1
|
Allan JM, Fox BM, Kasztan M, Kelly GC, Molina PA, King MA, Colson J, Wells L, Bowman L, Blackburn M, Kutlar A, Harris RA, Pollock DM, Pollock JS. Enhanced vasoconstriction in sickle cell disease is dependent on ETA receptor activation. Clin Sci (Lond) 2024; 138:1505-1520. [PMID: 39526571 DOI: 10.1042/cs20240625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Sickle cell disease (SCD) carries a significant risk for poor vascular health and vascular dysfunction. High levels of vascular reactive oxygen species (ROS) as well as elevated plasma endothelin-1 (ET-1), a potent vasoconstrictor with actions via the ETA receptor, are both common phenotypes in SCD. Alpha-1 adrenergic receptor activation is a major mediator of stress-induced vasoconstriction. However, the mechanism of the SCD enhanced vasoconstrictive response is unknown. We hypothesized that SCD induces enhanced alpha-1 adrenergic mediated vasoconstriction through the ET-1/ETA receptor pathway in arterial tissues. Utilizing humanized SCD (HbSS) and genetic control (HbAA) mice, alpha-1a, but not alpha-1b or alpha-1d, receptor expression was significantly greater in aortic tissue from HbSS mice compared to HbAA mice. Significantly enhanced vasoconstriction in aortic and carotid arterial segments were observed from HbSS mice compared with HbAA mice. Treatment with ambrisentan, a selective ETA receptor antagonist, and a ROS scavenger normalized the aortic vasoconstrictive response in HbSS mice. In a randomized translational study, patients with SCD were treated with placebo or ambrisentan for 3 months, with the treatment group showing an increase in the percent brachial arterial diameter. Taken together, these data suggest that the ETA receptor pathway interaction with the adrenergic receptor pathway contributes to enhanced aortic vasoconstriction in SCD. Findings indicate the potential of ETA antagonism as a therapeutic avenue for improving vascular health in SCD.
Collapse
Affiliation(s)
- John Miller Allan
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Brandon M Fox
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Malgorzata Kasztan
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
- Division of Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Gillian C Kelly
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Patrick A Molina
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - McKenzi A King
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Jackson Colson
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Leigh Wells
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
- Division of Hematology and Oncology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Latanya Bowman
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
- Division of Hematology and Oncology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Marsha Blackburn
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
- Division of Hematology and Oncology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Abdullah Kutlar
- Division of Hematology and Oncology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Ryan A Harris
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - David M Pollock
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Jennifer S Pollock
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| |
Collapse
|
2
|
Arendshorst WJ, Vendrov AE, Kumar N, Ganesh SK, Madamanchi NR. Oxidative Stress in Kidney Injury and Hypertension. Antioxidants (Basel) 2024; 13:1454. [PMID: 39765782 PMCID: PMC11672783 DOI: 10.3390/antiox13121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin-angiotensin-aldosterone system (RAAS) play critical roles in causing kidney injury in HTN. Genetic and environmental factors influence the susceptibility to hypertensive renal damage, with African American populations having a higher tendency due to genetic variants. Managing blood pressure (BP) effectively with treatments targeting RAAS activation, oxidative stress, and inflammation is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. Interactions between genetic and environmental factors impacting kidney function abnormalities are central to HTN development. Animal studies indicate that genetic factors significantly influence BP regulation. Anti-natriuretic mechanisms can reset the pressure-natriuresis relationship, requiring a higher BP to excrete sodium matched to intake. Activation of intrarenal angiotensin II receptors contributes to sodium retention and high BP. In HTN, the gut microbiome can affect BP by influencing energy metabolism and inflammatory pathways. Animal models, such as the spontaneously hypertensive rat and the chronic angiotensin II infusion model, mirror human essential hypertension and highlight the significance of the kidney in HTN pathogenesis. Overproduction of reactive oxygen species (ROS) plays a crucial role in the development and progression of HTN, impacting renal function and BP regulation. Targeting specific NADPH oxidase (NOX) isoforms to inhibit ROS production and enhance antioxidant mechanisms may improve renal structure and function while lowering blood pressure. Therapies like SGLT2 inhibitors and mineralocorticoid receptor antagonists have shown promise in reducing oxidative stress, inflammation, and RAAS activity, offering renal and antihypertensive protection in managing HTN and CKD. This review emphasizes the critical role of NOX in the development and progression of HTN, focusing on its impact on renal function and BP regulation. Effective BP management and targeting oxidative stress, inflammation, and RAAS activation, is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD.
Collapse
Affiliation(s)
- Willaim J. Arendshorst
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Aleksandr E. Vendrov
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| | - Nitin Kumar
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Santhi K. Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| |
Collapse
|
3
|
Smeir M, Chumala P, Katselis GS, Liu L. Lymphocyte-Specific Protein 1 Regulates Expression and Stability of Endothelial Nitric Oxide Synthase. Biomolecules 2024; 14:111. [PMID: 38254711 PMCID: PMC10813790 DOI: 10.3390/biom14010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Nitric oxide (NO), synthesized by endothelial nitric oxide synthase (eNOS), plays a critical role in blood pressure regulation. Genome-wide association studies have identified genetic susceptibility loci for hypertension in human lymphocyte-specific protein 1 (LSP1) gene. LSP1 is recognized as modulator of leukocyte extravasation, and endothelial permeability, however, the role of LSP1 in regulation of NO signaling within endothelial cells (ECs) remains unknown. The present study investigated the role of LSP1 in the regulation of eNOS expression and activity utilizing human macrovascular ECs in vitro and LSP1 knockout (KO) mice. In ECs, specific CRISPR-Cas9 genomic editing deleted LSP1 and caused downregulation of eNOS expression. LSP1 gain-of-function through adenovirus-mediated gene transfer was associated with enhanced expression of eNOS. Co-immunoprecipitation and confocal fluorescence microscopy revealed that eNOS and LSP1 formed a protein complex under basal conditions in ECs. Furthermore, LSP1 deficiency in mice promoted significant upregulation and instability of eNOS. Utilizing a mass-spectrometry-based bottom-up proteomics approach, we identified novel truncated forms of eNOS in immunoprecipitates from LSP1 KO aortae. Our experimental data suggest an important role of endothelial LSP1 in regulation of eNOS expression and activity within human ECs and murine vascular tissues.
Collapse
Affiliation(s)
- Musstafa Smeir
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - Paulos Chumala
- Department of Medicine, Canadian Center for Rural and Agricultural Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada; (P.C.); (G.S.K.)
| | - George S. Katselis
- Department of Medicine, Canadian Center for Rural and Agricultural Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada; (P.C.); (G.S.K.)
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| |
Collapse
|
4
|
Dos Santos Carvalho Schiavon M, de Moraes LHO, de Moraes TF, Buzinari TC, Neto JCRM, Rodrigues GJ. Chronic red laser treatment induces hypotensive effect in two-kidney one-clip model of renovascular hypertension in rat. Lasers Med Sci 2023; 38:252. [PMID: 37919476 DOI: 10.1007/s10103-023-03918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
To evaluate whether the chronic effect of photobiomodulation therapy (PBM) on systolic arterial pressure (SAP) from two kidneys one clip (2 K-1C) hypertension animal models can cause a hypotensive effect. Serum levels of nitric oxide were also analyzed and the assessment of lipid peroxidation of the thoracic aorta artery. Male Wistar rats were used. Hypertensive animals (2 K-1C) with Systolic arterial pressure (SAP) greater than or equal to 160 mmHg were used. Systolic arterial pressure (SAP) was determined by the tail plethysmography technique. Normotensive (2 K) and hypertensive (2 K-1C) rats were treated to PBM for 4 weeks using a laser whose irradiation parameters were: red wavelength (λ) = 660 nm: operating continuously; 56 s per point (3 points) spot size = 0.0295 cm2; average optical power of 100 mW; energy of 5.6 J per point; irradiance of 3.40 W/cm2; fluency of 190 J/cm2 per point. The application was on the animals tails, at 3 different points simultaneously, in contact with the skin. To assess serum nitrite and nitrate (NOx) levels, blood collection was performed after chronic PBM treatment, 24 h after the last laser application. The evaluation of the lipid peroxidation of the thoracic aorta artery was performed by measuring the concentration of hydroperoxide by the FOX method. Chronic photobiomodulation therapy (PBM) by red laser (660 nm) can induce a hypotensive effect in 64% of 2 K-1C hypertensive animals, which we say responsive animals. There was no difference in serum NO levels 24 h after the last red laser application, between treated and non-treated groups. Aortic rings from 2 K-1C hypertensive animals present a higher lipid peroxidation. The chronic PBM treatment by red laser decreased aortic rings lipid peroxidation in hypertensive responsive groups, compared to control. our results indicate that chronic PBM made by red laser has an important hypotensive effect in renovascular hypertensive models, by a mechanism that involves decrease in oxidative stress from vascular beds.
Collapse
Affiliation(s)
| | | | - Thiago Francisco de Moraes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, CEP 13565-905, Brazil
| | - Tereza Cristina Buzinari
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, CEP 13565-905, Brazil
| | - José Carlos Rapozo Mazulo Neto
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, CEP 13565-905, Brazil
| | - Gerson Jhonatan Rodrigues
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, CEP 13565-905, Brazil
| |
Collapse
|
5
|
ShamsEldeen AM, Fawzy A, Ashour H, Abdel-Rahman M, Nasr HE, Mohammed LA, Abdel Latif NS, Mahrous AM, Abdelfattah S. Hibiscus attenuates renovascular hypertension-induced aortic remodeling dose dependently: the oxidative stress role and Ang II/cyclophilin A/ERK1/2 signaling. Front Physiol 2023; 14:1116705. [PMID: 37415906 PMCID: PMC10321301 DOI: 10.3389/fphys.2023.1116705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction: The high levels of angiotensin II (Ang II) can modify the vascular tone, enhance vascular smooth muscle cells (VSMCs) proliferation and hypertrophy and increase the inflammatory cellular infiltration into the vessel wall. The old herbal nonpharmacological agent, Hibiscus (HS) sabdariffa L has multiple cardioprotective impacts; thus, we investigated the role of HS extract in amelioration of renovascular hypertension (RVH)-induced aortic remodeling. Materials and methods: Thirty-five rats (7/group) were randomly allocated into 5 groups; group: I: Control-sham group, and RVH groups; II, III, IV, and V. The rats in RVH groups were subjected to the modified Goldblatt two-kidneys, one clip (2K1C) for induction of hypertension. In group: II, the rats were left untreated whereas in group III, IV, and V: RVH-rats were treated for 6 weeks with low dose hibiscus (LDH), medium dose hibiscus (MDH), and high dose hibiscus (HDH) respectively. Results: We found that the augmented pro-contractile response of the aortic rings was ameliorated secondary to the in-vivo treatment with HS dose dependently. The cyclophilin A (CyPA) protein levels positively correlated with the vascular adhesion molecule-1 (VCAM-1) and ERK1/2, which, in turn, contribute to the reactive oxygen species (ROS) production. Daily HS intake modified aortic renovation by enhancing the antioxidant capacity, restraining hypertrophy and fibrosis, downregulation of the metastasis associated lung adenocarcinoma transcript (MALAT1), and cyclophilin A (CyPA)/ERK1/2 levels. Discussion: Adding to the multiple beneficial effects, HS aqueous extract was able to inhibit vascular smooth muscle cell proliferation induced by 2K1C model. Thus, adding more privilege for the utilization of the traditional herbal extracts to attenuate RVH-induced aortopathy.
