1
|
Sun H, Peng Z, Liu K, Liu S. Norepinephrine alleviates cyclosporin A-induced nephrotoxicity by enhancing the expression of SFRP1. Open Med (Wars) 2023; 18:20230769. [PMID: 37588659 PMCID: PMC10426269 DOI: 10.1515/med-2023-0769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023] Open
Abstract
Norepinephrine (NE) has a certain effect on the improvement of renal function. However, whether NE can alleviate cyclosporin A (CsA)-induced nephrotoxicity needs further study. The effect of CsA (1.25, 2.5, 5, and 10 μM) on the human renal epithelial cell vitality, lactate dehydrogenase (LDH) activity, apoptosis, and secreted frizzled-related protein 1 (SFRP1) level was examined by cell counting kit-8, enzyme-linked immunosorbent assay, flow cytometer, and western blot. The effect of NE on the LDH activity, apoptosis, and SFRP1 level of human renal epithelial cells induced by CsA was examined again. After silencing of SFRP1 in human renal epithelial cells, the SFRP1 level, cell vitality, and apoptosis were examined again. CsA (1.25, 2.5, 5, and 10 μM) attenuated the cell vitality and SFRP1 level but enhanced the LDH activity and apoptosis in human renal epithelial cells, while the above effects were reversed by NE. Moreover, SFRP1 silencing reversed the regulation of NE on the SFRP1 level, cell vitality, and apoptosis in human renal epithelial cells induced by CsA. In conclusion, NE relieved CsA-induced nephrotoxicity via enhancing the expression of SFRP1.
Collapse
Affiliation(s)
- Huaibin Sun
- Department of Organ Transplantation, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Zhiguo Peng
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Kao Liu
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Shengli Liu
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
2
|
Effects of Norepinephrine on Renal Cortical and Medullary Blood Flow in Atherosclerotic Rabbits. Curr Med Sci 2022; 42:1172-1177. [PMID: 36083378 DOI: 10.1007/s11596-022-2626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/25/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The aim of this study was to explore the effect of norepinephrine (NE) on renal cortical and medullary blood flow in atherosclerotic rabbits without renal artery stenosis. METHODS Atherosclerosis was induced in 21 New Zealand white rabbits by feeding them a cholesterol-rich diet for 16 weeks. Thirteen healthy New Zealand white rabbits were randomly selected as controls. After atherosclerosis induction, standard ultrasonography was performed to confirm that there was no plaque or accelerated flow at the origin of the renal artery. Contrast-enhanced ultrasound (CEUS) was performed at baseline and during intravenous injection of NE. The degree of contrast enhancement of renal cortex and medulla after the injection of contrast agents was quantified by calculating the enhanced intensity. RESULTS The serum nitric oxide (NO) level in atherosclerotic rabbits was higher than that in healthy rabbits (299.6±152 vs. 136.5±49.5, P<0.001). The infusion of NE induced a significant increase in the systolic blood pressure (112±14 mmHg vs. 84±9 mmHg, P=0.016) and a significant decrease in the enhanced intensity in renal cortex (17.78±2.07 dB vs. 21.19±2.03 dB, P<0.001) and renal medulla (14.87±1.82 dB vs. 17.14±1.89 dB, P<0.001) during CEUS. However, the enhanced intensity in the cortex and medulla of healthy rabbits after NE infusion showed no significant difference from that at baseline. CONCLUSION NE may reduce renal cortical and medullary blood flow in atherosclerotic rabbits without renal artery stenosis, partly by reducing the serum NO level.
Collapse
|
3
|
Rodríguez-Fierros FL, Guarner-Lans V, Soto ME, Manzano-Pech L, Díaz-Díaz E, Soria-Castro E, Rubio-Ruiz ME, Jiménez-Trejo F, Pérez-Torres I. Modulation of Renal Function in a Metabolic Syndrome Rat Model by Antioxidants in Hibiscus sabdariffa L. Molecules 2021; 26:molecules26072074. [PMID: 33916540 PMCID: PMC8038460 DOI: 10.3390/molecules26072074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MS) is the association of three or more pathologies among which obesity, hypertension, insulin resistance, dyslipidemia, and diabetes are included. It causes oxidative stress (OS) and renal dysfunction. Hibiscus sabdariffa L. (HSL) is a source of natural antioxidants that may control the renal damage caused by the MS. The objective of this work was to evaluate the effect of a 2% HSL infusion on renal function in a MS rat model induced by the administration of 30% sucrose in drinking water. 24 male Wistar rats were divided into 3 groups: Control rats, MS rats and MS + HSL rats. MS rats had increased body weight, systolic blood pressure, triglycerides, insulin, HOMA index, and leptin (p ≤ 0.04). Renal function was impaired by an increase in perfusion pressure in the isolated and perfused kidney, albuminuria (p ≤ 0.03), and by a decrease in clearance of creatinine (p ≤ 0.04). The activity of some antioxidant enzymes including the superoxide dismutase isoforms, peroxidases, glutathione peroxidase, glutathione-S-transferase was decreased (p ≤ 0.05). Lipoperoxidation and carbonylation were increased (p ≤ 0.001). The nitrates/nitrites ratio, total antioxidant capacity, glutathione levels and vitamin C were decreased (p ≤ 0.03). The treatment with 2% HSL reversed these alterations. The results suggest that the treatment with 2% HSL infusion protects renal function through its natural antioxidants which favor an improved renal vascular response. The infusion contributes to the increase in the glomerular filtration rate, by promoting an increase in the enzymatic and non-enzymatic antioxidant systems leading to a decrease in OS and reestablishing the normal renal function.
