (Phascolarctos cinereus) and have found no activity (either reductive or oxidative) in hepatic microsomes. Immunoblot analysis of koala hepatic microsomes, using an 11beta-HSD 1 antibody raised against the mouse enzyme, failed to identify immunoreactive protein. Reverse transcriptase-polymerase chain reaction (RT-PCR) of koala liver mRNA and genomic PCR using primers designed against highly conserved regions of 11beta-HSD 1 nucleotide sequences were also negative. Furthermore, Southern and Northern blot analysis of koala genomic DNA and mRNA, respectively, confirmed that the koala lacks the 11beta-HSD 1 gene and gene transcript. These results support the fact that the lack of hepatic 11beta-HSD 1 activity in the koala is due to the absence of the 11beta-HSD 1 gene, and this absence is novel among mammalian species studied to date.
Collapse
Affiliation(s)
- Sandra Kong
- Centre for Pharmaceutical Research, School of Pharmaceutical, Molecular and Biomedical Sciences, University of South Australia, North Terrace, SA 5000, Adelaide, Australia
| | | | | | | |
Collapse
|
11
|
Liu YJ, Nakagawa Y, Toya K, Wang Y, Saegusa H, Nakanishi T, Ohzeki T. Effects of spironolactone on systolic blood pressure in experimental diabetic rats. Kidney Int 2000; 57:2064-71. [PMID: 10792625 DOI: 10.1046/j.1523-1755.2000.00055.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mineralocorticoid hormones, which maintain electrolyte balance and blood pressure, are thought to be associated not only with the expression of renal 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), but also with that of intracellular mineralocorticoid receptors (MRs). The present study was designed to test whether the mineralocorticoid action of glucocorticoid corticosterone on renal MR is involved in the development of diabetes-associated hypertension by measuring the alterations of renal 11beta-HSD2. METHOD We measured the mean systolic blood pressure, renal 11beta-HSD1, and mRNA levels in streptozotocin (STZ)-induced diabetic rats that received spironolactone, insulin, or no treatment, and in nondiabetic controls that received spironolactone. RESULTS Four weeks after an injection of STZ, the renal 11beta-HSD2 and mRNA levels were significantly lower in diabetic rats than in control rats, and the mean systolic blood pressure was 14.8% higher in diabetic rats than in controls. Subcutaneous injections of spironolactone into diabetic rats for three weeks partially reversed the decrease in renal 11beta-HSD2 activity and gene expression, and prevented the mean systolic blood pressure elevation. Spironolactone treatment for one week also resulted in a significant reduction in mean systolic blood pressure during the development of diabetic hypertension. However, treatment with STZ did not significantly decrease the renal 11beta-HSD1 activity and mRNA expression, and spironolactone treatment did not exert a significant effect on this enzyme in STZ-induced diabetic rats. CONCLUSION In the development of diabetes-induced hypertension, the effect of spironolactone on mean systolic blood pressure may be associated with the mineralocorticoid effects of corticosterone on renal MR, as well as an alteration of renal 11beta-HSD2 activity and its mRNA expression in insulin-dependent diabetic rats.
Collapse
Affiliation(s)
- Y J Liu
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ferrari P, Krozowski Z. Role of the 11beta-hydroxysteroid dehydrogenase type 2 in blood pressure regulation. Kidney Int 2000; 57:1374-81. [PMID: 10760070 DOI: 10.1046/j.1523-1755.2000.00978.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The renal 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2) enzyme inactivates 11-hydroxy steroids in the kidney, thus protecting the nonselective mineralocorticoid receptor (MR) from occupation by glucocorticoids. The gene is highly expressed in all sodium-transporting epithelia, but also in human placenta, pancreas, and thyroid. Mutations in the HSD11B2 gene cause a rare monogenic juvenile hypertensive syndrome called apparent mineralocorticoid excess (AME). In AME, compromised 11betaHSD2 enzyme activity results in overstimulation of the MR by cortisol, causing sodium retention, hypokalemia, and salt-dependent hypertension. Recent evidence suggests a role of the 11betaHSD2 in essential hypertension. We found hypertension with no other characteristic signs of AME in the heterozygous father of a child with AME and in a girl with a homozygous gene mutation resulting in a mild deficiency of 11betaHSD2. Moreover, some studies in patients with essential hypertension showed a prolonged half-life of cortisol and an increased ratio of urinary cortisol to cortisone metabolites, suggesting a deficient 11betaHSD2 activity. These abnormalities may be genetically determined. A genetic association of a microsatellite flanking the HSD11B2 gene and hypertension in black patients with end-stage renal disease has been reported. We recently analyzed a CA-repeat allele polymorphism in unselected patients with essential hypertension, but did not find any correlation between this marker and blood pressure. However, we did find an association between this polymorphic CA microsatellite marker and salt sensitivity. Moreover, the activity of the 11betaHSD2, as shown by elevated mean ratios of urinary cortisol to cortisone metabolites, was decreased in salt-sensitive compared with salt-resistant subjects. These findings indicate that variants of the HSD11B2 gene contribute to the enhanced blood pressure response to salt in humans.
