1
|
Lu KT, Keen HL, Weatherford ET, Sequeira-Lopez MLS, Gomez RA, Sigmund CD. Estrogen Receptor α Is Required for Maintaining Baseline Renin Expression. Hypertension 2016; 67:992-9. [PMID: 26928806 DOI: 10.1161/hypertensionaha.115.07082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/08/2016] [Indexed: 01/08/2023]
Abstract
Enzymatic cleavage of angiotensinogen by renin represents the critical rate-limiting step in the production of angiotensin II, but the mechanisms regulating the initial expression of the renin gene remain incomplete. The purpose of this study is to unravel the molecular mechanism controlling renin expression. We identified a subset of nuclear receptors that exhibited an expression pattern similar to renin by reanalyzing a publicly available microarray data set. Expression of some of these nuclear receptors was similarly regulated as renin in response to physiological cues, which are known to regulate renin. Among these, only estrogen receptor α (ERα) and hepatic nuclear factor α have no known function in regulating renin expression. We determined that ERα is essential for the maintenance of renin expression by transfection of small interfering RNAs targeting Esr1, the gene encoding ERα, in renin-expressing As4.1 cells. We also observed that previously characterized negative regulators of renin expression, Nr2f2 and vitamin D receptor, exhibited elevated expression in response to ERα inhibition. Therefore, we tested whether ERα regulates renin expression through an interaction with Nr2f2 and vitamin D receptor. Renin expression did not return to baseline when we concurrently suppressed both Esr1 and Nr2f2 or Esr1 and vitamin D receptor mRNAs, strongly suggesting that Esr1 regulates renin expression independent of Nr2f2 and vitamin D receptor. ERα directly binds to the hormone response element within the renin enhancer region. We conclude that ERα is a previously unknown regulator of renin that directly binds to the renin enhancer hormone response element sequence and is critical in maintaining renin expression in renin-expressing As4.1 cells.
Collapse
Affiliation(s)
- Ko-Ting Lu
- From the Department of Pharmacology (K.-T.L., H.L.K., E.T.W., C.D.S.) and Center for Hypertension Research (C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics, University of Virginia, Charlottesville (M.L.S.S.-L., R.A.G.)
| | - Henry L Keen
- From the Department of Pharmacology (K.-T.L., H.L.K., E.T.W., C.D.S.) and Center for Hypertension Research (C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics, University of Virginia, Charlottesville (M.L.S.S.-L., R.A.G.)
| | - Eric T Weatherford
- From the Department of Pharmacology (K.-T.L., H.L.K., E.T.W., C.D.S.) and Center for Hypertension Research (C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics, University of Virginia, Charlottesville (M.L.S.S.-L., R.A.G.)
| | - Maria Luisa S Sequeira-Lopez
- From the Department of Pharmacology (K.-T.L., H.L.K., E.T.W., C.D.S.) and Center for Hypertension Research (C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics, University of Virginia, Charlottesville (M.L.S.S.-L., R.A.G.)
| | - R Ariel Gomez
- From the Department of Pharmacology (K.-T.L., H.L.K., E.T.W., C.D.S.) and Center for Hypertension Research (C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics, University of Virginia, Charlottesville (M.L.S.S.-L., R.A.G.)
| | - Curt D Sigmund
- From the Department of Pharmacology (K.-T.L., H.L.K., E.T.W., C.D.S.) and Center for Hypertension Research (C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics, University of Virginia, Charlottesville (M.L.S.S.-L., R.A.G.).
| |
Collapse
|
2
|
Thonpho A, Rojvirat P, Jitrapakdee S, MacDonald MJ. Characterization of the distal promoter of the human pyruvate carboxylase gene in pancreatic beta cells. PLoS One 2013; 8:e55139. [PMID: 23383084 PMCID: PMC3559343 DOI: 10.1371/journal.pone.0055139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/24/2012] [Indexed: 01/15/2023] Open
Abstract
Pyruvate carboxylase (PC) is an enzyme that plays a crucial role in many biosynthetic pathways in various tissues including glucose-stimulated insulin secretion. In the present study, we identify promoter usage of the human PC gene in pancreatic beta cells. The data show that in the human, two alternative promoters, proximal and distal, are responsible for the production of multiple mRNA isoforms as in the rat and mouse. RT-PCR analysis performed with cDNA prepared from human liver and islets showed that the distal promoter, but not the proximal promoter, of the human PC gene is active in pancreatic beta cells. A 1108 bp fragment of the human PC distal promoter was cloned and analyzed. It contains no TATA box but possesses two CCAAT boxes, and other putative transcription factor binding sites, similar to those of the distal promoter of rat PC gene. To localize the positive regulatory region in the human PC distal promoter, 5'-truncated and the 25-bp and 15-bp internal deletion mutants of the human PC distal promoter were generated and used in transient transfections in INS-1 832/13 insulinoma and HEK293T (kidney) cell lines. The results indicated that positions -340 to -315 of the human PC distal promoter serve as (an) activator element(s) for cell-specific transcription factor, while the CCAAT box at -71/-67, a binding site for nuclear factor Y (NF-Y), as well as a GC box at -54/-39 of the human PC distal promoter act as activator sequences for basal transcription.