Collapse
Affiliation(s)
- Félix Leao Rodríguez-Fierros
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (F.L.R.-F.); (L.M.-P.); (E.S.-C.)
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.); (M.E.R.-R.)
| | - María Elena Soto
- Department of Immunology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Linaloe Manzano-Pech
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (F.L.R.-F.); (L.M.-P.); (E.S.-C.)
| | - Eulises Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Sección XVI, Tlalpan, Mexico City 14000, Mexico;
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (F.L.R.-F.); (L.M.-P.); (E.S.-C.)
| | - María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.); (M.E.R.-R.)
| | - Francisco Jiménez-Trejo
- Department of Reproductive Biology, Instituto Nacional de Pediatría, Insurgentes Sur No. 3700-C, Coyoacán, Mexico City 04530, Mexico;
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (F.L.R.-F.); (L.M.-P.); (E.S.-C.)
- Correspondence: or ; Tel.: +52-5573-2911 (ext. 25203); Fax: +52-5573-0926
| |
Collapse
|
4
|
Garland EM, Cesar TS, Lonce S, Ferguson MC, Robertson D. An increase in renal dopamine does not stimulate natriuresis after fava bean ingestion. Am J Clin Nutr 2013; 97:1144-50. [PMID: 23553159 PMCID: PMC3628380 DOI: 10.3945/ajcn.112.048470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Fava beans (Vicia faba) contain dihydroxyphenylalanine (dopa), and their ingestion may increase dopamine stores. Renal dopamine regulates blood pressure and blood volume via a natriuretic effect. OBJECTIVE The objective was to determine the relation between dietary fava beans, plasma and urinary catechols, and urinary sodium excretion in 13 healthy volunteers. DESIGN Catechol and sodium data were compared by using a longitudinal design in which all participants consumed a fixed-sodium study diet on day 1 and the fixed-sodium diet plus fava beans on day 2. Blood was sampled at 1, 2, 4, and 6 h after a meal, and 3 consecutive 4-h urine samples were collected. RESULTS Mean (±SD) plasma dopa was significantly greater 1 h after fava bean consumption (11,670 ± 5440 compared with 1705 ± 530 pg/mL; P = 0.001) and remained elevated at 6 h. Plasma dopamine increased nearly 15-fold during this period. Fava bean consumption also increased urinary dopamine excretion to 306 ± 116, 360 ± 235, and 159 ± 111 μg/4-h urine sample compared with 45 ± 21, 54 ± 29, and 44 ± 17 μg in the 3 consecutive 4-h samples after the control diet (P ≤ 0.005). These substantial increases in plasma and urinary dopa and dopamine were unexpectedly associated with decreased urinary sodium. CONCLUSION The failure of fava bean consumption to provoke natriuresis may indicate that dopa concentrations in commercially available beans do not raise renal dopamine sufficiently to stimulate sodium excretion, at least when beans are added to a moderate-sodium diet in healthy volunteers. This trial was registered at clinicaltrials.gov as NCT01064739.
Collapse
Affiliation(s)
- Emily M Garland
- Autonomic Dysfunction Center and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-2195, USA.
| | | | | | | | | |
Collapse
|
5
|
Xia M, Li PL, Li N. Telemetric signal-driven servocontrol of renal perfusion pressure in acute and chronic rat experiments. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1494-501. [PMID: 18815205 DOI: 10.1152/ajpregu.90631.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to take advantage of telemetry data acquisition and develop an easy and reliable system to servocontrol renal perfusion pressure (RPP). Digitized pressure signals from lower abdominal aorta in rats, reflecting RPP, was obtained by a telemetry device and dynamically exported into an Excel worksheet. A computer program (LabVIEW) compared the RPP data with a preselected pressure range and drove a bidirectional syringe pump to control the inflation of a vascular occluder around the aorta above renal arteries. When RPP was higher than the preselected range, the syringe pump inflated the occluder and decreased RPP, and vice versa. If RPP was within range, there was no action. In this way, RPP was servocontrolled within the desired range. In experiments with norepinephrine- or ANG II-induced acute increases in systemic arterial pressure (120-145 mmHg), the system controlled RPP at a constant range of 100-105 mmHg within 30-50 s and differentiated the pressure-dependent and -independent effects on renal functions. In Dahl S rats with high-salt-induced hypertension, this system maintained RPP at 100-120 mmHg over 10 days, while systemic arterial pressures were 150 +/- 5.9 mmHg in uncontrolled animals. This system also has the ability of simultaneity and multiplexing to control multiple animals. Our results suggest that this is an effective and reliable system to servocontrol RPP, which can be easily established with general computer knowledge. This system provides a powerful tool and may greatly facilitate the studies in pressure-dependent/-independent effects of a variety of cardiovascular factors.