Collapse
Affiliation(s)
| | - Ahmed Fawzy
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hend Ashour
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
- Department of Physiology, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Marwa Abdel-Rahman
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hend Elsayed Nasr
- Department of Medical Biochemistry and Molecular Biology, Benha University, Benha, Egypt
| | | | | | - Amr M. Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, Al Sharquia, Egypt
| | - Shereen Abdelfattah
- Department of Anatomy and Embryology Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Tamura M, Suzuki Y, Akiyama H, Hamada-Sato N. Evaluation of the effect of Lactiplantibacillus pentosus SN001 fermentation on arsenic accumulation and antihypertensive effect of Sargassum horneri in vivo. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1549-1556. [PMID: 36085426 DOI: 10.1007/s00210-022-02288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022]
Abstract
Sargassum horneri contains water-soluble polysaccharides, which have antihypertensive effects, and arsenic, which is harmful to the human body. Boiling and other treatments are effective in removing arsenic; however, water-soluble polysaccharides are lost during processing. Therefore, a method to remove arsenic and further increase its antihypertensive effect is required. To this end, we investigated fermentation with Lactiplantibacillus pentosus SN001 in this study. Boiled and fermented S. horneri were administered to spontaneously hypertensive rats (SHR), and blood pressure and arsenic accumulation in organs were observed to simultaneously examine the effects of fermentation on hypertension and arsenic accumulation. The ACE (angiotensin-converting enzyme) inhibition rate, an indicator of antihypertensive effects, showed a maximum at 4 days of fermentation. Consecutive dosing studies using S. horneri, boiled S. horneri, and fermented boiled S. horneri in SHR were conducted. Although the boiled group showed high blood pressure values, the fermented boiled group showed lower blood pressure values than the boiled cohort. The amount of arsenic accumulated in the liver, kidney, and spleen of rats was significantly lower in the boiled and fermented boiled groups than that in the S. horneri group. This confirmed the arsenic removal effect of boiling pretreatment and the in vivo safety of fermented boiled S. horneri. These results suggest that fermentation of arsenic-free S. horneri with L. pentosus SN001 can enhance its antihypertensive effect in vivo. This is the first study to simultaneously examine the antihypertensive effect of fermentation of S. horneri and its effect on the arsenic accumulation in vivo.
Collapse
Affiliation(s)
- Momoko Tamura
- Course of Safety Management in Food Supply Chain, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo, 108-8477, Japan
| | - Yoshinari Suzuki
- Division of Foods, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kanagawa, 210-9501, Japan
| | - Hiroshi Akiyama
- Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Naoko Hamada-Sato
- Course of Safety Management in Food Supply Chain, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo, 108-8477, Japan.
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo, 108-8477, Japan.
| |
Collapse
|
7
|
Vitamin C Lowers Blood Pressure in Spontaneously Hypertensive Rats by Targeting Angiotensin-Converting Enzyme I Production in a Frequency-Dependent Manner. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9095857. [PMID: 35845596 PMCID: PMC9286971 DOI: 10.1155/2022/9095857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022]
Abstract
The lowering blood pressure effect of vitamin C (VC) has been evaluated in various models. As VC has a fast degradation rate in the body after consumption, a study of the frequency-dependent manner of VC is essential for the sustained antihypertension effect of VC. In this study, we investigated the frequency and dose dependency of vitamin C (VC) on blood pressure reduction in spontaneously hypertensive rats (SHRs). Wistar–Kyoto rats (WKYs) and SHRs were orally administered tap water or VC (250, 500, 1000, and 2000 mg/60 kg/day). Blood pressures were measured using the tail-cuff method, and thoracic aortas, liver, and blood were harvested from sacrificed rats after 8 weeks to measure angiotensinogen, angiotensin-converting enzyme (ACE) I, endothelial nitric oxide synthase (eNOS), and total nitric oxide (NOx) concentration. VC decreased blood pressure from the fourth week with no significant differences between doses. The twice-a-day administration of VC decreased blood pressure from the second week, and the blood pressure in these groups was close to that of the WKY group in the eighth week. Treatment with once a day VC decreased ACE I production which was further significantly reduced in twice a day groups. Angiotensinogen and eNOS production were increased upon VC treatment but were not significant among groups. The NOx content was decreased by VC treatment. These results suggest that VC lowers blood pressure in SHRs by directly targeting ACE I production in a frequency-dependent manner and may improve endothelial function depending on the frequency of administration.
Collapse
|
8
|
Cui Y, Yang L, Liu X, Che C, Cheng J, Li P, Wen J, Yang Y. The decrease of MYPT1 is critical for impairment of NO-mediated vosodilation in mesenteric artery of the older spontaneously hypertensive rats. J Gerontol A Biol Sci Med Sci 2021; 77:424-432. [PMID: 34614147 DOI: 10.1093/gerona/glab290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Nitric oxide (NO) mediated vasodilatation is a fundamental response of vasculature, however, the regulation of NO signaling pathway on resistance vessels in the elderly hypertension is still unclear. The 16-weeks-spontaneously hypertensive rats (SHR), the 18-months-SHR (OldSHR), and the age matched Wistar-Kyoto rats were used to study the changes of mesenteric resistance artery dilatation caused by sodium nitroprusside (SNP). After pre-vasoconstriction by Norepinephrine (NE), the response of endothelium-denuded mesenteric artery ring to SNP was observed, and the changes in vascular response after pharmacological interventions of key nodes in the NO/sGC/cGMP/PKG1α signaling pathway were observed as well. RNA sequencing and functional enrichment analyses were used to provide information for conducting validation experiments. Vasodilation of NO in OldSHR was decreased, which significantly correlated with the reduction of PKG-mediated effect. Functional enrichment analysis of RNA sequencing showed that genes encoding important proteins such as sGC and MYPT1 (protein phosphatase 1 regulatory subunit 12A) were downregulated in OldSHR. Molecular biology validation results showed that mRNA expression of both α and β subunits of sGC were reduced, while mRNA and protein expression of PKG1α were reduced in OldSHR. More importantly, the expression of MYPT1 and p S668-MYPT1 was significantly reduced in OldSHR, even under the treatment of SNP. The experiment also revealed an enhanced cAMP system in vasodilatory in hypertension, while this function completely lost in the elderly hypertension. Therefore, a NO-mediated decrease in vascular smooth muscle relaxation was found in the elderly hypertension. The dysfunction in cGMP-PKG signaling, in particular, the decreased p S668-MYPT1 was mechanistically involved.
Collapse
Affiliation(s)
- Yiqin Cui
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University
| | - Liju Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University.,Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqin Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University
| | - Chang Che
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University
| | - Jun Cheng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University
| | - Pengyu Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University
| | - Jing Wen
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University.,Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
9
|
Pourbagher-Shahri AM, Farkhondeh T, Talebi M, Kopustinskiene DM, Samarghandian S, Bernatoniene J. An Overview of NO Signaling Pathways in Aging. Molecules 2021; 26:4533. [PMID: 34361685 PMCID: PMC8348219 DOI: 10.3390/molecules26154533] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nitric Oxide (NO) is a potent signaling molecule involved in the regulation of various cellular mechanisms and pathways under normal and pathological conditions. NO production, its effects, and its efficacy, are extremely sensitive to aging-related changes in the cells. Herein, we review the mechanisms of NO signaling in the cardiovascular system, central nervous system (CNS), reproduction system, as well as its effects on skin, kidneys, thyroid, muscles, and on the immune system during aging. The aging-related decline in NO levels and bioavailability is also discussed in this review. The decreased NO production by endothelial nitric oxide synthase (eNOS) was revealed in the aged cardiovascular system. In the CNS, the decline of the neuronal (n)NOS production of NO was related to the impairment of memory, sleep, and cognition. NO played an important role in the aging of oocytes and aged-induced erectile dysfunction. Aging downregulated NO signaling pathways in endothelial cells resulting in skin, kidney, thyroid, and muscle disorders. Putative therapeutic agents (natural/synthetic) affecting NO signaling mechanisms in the aging process are discussed in the present study. In summary, all of the studies reviewed demonstrate that NO plays a crucial role in the cellular aging processes.
Collapse
Affiliation(s)
- Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, LT-50161 Kaunas, Lithuania;
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
10
|
Liskova S. The organ-specific nitric oxide synthase activity in the interaction with sympathetic nerve activity: a hypothesis. Physiol Res 2021; 70:169-175. [PMID: 33992046 DOI: 10.33549/physiolres.934676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The sympathetic nerve activity (SNA) is augmented in hypertension. SNA is regulated by neuronal nitric oxide synthase (nNOS) or endothelial nitric oxide synthase (eNOS) activity in hypothalamic paraventricular nuclei (PVN) and/or brainstem rostral ventrolateral medulla. High nNOS or eNOS activity within these brain regions lowers the SNA, whereas low cerebral nNOS and/or eNOS activity causes SNA augmentation. We hypothesize that the decreased cerebral nNOS/eNOS activity, which allows the enhancement of SNA, leads to the augmentation of renal eNOS/nNOS activity. Similarly, when the cerebral nNOS/eNOS activity is increased and SNA is suppressed, the renal eNOS/nNOS activity is suppressed as well. The activation of endothelial alpha(2)-adrenoceptors, may be a possible mechanism involved in the proposed regulation. Another possible mechanism might be based on nitric oxide, which acts as a neurotransmitter that tonically activates afferent renal nerves, leading to a decreased nNOS activity in PVN. Furthermore, the importance of the renal nNOS/eNOSactivity during renal denervation is discussed. In conclusion, the presented hypothesis describes the dual organ-specific role of eNOS/nNOS activity in blood pressure regulation and suggests possible connection between cerebral NOS and renal NOS via activation or inhibition of SNA, which is an innovative idea in the concept of pathophysiology of hypertension.