Collapse
Affiliation(s)
- Ansaya Thonpho
- Molecular Metabolism Research Group, Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pinnara Rojvirat
- Molecular Metabolism Research Group, Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sarawut Jitrapakdee
- Molecular Metabolism Research Group, Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail: (SJ); (MJM)
| | - Michael J. MacDonald
- Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail: (SJ); (MJM)
| |
Collapse
|
3
|
Tiosano D, Gepstein V. Vitamin D action: lessons learned from hereditary 1,25-dihydroxyvitamin-D-resistant rickets patients. Curr Opin Endocrinol Diabetes Obes 2012; 19:452-9. [PMID: 23128575 DOI: 10.1097/med.0b013e32835a3415] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Hereditary 1,25-dihydroxyvitamin-D [1,25(OH)(2)D(3)]-resistant rickets (HVDRR) is a rare genetic disease caused by generalized resistance to 1,25(OH)(2)D(3). Less than 100 cases are reported in the literature. These patients provide an experiment by nature enabling us to understand the role of vitamin D, especially in light of the ongoing debate concerning normal vitamin D levels and the supplement dosage that should be recommended. This article summarizes the role of vitamin D in calcium absorption, rennin-angiotensin system (RAS), and cardiac state in HVDRR patients. RECENT FINDINGS The precise spectrum of vitamin D activities can now be better evaluated by critical analysis of mouse models with targeted deletion of the gene encoding the vitamin D receptor (VDR). Of special interest is the unraveling of the role of VDR in calcium absorption and cardiac status in VDR-knockout mice. The facts that VDR-knockout mice up-regulate intestinal calcium absorption and skeletal mineralization independently of the VDR during pregnancy and lactation point to the existence of VDR-independent mechanisms that are involved in calcium absorption. The observation that mice with genetic disruption of the 1α-hydroxylase gene or of the VDR gene have an overstimulated RAS and consequently develop high blood pressure and cardiac hypertrophy raised concern about potential risks to the cardiovascular system in HVDRR patients. SUMMARY The current review summarizes the new understanding of the effects of vitamin D on calcium absorption, the RAS, and heart hypertrophy derived from studying HVDRR patients from infancy to their mid-30s.
Collapse
Affiliation(s)
- Dov Tiosano
- Pediatric Endocrinology, Meyer Children's Hospital, Rambam Healthcare Campus, Haifa, Israel.
| | | |
Collapse
|
4
|
Glenn ST, Jones CA, Gross KW, Pan L. Control of renin [corrected] gene expression. Pflugers Arch 2012; 465:13-21. [PMID: 22576577 DOI: 10.1007/s00424-012-1110-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
Abstract
Renin, as part of the renin-angiotensin system, plays a critical role in the regulation of blood pressure, electrolyte homeostasis, mammalian renal development, and progression of fibrotic/hypertrophic diseases. Renin gene transcription is subject to complex developmental and tissue-specific regulation. Initial studies using the mouse As4.1 cell line, which has many characteristics of the renin-expressing juxtaglomerular cells of the kidney, have identified a proximal promoter region (-197 to -50 bp) and an enhancer (-2,866 to -2,625 bp) upstream of the Ren-1(c) gene, which are critical for renin gene expression. The proximal promoter region contains several transcription factor binding sites including a binding site for the products of the developmental control genes Hox. The enhancer consists of at least 11 transcription factor binding sites and is responsive to various signal transduction pathways including cAMP, retinoic acid, endothelin-1, and cytokines, all of which are known to alter renin mRNA levels. Furthermore, in vivo models have validated several of these key components found within the proximal promoter region and the enhancer as well as other key sites necessary for renin gene transcription.
Collapse
Affiliation(s)
- Sean T Glenn
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263-0001, USA.