Collapse
Affiliation(s)
- Min Xia
- Dept. of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth Univ., PO Box 980613, Richmond, VA 23298, USA
| | | | | |
Collapse
|
6
|
Evans RG, Majid DSA, Eppel GA. Mechanisms mediating pressure natriuresis: what we know and what we need to find out. Clin Exp Pharmacol Physiol 2006; 32:400-9. [PMID: 15854149 DOI: 10.1111/j.1440-1681.2005.04202.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. It is well established that pressure natriuresis plays a key role in long-term blood pressure regulation, but our understanding of the mechanisms underlying this process is incomplete. 2. Pressure natriuresis is chiefly mediated by inhibition of tubular sodium reabsorption, because both total renal blood flow and glomerular filtration rate are efficiently autoregulated. Inhibition of active sodium transport within both the proximal and distal tubules likely makes a contribution. Increased renal interstitial hydrostatic pressure (RIHP) likely inhibits sodium reabsorption by altering passive diffusion through paracellular pathways in 'leaky' tubular elements. 3. Nitric oxide and products of cytochrome P450-dependent arachidonic acid metabolism are key signalling mechanisms in pressure natriuresis, although their precise roles remain to be determined. 4. The key unresolved question is, how is increased renal artery pressure 'sensed' by the kidney? One proposal rests on the notion that blood flow in the renal medulla is poorly autoregulated, so that increased renal artery pressure leads to increased renal medullary blood flow (MBF), which, in turn, leads to increased RIHP. An alternative proposal is that the process of autoregulation of renal blood flow leads to increased shear stress in the preglomerular vasculature and, so, release of nitric oxide and perhaps products of cytochrome P450-dependent arachidonic acid metabolism, which, in turn, drive the cascade of events that inhibit sodium reabsorption. 5. Central to the arguments underlying these opposing hypotheses is the extent to which MBF is autoregulated. This remains highly controversial, largely because of the limitations of presently available methods for measurement of MBF.
Collapse
Affiliation(s)
- Roger G Evans
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
7
|
Abstract
There is strong evidence that the renal medullary circulation plays a key role in long-term blood pressure control. This, and evidence implicating sympathetic overactivity in development of hypertension, provides the need for understanding how sympathetic nerves affect medullary blood flow (MBF). The precise vascular elements that regulate MBF under physiological conditions are unknown, but likely include the outer medullary portions of descending vasa recta and afferent and efferent arterioles of juxtamedullary glomeruli, all of which receive dense sympathetic innervation. Many early studies of the impact of sympathetic drive on MBF were flawed, both because of the methods used for measuring MBF and because single and often intense neural stimuli were tested. Recent studies have established that MBF is less sensitive than cortical blood flow (CBF) to electrical renal nerve stimulation, particularly at low stimulus intensities. Indeed, MBF appears to be refractory to increases in endogenous renal sympathetic nerve activity within the physiological range in all but the most extreme cases. Multiple mechanisms appear to operate in concert to blunt the impact of sympathetic drive on MBF, including counter-regulatory roles of nitric oxide and perhaps even paradoxical angiotensin II-induced vasodilatation. Regional differences in the geometry of glomerular arterioles are also likely to predispose MBF to be less sensitive than CBF to any given vasoconstrictor stimulus. Failure of these mechanisms would promote reductions in MBF in response to physiological activation of the renal nerves, which could, in turn, lead to salt and water retention and hypertension.
Collapse
Affiliation(s)
- Gabriela A Eppel
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
8
|
Guild SJ, Malpas SC, Eppel GA, Nguang SK, Evans RG. Effect of renal perfusion pressure on responses of intrarenal blood flow to renal nerve stimulation in rabbits. Clin Exp Pharmacol Physiol 2004; 31:35-45. [PMID: 14756682 DOI: 10.1111/j.1440-1681.2004.03947.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. We investigated how sympathetic nerve activity and renal perfusion pressure (RPP) interact in controlling renal haemodynamics in pentobarbitone-anaesthetized rabbits. 2. Renal blood flow (RBF) was reduced by electrical renal nerve stimulation (0.5-8 Hz), with RPP set using an extracorporeal circuit to 65, 100 and 135 mmHg. 3. Responses of RBF and cortical laser Doppler flux to renal nerve stimulation were blunted by increased RPP. For example, 4 Hz stimulation reduced RBF by 68 +/- 7% with baseline perfusion pressure approximately 65 mmHg, but only by 22 +/- 3% at approximately 135 mmHg. Medullary laser Doppler flux was less responsive than cortical laser Doppler flux to renal nerve stimulation and its response was not dependent on perfusion pressure. 4. When perfusion pressure was clamped at its baseline level during renal nerve stimulation, responses of RBF and cortical laser Doppler flux, but not medullary laser Doppler flux, were still blunted with increased baseline perfusion pressure. 5. A frequency rich stimulus was applied to assess the effects of perfusion pressure on dynamic neural control of RBF. Renal blood flow responded similarly at each level of perfusion pressure, as a low-pass filter with a pure time delay. 6. Our results suggest that, in the rabbit extracorporeal circuit model, increased RPP blunts the ability of steady state renal nerve stimulation to reduce cortical, but not medullary perfusion. However, in this model the level of RPP appears to have little impact on dynamic neural control of RBF.