Collapse
Affiliation(s)
- S Liskova
- Institute of Pharmacol Clin Pharmacol, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic. ,
| |
Collapse
|
11
|
Combination of Exercise Training and SOD Mimetic Tempol Enhances Upregulation of Nitric Oxide Synthase in the Kidney of Spontaneously Hypertensive Rats. Int J Hypertens 2020; 2020:2142740. [PMID: 33145105 PMCID: PMC7596428 DOI: 10.1155/2020/2142740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/12/2020] [Accepted: 09/30/2020] [Indexed: 12/02/2022] Open
Abstract
Both exercise training (Ex) and superoxide dismutase (SOD) mimetic tempol have antihypertensive and renal protective effects in rodent models of several hypertensions. We recently reported that Ex increases nitric oxide (NO) production and the expression levels of endothelial and neuronal NO synthase (eNOS and nNOS) in the kidney and aorta of the spontaneously hypertensive rats (SHR) and normotensive Wistar–Kyoto rats (WKY). We also found that endogenous hydrogen peroxide (H2O2) upregulates the expression levels of eNOS and nNOS in SHR. To elucidate the mechanism of the Ex-upregulated NO system in the kidney, we examined the additive effect of Ex and tempol on the renal NO system in SHR and WKY. Our data showed that, in SHR, both Ex and tempol increase the levels of H2O2 and nitrate/nitrite (NOx) in plasma and urine. We also observed an increased renal NOS activity and upregulated expression levels of eNOS and nNOS with decreased NADPH oxidase activity. The effects of the combination of Ex and tempol on these variables were cumulate in SHR. On the other hand, we found that Ex increases these variables with increased renal NADPH oxidase activity, but tempol did not change these variables or affect the Ex-induced upregulation in the activity and expression of NOS in WKY. The SOD activity in the kidney and aorta was activated by tempol only in SHR, but not in WKY; whereas Ex increased SOD activity only in the aorta in both SHR and WKY. These results indicate that Ex-induced endogenous H2O2 produced in the blood vessel and other organs outside of the kidney may be carried to the kidney by blood flow and stimulates the NO system in the kidney.
Collapse
|
12
|
Chronic Mercury Exposure in Prehypertensive SHRs Accelerates Hypertension Development and Activates Vasoprotective Mechanisms by Increasing NO and H 2O 2 Production. Cardiovasc Toxicol 2020; 20:197-210. [PMID: 31338744 DOI: 10.1007/s12012-019-09545-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mercury is a heavy metal associated with cardiovascular diseases. Studies have reported increased vascular reactivity without changes in systolic blood pressure (SBP) after chronic mercury chloride (HgCl2) exposure, an inorganic form of the metal, in normotensive rats. However, we do not know whether individuals in the prehypertensive phase, such as young spontaneously hypertensive rats (SHRs), are susceptible to increased arterial blood pressure. We investigated whether chronic HgCl2 exposure in young SHRs accelerates hypertension development by studying the vascular function of mesenteric resistance arteries (MRAs) and SBP in young SHRs during the prehypertensive phase. Four-week-old male SHRs were divided into two groups: the SHR control group (vehicle) and the SHR HgCl2 group (4 weeks of exposure). The results showed that HgCl2 treatment accelerated the development of hypertension; reduced vascular reactivity to phenylephrine in MRAs; increased nitric oxide (NO) generation; promoted vascular dysfunction by increasing the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2); increased Gp91Phox protein levels and in situ levels of superoxide anion (O2·-); and reduced vasoconstrictor prostanoid production compared to vehicle treatment. Although HgCl2 accelerated the development of hypertension, the HgCl2-exposed animals also exhibited a vasoprotective mechanism to counterbalance the rapid increase in SBP by decreasing vascular reactivity through H2O2 and NO overproduction. Our results suggest that HgCl2 exposure potentiates this vasoprotective mechanism against the early establishment of hypertension. Therefore, we are concluding that chronic exposure to HgCl2 in prehypertensive animals could enhance the risk for cardiovascular diseases.
Collapse
|
13
|
Caniffi C, Cerniello FM, Bouchet G, Sueiro ML, Tomat A, Maglio DG, Toblli JE, Arranz C. Chronic treatment with C-type natriuretic peptide impacts differently in the aorta of normotensive and hypertensive rats. Pflugers Arch 2019; 471:1103-1115. [DOI: 10.1007/s00424-019-02287-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/24/2022]
|
14
|
Zhao Y, Ma R, Yu X, Li N, Zhao X, Yu J. AHU377+Valsartan (LCZ696) Modulates Renin-Angiotensin System (RAS) in the Cardiac of Female Spontaneously Hypertensive Rats Compared With Valsartan. J Cardiovasc Pharmacol Ther 2019; 24:450-459. [PMID: 31023080 DOI: 10.1177/1074248419838503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hypertension is a major cause of death and morbidity worldwide and is increasing in prevalence. The Renin-angiotensin system (RAS) is the most common mechanism involved in the pathophysiology of hypertension. Understanding the mechanism of the pathophysiologic processes will help direct potential therapeutic strategies to treat hypertension and improve cardiac function. Recently, a novel drug LCZ696 containing both an angiotensin receptor blocker valsartan and a neprilysin inhibitor (AHU377) has shown a promising effect on the treatment of hypertension. However, the effects of LCZ696 on the expression of main components of RAS, namely, angiotensin-converting enzyme (ACE), angiotensin-converting enzyme 2 (ACE2), angiotensin II type 1 receptor (AT1 R), angiotensin II type 2 receptor (AT2 R), and angiotensin (1-7) receptor/Mas receptor (MasR) remain unclear. The aim of the present study was to evaluate the effects of LCZ696 on the protective arms of RAS in the cardiac tissue when compared with valsartan under the equal inhibition of AT1 R. We hypothesized that the superior effects of LCZ696 may contribute to its greater effect on the RAS than valsartan. MATERIALS AND METHODS Sixteen-week-old female spontaneously hypertensive rats (SHRs) were used in this study. Wistar-Kyoto (WKY) rats were used as controls. All rats were randomly divided into LCZ696 (n = 10), valsartan (n = 10), SHR (n = 10), and WKY (n = 10) groups under a 12-hour dark and 12-hour light cycle and provided with regular chow diet and water. The tail-cuff method was performed to measure blood pressure. Cardiac function was assessed by echocardiography. RESULTS The blood pressure value was lower in LCZ696 than valsartan in SHR after 12 weeks of treatment. Further, LCZ696 inhibits the ACE and AT1 R protein expression in the cardiac of SHR and significantly upregulate the protective axis of RAS components, including ACE2, MasR, and AT2 R. Left ventricular AT2 R messenger RNA (mRNA) expression was higher in the LCZ696+SHR group compared with valsartan. In addition, real-time polymerase chain reaction analysis revealed that LCZ696 enhanced the mRNA expression of antihypertensive components AT2 R, ACE2, and MasR and decreased the expression of AT1 R. However, only AT2 R and ACE2 mRNA expressions have a statistical difference between the LCZ696 and valsartan groups. No difference was observed in the mRNA expression of ACE and MasR. The stronger positive signal of transforming growth factor β in the left ventricle was inhibited in each administrated group compared with SHR groups. CONCLUSIONS LCZ696 ameliorates the vasoconstrictor axis of the RAS AT1 R and stimulate the protective arm effectors, ACE2 and AT2 R, as well as reverses the compensatory upregulation of neuronal nitric oxide synthase and endothelial nitric oxide synthase in SHR. These findings suggest the mechanistic insight of the cardiac-protective and greater hypotensive effects of LCZ696.
Collapse
Affiliation(s)
- Yang Zhao
- 1 Department of Hypertension, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ruixin Ma
- 1 Department of Hypertension, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaorong Yu
- 1 Department of Hypertension, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ningyin Li
- 1 Department of Hypertension, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xu Zhao
- 1 Department of Hypertension, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jing Yu
- 1 Department of Hypertension, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Hu G, Ito O, Rong R, Sakuyama A, Miura T, Ito D, Ogawa Y, Kohzuki M. Pitavastatin Upregulates Nitric Oxide Synthases in the Kidney of Spontaneously Hypertensive Rats and Wistar-Kyoto Rats. Am J Hypertens 2018; 31:1139-1146. [PMID: 29955802 DOI: 10.1093/ajh/hpy098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 06/26/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Clinical trials show potent renoprotective effects of pitavastatin (PTV), although the precise mechanism for these renoprotective effects is not fully clarified. The aim of this study was to examine the antihypertensive and renoprotective effects of PTV, focusing on the nitric oxide (NO) system. METHODS Male, 6-week-old, spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) were randomized to receive vehicle or PTV (2 mg/kg bodyweight) for 8 weeks. Blood pressure and urinary albumin excretion were measured every 2 weeks. After 8 weeks, plasma biochemical parameters and renal histology were examined. NO synthase isoform (neuronal, nNOS; inducible, iNOS; and endothelial, eNOS) expression and eNOS phosphorylation were examined by western blotting. RESULTS PTV attenuated hypertension and albuminuria development in SHR. PTV decreased glomerular desmin expression and medullary interstitial fibrosis in SHR. PTV tended to increase plasma NO in both strains but significantly increased urinary NO excretion only in WKY. PTV significantly increased nNOS and eNOS expression, enhanced eNOS phosphorylation at serine1177, and inhibited eNOS phosphorylation at threonine495 in the kidney of both strains. CONCLUSIONS PTV treatment led to increased renal NOS expression and upregulated eNOS activity in both SHR and WKY. The antihypertensive and renoprotective effects of PTV may be related to upregulation of the NO system.
Collapse
Affiliation(s)
- Gaizun Hu
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Osamu Ito
- Division of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University, Faculty of Medicine, Sendai, Japan
| | - Rong Rong
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Akihiro Sakuyama
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takahiro Miura
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Daisuke Ito
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoshiko Ogawa
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masahiro Kohzuki
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Martinez-Quinones P, McCarthy CG, Watts SW, Klee NS, Komic A, Calmasini FB, Priviero F, Warner A, Chenghao Y, Wenceslau CF. Hypertension Induced Morphological and Physiological Changes in Cells of the Arterial Wall. Am J Hypertens 2018; 31:1067-1078. [PMID: 29788246 DOI: 10.1093/ajh/hpy083] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
Morphological and physiological changes in the vasculature have been described in the evolution and maintenance of hypertension. Hypertension-induced vascular dysfunction may present itself as a contributing, or consequential factor, to vascular remodeling caused by chronically elevated systemic arterial blood pressure. Changes in all vessel layers, from the endothelium to the perivascular adipose tissue (PVAT), have been described. This mini-review focuses on the current knowledge of the structure and function of the vessel layers, specifically muscular arteries: intima, media, adventitia, PVAT, and the cell types harbored within each vessel layer. The contributions of each cell type to vessel homeostasis and pathophysiological development of hypertension will be highlighted.
