1
|
Becker BK, Feagans AC, Chen D, Kasztan M, Jin C, Speed JS, Pollock JS, Pollock DM. Renal denervation attenuates hypertension but not salt sensitivity in ET B receptor-deficient rats. Am J Physiol Regul Integr Comp Physiol 2017; 313:R425-R437. [PMID: 28701323 DOI: 10.1152/ajpregu.00174.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/16/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
Hypertension is a prevalent pathology that increases risk for numerous cardiovascular diseases. Because the etiology of hypertension varies across patients, specific and effective therapeutic approaches are needed. The role of renal sympathetic nerves is established in numerous forms of hypertension, but their contribution to salt sensitivity and interaction with factors such as endothelin-1 are poorly understood. Rats deficient of functional ETB receptors (ETB-def) on all tissues except sympathetic nerves are hypertensive and exhibit salt-sensitive increases in blood pressure. We hypothesized that renal sympathetic nerves contribute to hypertension and salt sensitivity in ETB-def rats. The hypothesis was tested through bilateral renal sympathetic nerve denervation and measuring blood pressure during normal salt (0.49% NaCl) and high-salt (4.0% NaCl) diets. Denervation reduced mean arterial pressure in ETB-def rats compared with sham-operated controls by 12 ± 3 (SE) mmHg; however, denervation did not affect the increase in blood pressure after 2 wk of high-salt diet (+19 ± 3 vs. +16 ± 3 mmHg relative to normal salt diet; denervated vs. sham, respectively). Denervation reduced cardiac sympathetic-to-parasympathetic tone [low frequency-high frequency (LF/HF)] during normal salt diet and vasomotor LF/HF tone during high-salt diet in ETB-def rats. We conclude that the renal sympathetic nerves contribute to the hypertension but not to salt sensitivity of ETB-def rats.
Collapse
Affiliation(s)
- Bryan K Becker
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amanda C Feagans
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daian Chen
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata Kasztan
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chunhua Jin
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua S Speed
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
2
|
Stocker SD, Lang SM, Simmonds SS, Wenner MM, Farquhar WB. Cerebrospinal Fluid Hypernatremia Elevates Sympathetic Nerve Activity and Blood Pressure via the Rostral Ventrolateral Medulla. Hypertension 2015; 66:1184-90. [PMID: 26416846 DOI: 10.1161/hypertensionaha.115.05936] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023]
Abstract
Elevated NaCl concentrations of the cerebrospinal fluid increase sympathetic nerve activity (SNA) in salt-sensitive hypertension. Neurons of the rostral ventrolateral medulla (RVLM) play a pivotal role in the regulation of SNA and receive mono- or polysynaptic inputs from several hypothalamic structures responsive to hypernatremia. Therefore, the present study investigated the contribution of RVLM neurons to the SNA and pressor response to cerebrospinal fluid hypernatremia. Lateral ventricle infusion of 0.15 mol/L, 0.6 mol/L, and 1.0 mol/L NaCl (5 µL/10 minutes) produced concentration-dependent increases in lumbar SNA, adrenal SNA, and arterial blood pressure, despite no change in splanchnic SNA and a decrease in renal SNA. Ganglionic blockade with chlorisondamine or acute lesion of the lamina terminalis blocked or significantly attenuated these responses, respectively. RVLM microinjection of the gamma-aminobutyric acid (GABAA) agonist muscimol abolished the sympathoexcitatory response to intracerebroventricular infusion of 1 mol/L NaCl. Furthermore, blockade of ionotropic glutamate, but not angiotensin II type 1, receptors significantly attenuated the increase in lumbar SNA, adrenal SNA, and arterial blood pressure. Finally, single-unit recordings of spinally projecting RVLM neurons revealed 3 distinct populations based on discharge responses to intracerebroventricular infusion of 1 mol/L NaCl: type I excited (46%; 11/24), type II inhibited (37%; 9/24), and type III no change (17%; 4/24). All neurons with slow conduction velocities were type I cells. Collectively, these findings suggest that acute increases in cerebrospinal fluid NaCl concentrations selectively activate a discrete population of RVLM neurons through glutamate receptor activation to increase SNA and arterial blood pressure.