Collapse
Affiliation(s)
- Sarah-Jane Guild
- Circulatory Control Laboratory, Department of Physiology, University of Auckland, PB 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
9
|
Bergström G, Evans RG. Mechanisms underlying the antihypertensive functions of the renal medulla. ACTA ACUST UNITED AC 2004; 181:475-86. [PMID: 15283761 DOI: 10.1111/j.1365-201x.2004.01321.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There is good evidence that the renal medulla plays a pivotal role in long-term regulation of blood pressure. 'Renal medullary' blood pressure regulating systems have been postulated to involve both exocrine (pressure natriuresis/diuresis) and endocrine [renal medullary depressor hormone (RMDH)] functions. However, recent studies indicate that pressure diuresis/natriuresis dominates the antihypertensive renal response to increased renal perfusion pressure, suggesting little physiological role for a putative RMDH in compensatory responses to acutely increased blood pressure. The medullary circulation appears to play a key role in mediating pressure diuresis, although the precise mechanisms involved remain controversial. Counter-regulatory vasodilator mechanisms (e.g. nitric oxide), at least partly mediated through cross-talk between the vasculature and the tubular epithelium, protect the medullary circulation from the vasoconstrictor effects of hormonal factors such as angiotensin II. These mechanisms also appear to contribute to compensatory responses to increased salt intake in salt-resistant individuals. Failure of these mechanisms predisposes the organism towards the development of hypertension, appears to underlie the development of some forms of experimental hypertension, and may even contribute to the pathogenesis of essential hypertension.
Collapse
Affiliation(s)
- G Bergström
- Department of Clinical Physiology, Cardiovascular Institute, Göteborg University, Göteborg, Sweden
| | | |
Collapse
|
10
|
Di Giantomasso D, Morimatsu H, May CN, Bellomo R. Intrarenal blood flow distribution in hyperdynamic septic shock: Effect of norepinephrine. Crit Care Med 2003; 31:2509-13. [PMID: 14530759 DOI: 10.1097/01.ccm.0000084842.66153.5a] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To measure changes in medullary and cortical renal blood flow during experimental hyperdynamic sepsis and the effect of subsequent norepinephrine infusion on such flows. DESIGN Experimental animal study. SETTING Animal laboratory of university-affiliated physiology institute. SUBJECTS Eighteen anesthetized merino sheep. INTERVENTIONS A transit-time flow probe was placed around the left renal artery. Laser Doppler flow probes were inserted in the left renal medulla and cortex by micromanipulation to measure changes in regional intrarenal blood flow. MEASUREMENTS AND MAIN RESULTS Systemic pressures, cardiac output, renal, and intrarenal blood flows were measured continuously. A bolus of Escherichia coli (7.5 x 10(9) colony forming units) was given intravenously to induce hyperdynamic sepsis. After the onset of hyperdynamic sepsis, all animals were randomly allocated to either norepinephrine (0.4 microg.kg-1.min-1 for 30 mins) or observation for 30 mins in random order. E. coli injection induced a significant decrease in mean arterial pressure (102.2 +/- 15.2 mm Hg to 74.3 +/- 16.1 mm Hg, p <.05) and an increase in mean cardiac output (4.60 +/- 1.62 L/min to 5.93 +/- 1.18 L/min, p <.05). However, renal blood flow did not change significantly (326.4 +/- 139.4 mL/min to 293.1 +/- 117.5 mL/min, not significant) despite a 30% increase in renal conductance (3.27 +/- 1.52 to 4.13 +/- 2.01 mL.min-1.mm Hg-1, p <.05). Cortical blood flow decreased by 15% (not significant) and medullary flow by 5% (not significant) during sepsis, but individual changes were unpredictable. On the other hand, norepinephrine infusion caused a significant improvement in mean arterial pressure (74.3 +/- 16.1 to 105.7 +/- 17.7 mm Hg, p <.05) and a further increase in cardiac output (5.93 +/- 1.18 to 7.13 +/- 1.52 L/min, p <.05). Mean renal blood flow also increased (293.1 +/- 117.5 to 384.5 +/- 168.1 mL/min, p <.05) despite decreased renal conductance (4.13 +/- 2.01 to 3.73 +/- 1.91 mL.min-1.mm Hg-1, p <.05). Infusion of norepinephrine significantly increased medullary blood flow by 35% compared with baseline (p <.05) and by 54% compared with untreated sepsis (p <.05), whereas the increases in cortical blood flow (16 and 53%, respectively) were not significant. CONCLUSIONS Hyperdynamic sepsis caused renal vasodilation but had limited effects on regional intrarenal blood flow. Norepinephrine infusion (0.4 microg.kg-1.min-1) during sepsis significantly increased global and medullary renal blood flow and restored renal vascular tone toward but not above normal.