| | | | | | | |
Collapse
|
5
|
Tiosano D, Schwartz Y, Braver Y, Hadash A, Gepstein V, Weisman Y, Lorber A. The renin-angiotensin system, blood pressure, and heart structure in patients with hereditary vitamin D-resistance rickets (HVDRR). J Bone Miner Res 2011; 26:2252-60. [PMID: 21590741 DOI: 10.1002/jbmr.431] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vitamin D deficiency has been linked to hypertension and an increased prevalence of cardiovascular risk factors and disease. Studies in vitamin D receptor knockout (VDR KO) mice revealed an overstimulated renin-angiotensin system (RAS) and consequent high blood pressure and cardiac hypertrophy. VDR KO mice correspond phenotypically and metabolically to humans with hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR). There are no data on the cardiovascular system in human HVDRR. To better understand the effects of vitamin D on the human cardiovascular system, the RAS, blood pressure levels, and cardiac structures were examined in HVDRR patients. Seventeen patients (9 males, 8 females, aged 6 to 36 years) with hereditary HVDRR were enrolled. The control group included age- and gender-matched healthy subjects. Serum calcium, phosphorous, creatinine, 25-hydroxyvitamin D [25(OH)D],1,25-dihydroxyvitamin D(3) [1,25(OH)(2) D(3) ], parathyroid hormone (PTH), plasma rennin activity (PRA), aldosterone, angiotensin II (AT-II), and angiotensin-converting enzyme (ACE) levels were determined. Ambulatory 24-hour blood pressure measurements and echocardiographic examinations were performed. Serum calcium, phosphorus, and alkaline phosphatase values were normal. Serum 1,25(OH)(2) D(3) and PTH but not PRA and ACE levels were elevated in the HVDRR patients. AT-II levels were higher than normal in the HVDRR patients but not significantly different from those of the controls. Aldosterone levels were normal in all HVDRR patients. No HVDRR patient had hypertension or echocardiographic pathology. These findings reveal that 6- to 36-year-old humans with HVDRR have normal renin and ACE activity, mild but nonsignificant elevation of AT-II, normal aldosterone levels, and no hypertension or gross heart abnormalities.
Collapse
Affiliation(s)
- Dov Tiosano
- Division of Pediatric Endocrinology, Meyer Children's Hospital, Rambam Health Care Campus, Haifa, Israel.
| | | | | | | | | | | | | |
Collapse
|
6
|
Tan JJ, Ong SA, Chen KS. Rasd1 interacts with Ear2 (Nr2f6) to regulate renin transcription. BMC Mol Biol 2011; 12:4. [PMID: 21247419 PMCID: PMC3036621 DOI: 10.1186/1471-2199-12-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/19/2011] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The Rasd1 protein is a dexamethasone induced monomeric Ras-like G protein that oscillates in the suprachiasmatic nucleus (SCN). Previous studies have shown that Rasd1 modulates multiple signaling cascades. However, it is still unclear exactly how Rasd1 carries out its function. Studying protein-protein interactions involving Rasd1 may provide insights into its biological functions in different contexts. RESULTS To further explore the molecular function of Rasd1, we performed a yeast two-hybrid screen and identified Ear2, a negative regulator of renin transcription, as an interaction partner of Rasd1. We validated the interaction in vitro and in transfected COS-7 cells. We further confirmed the interaction of endogenous Rasd1 and Ear2 from HEK293T cell and mouse brain extract. Rasd1 inhibited transcriptional repression by Ear2 on a renin promoter-luciferase reporter construct both in the presence and absence of all-trans-retinoic acid. Moreover, real-time RT-PCR showed upregulation of endogenous renin transcription in As4.1 cells over-expressing Rasd1. We demonstrated that the ligand binding domain of Ear2 is required for physical and functional interaction between the two proteins. In addition, we demonstrated that shRNA-mediated knockdown of Rasd1 results in further repression of Ear2-mediated renin transcription, whereas induction of Rasd1 by dexamethasone counteracts the effects of shRNA-mediated Rasd1 knockdown. Finally, our study showed that Rasd1 missense mutations not only attenuate their physical interaction with Ear2 but also abolish their ability to counteract repression of renin transcription mediated by Ear2. CONCLUSIONS Our study provides evidence for physical and functional interactions between Rasd1 and Ear2. The results suggest that their interactions are involved in renin transcriptional regulation. These findings not only reveal a novel role for Rasd1-medated signaling but also provide the basis for potential intervention of renin expression.
Collapse
Affiliation(s)
- Jen Jen Tan
- School of Biological Sciences, Department of Genomics and Genetics, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | | | | |
Collapse
|
7
|
Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of Kidney Renin. Physiol Rev 2010; 90:607-73. [PMID: 20393195 DOI: 10.1152/physrev.00011.2009] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The protease renin is the key enzyme of the renin-angiotensin-aldosterone cascade, which is relevant under both physiological and pathophysiological settings. The kidney is the only organ capable of releasing enzymatically active renin. Although the characteristic juxtaglomerular position is the best known site of renin generation, renin-producing cells in the kidney can vary in number and localization. (Pro)renin gene transcription in these cells is controlled by a number of transcription factors, among which CREB is the best characterized. Pro-renin is stored in vesicles, activated to renin, and then released upon demand. The release of renin is under the control of the cAMP (stimulatory) and Ca2+(inhibitory) signaling pathways. Meanwhile, a great number of intrarenally generated or systemically acting factors have been identified that control the renin secretion directly at the level of renin-producing cells, by activating either of the signaling pathways mentioned above. The broad spectrum of biological actions of (pro)renin is mediated by receptors for (pro)renin, angiotensin II and angiotensin-( 1 – 7 ).