Collapse
Affiliation(s)
- Sean D Stocker
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark.
| | - Susan M Lang
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| | - Sarah S Simmonds
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| | - Megan M Wenner
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| | - William B Farquhar
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| |
Collapse
|
3
|
Huang BS, Ahmadi S, Ahmad M, White RA, Leenen FHH. Central neuronal activation and pressor responses induced by circulating ANG II: role of the brain aldosterone-“ouabain” pathway. Am J Physiol Heart Circ Physiol 2010; 299:H422-30. [DOI: 10.1152/ajpheart.00256.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increase in plasma ANG II causes neuronal activation in hypothalamic nuclei and a slow pressor response, presumably by increasing sympathetic drive. We evaluated whether the activation of a neuromodulatory pathway, involving aldosterone and “ouabain,” is involved in these responses. In Wistar rats, the subcutaneous infusion of ANG II at 150 and 500 ng·kg−1·min−1 gradually increased blood pressure up to 60 mmHg at the highest dose. ANG II at 500 ng·kg−1·min−1 increased plasma ANG II by 4-fold, plasma aldosterone by 25-fold, and hypothalamic aldosterone by 3-fold. The intracerebroventricular infusion of an aldosterone synthase (AS) inhibitor prevented the ANG II-induced increase in hypothalamic aldosterone without affecting the increase in plasma aldosterone. Neuronal activity, as assessed by Fra-like immunoreactivity, increased transiently in the subfornical organ (SFO) but progressively in the paraventricular nucleus (PVN) and supraoptic nucleus (SON). The central infusion of the AS inhibitor or a mineralocorticoid receptor blocker markedly attenuated the ANG II-induced neuronal activation in the PVN but not in the SON. Pressor responses to ANG II at 150 ng·kg−1·min−1 were abolished by an intracerebroventricular infusion of the AS inhibitor. Pressor responses to ANG II at 500 ng·kg−1·min−1 were attenuated by the central infusion of the AS inhibitor or the mineralocorticoid receptor blocker by 70–80% and by Digibind (to bind “ouabain”) by 50%. These results suggest a novel central nervous system mechanism for the ANG II-induced slow pressor response, i.e., circulating ANG II activates the SFO, leading to the direct activation of the PVN and SON, and, in addition, via aldosterone-dependent amplifying mechanisms, causes sustained activation of the PVN and thereby hypertension.
Collapse
Affiliation(s)
- Bing S. Huang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Sara Ahmadi
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Monir Ahmad
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Roselyn A. White
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Frans H. H. Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Tan J, Wang H, Leenen FHH. Increases in brain and cardiac AT1 receptor and ACE densities after myocardial infarct in rats. Am J Physiol Heart Circ Physiol 2003; 286:H1665-71. [PMID: 14693687 DOI: 10.1152/ajpheart.00858.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the brain, ouabain-like compounds (OLC) and the reninangiotensin system (RAS) contribute to sympathetic hyperactivity in rats after myocardial infarction (MI). This study aimed to evaluate changes in components of the central vs. the peripheral RAS. Angiotensin-converting enzyme (ACE) and angiotensin type 1 (AT1) receptor binding densities were determined by measuring 125I-labeled 351A and 125I-labeled ANG II binding 4 and 8 wk after MI. In the brain, ACE and AT1 receptor binding increased 8-15% in the subfornical organ, 14-22% in the organum vasculosum laminae terminalis, 20-34% in the paraventricular nucleus, and 13-15% in the median preoptic nucleus. In the heart, the greatest increase in ACE and AT1 receptor binding occurred at the infarct scar (approximately 10-fold) and the least in the right ventricle (2-fold). In kidneys, ACE and AT1 receptor binding decreased 10-15%. After intracerebroventricular infusion of Fab fragments to block brain OLC from 0.5 to 4 wk after MI, increases in ACE and AT1 receptors in the subfornical organ, organum vasculosum laminae terminalis, paraventricular nucleus, and medial preoptic nucleus were markedly inhibited, and ACE and AT1 receptor densities in the heart increased less (6-fold in the infarct scar). In kidneys, decreases in ACE and AT1 receptor binding were absent after treatment with Fab fragments. These results demonstrate that ACE and AT1 receptor binding densities increase not only in the heart but also in relevant areas of the brain of rats after MI. Brain OLC appears to play a major role in activation of brain RAS in rats after MI and, to a modest degree, in activation of the cardiac RAS.
Collapse
Affiliation(s)
- Junhui Tan
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | | | | |
Collapse
|
5
|
Veerasingham SJ, Vahid-Ansari F, Leenen FH. Neuronal Fos-like immunoreactivity in ouabain-induced hypertension. Brain Res 2000; 876:17-21. [PMID: 10973588 DOI: 10.1016/s0006-8993(00)02591-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In normotensive Wistar rats, systemic administration of exogenous ouabain for 10 days or more induces hypertension, presumably through central mechanisms. To identify which neuronal populations may be involved, we assessed Fos-like immunoreactivity (FLI) using an antibody that recognizes the protein products of the fos family comprising Fos, Fos B, Fra 1 and Fra 2, thus enabling detection of chronic neuronal activation. Young Wistar rats received s.c. infusions of either ouabain (50 microg/day) or saline for 7 or 14 days. At the end of the experimental period, mean arterial pressure (MAP) was assessed. In a separate set of rats FLI was detected immunohistochemically and quantified in cardiovascular and osmo-regulating centers. Resting MAP in ouabain-treated rats was significantly higher than in control rats at 14 but not at 7 days (125+/-4 vs. 101+/-6, P<0.05 and 102+/-4 vs. 98+/-6 (not significant), respectively). Within the supraoptic nucleus, ouabain induced significant increases in FLI compared with control rats at 14 days (9+/-2 vs. 2+/-2, P<0.05) but not at 7 days. Within the locus ceruleus, FLI was only detectable in rats that received ouabain infusions for 14 days but not in other groups of rats. Ouabain treatment did not induce significant changes in FLI within other areas. These results demonstrate that chronic s.c. ouabain infusion only increases neuronal FLI in the supraoptic nucleus and locus ceruleus where increases in FLI parallel the increase in blood pressure.