Collapse
Affiliation(s)
- Patricia Martinez-Quinones
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Cameron G McCarthy
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Nicole S Klee
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Amel Komic
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Fabiano B Calmasini
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Fernanda Priviero
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Alexander Warner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yu Chenghao
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Camilla F Wenceslau
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
17
|
Wynne BM, Labazi H, Lima VV, Carneiro FS, Webb RC, Tostes RC, Giachini FR. Mesenteric arteries from stroke-prone spontaneously hypertensive rats exhibit an increase in nitric-oxide-dependent vasorelaxation. Can J Physiol Pharmacol 2018; 96:719-727. [PMID: 29430946 DOI: 10.1139/cjpp-2017-0477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The endothelium is crucial for the maintenance of vascular tone by releasing several vasoactive substances, including nitric oxide (NO). Systemic mean arterial pressure is primarily regulated by the resistance vasculature, which has been shown to exhibit increased vascular reactivity, and decreased vasorelaxation during hypertension. Here, we aimed to determine the mechanism for mesenteric artery vasorelaxation of the stroke-prone spontaneously hypertensive rat (SHRSP). We hypothesized that endothelial NO synthase (eNOS) is upregulated in SHRSP vessels, increasing NO production to compensate for the endothelial dysfunction. Concentration-response curves to acetylcholine (ACh) were performed in second-order mesenteric arteries; we observed decreased relaxation responses to ACh (maximum effect elicited by the agonist) as compared with Wistar-Kyoto (WKY) controls. Vessels from SHRSP incubated with Nω-nitro-l-arginine methyl ester and (or) indomethacin exhibited decreased ACh-mediated relaxation, suggesting a primary role for NO-dependent relaxation. Vessels from SHRSP exhibited a significantly decreased relaxation response with inducible NO synthase (iNOS) inhibition, as compared with WKY vessels. Western blot analysis showed increased total phosphorylated NF-κB, and phosphorylated and total eNOS in SHRSP vessels. Overall, these data suggest a compensatory role for NO by increased eNOS activation. Moreover, we believe that iNOS, although increasing NO bioavailability to compensate for decreased relaxation, leads to a cycle of further endothelial dysfunction in SHRSP mesenteric arteries.
Collapse
Affiliation(s)
- Brandi M Wynne
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,b Department of Medicine, Nephrology, Emory University, Atlanta, GA 30322, USA
| | - Hicham Labazi
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,c Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Victor V Lima
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,d Institute of Biological Sciences and Health, Federal University of Mato Grosso - Barra do Garças - MT - Brazil; 78600-000
| | - Fernando S Carneiro
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,e Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; 14049-900
| | - R Clinton Webb
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Rita C Tostes
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,e Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; 14049-900
| | - Fernanda R Giachini
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,d Institute of Biological Sciences and Health, Federal University of Mato Grosso - Barra do Garças - MT - Brazil; 78600-000
| |
Collapse
|
18
|
McLaughlin K, Audette MC, Parker JD, Kingdom JC. Mechanisms and Clinical Significance of Endothelial Dysfunction in High-Risk Pregnancies. Can J Cardiol 2018; 34:371-380. [PMID: 29571421 DOI: 10.1016/j.cjca.2018.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 10/18/2022] Open
Abstract
The maternal cardiovascular system undergoes critical anatomic and functional adaptations to achieve a successful pregnancy outcome which, if disrupted, can result in complications that significantly affect maternal and fetal health. Complications that involve the maternal cardiovascular system are among the most common disorders of pregnancy, including gestational hypertension, preeclampsia, gestational diabetes, and impaired fetal growth. As a central feature, maternal endothelial dysfunction is hypothesized to play a predominant role in mediating the pathogenesis of these high-risk pregnancies, and as such, might proceed and precipitate the clinical presentation of these pregnancy disorders. Improving or normalizing maternal endothelial function in high-risk pregnancies might be an effective therapeutic strategy to ameliorate maternal and fetal clinical outcomes.
Collapse
Affiliation(s)
- Kelsey McLaughlin
- Department of Medicine, Division of Cardiology, Sinai Health System, University of Toronto, Toronto, Ontario, Canada; The Centre for Women's and Infant's Health at the Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Melanie C Audette
- The Centre for Women's and Infant's Health at the Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - John D Parker
- Department of Medicine, Division of Cardiology, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - John C Kingdom
- The Centre for Women's and Infant's Health at the Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, Division of Maternal-Fetal Medicine, Sinai Health System, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Hao HF, Liu LM, Pan CS, Wang CS, Gao YS, Fan JY, Han JY. Rhynchophylline Ameliorates Endothelial Dysfunction via Src-PI3K/Akt-eNOS Cascade in the Cultured Intrarenal Arteries of Spontaneous Hypertensive Rats. Front Physiol 2017; 8:928. [PMID: 29187825 PMCID: PMC5694770 DOI: 10.3389/fphys.2017.00928] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/01/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives: To examine the protective effect of Rhynchophylline (Rhy) on vascular endothelial function in spontaneous hypertensive rats (SHRs) and the underlying mechanism. Methods: Intrarenal arteries of SHRs and Wistar rats were suspended in myograph for force measurement. Expression and phosphorylation of endothelial nitric oxide (NO) synthase (eNOS), Akt, and Src kinase (Src) were examined by Western blotting. NO production was assayed by ELISA. Results: Rhy time- and concentration-dependently improved endothelium-dependent relaxation in the renal arteries from SHRs, but had no effect on endothelium-independent relaxation in SHR renal arteries. Wortmannin (an inhibitor of phosphatidylinositol 3-kinase) or PP2 (an inhibitor of Src) inhibited the improvement of relaxation in response to acetylcholine by 12 h-incubation with 300 μM Rhy. Western blot analysis revealed that Rhy elevated phosphorylations of eNOS, Akt, and Src in SHR renal arteries. Moreover, wortmannin reversed the increased phosphorylations of Akt and eNOS induced by Rhy, but did not affect the phosphorylation of Src. Furthermore, the enhanced phosphorylations of eNOS, Akt, and Src were blunted by PP2. Importantly, Rhy increased NO production and this effect was blocked by inhibition of Src or PI3K/Akt. Conclusion: The present study provides evidences for the first time that Rhy ameliorates endothelial dysfunction in SHRs through the activation of Src-PI3K/Akt-eNOS signaling pathway.
Collapse
Affiliation(s)
- Hui-Feng Hao
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li-Mei Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Chuan-She Wang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Yuan-Sheng Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Silva B, Pernomian L, De Paula T, Grando M, Bendhack L. Endothelial nitric oxide synthase and cyclooxygenase are activated by hydrogen peroxide in renal hypertensive rat aorta. Eur J Pharmacol 2017; 814:87-94. [PMID: 28780058 DOI: 10.1016/j.ejphar.2017.07.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
|
21
|
Oishi J, De Moraes T, Buzinari T, Cárnio E, Parizotto N, Rodrigues G. Hypotensive acute effect of photobiomodulation therapy on hypertensive rats. Life Sci 2017; 178:56-60. [DOI: 10.1016/j.lfs.2017.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 11/28/2022]
|
22
|
Wang H, Jiang H, Liu H, Zhang X, Ran G, He H, Liu X. Modeling Disease Progression: Angiotensin II Indirectly Inhibits Nitric Oxide Production via ADMA Accumulation in Spontaneously Hypertensive Rats. Front Physiol 2016; 7:555. [PMID: 27909412 PMCID: PMC5112235 DOI: 10.3389/fphys.2016.00555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/03/2016] [Indexed: 01/07/2023] Open
Abstract
Nitric oxide (NO) production impairment is involved in the onset and development of hypertension. Although NO production impairment in spontaneously hypertensive rat (SHR) has been reported in a variety of researches, the time course of this progressive procedure, as well as its relationship with asymmetric dimethylarginine (ADMA) and angiotensin II (Ang II), has not been quantified. The aim of this research is to establish a mechanism-based disease progression model to assess Ang II and ADMA's inhibition of NO production in SHR's disease progression with/without ramipril's intervention. SHR were randomly divided into three groups: one disease group (n = 8) and two treatment groups (n = 8 for each group): standard treatment group (receiving ramipril 2 mg/kg*day) and intensive treatment group (receiving ramipril 10 mg/kg*day). ADMA, Ang II, NO, and SBP were determined weekly. Intensive treatment with ramipril was found to have no further attenuation of plasma NO and ADMA than standard treatment beyond its significantly stronger antihypertensive effects. Four linked turnover models were developed to characterize the profiles of ADMA, Ang II, NO, and SBP during hypertensive disease progression with/without ramipril intervention. Our model described Ang II and ADMA's contribution to NO production impairment and their responses to ramipril treatment throughout the disease progression in SHR. Model simulations suggested that Ang II affected NO production mainly through inhibiting ADMA elimination rather than affecting nitric oxide synthase (NOS) directly.
Collapse
Affiliation(s)
- Haidong Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| | - Hao Jiang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| | - Haochen Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| | - Xue Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| | - Guimei Ran
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| | - Xiaoquan Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| |
Collapse
|
23
|
Fujii N, Meade RD, Alexander LM, Akbari P, Foudil-Bey I, Louie JC, Boulay P, Kenny GP. iNOS-dependent sweating and eNOS-dependent cutaneous vasodilation are evident in younger adults, but are diminished in older adults exercising in the heat. J Appl Physiol (1985) 2016; 120:318-27. [PMID: 26586908 PMCID: PMC4740499 DOI: 10.1152/japplphysiol.00714.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P < 0.05). CVC at the eNOS-I site was lower than control in younger adults throughout the intermittent exercise protocol (all P < 0.05). In older adults, there were no differences between control and iNOS-I sites for sweating and CVC during both exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, Pennsylvania State University, University Park, Pennsylvania; and
| | - Pegah Akbari
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Imane Foudil-Bey
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada;
| |
Collapse
|
24
|
Rodríguez-Gómez I, Moliz JN, Quesada A, Montoro-Molina S, Vargas-Tendero P, Osuna A, Wangensteen R, Vargas F. L-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats. Exp Biol Med (Maywood) 2015; 241:550-6. [PMID: 26674221 DOI: 10.1177/1535370215619042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022] Open
Abstract
This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P < 0.05, for each tissue and enzyme) in hyper- and hypothyroid rats, respectively. Arginase I abundance in aorta, heart, and kidney was increased (P < 0.05, for each tissue) in hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P < 0.05, for each tissue). Arginase II was augmented in aorta and kidney (P < 0.05, for each tissue) of hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P < 0.05, for all tissues) in hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P < 0.05) in hyper- and hypothyroid rats, respectively, in all organs studied. OAT and proline levels were positively modulated by thyroid hormones in liver but not in the other tissues. ADC protein levels were positively modulated by thyroid hormones in all tissues. According to these findings, thyroid hormone treatment positively modulates different l-arginine metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might contribute to the changes in cardiac and renal mass observed in thyroid disorders.