Collapse
Affiliation(s)
- Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Klaus Höcherl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Vladimir Todorov
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Zhou X, Weatherford ET, Liu X, Born E, Keen HL, Sigmund CD. Dysregulated human renin expression in transgenic mice carrying truncated genomic constructs: evidence supporting the presence of insulators at the renin locus. Am J Physiol Renal Physiol 2008; 295:F642-53. [PMID: 18632798 DOI: 10.1152/ajprenal.00384.2007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously generated transgenic mice carrying a large P1 artificial chromosome (PAC160) encompassing a 160-kb segment containing the human renin gene, two upstream genes, and one downstream gene. We also previously generated mutant PAC160 constructs lacking the distal enhancer and concluded it is required to maintain baseline expression of human renin, but is not required for tissue-specific, cell-specific, and regulated expression of renin in vivo. We now report two additional transgenic lines carrying random truncations of PAC160 upstream of the renin gene. Southern and PCR mapping studies indicate that the truncation break points in the two lines are located approximately 10.4 and 2.5 kb upstream of the renin gene causing a deletion of all DNA upstream of the break. We tested the hypothesis that large-scale deletion of DNA upstream of the human renin gene including the enhancer would cause dysregulation of human renin expression. Phenotypically, these truncations cause a severe dysregulation of human renin expression, but remarkably, a preservation of the normal tissue-specific expression of the human ethanolamine kinase 2 (ETNK2) gene which lies immediately downstream of renin. Several functional binding sites for CTCF, a mammalian insulator protein, were identified in and around the renin and ETNK2 loci by gel shift and chromatin immunoprecipitation. We conclude that there are sequences in and around the renin and ETNK2 loci which act as boundaries between neighboring genes which insulate them from each other. The study illustrates the value of taking a much wider genomic perspective when studying mechanisms regulating gene expression.
Collapse
Affiliation(s)
- Xiyou Zhou
- Molecular and Cellular Graduate Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
9
|
Zhou X, Sigmund CD. Chorionic enhancer is dispensable for regulated expression of the human renin gene. Am J Physiol Regul Integr Comp Physiol 2007; 294:R279-87. [PMID: 18077515 DOI: 10.1152/ajpregu.00780.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that a transcriptional chorionic enhancer (CE), previously identified to increase human renin expression in choriodecidual cells is required to mediate tissue-specific, cell-specific, and regulated expression of human renin in transgenic mice. Recombineering was used to delete the CE upstream of the renin gene alone or in combination with the kidney enhancer (KE) in a large artificial chromosome construct containing the entire human renin gene and extensive flanking sequences. Deletion of the CE had no qualitative or quantitative effect on the tissue-specific expression of human renin, nor on the cellular localization of human renin in the kidney or placenta. Combined deletion of both the CE and KE caused a decrease in the level of renal renin expression consistent with the established role of the KE. We also considered the possibility that the CE is a downstream enhancer of the KiSS1 gene, which lies directly upstream of renin and is also expressed in the placenta. Deletion of the CE alone, or the CE and KE together, had no effect on the level of KiSS1 expression in the placenta. These data provide convincing evidence that the CE is silent in vivo, at least in the mouse. The absence of a phenotype caused by deletion of the CE is consistent with the observation that the sequence is not evolutionarily conserved.
Collapse
Affiliation(s)
- Xiyou Zhou
- Molecular and Cellular Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
10
|
Yuan W, Pan W, Kong J, Zheng W, Szeto FL, Wong KE, Cohen R, Klopot A, Zhang Z, Li YC. 1,25-dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J Biol Chem 2007; 282:29821-30. [PMID: 17690094 DOI: 10.1074/jbc.m705495200] [Citation(s) in RCA: 344] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have shown that 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) down-regulates renin expression. To explore the molecular mechanism, we analyzed the mouse Ren-1c gene promoter by luciferase reporter assays. Deletion analysis revealed two DNA fragments from -2,725 to -2,647 (distal fragment) and from -117 to +6 (proximal fragment) that are sufficient to mediate the repression. Mutation of the cAMP response element (CRE) in the distal fragment blunted forskolin stimulation as well as 1,25(OH)(2)D(3) inhibition of the transcriptional activity, suggesting the involvement of CRE in 1,25(OH)(2)D(3)-induced suppression. EMSA revealed that 1,25(OH)(2)D(3) markedly inhibited nuclear protein binding to the CRE in the promoter. ChIP and GST pull-down assays demonstrated that liganded VDR blocked the binding of CREB to the CRE by directly interacting with CREB with the ligand-binding domain, and the VDR-mediated repression can be rescued by CREB, CBP, or p300 overexpression. These data indicate that 1,25(OH)(2)D(3) suppresses renin gene expression at least in part by blocking the formation of CRE-CREB-CBP complex.