Collapse
Affiliation(s)
- David Di Giantomasso
- Department of Medicine, Melbourne University Austin & Repatriation Medical Centre, Heidelberg, Australia
| | | | | | | |
Collapse
|
11
|
Eppel GA, Bergstrom G, Anderson WP, Evans RG. Autoregulation of renal medullary blood flow in rabbits. Am J Physiol Regul Integr Comp Physiol 2003; 284:R233-44. [PMID: 12388459 DOI: 10.1152/ajpregu.00061.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the extent of renal medullary blood flow (MBF) autoregulation in pentobarbital-anesthetized rabbits. Two methods for altering renal arterial pressure (RAP) were compared: the conventional method of graded suprarenal aortic occlusion and an extracorporeal circuit that allows RAP to be increased above systemic arterial pressure. Changes in MBF were estimated by laser-Doppler flowmetry, which appears to predominantly reflect erythrocyte velocity, rather than flow, in the kidney. We compared responses using a dual-fiber needle probe held in place by a micromanipulator, with responses from a single-fiber probe anchored to the renal capsule, to test whether RAP-induced changes in kidney volume confound medullary laser-Doppler flux (MLDF) measurements. MLDF responses were similar for both probe types and both methods for altering RAP. MLDF changed little as RAP was altered from 50 to >or=170 mmHg (24 +/- 22% change). Within the same RAP range, RBF increased by 296 +/- 48%. Urine flow and sodium excretion also increased with increasing RAP. Thus pressure diuresis/natriuresis proceeds in the absence of measurable increases in medullary erythrocyte velocity estimated by laser-Doppler flowmetry. These data do not, however, exclude the possibility that MBF is increased with increasing RAP in this model, because vasa recta recruitment may occur.
Collapse
Affiliation(s)
- Gabriela A Eppel
- Department of Physiology, Monash University, Melbourne, Australia.
| | | | | | | |
Collapse
|
12
|
Maric C, Harris PJ, Alcorn D. Changes in mean arterial pressure predict degranulation of renomedullary interstitial cells. Clin Exp Pharmacol Physiol 2002; 29:1055-9. [PMID: 12390292 DOI: 10.1046/j.1440-1681.2002.03780.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Renomedullary interstitial cells (RMIC) are characterized by numerous intracellular granules thought to contain renal medullary antihypertensive substances. However, the nature of the trigger for RMIC degranulation remains to be elucidated. The present study examines the effects of acute alterations in mean arterial pressure (MAP) and medullary blood flow (MBF) on RMIC granulation. 2. Basal MAP and MBF in anaesthetized Sprague-Dawley rats (n = 4/group) were altered by intravenous infusions of vasoactive agents, including angiotensin II alone or with a nitric oxide (NO) synthase inhibitor (N-omega-nitro-l-arginine) or NO donor (sodium nitroprusside), noradrenaline and by carotid artery clamping. Following these treatments, kidneys were examined by electron microscopy and the absolute volume of granules in the renal medulla was calculated using unbiased stereological methods. 3. Acute increases in MAP, regardless of the treatment causing the increase, were associated with a reduction in the absolute volume of granules in the range of 42-67%. Regression analysis revealed that only increases in MAP, but not MBF, strongly predict RMIC degranulation. 4. Despite previous reports that changes in MBF activate renomedullary antihypertensive activity, we conclude that the change in MAP is an important determinant of the activity of the blood pressure-lowering mechanism of the renal medulla, with the assumption that the medullary lipids mediate the antihypertensive property of the renal medulla.
Collapse
Affiliation(s)
- Christine Maric
- Departments of Anatomy, University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
13
|
Oliver JJ, Rajapakse NW, Evans RG. Effects of indomethacin on responses of regional kidney perfusion to vasoactive agents in rabbits. Clin Exp Pharmacol Physiol 2002; 29:873-9. [PMID: 12207565 DOI: 10.1046/j.1440-1681.2002.03742.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. To determine whether differential release of products of arachidonic acid metabolism, via the cyclo-oxygenase pathway, underlies the diversity of responses of regional kidney perfusion to vasoactive agents, we tested the effects of intravenous indomethacin on responses to renal arterial bolus doses of vasoactive agents in pentobarbitone-anaesthetized rabbits. 2. Total renal blood flow (RBF) and regional kidney perfusion were determined by transit time ultrasound flowmetry and laser-Doppler flowmetry, respectively. 3. Responses of regional kidney blood flow to vasoactive agents were diverse: noradrenaline reduced cortical but not medullary perfusion, [Phe 2,Ile 3,Orn 8]-vasopressin reduced medullary perfusion more than cortical perfusion, endothelin-1 and angiotensin II increased medullary perfusion in the face of reduced cortical perfusion, while acetylcholine, bradykinin and the nitric oxide donor methylamine hexamethylene methylamine (MAHMA) NONOate all increased both cortical and medullary perfusion. 4. Indomethacin administration was followed by reductions in total RBF (17 +/- 6%), cortical perfusion (13 +/- 5%) and medullary perfusion (40 +/- 8%). Angiotensin II- and endothelin-1-induced increases in medullary perfusion were abolished by indomethacin, but indomethacin had no significant effects on responses of regional kidney perfusion to acetylcholine, bradykinin, MAHMA NONOate, noradrenaline and [Phe 2,Ile 3,Orn 8]-vasopressin. 5. Our results suggest that vasodilator cyclo-oxygenase products contribute to the maintenance of resting renal vascular tone, particularly in vascular elements controlling medullary perfusion. Cyclo-oxygenase products also appear to mediate endothelin-1- and angiotensin II-induced increases in medullary perfusion. However, regionally specific engagement of cyclo-oxygenase-dependent arachidonic acid metabolism does not appear to contribute to the differential effects of noradrenaline and [Phe 2,Ile 3,Orn 8]-vasopressin on cortical and medullary perfusion.