Collapse
Affiliation(s)
- P Ferrari
- Division of Nephrology and Hypertension, University of Berne, Berne, Switzerland.
| | | |
Collapse
|
13
|
Abstract
The 11beta-hydroxysteroid dehydrogenase enzymes (11beta-HSD) interconvert cortisol and cortisone in man, and corticosterone and 11-dehydrocorticosterone in rodents. Two distantly related congeners have been isolated and conserved domains identified by multiple alignment and hydrophobic cluster analysis. 11Beta-HSD1 in the liver acts mainly as an oxoreductase maintaining circulating glucocorticoid levels. Gene deletion studies suggest it plays an important role in providing elevated local concentrations of hormone. In contrast, 11beta-HSD2 inactivates glucocorticoids and is pivotal in the distal tubule where it protects the mineralocorticoid receptor from occupation, thus endowing specificity on a non-selective receptor. Mutations in 11beta-HSD2 result in sodium retention and severe hypertension, account for the syndrome of apparent mineralocorticoid excess and may be responsible for other forms of hypertension. 11Beta-HSD2 is also present in the placenta where it protects the fetus from high circulating levels of maternal glucocorticoids. Attenuated placental 11beta-HSD2 activity has recently been shown to be associated with intrauterine growth retardation. 11Beta-HSD2 may also play important roles in pulmonary physiology and breast cancer. This review focuses on recent developments.
Collapse
Affiliation(s)
- Z Krozowski
- Laboratory of Molecular Hypertension, Baker Medical Research Institute, Melbourne, Australia.
| |
Collapse
|
14
|
Takeda Y, Inaba S, Furukawa K, Miyamori I. Renal 11beta-hydroxysteroid dehydrogenase in genetically salt-sensitive hypertensive rats. Hypertension 1998; 32:1077-82. [PMID: 9856977 DOI: 10.1161/01.hyp.32.6.1077] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
-Renal 11beta-hydroxysteroid dehydrogenase II (11beta-HSDII) converts glucocorticoids into inactive metabolites and plays an important role in controlling blood pressure and sodium retention. To examine whether this enzyme may be involved in the pathophysiology of salt-sensitive hypertension, we determined 11beta-HSDII activity and mRNA levels in the blood vessel and kidney of Dahl Iwai salt-sensitive (DS) rats and Dahl Iwai salt-resistant (DR) rats. Urinary free corticosterone:free 11-dehydrocorticosterone ratio was measured to estimate renal 11beta-HSD activity. Vascular 11beta-HSDII activity was expressed as percent conversion of [3H]corticosterone to [3H]11-dehydrocorticosterone in homogenized mesenteric arteries. 11beta-HSDII mRNA was estimated with the use of competitive polymerase chain reaction (PCR). Renal 11beta-HSDII activity and mRNA levels were significantly decreased in 8- and 12-week-old high salt DS rats compared with DR, Sprague-Dawley (SD), or low salt DS rats of the same age. Decreased 11beta-HSDII activity and mRNA levels in mesenteric arteries were observed in 8- and 12-week-old high salt DS rats. Urinary excretion of 11beta-HSDII inhibitory factors was measured by inhibition of enzyme activity in microsomes from human kidney. The urinary inhibitors were significantly increased in 8- and 12-week-old high salt DS rats compared with DR, SD, or low salt DS rats of the same age. There were no significant differences in 11beta-HSDII activity and mRNA levels in mesenteric arteries and kidney or in urinary inhibitors between 4-week-old DS, DR, and SD rats. These results indicate that 11beta-HSDII may play a role in salt sensitivity and development of hypertension in the DS rat.