Collapse
Affiliation(s)
- Weihua Yuan
- Department of Medicine, Division of Biological Sciences, the University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mrowka R, Steege A, Kaps C, Herzel H, Thiele BJ, Persson PB, Blüthgen N. Dissecting the action of an evolutionary conserved non-coding region on renin promoter activity. Nucleic Acids Res 2007; 35:5120-9. [PMID: 17660193 PMCID: PMC1976450 DOI: 10.1093/nar/gkm535] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Elucidating the mechanisms of the human transcriptional regulatory network is a major challenge of the post-genomic era. One important aspect is the identification and functional analysis of regulatory elements in non-coding DNA. Genomic sequence comparisons between related species can guide the discovery of cis-regulatory sequences. Using this technique, we identify a conserved region CNSmd of ∼775 bp in size, ∼14 kb upstream of the renin gene. Renin plays a pivotal role for mammalian blood pressure regulation and electrolyte balance. To analyse the cis-regulatory role of this region in detail, we perform 132 combinatorial reporter gene assays in an in vitro Calu-6 cell line model. To dissect the role of individual subregions, we fit several mathematical models to the experimental data. We show that a multiplicative switch model fits best the experimental data and that one subregion has a dominant effect on promoter activity. Mapping of the sub-sequences on phylogenetic conservation data reveals that the dominant regulatory region is the one with the highest multi-species conservation score.
Collapse
Affiliation(s)
- Ralf Mrowka
- Institute for Physiology, Systems Biology-Computational Physiology, Charité Universitätsmedizin, Berlin.
| | | | | | | | | | | | | |
Collapse
|
12
|
Itani HA, Liu X, Pratt JH, Sigmund CD. Functional characterization of polymorphisms in the kidney enhancer of the human renin gene. Endocrinology 2007; 148:1424-30. [PMID: 17158202 DOI: 10.1210/en.2006-1381] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The renin gene is regulated by an enhancer located 2.6 kb upstream of the transcription start site in the mouse and 11 kb upstream in humans. Despite extensive sequence conservation, the mouse renin enhancer is transcriptionally more active than the human renin enhancer. We report that the mechanism accounting for this is a result of sequence variation in the promoter proximal half-site of a retinoic-acid response element present in the enhancer. This sequence difference also prompted us to search for naturally occurring polymorphisms in the renin enhancer among normal and hypertensive human subjects. We sequenced the kidney enhancer from 90 samples derived from the Coriell Polymorphism Discovery Resource and 95 severely hypertensive Caucasian and African-American individuals. A single relatively frequent polymorphism (7, 2, and 7%, respectively in the Coriell, African-American, and Caucasian) was identified in the enhancer, one nucleotide downstream of the promoter distal half-site of the retinoic-acid response element. This variant was transcriptionally silent in transfection assays performed in renin-expressing As4.1 cells, a model of renal juxtaglomerular cells. A singleton polymorphism in the promoter was also identified in a single African-American individual. This polymorphism was located between binding sites for CBF1 and homeobox D10 but was also transcriptionally silent either in the presence or absence of the enhancer. Our study demonstrates the presence of silent polymorphisms in the renin promoter and enhancer, thus underscoring the critical importance of performing functional analyses before initiating expensive clinical studies seeking association between polymorphisms and complex diseases such as hypertension.
Collapse
Affiliation(s)
- Hana A Itani
- Molecular and Cellular Biology Interdisciplinary Graduate Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
13
|
Zhou X, Davis DR, Sigmund CD. The human renin kidney enhancer is required to maintain base-line renin expression but is dispensable for tissue-specific, cell-specific, and regulated expression. J Biol Chem 2006; 281:35296-304. [PMID: 16990260 DOI: 10.1074/jbc.m608055200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Renin is the rate-limiting enzyme in the renin-angiotensin system and thus dictates the level of the pressor hormone angiotensin-II. The classical site of renin expression and secretion is the renal juxtaglomerular cell, where its expression is tightly regulated by physiological cues. An evolutionarily conserved transcriptional enhancer located 11 kb upstream of the human RENIN gene has been reported to markedly enhance transcription in renin expressing cells in vitro. However, its importance in vivo remains unclear. We tested whether this enhancer is required for appropriate tissue- and cell-specific expression, or for physiological regulation of the human RENIN gene. To accomplish this, we used a retrofitting technique employing homologous recombination in bacteria to delete the enhancer from a 160-kb P1-artificial chromosome containing human RENIN, two upstream genes and one downstream gene, and then generated two lines of transgenic mice. We previously showed that human renin expression in transgenic mice containing the wild type construct is tightly regulated as is expression of the linked genes. Deletion of the enhancer had no effect on tissue-specific expression of human RENIN, but using the downstream gene as an internal control, found that human RENIN mRNA levels were 3-10-fold decreased compared with constructs containing the enhancer. Despite this decrease in expression, renin protein remained localized to renal juxtaglomerular cells and was appropriately regulated by cues that either increase or decrease expression of renin. Our results suggest that sequences other than the enhancer may be necessary for tissue-specific, cell-specific, and regulated expression of human RENIN.