Collapse
Affiliation(s)
- Jeremy J Oliver
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
14
|
Kalyan A, Eppel GA, Anderson WP, Oliver JJ, Evans RG. Renal medullary interstitial infusion is a flawed technique for examining vasodilator mechanisms in anesthetized rabbits. J Pharmacol Toxicol Methods 2002; 47:153-9. [PMID: 12628306 DOI: 10.1016/s1056-8719(02)00230-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION In rats, medullary interstitial (IMI) infusion is a useful technique for selective delivery of pharmacological agents to the renal medulla, in both acute and chronic experimental settings. We examined the feasibility of using this technique for delivery of vasodilators in rabbits, since this larger species would provide a number of advantages, particularly in long-term studies of circulatory control. METHODS Rabbits were anesthetized with pentobarbitone and artificially ventilated. Catheters were placed in a side branch of the renal artery and/or the renal medullary interstitium. Renal blood flow (RBF) was determined by transit-time ultrasound flowmetry, and blood flow in the cortex and medulla was estimated by laser Doppler flowmetry. RESULTS Pilot studies showed that renal arterial (IRA) infusions of bradykinin (10-300 ng/kg/min) and adenosine (1-10 ng/kg/min) produced only transient renal vasodilatation. IRA infusions of methylamine hexamethylene methylamine (MAHMA) NONOate (100-1000 ng/kg/min) and acetylcholine (10-250 ng/kg/min) produced dose-dependent and sustained increases in RBF and reductions in arterial pressure at the highest doses. However, IMI infusion of the same doses did not consistently increase medullary laser Doppler flux (MLDF). After IRA MAHMA NONOate and IMI acetylcholine, RBF fell to below its resting level. IRA boluses of acetylcholine (10-1250 ng/kg), bradykinin (2-250 ng/kg), and MAHMA NONOate (100-3000 ng/kg) dose-dependently increased RBF and CLDF and MLDF. DISCUSSION We had previously validated the IMI infusion technique for intramedullary delivery of vasoconstrictors in rabbits. Our present results indicate that this technique has limited application for delivery of vasodilator agents, in part because counterregulatory vasoconstrictor mechanisms are activated.
Collapse
Affiliation(s)
- Aparna Kalyan
- Department of Physiology, Monash University, P.O. Box 13F, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
15
|
Correia AG, Bergström G, Jia J, Anderson WP, Evans RG. Dominance of pressure natriuresis in acute depressor responses to increased renal artery pressure in rabbits and rats. J Physiol 2002; 538:901-10. [PMID: 11826173 PMCID: PMC2290088 DOI: 10.1113/jphysiol.2001.013280] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Increasing renal artery pressure (RAP) activates pressure diuresis/natriuresis and inhibits renal renin release. There is also evidence that increasing RAP stimulates release of a putative depressor hormone from the renal medulla, although this hypothesis remains controversial. We examined the relative roles of these antihypertensive mechanisms in the acute depressor responses to increased RAP in anaesthetized rabbits and rats. In rabbits, an extracorporeal circuit was established which allows RAP to be set and controlled without direct effects on systemic haemodynamics. When RAP was maintained at approximately 65 mmHg, cardiac output (CO) and mean arterial pressure (MAP) did not change significantly. In contrast, when RAP was increased to approximately 160 mmHg, CO and MAP fell 20 +/- 5 % and 36 +/- 5 %, respectively, over 30 min. Urine flow also increased more than 28-fold when RAP was increased. When compound sodium lactate was infused intravenously at a rate equal to urine flow, neither CO nor MAP fell significantly in response to increased RAP. In 1 kidney-1 clip hypertensive rats, MAP fell by 54 +/- 10 mmHg over a 2 h period after unclipping. In rats in which isotonic NaCl was administered intravenously at a rate equal to urine flow, MAP did not change significantly after unclipping (-14 +/- 9 mmHg). Our results suggest that the depressor responses to increasing RAP in these experimental models are chiefly attributable to hypovolaemia secondary to pressure diuresis/natruresis. These models therefore appear not to be bioassays for release of a putative renal medullary depressor hormone.