Collapse
Affiliation(s)
- Isabel Rodríguez-Gómez
- Instituto de Investigación Biosanitaria ibs. Granada 18012, Spain. Hospitales Universitarios de Granada. Universidad de Granada, Granada 18012, Spain
| | - Juan N Moliz
- Departamento de Fisiología, Facultad de Medicina, Grenada 18012, Spain
| | - Andrés Quesada
- Centro de Instrumentación Científica de la Universidad de Granada, Granada 18003, Spain
| | | | - Pablo Vargas-Tendero
- Instituto de Investigación Biosanitaria ibs. Granada 18012, Spain. Hospitales Universitarios de Granada. Universidad de Granada, Granada 18012, Spain
| | - Antonio Osuna
- Instituto de Investigación Biosanitaria ibs. Granada 18012, Spain. Hospitales Universitarios de Granada. Universidad de Granada, Granada 18012, Spain
| | - Rosemary Wangensteen
- Centro de Instrumentación Científica de la Universidad de Granada, Granada 18003, Spain
| | - Félix Vargas
- Instituto de Investigación Biosanitaria ibs. Granada 18012, Spain. Hospitales Universitarios de Granada. Universidad de Granada, Granada 18012, Spain
| |
Collapse
|
25
|
Mukohda M, Stump M, Ketsawatsomkron P, Hu C, Quelle FW, Sigmund CD. Endothelial PPAR-γ provides vascular protection from IL-1β-induced oxidative stress. Am J Physiol Heart Circ Physiol 2015; 310:H39-48. [PMID: 26566726 DOI: 10.1152/ajpheart.00490.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/09/2015] [Indexed: 11/22/2022]
Abstract
Loss of peroxisome proliferator-activated receptor (PPAR)-γ function in the vascular endothelium enhances atherosclerosis and NF-κB target gene expression in high-fat diet-fed apolipoprotein E-deficient mice. The mechanisms by which endothelial PPAR-γ regulates inflammatory responses and protects against atherosclerosis remain unclear. To assess functional interactions between PPAR-γ and inflammation, we used a model of IL-1β-induced aortic dysfunction in transgenic mice with endothelium-specific overexpression of either wild-type (E-WT) or dominant negative PPAR-γ (E-V290M). IL-1β dose dependently decreased IκB-α, increased phospho-p65, and increased luciferase activity in the aorta of NF-κB-LUC transgenic mice. IL-1β also dose dependently reduced endothelial-dependent relaxation by ACh. The loss of ACh responsiveness was partially improved by pretreatment of the vessels with the PPAR-γ agonist rosiglitazone or in E-WT. Conversely, IL-1β-induced endothelial dysfunction was worsened in the aorta from E-V290M mice. Although IL-1β increased the expression of NF-κB target genes, NF-κB p65 inhibitor did not alleviate endothelial dysfunction induced by IL-1β. Tempol, a SOD mimetic, partially restored ACh responsiveness in the IL-1β-treated aorta. Notably, tempol only modestly improved protection in the E-WT aorta but had an increased protective effect in the E-V290M aorta compared with the aorta from nontransgenic mice, suggesting that PPAR-γ-mediated protection involves antioxidant effects. IL-1β increased ROS and decreased the phospho-endothelial nitric oxide synthase (Ser(1177))-to-endothelial nitric oxide synthase ratio in the nontransgenic aorta. These effects were completely abolished in the aorta with endothelial overexpression of WT PPAR-γ but were worsened in the aorta with E-V290M even in the absence of IL-1β. We conclude that PPAR-γ protects against IL-1β-mediated endothelial dysfunction through a reduction of oxidative stress responses but not by blunting IL-1β-mediated NF-κB activity.
Collapse
Affiliation(s)
- Masashi Mukohda
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Madeliene Stump
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Pimonrat Ketsawatsomkron
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Chunyan Hu
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Frederick W Quelle
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
26
|
Dynamics of Blood Pressure Elevation and Endothelial Dysfunction in SHR Rats During the Development of Arterial Hypertension. Bull Exp Biol Med 2015; 159:591-3. [DOI: 10.1007/s10517-015-3020-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Indexed: 10/22/2022]
|
27
|
Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci 2015; 129:83-94. [PMID: 26499181 DOI: 10.1016/j.jphs.2015.09.002] [Citation(s) in RCA: 528] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
As the first discovered gaseous signaling molecule, nitric oxide (NO) affects a number of cellular processes, including those involving vascular cells. This brief review summarizes the contribution of NO to the regulation of vascular tone and its sources in the blood vessel wall. NO regulates the degree of contraction of vascular smooth muscle cells mainly by stimulating soluble guanylyl cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP), although cGMP-independent signaling [S-nitrosylation of target proteins, activation of sarco/endoplasmic reticulum calcium ATPase (SERCA) or production of cyclic inosine monophosphate (cIMP)] also can be involved. In the blood vessel wall, NO is produced mainly from l-arginine by the enzyme endothelial nitric oxide synthase (eNOS) but it can also be released non-enzymatically from S-nitrosothiols or from nitrate/nitrite. Dysfunction in the production and/or the bioavailability of NO characterizes endothelial dysfunction, which is associated with cardiovascular diseases such as hypertension and atherosclerosis.
Collapse
|
28
|
Han X, Shaligram S, Zhang R, Anderson L, Rahimian R. Sex-specific vascular responses of the rat aorta: effects of moderate term (intermediate stage) streptozotocin-induced diabetes. Can J Physiol Pharmacol 2015; 94:408-15. [PMID: 26845285 DOI: 10.1139/cjpp-2015-0272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyperglycemia affects male and female vascular beds differently. We have previously shown that 1 week after the induction of diabetes with streptozotocin (STZ), male and female rats exhibit differences in aortic endothelial function. To examine this phenomenon further, aortic responses were studied in male and female rats 8 weeks after the induction of diabetes (intermediate stage). Endothelium-dependent vasodilation (EDV) to acetylcholine (ACh) was measured in phenylephrine (PE) pre-contracted rat aortic rings. Concentration response curves to PE were generated before and after L-NAME, a nitric oxide synthase (NOS) inhibitor. Furthermore, mRNA expression of endothelial nitric oxide synthase (eNOS) and NADPH oxidase subunit (Nox1) were determined. At 8 weeks, diabetes impaired EDV to a greater extent in female than male aortae. Furthermore, the responsiveness to PE was significantly enhanced only in female diabetic rats, and basal NO, as indicated by the potentiation of the response to PE after L-NAME, was reduced in female diabetic rat aortae to the same levels as in males. In addition, eNOS mRNA expression was decreased, while the Nox1 expression was significantly enhanced in diabetic female rats. These results suggest that aortic function in female diabetic rats after 8 weeks exhibits a more prominent impairment and that NO may be involved.
Collapse
Affiliation(s)
- Xiaoyuan Han
- a Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, 3601 Pacific Ave., Stockton, CA 95211, USA
| | - Sonali Shaligram
- a Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, 3601 Pacific Ave., Stockton, CA 95211, USA
| | - Rui Zhang
- a Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, 3601 Pacific Ave., Stockton, CA 95211, USA
| | - Leigh Anderson
- b Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94115, USA
| | - Roshanak Rahimian
- a Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, 3601 Pacific Ave., Stockton, CA 95211, USA
| |
Collapse
|
29
|
Choudhury S, Kandasamy K, Maruti BS, Addison MP, Kasa JK, Darzi SA, Singh TU, Parida S, Dash JR, Singh V, Mishra SK. Atorvastatin along with imipenem attenuates acute lung injury in sepsis through decrease in inflammatory mediators and bacterial load. Eur J Pharmacol 2015; 765:447-56. [PMID: 26375251 DOI: 10.1016/j.ejphar.2015.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Abstract
Lung is one of the vital organs which is affected during the sequential development of multi-organ dysfunction in sepsis. The purpose of the present study was to examine whether combined treatment with atorvastatin and imipenem could attenuate sepsis-induced lung injury in mice. Sepsis was induced by caecal ligation and puncture. Lung injury was assessed by the presence of lung edema, increased vascular permeability, increased inflammatory cell infiltration and cytokine levels in broncho-alveolar lavage fluid (BALF). Treatment with atorvastatin along with imipenem reduced the lung bacterial load and pro-inflammatory cytokines (IL-1β and TNFα) level in BALF. The markers of pulmonary edema such as microvascular leakage and wet-dry weight ratio were also attenuated. This was further confirmed by the reduced activity of MPO and ICAM-1 mRNA expression, indicating the lesser infiltration and adhesion of inflammatory cells to the lungs. Again, expression of mRNA and protein level of iNOS in lungs was also reduced in the combined treatment group. Based on the above findings it can be concluded that, combined treatment with atorvastatin and imipenem dampened the inflammatory response and reduced the bacterial load, thus seems to have promising therapeutic potential in sepsis-induced lung injury in mice.
Collapse
Affiliation(s)
- Soumen Choudhury
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Kannan Kandasamy
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Bhojane Somnath Maruti
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - M Pule Addison
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Jaya Kiran Kasa
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Sazad A Darzi
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Jeevan Ranjan Dash
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Vishakha Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Santosh Kumar Mishra
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India.
| |
Collapse
|
30
|
Ahmeda AF, Alzoghaibi M. Factors regulating the renal circulation in spontaneously hypertensive rats. Saudi J Biol Sci 2015; 23:441-51. [PMID: 27298576 PMCID: PMC4890190 DOI: 10.1016/j.sjbs.2015.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/14/2015] [Accepted: 06/19/2015] [Indexed: 01/17/2023] Open
Abstract
Hypertension is one of the leading causes of health morbidity and mortality which are linked to many life threatening diseases such as stroke heart problems and renal dysfunction. The integrity of renal microcirculation is crucial to maintaining the clearance and the excretory function in the normotensive and hypertensive conditions. Furthermore, any alteration in the renal function is involved in the pathophysiology of hypertension. The aim of this review is to provide a brief discussion of some factors that regulate renal haemodynamics in spontaneously hypertensive rats, an animal model of hypertension, and how these factors are linked to the disease.
Collapse
Affiliation(s)
- Ahmad F Ahmeda
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alzoghaibi
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
McCarthy CG, Wenceslau CF, Goulopoulou S, Ogbi S, Baban B, Sullivan JC, Matsumoto T, Webb RC. Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. Cardiovasc Res 2015; 107:119-30. [PMID: 25910936 DOI: 10.1093/cvr/cvv137] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/17/2015] [Indexed: 02/07/2023] Open
Abstract
AIMS Immune system activation is a common feature of hypertension pathogenesis. However, the mechanisms that initiate this activation are not well understood. Innate immune system recognition and response to danger are becoming apparent in many cardiovascular diseases. Danger signals can arise from not only pathogens, but also damage-associated molecular patterns (DAMPs). Our first hypothesis was that the DAMP, mitochondrial DNA (mtDNA), which is recognized by Toll-like receptor 9 (TLR9), is elevated in the circulation of spontaneously hypertensive rats (SHR), and that the deoxyribonuclease enzymes responsible for its degradation have decreased activity in SHR. Based on these novel SHR phenotypes, we further hypothesized that (i) treatment of SHR with an inhibitory oligodinucleotide for TLR9 (ODN2088) would lower blood pressure and that (ii) treatment of normotensive rats with a TLR9-specific CpG oligonucleotide (ODN2395) would cause endothelial dysfunction and increase blood pressure. METHODS AND RESULTS We observed that SHR have elevated circulating mtDNA and diminished deoxyribonuclease I and II activity. Additionally, treatment of SHR with ODN2088 lowered systolic blood pressure. On the other hand, treatment of normotensive rats with ODN2395 increased systolic blood pressure and rendered their arteries less sensitive to acetylcholine-induced relaxation and more sensitive to norepinephrine-induced contraction. This dysfunctional vasoreactivity was due to increased cyclooxygenase and p38 mitogen-activated protein kinase activation, increased reactive oxygen species generation, and reduced nitric oxide bioavailability. CONCLUSION Circulating mtDNA and impaired deoxyribonuclease activity may lead to the activation of the innate immune system, via TLR9, and contribute to elevated arterial pressure and vascular dysfunction in SHR.