Collapse
Affiliation(s)
- Xiyou Zhou
- Molecular and Cellular Biology Graduate Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
14
|
Todorov VT, Völkl S, Friedrich J, Kunz-Schughart LA, Hehlgans T, Vermeulen L, Haegeman G, Schmitz ML, Kurtz A. Role of CREB1 and NFκB-p65 in the Down-regulation of Renin Gene Expression by Tumor Necrosis Factor α. J Biol Chem 2005; 280:24356-62. [PMID: 15857826 DOI: 10.1074/jbc.m502968200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tumor necrosis factor-alpha (TNFalpha) is a potent inhibitor of renin gene expression in renal juxtaglomerular cells. We have found that TNFalpha suppresses renin transcription via transcription factor NFkappaB, which targets a cAMP responsive element (CRE) in the renin promoter. Here we aimed to further clarify the role of NFkappaB and the canonical CRE-binding proteins of the CRE-binding protein/activating transcription factor (CREB/ATF) family in the inhibition of renin gene expression by TNFalpha in the juxtaglomerular cell line As4.1. TNFalpha caused a moderate decrease in the binding of CREB1 to its cognate CRE DNA binding site. On the other hand, NFkappaB-p65 transcriptional activity was substantially reduced by TNFalpha, which targeted a trans-activation domain at the very C terminus of the p65 molecule. Our results suggest that TNFalpha inhibits renin gene expression by decreasing the transactivating capacity of NFkappaB-p65 and partially by attenuating CREB1 binding to CRE.
Collapse
Affiliation(s)
- Vladimir T Todorov
- Institute of Physiology, Institute of Pathology, and Department of Immunology, Regensburg University, D-93040 Regensburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bernadt CT, Nowling T, Wiebe MS, Rizzino A. NF-Y behaves as a bifunctional transcription factor that can stimulate or repress the FGF-4 promoter in an enhancer-dependent manner. Gene Expr 2005; 12:193-212. [PMID: 16128003 PMCID: PMC6009113 DOI: 10.3727/000000005783992052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
NF-Y is a bifunctional transcription factor capable of activating or repressing transcription. NF-Y specifically recognizes CCAAT box motifs present in many eukaryotic promoters. The mechanisms involved in regulating its activity are poorly understood. Previous studies have shown that the FGF-4 promoter is regulated positively by its CCAAT box and NF-Y in embryonal carcinoma (EC) cells where the distal enhancer of the FGF-4 gene is active. Here, we demonstrate that the CCAAT box functions as a negative cis-regulatory element when cis-regulatory elements of the FGF-4 enhancer are disrupted, or after EC cells differentiate and the FGF-4 enhancer is inactivated. We also demonstrate that NF-Y mediates the repression of the CCAAT box and that NF-Y associates with the endogenous FGF-4 gene in both EC cells and EC-differentiated cells. Importantly, we also determined that the orientation and the position of the CCAAT box are critical for its role in regulating the FGF-4 promoter. Together, these studies demonstrate that the distal enhancer of the FGF-4 gene determines whether the CCAAT box of the FGF-4 promoter functions as a positive or a negative cis-regulatory element. In addition, these studies are consistent with NF-Y playing an architectural role in its regulation of the FGF-4 promoter.
Collapse
Affiliation(s)
- Cory T. Bernadt
- *Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805
- †Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-6805
| | - Tamara Nowling
- *Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805
| | - Matthew S. Wiebe
- *Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805
- †Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-6805
| | - Angie Rizzino
- *Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805
- †Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-6805
| |
Collapse
|
16
|
Pan L, Wang Y, Jones CA, Glenn ST, Baumann H, Gross KW. Enhancer-dependent inhibition of mouse renin transcription by inflammatory cytokines. Am J Physiol Renal Physiol 2004; 288:F117-24. [PMID: 15367390 DOI: 10.1152/ajprenal.00333.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammatory cytokines have been shown to inhibit renin gene expression in the kidney in vivo and the kidney tumor-derived As4.1 cell line. In this report, we show that cytokines oncostatin M (OSM), IL-6, and IL-1beta inhibit transcriptional activity associated with 4.1 kb of the mouse renin 5'-flanking sequence in As4.1 cells. The 242-bp enhancer (-2866 to -2625 bp) is sufficient to mediate the observed inhibitory effects. Sequences within the enhancer required for inhibition by each of these cytokines have been determined by deletional and mutational analysis. Results indicate that a 39-bp region (CEC) containing a cAMP-responsive element, an E-box, and a steroid receptor-binding site, previously identified as the most critical elements for enhancer activity, is sufficient for the inhibition induced by IL-1beta. However, mutation of each of the three component sites does not abolish the inhibition by IL-1beta, suggesting that the target(s) of cytokine action may not be the transcription factors binding directly to these sites. This CEC region is also critical, but not sufficient, for the inhibition mediated by OSM and IL-6. These data suggest that the direct target of the associated cytokines may be coactivators interacting with transcription factors binding at the enhancer. Finally, we show that OSM treatment caused a 17-fold increase in promoter activity when only 2,625 bp of the Ren-1(c) flanking sequence were tested, in which the enhancer is not present. Three regions including -2625 to -1217 bp, the HOX.PBX binding site at -60 bp, and -59 to +6 bp have been found to contribute to this induction.