Collapse
|
16
|
Evans RG, Madden AC, Oliver JJ, Lewis TV. Effects of ET(A) - and ET(B)-receptor antagonists on regional kidney blood flow, and responses to intravenous endothelin-1, in anaesthetized rabbits. J Hypertens 2001; 19:1789-99. [PMID: 11593099 DOI: 10.1097/00004872-200110000-00013] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the roles of endothelin (ET)-receptor subtypes in the effects of exogenous and endogenous ETs on regional kidney blood flow in anaesthetized rabbits. DESIGN AND METHODS The effects on regional kidney blood flow of the ET(A) antagonist BQ610, and the ET(B) antagonist BQ788, were tested. We also examined the effects of intravenous and renal arterial bolus doses of ET-1, and how these responses are modified by pretreatment with BQ610 and BQ788. RESULTS BQ610 reduced mean arterial pressure (MAP, 3%), and increased total renal blood flow (RBF, 10%), cortical perfusion (CBF, 11%) and medullary perfusion (MBF, 16%). BQ788 increased MAP (6%) and reduced RBF (16%) and CBF (13%) but not MBF. The effects of BQ788 were abolished by pretreatment with BQ610. Intravenous ET-1 (300 ng/kg) reduced RBF and CBF, but increased MBF. BQ788 potentiated ET-1 mediated reductions in CBF, and abolished increases in MBF. BQ610 blunted reductions in RBF and CBF produced by ET-1, but did not significantly affect MBF responses. The renal vascular effects of intravenous ET-1 were mimicked by lower doses (1-30 ng/kg) administered into the renal artery. CONCLUSIONS Endogenous ETs act at ET(A)-receptors to reduce MBF and CBF, but ET(B)-receptors have little direct role in physiological control of renal haemodynamics. Bolus doses of ET-1 act at ET(B)-receptors in the kidney to increase MBF. The effects of bolus ET-1 on the cortical vasculature appear to result from the competing influences of ET(A)-mediated vasoconstriction and ET(B)-mediated vasodilatation.
Collapse
Affiliation(s)
- R G Evans
- Department of Physiology, Monash University, Victoria, Australia.
| | | | | | | |
Collapse
|
17
|
Bergström G, Nyström HC, Jia J, Evans RG. Effects of the ET(A)/ET(B) antagonist, TAK-044, on blood pressure and renal excretory function after unclipping of conscious one-kidney-one-clip hypertensive rats. J Hypertens 2001; 19:659-65. [PMID: 11327643 DOI: 10.1097/00004872-200103001-00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Restoring renal perfusion pressure (unclipping) of one-kidney-one-clip renal hypertensive (1 K1C) rats normalizes mean arterial pressure (MAP) rapidly. This has been attributed to salt/volume losses or release of the putative renal medullary depressor hormone (RMDH). OBJECTIVE To investigate the effects of endothelin receptor A and B (ET(A)/ET(B)) antagonism on unclipping. DESIGN AND METHODS Telemetric devices were implanted in male Wistar 1K1C rats for measurement of conscious MAP. Hypertension was reversed by unclipping with the animal under brief anaesthesia. Seven rats were treated with the ET(A)/ET(B) antagonist, TAK-044 (two doses of 10 mg/kg intraperitoneally in 24 h), and eight rats received its vehicle. In order to investigate whether endothelin receptor antagonism could release RMDH under resting conditions, TAK-044 was administered to telemetered non-clipped intact and chemically renal medullectomized rats (BEA treatment). RESULTS TAK-044 did not affect resting MAP, urine flow or sodium excretion in 1K1C rats. However, after unclipping, the TAK-044-treated group showed a more marked reduction in MAP during the first 24 h after unclipping (P< 0.01). TAK-044 also reduced urine flow and sodium excretion during the first 8 h after unclipping (P< 0.05). TAK-044 reduced resting MAP (P< 0.05) to a similar extent in intact and BEA rats. CONCLUSIONS TAK-044 potentiated the reduction in MAP after unclipping, independently of changes in urine flow and sodium excretion. It also reduced MAP in normotensive rats--an effect that was not dependent on an intact renal medulla. Potentiation of the depressor response to unclipping by TAK-044 could be the result of an interaction of endogenous endothelin receptors with renal depressor mechanisms--possibly, the release, actions, or both, of the putative RMDH.
Collapse
Affiliation(s)
- G Bergström
- Department of Physiology, University of Göteborg, Sweden.