Collapse
Affiliation(s)
- Cameron G McCarthy
- Department of Physiology, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA
| | - Camilla F Wenceslau
- Department of Physiology, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA
| | - Styliani Goulopoulou
- Department of Integrative Physiology and Anatomy, and Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Safia Ogbi
- Department of Physiology, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA
| | - Babak Baban
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA
| | - Jennifer C Sullivan
- Department of Physiology, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | - R Clinton Webb
- Department of Physiology, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA
| |
Collapse
|
32
|
Sasser JM, Brinson KN, Tipton AJ, Crislip GR, Sullivan JC. Blood pressure, sex, and female sex hormones influence renal inner medullary nitric oxide synthase activity and expression in spontaneously hypertensive rats. J Am Heart Assoc 2015; 4:jah3899. [PMID: 25862792 PMCID: PMC4579936 DOI: 10.1161/jaha.114.001738] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background We previously reported that sexually mature female spontaneously hypertensive rats (SHRs) have greater nitric oxide (NO) synthase (NOS) enzymatic activity in the renal inner medulla (IM), compared to age‐matched males. However, the mechanisms responsible for this sexual dimorphism are unknown. The current study tested the hypothesis that sex differences in renal IM NOS activity and NOS1 expression in adult SHRs develop with sexual maturation and increases in blood pressure (BP) in a female sex hormone‐dependent manner. Methods and Results Renal IM were isolated from sexually immature 5‐week‐old and sexually mature 13‐week‐old male and female SHRs. Whereas NOS activity and NOS1 expression were comparable in 5‐ and 13‐week‐old male SHRs and 5‐week‐old female SHRs, 13‐week‐old females had greater NOS activity and NOS1 expression, compared to 5‐week‐old female SHRs and age‐matched males. NOS3 expression was greater in 5‐week‐old than 13‐week‐old SHRs regardless of sex. Treatment with antihypertensive therapy (hydrochlorothiazide and reserpine) from 6 to 12 weeks of age to attenuate age‐related increases in BP abolished the sex difference in NOS activity and NOS1 expression between sexually mature SHR males and females. To assess the role of female sex hormones in age‐related increases in NOS, additional females were ovariectomized (OVX), and NOS activity was studied 8 weeks post‐OVX. OVX decreased NOS activity and NOS1 expression. Conclusions The sex difference in renal IM NOS in SHR is mediated by a sex hormone‐ and BP‐dependent increase in NOS1 expression and NOS activity exclusively in females.
Collapse
Affiliation(s)
- Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS (J.M.S.)
| | - Krystal N Brinson
- Department of Physiology, Georgia Regents University, Augusta, GA (K.N.B., A.J.T., R.C., J.C.S.)
| | - Ashlee J Tipton
- Department of Physiology, Georgia Regents University, Augusta, GA (K.N.B., A.J.T., R.C., J.C.S.)
| | - G Ryan Crislip
- Department of Physiology, Georgia Regents University, Augusta, GA (K.N.B., A.J.T., R.C., J.C.S.)
| | - Jennifer C Sullivan
- Department of Physiology, Georgia Regents University, Augusta, GA (K.N.B., A.J.T., R.C., J.C.S.)
| |
Collapse
|
33
|
Androwiki ACD, Camargo LDL, Sartoretto S, Couto GK, Ribeiro IMR, Veríssimo-Filho S, Rossoni LV, Lopes LR. Protein disulfide isomerase expression increases in resistance arteries during hypertension development. Effects on Nox1 NADPH oxidase signaling. Front Chem 2015; 3:24. [PMID: 25870854 PMCID: PMC4375999 DOI: 10.3389/fchem.2015.00024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/11/2015] [Indexed: 11/30/2022] Open
Abstract
NADPH oxidases derived reactive oxygen species (ROS) play an important role in vascular function and remodeling in hypertension through redox signaling processes. Previous studies demonstrated that protein disulfide isomerase (PDI) regulates Nox1 expression and ROS generation in cultured vascular smooth muscle cells. However, the role of PDI in conductance and resistance arteries during hypertension development remains unknown. The aim of the present study was to investigate PDI expression and NADPH oxidase dependent ROS generation during hypertension development. Mesenteric resistance arteries (MRA) and thoracic aorta were isolated from 6, 8, and 12 week-old spontaneously hypertensive (SHR) and Wistar rats. ROS production (dihydroethidium fluorescence), PDI (WB, imunofluorescence), Nox1 and NOX4 (RT-PCR) expression were evaluated. Results show a progressive increase in ROS generation in MRA and aorta from 8 to 12 week-old SHR. This effect was associated with a concomitant increase in PDI and Nox1 expression only in MRA. Therefore, suggesting a positive correlation between PDI and Nox1 expression during the development of hypertension in MRA. In order to investigate if this effect was due to an increase in arterial blood pressure, pre hypertensive SHR were treated with losartan (20 mg/kg/day for 30 days), an AT1 receptor antagonist. Losartan decreased blood pressure and ROS generation in both vascular beds. However, only in SHR MRA losartan treatment lowered PDI and Nox1 expression to control levels. In MRA PDI inhibition (bacitracin, 0.5 mM) decreased Ang II redox signaling (p-ERK 1/2). Altogether, our results suggest that PDI plays a role in triggering oxidative stress and vascular dysfunction in resistance but not in conductance arteries, increasing Nox1 expression and activity. Therefore, PDI could be a new player in oxidative stress and functional alterations in resistance arteries during the establishment of hypertension.
Collapse
Affiliation(s)
- Aline C D Androwiki
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Lívia de Lucca Camargo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Simone Sartoretto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Gisele K Couto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Izabela M R Ribeiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Sidney Veríssimo-Filho
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Luciana V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Lucia R Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| |
Collapse
|
34
|
Klimas J, Olvedy M, Ochodnicka-Mackovicova K, Kruzliak P, Cacanyiova S, Kristek F, Krenek P, Ochodnicky P. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal Mas receptor in spontaneously hypertensive rats. J Cell Mol Med 2015; 19:1965-74. [PMID: 25766467 PMCID: PMC4549047 DOI: 10.1111/jcmm.12573] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/04/2015] [Indexed: 01/08/2023] Open
Abstract
Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang-(1-7)/Mas receptor axis, renin-angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT-PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up-regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang-(1-7) in organ response to the developing hypertension in SHRs.
Collapse
Affiliation(s)
- Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Michael Olvedy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | | | - Peter Kruzliak
- Department of Cardiovascular Diseases, International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Sona Cacanyiova
- Institute of Normal and Pathological Physiology, Centre of Excellence for Cardiovascular Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Frantisek Kristek
- Institute of Normal and Pathological Physiology, Centre of Excellence for Cardiovascular Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Peter Ochodnicky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| |
Collapse
|
35
|
Kim HY, Cha HJ, Choi JH, Kang YJ, Park SY, Kim HS. CCL5 Inhibits Elevation of Blood Pressure and Expression of Hypertensive Mediators in Developing Hypertension State Spontaneously Hypertensive Rats. ACTA ACUST UNITED AC 2015. [DOI: 10.4167/jbv.2015.45.2.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hye Young Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Hye Ju Cha
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Jin Hee Choi
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Korea
| | - So Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Hee Sun Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|
36
|
Cytochrome P450 1B1 contributes to increased blood pressure and cardiovascular and renal dysfunction in spontaneously hypertensive rats. Cardiovasc Drugs Ther 2014; 28:145-61. [PMID: 24477449 DOI: 10.1007/s10557-014-6510-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE We investigated the contribution of cytochrome P450 (CYP) 1B1 to hypertension and its pathogenesis by examining the effect of its selective inhibitor, 2,4,3',5'-tetramethoxystilbene (TMS), in spontaneously hypertensive rats (SHR). METHODS Blood pressure (BP) was measured bi-weekly. Starting at 8 weeks, TMS (600 μg/kg, i.p.) or its vehicle was injected daily. At 14 weeks, samples were collected for measurement. RESULTS TMS reversed increased BP in SHR (207 ± 7 vs. 129 ± 2 mmHg) without altering BP in Wistar-Kyoto rats. Increased CYP1B1 activity in SHR was inhibited by TMS (RLU: aorta, 5.4 ± 0.7 vs. 3.7 ± 0.7; heart, 6.0 ± 0.8 vs. 3.4 ± 0.4; kidney, 411 ± 45 vs. 246 ± 10). Increased vascular reactivity, cardiovascular hypertrophy, endothelial and renal dysfunction, cardiac and renal fibrosis in SHR were minimized by TMS. Increased production of reactive oxygen species and NADPH oxidase activity in SHR, were diminished by TMS. In SHR, TMS reduced increased plasma levels of nitrite/nitrate (46.4 ± 5.0 vs. 28.1 ± 4.1 μM), hydrogen-peroxide (36.0 ± 3.7 vs. 14.1 ± 3.8 μM), and thiobarbituric acid reactive substances (6.9 ± 1.0 vs. 3.4 ± 1.5 μM). Increased plasma levels of pro-inflammatory cytokines and catecholamines, and cardiac activity of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, c-Src tyrosine kinase, and protein kinase B in SHR were also inhibited by TMS. CONCLUSIONS These data suggests that increased oxidative stress generated by CYP1B1 contributes to hypertension, increased cytokine production and sympathetic activity, and associated pathophysiological changes in SHR. CYP1B1 could be a novel target for developing drugs to treat hypertension and its pathogenesis.
Collapse
|
37
|
Effect of Aerobic Exercise Training on MDA and TNF- α Levels in Patients with Type 2 Diabetes Mellitus. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:820387. [PMID: 27437465 PMCID: PMC4897068 DOI: 10.1155/2014/820387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/28/2014] [Indexed: 01/19/2023]
Abstract
Objective. Diabetes mellitus (DM) is associated with low-grade inflammation. The benefits of regular exercise for the DM are well established, whereas less is known about the impact of aerobic exercise on malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α) in the DM. Methods. We randomised 64 participants, who do not exercise regularly, without any diabetic chronic complications in parallel to 12 weeks of aerobic exercise (three times per week, n = 31) and no exercise (control; n = 33). Plasma levels of soluble TNF-α and MDA levels were measured before-after physical training programme and control group. Results. Sixty-four patients with type 2 diabetes mellitus were analysed. When comparing the two groups of patients with age, gender, hemoglobin A1c (HbA1c) levels, lipid profile, waist circumference, body mass index (BMI) and class of treatment for diabetes were not different between groups. While soluble TNF-α remained essentially unaffected by physical training, plasma concentrations of MDA markedly decreased (P < 0.05); physical training also decreased body weight, waist circumference, and blood pressure (P < 0.05). Conclusion. Exercise training favorably affected body weight, waist circumference, and blood pressure. A three-weekly, 12-week, aerobic-training programme, without a concomitant weight loss diet, was associated with significant decrease in MDA levels in type 2 diabetic individuals.