Collapse
Affiliation(s)
- Li Pan
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm and Carlton St., Buffalo, NY 14263-0001, USA
| | | | | | | | | | | |
Collapse
|
17
|
Nistala R, Zhang X, Sigmund CD. Differential expression of the closely linked KISS1, REN, and FLJ10761 genes in transgenic mice. Physiol Genomics 2004; 17:4-10. [PMID: 14709678 DOI: 10.1152/physiolgenomics.00205.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported the development and characterization of transgenic mice containing a large 160-kb P1 artificial chromosome (PAC) encompassing the renin (REN) locus from human chromosome 1. Here we demonstrate that PAC160 not only encodes REN, but also complete copies of the next upstream (KISS1) and downstream ( FLJ10761 ) gene along human chromosome 1. Incomplete copies of the second upstream (PEPP3) and downstream (SOX13) genes are also present. The gene order PEPP3-KISS1-REN-FLJ10761-SOX13 is conserved in mice containing either one or two copies of the REN locus. Despite the close localization of KISS1, REN, and FLJ10761 , they each exhibit distinct, yet overlapping tissue-specific expression profiles in humans. The tissue-specific expression patterns of REN and FLJ10761 were retained in transgenic mice containing PAC160. Expression of REN and FLJ10761 were also proportional to copy number. Expression of KISS1 in PAC160 mice showed both similarities and differences to humans. These data suggest that expression of gene blocks encoded on large genomic clones are retained when the clones are used to generate transgenic mice. Genomic elements which act to insulate genes from their neighbors are also apparently retained.
Collapse
Affiliation(s)
- Ravi Nistala
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
18
|
Pan L, Jones CA, Glenn ST, Gross KW. Identification of a novel region in the proximal promoter of the mouse renin gene critical for expression. Am J Physiol Renal Physiol 2004; 286:F1107-15. [PMID: 14761860 DOI: 10.1152/ajprenal.00319.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An enhancer at -2.6 kb and a HOX.PBX-binding site at -60 bp have been demonstrated to be critical to expression of the mouse renin gene (Ren-1(c)) in As4.1 cells. In this report, we show that a region (-197 to -70) immediately 5' to the HOX.PBX-binding site is also critical for Ren-1(c) expression. Deletion of this region in a construct containing 4.1 kb of the Ren-1(c) 5'-flanking sequence resulted in a 99% reduction in Ren-1(c) promoter activity in As4.1 cells, suggesting the pivotal role for the region in the regulation of the mouse renin gene. Electrophoretic mobility shift and supershift assays have identified two nuclear factor I-binding sites and a Sp1/Sp3-binding site within the distal portion of the region (-197 to -103). Mutation of these three sites caused a 90% decrease in Ren-1(c) promoter activity. Mutational analysis and electrophoretic mobility shift assays have also identified three additional transcription factor-binding sites within the region from -103 to -69, each of which contributes to high-level expression of Ren-1(c) in As4.1 cells. Finally, we have shown that the Ren-1(c) enhancer is the target for endothelin-1 (ET-1)-induced inhibition of Ren-1(c) expression and the transcription factor-binding sites in the proximal promoter are required for the maximal ET-1 inhibitory effect.
Collapse
Affiliation(s)
- Li Pan
- Dept. of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm and Carlton Sts., Buffalo, NY 14263-0001, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Renin is a central hormone in the control of blood pressure and various other physiological functions. In spite of the very early discovery of renin over 100 years ago, we have only recently gained a deeper understanding of the origin of renin-producing cells and of the mechanisms responsible for renin synthesis and secretion. The main source of renin is the juxtaglomerular cells (JGCs), which release renin from storage granules. Besides the renin-angiotensin system (RAS) in the JGCs, there exist local RASs in various tissues. JGCs originate in situ within the metanephric kidney from mesenchymal cells that are not related to smooth muscle lineages, as hitherto assumed. The previous notion that JGCs stem from vascular smooth muscle cells may be explained by JGC differentiation: they acquire smooth muscle markers that are maintained throughout adulthood. It has become clear that increasing intracellular free [Ca2+] inhibits renin secretion in JGCs. In contrast, cAMP stimulates renin release. Over the last decade, numerous studies on isolated JGCs and intact animals have provided contradictory results as to whether cGMP has a stimulatory or inhibitory action on renin release. More recent results strongly suggest that the effects of cGMP on renin release from JGCs involve the degradation of cAMP, which is modulated by cGMP. Finally, it has been found that not only is the production of renin modulated by enhancing or attenuating renin transcription, but renin mRNA stability is controlled by various proteins present in renin-producing cells.