| | | | | | | |
Collapse
|
18
|
Evans RG, Correia AG, Weekes SR, Madden AC. Responses of regional kidney perfusion to vasoconstrictors in anaesthetized rabbits: dependence on agent and renal artery pressure. Clin Exp Pharmacol Physiol 2000; 27:1007-12. [PMID: 11117220 DOI: 10.1046/j.1440-1681.2000.03377.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. We tested the effects of intravenous infusions of angiotensin II (AngII; 300 ng/kg per min) and the vasopressin V1 receptor agonist [Phe2,Ile3,Orn8]-vasopressin (30 ng/kg per min) on regional kidney perfusion in an extracorporeal circuit model in anaesthetized rabbits in which renal artery pressure (RAP) can be set independently of systemic mean arterial pressure. To test whether the level of RAP can influence the renal vascular response to [Phe2,Ile3,Orn8]-vasopressin, we compared its effects when RAP was initially set at approximately 65 mmHg with those when RAP was set at approximately 130 mmHg. 2. When RAP was initially set at approximately 65 mmHg, a 20min infusion of AngII increased RAP (13%) and reduced renal blood flow (RBF; 50%) and cortical perfusion (CBF; 43%). Medullary perfusion (MBF) transiently increased during the first 10 min of infusion, but was not significantly different from control levels during the final 5 min of infusion. 3. When RAP was initially set at approximately 65 mmHg, a 20 min infusion of [Phe2,Ile3,Orn8]-vasopressin increased RAP (9%) and reduced RBF (21%); MBF was reduced by 57%, but CBF was reduced by only 15%. In contrast, when RAP was initially set at approximately 130 mmHg, infusion of [Phe2,Ile3,Orn8]-vasopressin reduced RAP (7%) and increased RBF (13%). In these experiments, MBF was reduced by 38%, but CBF increased by 6%. 4. Our experiments show that AngII preferentially reduces CBF, while [Phe2,Ile3,Orn8]-vasopressin preferentially reduces MBF. The renal vascular responses to [Phe2,Ile3,Orn8]-vasopressin appear to be profoundly affected by the level of RAP, because increasing RAP from approximately 65 to approximately 130 mmHg transforms its cortical vasoconstrictor effect into cortical vasodilatation while leaving the response of the medullary microvasculature relatively unchanged. Whether renal vascular responses to other vasoactive agents (e.g. AngII) are similarly affected by the level of RAP remains to be determined.
Collapse
Affiliation(s)
- R G Evans
- Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
19
|
Evans RG, Stevenson KM, Bergström G, Denton KM, Madden AC, Gribben RL, Weekes SR, Anderson WP. Sex differences in pressure diuresis/natriuresis in rabbits. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 169:309-16. [PMID: 10951122 DOI: 10.1046/j.1365-201x.2000.00749.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We tested for sex-related differences in the pressure diuresis/natriuresis relationships in anaesthetized, renally denervated rabbits, using an extracorporeal circuit to perfuse the left kidney with the rabbit's own blood, through a series of step-wise increases in renal artery pressure (RAP) (from 65 to 130 mmHg). Urine flow, sodium excretion, and the fractional excretions of sodium and urine increased with increasing RAP, and were greater in male than in female rabbits at all levels of RAP-tested. However, these apparent sex-related differences in the acute pressure diuresis/natriuresis relationships were not reflected in alterations in chronic regulation of mean arterial pressure (MAP). Thus, in rabbits on a normal salt diet (0.85 g day(-1)), resting conscious MAP was significantly greater in males (87 +/- 3 mmHg) compared with females (77+/-1 mmHg). Chronically increasing daily salt intake to 4.98 g day(-1) for 28 days had no significant effect on resting conscious MAP in either sex. Thus, although our observations indicate sex differences, at least under the present experimental conditions, in the factors regulating extracellular fluid volume, these do not appear to have a major impact in setting the level of MAP in the long term.
Collapse
Affiliation(s)
- R G Evans
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Evans RG, Madden AC, Denton KM. Diversity of responses of renal cortical and medullary blood flow to vasoconstrictors in conscious rabbits. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 169:297-308. [PMID: 10951121 DOI: 10.1046/j.1365-201x.2000.00741.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The medullary microcirculation receives only about 10% of total renal blood flow, but plays a critical role in long-term arterial pressure regulation, so we need to better understand its regulation. Although there is evidence that circulating and locally acting hormones can differentially affect cortical and medullary blood flow in anaesthetized animals, there is little information from studies in conscious animals. This study is aimed (i) to develop a method for chronic measurement of cortical and medullary blood flow in conscious rabbits, and (ii) to test whether renal cortical and medullary blood flow can be differentially affected by intravenous (i.v.) infusions of various vasoconstrictor hormones in conscious rabbits. At preliminary operations, rabbits were equipped with single-fibre laser-Doppler flowprobes in the (left) renal cortex and medulla, and Transonic flowprobes for measuring cardiac output and renal blood flow. Intravenous angiotensin II (300 ng kg(-1) min(-1)), [Phe2,Ile3,Orn8]-vasopressin (30 ng kg(-1) min(-1)), noradrenaline (300 ng kg(-1) min(-1)), endothelin-1 (20 ng kg(-1) min(-1)) and N G-nitro-L-arginine (10 mg kg(-1)) increased mean arterial pressure (by 10-45% of baseline) and reduced heart rate (by 16-35%) and cardiac output (by 16-45%). Consistent with previous observations in anaesthetized rabbits, all treatments except [Phe2,Ile3, Orn8]-vasopressin reduced renal blood flow (13-63%) and cortical blood flow (16-47%), but medullary blood flow was significantly reduced only by [Phe2,Ile3,Orn8]-vasopressin (41%) and N G-nitro-L-arginine (42%). The diversity of these responses of cortical and medullary blood flow to i.v. infusions of vasoconstrictors provides further evidence for physiological roles of circulating and local hormones in the differential regulation of regional kidney blood flow.
Collapse
Affiliation(s)
- R G Evans
- Department of Physiology, Monash University, Victoria, Australia
| | | | | |
Collapse
|