Collapse
|
38
|
Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats. Toxicol Appl Pharmacol 2014; 280:443-54. [PMID: 25218292 DOI: 10.1016/j.taap.2014.08.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/28/2014] [Accepted: 08/31/2014] [Indexed: 02/06/2023]
Abstract
Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100ppm) through drinking water for 90 consecutive days. Atorvastatin (10mg/kg bw, orally) was administered once daily during the last 30days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis.
Collapse
|
39
|
Loria AS, Brinson KN, Fox BM, Sullivan JC. Sex-specific alterations in NOS regulation of vascular function in aorta and mesenteric arteries from spontaneously hypertensive rats compared to Wistar Kyoto rats. Physiol Rep 2014; 2:2/8/e12125. [PMID: 25168874 PMCID: PMC4246578 DOI: 10.14814/phy2.12125] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The present study tested the hypothesis that spontaneously hypertensive rats (SHR) have impaired nitric oxide synthase (NOS)‐mediated regulation of vascular function versus Wistar‐Kyoto rats (WKY). Aorta and small mesenteric arteries were studied from male and female SHR (M SHR and F SHR) and WKY (M WKY and F WKY). Phenylephrine (PE)‐induced vasoconstriction was greater in aorta of M SHR versus all others (P < 0.05); there were neither sex nor strain differences in PE contraction in mesenteric arteries. The NOS inhibitor l‐Nitro‐Arginine Methyl Ester (l‐NAME) increased PE‐induced vasoconstriction in all rats, although the increase was the least in male SHR (P < 0.05), revealing a blunted vasoconstrictor buffering capacity of NOS. l‐NAME increased sensitivity to PE‐induced constriction only in mesenteric arteries of SHR, although, the maximal percent increase in contraction was comparable among groups. ACh‐induced relaxation was also less in aorta from M SHR versus all others (P < 0.05). ACh relaxation was comparable among groups in mesenteric arteries, although SHR exhibited a greater NOS component to ACh‐induced relaxation than WKY. To gain mechanistic insight into sex and strain differences in vascular function, NOS activity and NOS3 protein expression were measured. Aortic NOS activity was comparable between groups and M SHR had greater NOS3 expression than M WKY. In contrast, although vascular function was largely maintained in mesenteric arteries of SHR, NOS activity was less in SHR versus WKY. In conclusion, M SHR exhibit a decrease in NOS regulation of vascular function compared to F SHR and WKY, although this is not mediated by decreases in NOS activity and/or expression. The present study tested the hypothesis that spontaneously hypertensive rats (SHR) have impaired nitric oxide synthase (NOS)‐mediated regulation of vascular function versus Wistar‐Kyoto rats (WKY). Aorta and small mesenteric arteries were studied from male and female SHR and WKY. Male SHR showed a decreased NOS regulation of vascular function compared to F SHR and WKY, although this was not mediated by decreases in NOS activity and/or expression.
Collapse
Affiliation(s)
- Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, St. Lexington, Kentucky
| | - Krystal N Brinson
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| | - Brandon M Fox
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| | | |
Collapse
|
40
|
Yan L, Tan X, Chen W, Zhu H, Cao J, Liu H. Enhanced vasoconstriction to α1 adrenoceptor autoantibody in spontaneously hypertensive rats. SCIENCE CHINA-LIFE SCIENCES 2014; 57:681-9. [PMID: 24950619 DOI: 10.1007/s11427-014-4672-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/02/2013] [Indexed: 11/29/2022]
Abstract
Autoimmune activities have been implicated in the pathogenesis of hypertension. High levels of autoantibodies against the second extracellular loop of α1-adrenoceptor (α1-AR autoantibody, α1-AA) are found in patients with hypertension, and α1-AA could exert a α1-AR agonist-like vasoconstrictive effect. However, whether the vasoconstrictive effect of α1-AA is enhanced in hypertension is unknown. Using aortic rings of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats, we observed the vasoconstrictive responses to α1-AA with phenylephrine (α1-AR agonist) as a positive control drug. Aortic nitrotyrosine levels were also measured by ELISA and immunohistochemistry. The results showed that the aortic constrictive responses to α1-AA and phenylephrine (both 1 nmol L(-1)-10 μmol L(-1)) were greater in SHR than in WKY rats. Endothelial denudation or L-NAME (a non-selective NOS inhibitor) (100 μmol L(-1)) increased α1-AA- or phenylephrine-induced vasoconstrictions both in SHR and WKY. However, selective iNOS inhibitor 1400 W (10 μmol L(-1)) enhanced the α1-AA-induced aortic constriction in WKY, but not in SHR. The aortic nitrotyrosine level was significantly higher in SHR than WKY, as shown by both ELISA and immunohistochemistry. These results indicate that the vasoconstrictive response to α1-AA is enhanced in SHR, and this altered responsiveness is due to endothelial dysfunction and decreased NO bioavailability. The study suggests an important role of α1-AR autoimmunity in the pathogenesis and management of hypertension especially in those harboring high α1-AA levels.
Collapse
Affiliation(s)
- Li Yan
- Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medical Sciences Peking Union Medical College, Beijing, 100005, China
| | | | | | | | | | | |
Collapse
|
41
|
Wang Y, Zhang J, Gao H, Zhao S, Ji X, Liu X, You B, Li X, Qiu J. Profilin-1 promotes the development of hypertension-induced artery remodeling. J Histochem Cytochem 2014; 62:298-310. [PMID: 24399041 DOI: 10.1369/0022155414520978] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypertension is associated with the structural remodeling and stiffening of arteries and is known to increase cardiovascular risk. In the present study, we investigated the effects of overexpression and knock down of profilin-1 on the vascular structural remodeling in spontaneous hypertensive rats (SHRs) using an adenovirus injection to knock down or overexpress profilin-1 mRNA. As a control, blank adenovirus was injected into age-matched SHRs and Wistar-Kyoto rats (WKYs). We quantified arterial structural remodeling through morphological methods, with thoracic aortas stained with hematoxylin-eosin and picosirius red. Western blotting was performed to measure the protein expression of inducible nitric oxide synthase (iNOS) and p38 mitogen-activated protein kinase (p38), and peroxynitrite was quantified by immunohistochemical staining. Overexpression of profilin-1 significantly promoted aortic remodeling, including an increase in vessel size, wall thickness, and collagen content, whereas the knockdown of profilin-1 could reverse these effects. In addition, the expression of phosphorylated p38, iNOS and peroxynitrite was significantly upregulated in SHRs with profilin-1 overexpression along with an increased level of interleukin- 6 (IL-6). These changes could be reversed by knockdown of profilin-1. Our results demonstrate a crucial role for profilin-1 in hypertension-induced arterial structural remodeling at least in part through the p38-iNOS-peroxynitrite pathway.
Collapse
Affiliation(s)
- Yan Wang
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, P.R. China (YW, JZ, HG, SZ, XJ, XL, BY, XL, JQ)
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tsihlis ND, Vavra AK, Martinez J, Lee VR, Kibbe MR. Nitric oxide is less effective at inhibiting neointimal hyperplasia in spontaneously hypertensive rats. Nitric Oxide 2013; 35:165-74. [PMID: 24149190 DOI: 10.1016/j.niox.2013.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/14/2013] [Accepted: 10/10/2013] [Indexed: 11/15/2022]
Abstract
Exogenous administration of nitric oxide (NO) markedly decreases neointimal hyperplasia following arterial injury in several animal models. However, the effect of NO on neointimal hyperplasia in hypertension remains unknown. Here, we employ the spontaneously hypertensive rat (SHR) strain, inbred from Wistar Kyoto (WKY) rats, and the carotid artery balloon injury model to assess the effects of NO on neointimal hyperplasia development. 2weeks after arterial injury, we showed that both rat strains developed similar levels of neointimal hyperplasia, but local administration of NO was less effective at inhibiting neointimal hyperplasia in the SHR compared to WKY rats (58% vs. 79%, P<0.001). Interestingly, local administration of NO did not affect systemic blood pressure in either rat strain. Compared to WKY, the SHR displayed more proliferation in the media and adventitia following balloon injury, as measured by BrdU incorporation. The SHR also showed more inflammation in the adventitia after injury, as well as more vasa vasorum, than WKY rats. NO treatment reduced the vasa vasorum in the SHR but not WKY rats. Finally, while NO decreased both injury-induced proliferation and inflammation in the SHR, it did not return these parameters to levels seen in WKY rats. We conclude that NO is less effective at inhibiting neointimal hyperplasia in the SHR than WKY rats. This may be due to increased scavenging of NO in the SHR, leading to diminished bioavailability of NO. These data will help to develop novel NO-based therapies that will be equally effective in both normotensive and hypertensive patient populations.
Collapse
Affiliation(s)
- Nick D Tsihlis
- Division of Vascular Surgery, Northwestern University, Feinberg School of Medicine, United States; Institute for BioNanotechnology, Medicine Northwestern University, Feinberg School of Medicine, United States
| | | | | | | | | |
Collapse
|
43
|
Noyan-Ashraf MH, Sadeghinejad Z, Juurlink BHJ. Dietary approach to decrease aging-related CNS inflammation. Nutr Neurosci 2013; 8:101-10. [PMID: 16053242 DOI: 10.1080/10284150500069470] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We demonstrate that the spontaneously hypertensive rat stroke-prone rat (SHRsp) undergoes premature aging of the CNS compared to the related normotensive Wistar Kyoto rat (WKY) as demonstrated by presence of activated microglia/macrophages, increased expression of inducible nitric oxide synthase and increased astrogliosis. We tested the hypothesis that dietary intake of phase 2 protein inducers would decrease these aging-associated degenerative changes. The source of dietary phase 2 protein inducers was dried broccoli sprouts of a cultivar containing high amounts of glucoraphanin that gives rise to phase 2 protein-inducing isothiocyanate sulforaphane. This diet significantly decreased the aging-related degenerative changes in the SHRsp CNS. We conclude that modest changes in diet may have profound effects on the aging CNS.