Collapse
Affiliation(s)
- Pontus B Persson
- Johannes-Müller-Institut für Physiologie, Humboldt Universität, Berlin (Medizinische Fakultät, Charité), Germany.
| |
Collapse
|
20
|
Mrowka R, Steinhage K, Patzak A, Persson PB. An evolutionary approach for identifying potential transcription factor binding sites: the renin gene as an example. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1147-50. [PMID: 12626372 DOI: 10.1152/ajpregu.00448.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evolutionary pressure has resulted in the conservation of certain nucleotide sequences. These conserved regions are potentially important for certain functions. Here we give an example of a comparison between noncoding sequences combined with other independent database information to shed light onto the regulation of the renin gene, a gene that has great importance for cardiovascular and renal homeostasis. To combine the information regarding conservation and weight matrices of transcription factor (TF) binding sites, an algorithm was developed (TFprofile). Notably, a local peak in the resulting binding profile coincides with a previously experimentally identified regulatory region for the renin gene. The existence of further peaks in the binding profile in the conserved 3.9-kb-long hRENc DNA block upstream of the renin gene suggests additional regions of potential importance for gene regulation. The algorithm TFprofile may be used to integrate information on cross-species evolutionary conservation and aspects of TF binding characteristics to provide putative regulatory DNA regions for experimental verification.
Collapse
Affiliation(s)
- Ralf Mrowka
- Johannes-Müller-Institut für Physiologie, Charité, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany.
| | | | | | | |
Collapse
|
21
|
Gowri PM, Yu JH, Shaufl A, Sperling MA, Menon RK. Recruitment of a repressosome complex at the growth hormone receptor promoter and its potential role in diabetic nephropathy. Mol Cell Biol 2003; 23:815-25. [PMID: 12529387 PMCID: PMC140700 DOI: 10.1128/mcb.23.3.815-825.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth hormone (GH)-GH receptor (GHR) axis modulates growth and metabolism and contributes to complications of diabetes mellitus. We analyzed the promoter region of the dominant transcript (L2) of the murine GHR to determine that a cis element, L2C1, interacts with transcription factors NF-Y, BTEB1, and HMG-Y/I. These proteins individually repress GHR expression and together form a repressosome complex in conjunction with mSin3b. The histone deacetylase inhibitor trichostatin A increases expression of the murine GHR gene, enhances association of acetyl-H3 at L2C1, inhibits formation of the repressosome complex, and decreases NF-Y's association with L2C1. Our studies reveal that murine models of experimental diabetes mellitus are characterized by reduced hepatic GHR expression, decreased acetyl-H3 associated with L2C1, and increased formation of the repressosome complex. In contrast, in the kidney diabetes mellitus is associated with enhanced GHR expression and lack of alteration in the assembly of the repressosome complex, thus permitting exposure of kidneys to the effects of elevated levels of GH in diabetes mellitus. Our findings define a higher-order repressosome complex whose formation correlates with the acetylation status of chromatin histone proteins. The delineation of the role of this repressosome complex in regulating tissue-specific expression of GHR in diabetes mellitus provides a molecular model for the role of GH in the genesis of certain microvascular complications of diabetes mellitus.
Collapse
Affiliation(s)
- P M Gowri
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Sigmund CD. Regulation of renin expression and blood pressure by vitamin D(3). J Clin Invest 2002; 110:155-6. [PMID: 12122105 PMCID: PMC151071 DOI: 10.1172/jci16160] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Curt D Sigmund
- Department of Internal Medicine, 3181B Medical Education and Biomedical Research Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
24
|
Li X, Bhattacharya C, Dayal S, Maity S, Klein WH. Ectoderm gene activation in sea urchin embryos mediated by the CCAAT-binding factor. Differentiation 2002; 70:109-19. [PMID: 12076338 DOI: 10.1046/j.1432-0436.2002.700206.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional enhancers are short stretches of DNA that function to achieve highly specific patterns of gene expression. To identify the mechanisms by which enhancers achieve their specificity, we made use of an enhancer from the aboral ectoderm-specific spec2a gene of the sea urchin Strongylocentrotus purpuratus. The spec2a enhancer contains five cis-regulatory elements within 78 base pairs that interact with five distinct DNA-binding proteins to confer aboral ectoderm expression. Here, we present an analysis of the sea urchin CCAAT binding factor (CBF), which binds to a CCAAT motif within the spec2a enhancer. S. purpuratus CBF and SpOtx, a ubiquitously expressed factor, act together at closely placed cis-regulatory elements to mediate spec2a transcription in the ectoderm. SpCBF was the sole factor that bound to the spec2a CCAAT element, and two of the three subunits that make up the CBF holoprotein were cloned and shown to have high sequence conservation with their vertebrate orthologs. Based on its involvement in the regulation of several other sea urchin genes, SpCBF appears to be a major transcription factor in the sea urchin embryo for positive regulation of ectoderm gene expression. In addition to its role in vertebrate cell growth and proliferation, our results indicate that CBF also functions at the early stages of germ layer formation, namely ectoderm differentiation.
Collapse
Affiliation(s)
- Xiaotao Li
- Department of Biochemistry and Molecular Biology, Box 117, The University of Texas M. D. Anderson Cancer Center,1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|