Collapse
Affiliation(s)
- S J Veerasingham
- Hypertension Unit H360, University of Ottawa Heart Institute and Departments of Cellular and Molecular Medicine, and Medicine, 40 Ruskin Street, University of Ottawa, Ontario K1Y 4W7, Ottawa, Canada
| | | | | |
Collapse
|
6
|
Vahid-Ansari F, Leenen FH. Pattern of neuronal activation in rats with CHF after myocardial infarction. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H2140-6. [PMID: 9843814 DOI: 10.1152/ajpheart.1998.275.6.h2140] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To identify neuronal populations possibly contributing to the sympathetic hyperactivity in rats with congestive heart failure (CHF) after myocardial infarction (MI), immunohistochemical detection of Fra-like immunoreactivity (Fra-LI) was used as a marker of long-term neuronal activation. In adult Wistar rats, 2 and 4 wk after left coronary artery ligation, left ventricular (LV) peak systolic pressure and LV end-diastolic pressure were measured, immediately followed by transcardial perfusion and removal of the heart and brain. The brains were processed using an antibody that recognizes Fos, FosB, Fra-1, and Fra-2 for the detection of Fra-LI and using an antibody that only recognizes Fos-like immunoreactivity (Fos-LI). At both 2 and 4 wk after large MI, LV peak systolic pressure was significantly decreased and LV end-diastolic pressure increased. At 2 wk post-MI or sham surgery, Fra-LI was observed in several areas of either group but was significantly higher in the MI versus the sham group in the magnocellular division of the paraventricular nucleus (PVN), supraoptic nucleus (SON), subfornical organ, and caudal part of the nucleus of the solitary tract. At 4 wk after large MI, Fra-LI was clearly detected in the parvocellular and magnocellular divisions of the PVN, SON, and locus ceruleus. Modest expression was noted in these nuclei in rats with small MI, whereas Fra-like positive immunoreactive neurons were barely detectable in the sham group 4 wk postsurgery. In these nuclei, the extent of expression of Fra-LI correlated significantly with the LV end-diastolic pressure. Fos-LI was only noted in the cerebral cortex. These results indicate clear activation of neurons as identified by Fra-LI in specific cardiovascular control centers in rats with CHF 2 and 4 wk post-MI.
Collapse
Affiliation(s)
- F Vahid-Ansari
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | | |
Collapse
|
7
|
Budzikowski AS, Vahid-Ansari F, Leenen FH. Chronic activation of brain areas by high-sodium diet in Dahl salt-sensitive rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H2046-52. [PMID: 9841531 DOI: 10.1152/ajpheart.1998.274.6.h2046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To map changes in neuronal activity in the brains of Dahl salt-sensitive (Dahl S) vs. salt-resistant (Dahl R) rats by high-sodium diet, we used immunohistochemical detection of Fra-like proteins as a marker for long-term neuronal activation. Compared with Dahl R rats during regular sodium intake, Dahl S rats showed modestly higher expression of Fra-like immunoreactivity (Fra-LI) in the supraoptic nucleus, anterior hypothalamic area (AHA), central gray, and nucleus of solitary tract (NTS) at 5,6, and 9 wk of age but clearly elevated Fra-LI in the magnocellular part of the paraventricular nucleus (PVN) at 6 wk of age (but not at 5 and 9 wk). In the median preoptic nucleus (MnPO) Fra-LI was lower at 9 wk of age and no differences were observed in the parvocellular PVN and subfornical organ in Dahl S vs. Dahl R rats on regular sodium intake. Compared with Dahl S rats on a regular-sodium diet, Dahl S rats on a high-sodium diet from 4 to 9 wk of age had significantly increased blood pressure and experienced transient activation of magnocellular PVN and MnPO and virtually no changes in the activity of the parvocellular PVN, AHA, and NTS. In contrast, Dahl R rats showed marked activation in the magnocellular PVN after 1 and 2 wk on a high-sodium diet compared with Dahl R rats on a regular-sodium diet. The present study demonstrates that Dahl S rats show differential activation of brain areas participating in regulation of osmotic and cardiovascular homeostasis during development of sodium-sensitive hypertension.
Collapse
Affiliation(s)
- A S Budzikowski
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4E9
| | | | | |
Collapse
|