Collapse
Affiliation(s)
- M H Noyan-Ashraf
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5E5
| | | | | |
Collapse
|
44
|
Developmental programming of eNOS uncoupling and enhanced vascular oxidative stress in adult rats after transient neonatal oxygen exposure. J Cardiovasc Pharmacol 2013; 61:8-16. [PMID: 23011469 DOI: 10.1097/fjc.0b013e318274d1c4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors have previously shown that neonatal hyperoxic stress leads to high blood pressure, impaired endothelium-mediated vasodilatation, and increased vascular production of superoxide anion by NAD(P)H oxidase in adulthood. However, it is unknown whether changes in nitric oxide (NO) production and/or bioinactivation prevail and whether NO synthase (NOS) is also a source of superoxide. The purpose of this study was to evaluate whether adult animals exposed to neonatal hyperoxic stress have impaired vascular NO production associated with NOS uncoupling participating to vascular superoxide production and vascular dysfunction. In adult male rats exposed to 80% oxygen from day 3 to 10 of life (H, n = 6) versus room air controls (CTRL, n = 6), vascular (aorta) NO production is decreased at baseline (CTRL: 21 ± 1 vs. H: 16 ± 2 4,5-diaminofluorescein diacetate fluorescence intensity arbitrary units; P < 0.05) and after carbachol stimulation (acetylcholine analog; CTRL: 26 ± 2 vs. H: 18±2; P < 0.05). Pretreatment with L-arginine (CTRL: 32 ± 4 vs. H: 31 ± 5) and L-sepiapterine [analog of key NOS cofactor tetrahydro-L-biopterin (BH4)] (CTRL: 30 ± 3 vs. H: 29 ± 3) normalizes NO production after carbachol. L-Sepiapterine also normalizes impaired vasodilatation to carbachol. Vascular endothelial NO synthase (eNOS) immunostaining is reduced, whereas total eNOS protein expression is increased in H (CTRL: 0.76 ± 0.08 vs. H: 1.76± 0.21; P < 0.01). The significantly higher superoxide generation (CTRL: 20 ± 2 vs. H: 28 ± 3 hydroethidine fluorescence intensity arbitrary units; P < 0.05) is prevented by pretreatment with the eNOS inhibitor N-nitro-L-arginine methyl ester (CTRL: 21 ± 4 vs. H: 22 ± 4). Taken together, the current data indicate a role for eNOS uncoupling in enhanced vascular superoxide, impaired endothelium-mediated vasodilatation, and decreased NO production in adult animals with programmed elevated blood pressure after a brief neonatal oxygen exposure.
Collapse
|
45
|
L-NAME in the cardiovascular system - nitric oxide synthase activator? Pharmacol Rep 2013; 64:511-20. [PMID: 22814004 DOI: 10.1016/s1734-1140(12)70846-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/14/2012] [Indexed: 11/21/2022]
Abstract
L-arginine analogues are widely used inhibitors of nitric oxide synthase (NOS) activity both in vitro and in vivo, with N(ω)-nitro-L-arginine methyl ester (L-NAME) being at the head. On the one hand, acute and chronic L-NAME treatment leads to changes in blood pressure and vascular reactivity due to decreased nitric oxide (NO) bioavailability. However, lower doses of L-NAME may also activate NO production via feedback regulatory mechanisms if administered for longer time. Such L-NAME-induced activation has been observed in both NOS expression and activity and revealed considerable differences in regulatory mechanisms of NO production between particular tissues depending on the amount of L-NAME. Moreover, feedback activation of NO production by L-NAME seems to be regulated diversely under conditions of hypertension. This review summarizes the mechanisms of NOS regulation in order to better understand the apparent discrepancies found in the current literature.
Collapse
|
46
|
Zhao Y, Vanhoutte PM, Leung SWS. Endothelial nitric oxide synthase-independent release of nitric oxide in the aorta of the spontaneously hypertensive rat. J Pharmacol Exp Ther 2013; 344:15-22. [PMID: 23008504 DOI: 10.1124/jpet.112.198721] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
In the aorta of male spontaneously hypertensive rats (SHR), but not in that of normotensive Wistar-Kyoto rats (WKY), contractions to phenylephrine obtained in the presence of L-NAME [inhibitor of nitric oxide synthase (NOS)] and indomethacin (inhibitor of cyclooxygenase) are inhibited by an unknown endothelium-derived factor. The present study aimed to identify the mechanism underlying this endothelium-dependent inhibition in the SHR aorta. Aortic rings of male SHR and WKY, with and without endothelium, were suspended in organ chambers in the presence of indomethacin and L-NAME for the measurement of isometric tension. Contractions to phenylephrine were smaller in SHR aortae with endothelium than in those without, but were similar in the two types of preparations of WKY aortae. The endothelium-dependent, NOS-independent inhibition of phenylephrine-induced contraction was abolished by oxyhemoglobin [extracellular NO scavenger], carboxy-PTIO (NO scavenger) and ODQ (inhibitor of soluble guanylyl cyclase). It was unmasked not only by indomethacin but also by apocynin (antioxidant), but inhibited by diphenyleneiodonium (inhibitor of flavoproteins including cytochrome P450 reductase). The cytochrome P450 reductase protein expression was similar in SHR and WKY aortae. However, the level of nitrate and nitrite, substrates of cytochrome P450 reductase, were higher in SHR than WKY plasma and aortae. Therefore, in SHR but not WKY aortae, eNOS-independent NO is formed by cytochrome P450 reductase.
Collapse
Affiliation(s)
- Yingzi Zhao
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR, China
| | | | | |
Collapse
|
47
|
Huang CF, Hsu CN, Chien SJ, Lin YJ, Huang LT, Tain YL. Aminoguanidine attenuates hypertension, whereas 7-nitroindazole exacerbates kidney damage in spontaneously hypertensive rats: The role of nitric oxide. Eur J Pharmacol 2013. [DOI: 10.1016/j.ejphar.2012.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Gu Q, Wang B, Zhang XF, Ma YP, Liu JD, Wang XZ. Contribution of hydrogen sulfide and nitric oxide to exercise-induced attenuation of aortic remodeling and improvement of endothelial function in spontaneously hypertensive rats. Mol Cell Biochem 2012; 375:199-206. [PMID: 23242603 DOI: 10.1007/s11010-012-1542-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 12/06/2012] [Indexed: 02/07/2023]
Abstract
It is well known that exercise training attenuates aortic remodeling and improves endothelial function in spontaneously hypertensive rats (SHR). However, the underlying molecular mechanism remains unclear. Hydrogen sulfide (H(2)S) and nitric oxide (NO), as two established physiologic messenger molecules, have important roles in the development of aortic remodeling and endothelial dysfunction in hypertensive animals and patients. In this work, it was found that exercise training had no significant effect on blood pressure, but effectively attenuated baroreflex dysfunction in SHR. Exercise training in SHR attenuated aortic remodeling and improved endothelium-mediated vascular relaxations of aortas in response to acetylcholine. Interestingly, exercise training in SHR restored plasma H(2)S levels and aortic H(2)S formation and enhanced levels of mRNA for cystathionine γ-lyase in aortas. Furthermore, exercise training in SHR resulted in augmentation of nitrite and nitrate (NOx) contents and reduction of asymmetric dimethylarginine contents of aortas, upregulation of dimethylarginine dimethylaminohydrolase 2, and phosphorylation of nitric oxide synthase 3, but had no significant effect on protein levels of NOS3. In addition, exercise training could effectively reduce malondialdehyde production and suppressed formation of O(2) (-), and OONO(-) in aortas of SHR through enhancing activities of superoxide dismutase and catalase, and suppressing NADPH oxidase activity. In conclusion, exercise training ameliorates aortic hypertrophy and endothelial dysfunction, possibly via restoring bioavailabilities of hydrogen sulfide and nitric oxide in SHR.
Collapse
Affiliation(s)
- Qi Gu
- School of Physical Education, Xi'an Technological University, Xi'an, 4 Jinhua Road, Xi'an 710032, Shaanxi Province, China.
| | | | | | | | | | | |
Collapse
|
49
|
Koeners MP, Braam B, Joles JA. Blood pressure follows the kidney: Perinatal influences on hereditary hypertension. Organogenesis 2012; 4:153-7. [PMID: 19279727 DOI: 10.4161/org.4.3.6504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Accepted: 05/13/2008] [Indexed: 12/24/2022] Open
Abstract
Epidemiological and experimental data strongly suggest that cardiovascular diseases can originate from an aberrant environment during fetal development, a phenomenon referred to as perinatal programming. This review will focus on the role of the kidneys in determining blood pressure, and how (re)programming the renal development can persistently ameliorate hereditary hypertension. By combining physiologic and genomic studies we have discovered some candidate pathways suited for (re)programming the development of hypertension. This sets the stage for mechanistic analysis in future studies.
Collapse
Affiliation(s)
- Maarten P Koeners
- Department of Nephrology and Hypertension; University Medical Center; Utrecht The Netherlands
| | | | | |
Collapse
|
50
|
Elesgaray R, Caniffi C, Savignano L, Romero M, Mac Laughlin M, Arranz C, Costa MA. Renal actions of atrial natriuretic peptide in spontaneously hypertensive rats: the role of nitric oxide as a key mediator. Am J Physiol Renal Physiol 2012; 302:F1385-94. [DOI: 10.1152/ajprenal.00624.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is an important regulator of blood pressure (BP). One of the mechanisms whereby ANP impacts BP is by stimulation of nitric oxide (NO) production in different tissues involved in BP control. We hypothesized that ANP-stimulated NO is impaired in the kidneys of spontaneously hypertensive rats (SHR) and this contributes to the development and/or maintenance of high levels of BP. We investigated the effects of ANP on the NO system in SHR, studying the changes in renal nitric oxide synthase (NOS) activity and expression in response to peptide infusion, the signaling pathways implicated in the signaling cascade that activates NOS, and identifying the natriuretic peptide receptors (NPR), guanylyl cyclase receptors (NPR-A and NPR-B) and/or NPR-C, and NOS isoforms involved. In vivo, SHR and Wistar-Kyoto rats (WKY) were infused with saline (0.05 ml/min) or ANP (0.2 μg·kg−1·min−1). NOS activity and endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) NOS expression were measured in the renal cortex and medulla. In vitro, ANP-induced renal NOS activity was determined in the presence of iNOS and nNOS inhibitors, NPR-A/B blockers, guanine nucleotide-regulatory (Gi) protein, and calmodulin inhibitors. Renal NOS activity was higher in SHR than in WKY. ANP increased NOS activity, but activation was lower in SHR than in WKY. ANP had no effect on expression of NOS isoforms. ANP-induced NOS activity was not modified by iNOS and nNOS inhibitors. NPR-A/B blockade blunted NOS stimulation via ANP in kidney. The renal NOS response to ANP was reduced by Gi protein and calmodulin inhibitors. We conclude that ANP interacts with NPR-C, activating Ca-calmodulin eNOS through Gi protein. NOS activation also involves NPR-A/B. The NOS response to ANP was diminished in kidneys of SHR. The impaired NO system response to ANP in SHR participates in the maintenance of high blood pressure.
Collapse
Affiliation(s)
- Rosana Elesgaray
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - Carolina Caniffi
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - Lucía Savignano
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - Mariana Romero
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - Myriam Mac Laughlin
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - Cristina Arranz
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - María A. Costa
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| |
Collapse
|