Collapse
Affiliation(s)
- Y Takeda
- Second Department of Internal Medicine and Department of Health Sciences, School of Medicine, Kanazawa University, Japan.
| | | | | | | |
Collapse
|
15
|
Baker ME. Evolution of mammalian 11beta- and 17beta-hydroxysteroid dehydrogenases-type 2 and retinol dehydrogenases from ancestors in Caenorhabditis elegans and evidence for horizontal transfer of a eukaryote dehydrogenase to E. coli. J Steroid Biochem Mol Biol 1998; 66:355-63. [PMID: 9749841 DOI: 10.1016/s0960-0760(98)00064-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Physiological responses due to steroid hormones and retinoids are regulated by their cognate receptors and dehydrogenases. The origins of either regulatory mechanism are not fully understood. Here we examine the origins of the human 11beta-hydroxysteroid dehydrogenase-type 2, which regulates access of glucocorticoids to cells, and 17beta-hydroxysteroid dehydrogenase-type 2, which regulates access of androgens and estrogens to cells. Sequence comparisons trace their ancestry to homologs in Caenorhabditis elegans. These C. elegans proteins most closely resemble mammalian all-trans and 11-cis-retinol dehydrogenases. The similarity is sufficient -37% to 43% identity to suggest that one or more of the C. elegans homologs metabolizes a retinoid. Receptors for retinoids, but not for androgens, estrogens or glucocorticoids have been identified in C. elegans, suggesting that retinoid-mediated gene transcription is more ancient than that for adrenal and sex steroids. We propose that the hydroxysteroid dehydrogenase-type 2 mechanism for regulating the androgen, estrogen and glucocorticoid concentrations in mammals descended from that for regulating retinoid concentrations. Interestingly, E. coli contains a protein with strong sequence similarity to mammalian retinol dehydrogenases. Sequence comparisons and phylogenetic analysis indicate that the E. coli protein may be an example of horizontal transfer from a eukaryote ancestor.
Collapse
Affiliation(s)
- M E Baker
- Department of Medicine, University of California, San Diego, La Jolla 92093-0623, USA.
| |
Collapse
|
16
|
Liu YJ, Nakagawa Y, Ohzeki T. Gene expression of 11beta-hydroxysteroid dehydrogenase type 1 and type 2 in the kidneys of insulin-dependent diabetic rats. Hypertension 1998; 31:885-9. [PMID: 9495277 DOI: 10.1161/01.hyp.31.3.885] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The presence of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) activity in the kidney has been suggested to be important in the regulation of glucocorticoid-induced disorders of electrolyte balance and the control of blood pressure. To assess the possible effect of 11beta-HSD isoforms in diabetes-related hypertension, we measured the mean systolic blood pressure and the 11beta-HSD activity and mRNA levels for both 11beta-HSD1 and 11beta-HSD2 in the kidney of streptozotocin (STZ)-diabetic female rats. Three weeks after injection of STZ (65 mg/kg), the mean systolic blood pressure of diabetic rats was elevated 13.6% above that of normal rats (P<.01). The renal 11beta-HSD2 activity and level of mRNA expression were significantly decreased in diabetic rats (P<.01). However, the treatment of rats with STZ did not decrease the levels of renal 11beta-HSD1 activity and mRNA expression in diabetic rats. Insulin administered subcutaneously to diabetic rats for 2 weeks completely reversed the decrease in renal 11beta-HSD2 activity and gene expression and prevented the elevation in blood pressure in the diabetic rat. These results indicate that alteration of renal 11beta-HSD2 activity and gene expression may be primarily responsible for the changes in blood pressure of STZ-diabetic rats after early treatment with insulin.
Collapse
Affiliation(s)
- Y J Liu
- Department of Pediatrics, Hamamatsu University School of Medicine, Japan
| | | | | |
Collapse
|
17
|
|