1
|
Li L, Tang H, She L, Lin Z, Yu Q, Zeng Y, Chen L, Chen F, Liang G, Zhao X, Cho N, Wang Y. Dehydroabietic acid protects against cerebral ischaemia-reperfusion injury by modulating microglia-mediated neuroinflammation via targeting PKCδ. Br J Pharmacol 2025. [PMID: 40262763 DOI: 10.1111/bph.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/15/2025] [Accepted: 03/01/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND AND PURPOSE Cerebral ischaemia-reperfusion injury (CIRI) is a major contributor to global morbidity and mortality, although its underlying mechanisms remain only partly understood. Emerging evidence indicates that inhibiting microglia-mediated neuroinflammation would be an effective therapeutic approach for CIRI, and pharmacological interventions targeting this pathway hold significant therapeutic promise. This study aimed to identify a potent anti-inflammatory drug from a natural compound library as a potential treatment for CIRI. EXPERIMENTAL APPROACH We used oxygen-glucose deprivation/reperfusion (OGD/R) and middle cerebral artery occlusion in male C57BL/6 mice to evaluate the efficacy of DHA in neurological deficits and the anti-inflammatory effects. Using BV2 cells and murine brain tissue, liquid chromatography-tandem mass spectrometry was used to identify potential molecular targets of DHA, followed by bio-layer interferometry, molecular docking, molecular dynamics simulations and cellular thermal shift assays to validate DHA's binding interactions with protein kinase C delta (PKCδ). KEY RESULTS DHA decreased production of pro-inflammatory cytokines following OGD/R, thereby inhibiting microglia-mediated neuroinflammation to protect neurons and reducing brain infarct size and improving neurological outcomes. Mechanistically, DHA directly bound to PKCδ, inhibiting its phosphorylation and downstream NF-κB signalling. This binding interaction involved TRP55 and LEU106 on PKCδ, as confirmed by molecular docking and other biophysical techniques. CONCLUSION AND IMPLICATIONS DHA specifically interacts with PKCδ, preventing its phosphorylation induced by ischaemia-reperfusion injury. These results suggest that DHA is a novel inhibitor of PKCδ and provide solid experimental foundations for using DHA in treating neuroinflammation-related conditions, such as CIRI.
Collapse
Affiliation(s)
- Luyao Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- College of Pharmacy, Chonnam National University, Gwangju, South Korea
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Hao Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Lingyu She
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qin Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yuqing Zeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Linjie Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Fan Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Guang Liang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xia Zhao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Namki Cho
- College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Li J, Zhao G, Liu J, Hu X, Yu W, Wang J, Zhong S, Zhu W, Yang T, Zhou Y, Jiang Y, Bai L, Tu M, Yang Q, Li Y. Effect of Continuous Lipopolysaccharide Induction on Oxidative Stress and Heart Injury in Weaned Piglets. Vet Sci 2025; 12:330. [PMID: 40284832 PMCID: PMC12030969 DOI: 10.3390/vetsci12040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
After weaning, piglets no longer consume breast milk, and their immune system is not yet fully developed. At this time, if weaned piglets are infected with E. coli, their subsequent growth will be seriously affected. In the present study, 48 healthy 28-day-old weaned piglets (6.65 ± 1.19 kg, Duroc × Landrace × Large White) were randomly divided into an LPS group and control group. Piglets in the LPS group were intraperitoneally injected with an LPS solution (LPS was dissolved in sterile saline to form a solution of 100 μg/mL and injected at a dose of 1 mL per kilogram of body weight) for 13 consecutive days. Piglets in the control group were injected with the same volume of sterile saline. On days 1, 5, 9, and 13 of the experiment, six piglets from each group were randomly selected for dissection, the blood and heart samples were collected, and then cardiac function-related indicators were detected. A portion of the heart tissue was fixed in 4% paraformaldehyde and further used to make paraffin sections; then, hematoxylin-eosin (H&E) staining was performed. Masson staining was used to detect the changes in collagen fibers in the hearts. The other parts of the heart tissues were frozen in liquid nitrogen and stored in a refrigerator at -80 °C for the detection of tissue antioxidant indices. The mRNA expression levels of the toll-like receptor 4 (TLR4) signaling pathway, transforming growth factor-β (TGF-β) signaling pathway, and inflammatory cytokines in heart tissues were detected by real-time PCR. The results showed that catalase (CAT) and superoxide dismutase (SOD) contents in the heart tissue homogenates increased significantly on days 1 and 5 in LPS-induced piglets (p < 0.01, p < 0.05), while total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) contents decreased significantly on day 5 (p < 0.05). On day 5, the contents of serum cardiac function indicators lactate dehydrogenase (LDH), creatine kinase isoenzymes (CK-MB), and cardiac troponin I (cTn-I) were significantly increased in LPS-induced piglets (p < 0.01). On the 1st and 5th days, the heart tissue showed obvious pathological damage, which was manifested as the disordered arrangement of myocardial fibers, depression of myocardial cells, infiltration of inflammatory factors, congestion of capillaries, and significant increase in cardiac collagen fibers. On the 1st day, the mRNA expression levels of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) were significantly increased in LPS-induced piglets with heart injury (p < 0.01). On the 5th day, the mRNA expression levels of the TLR4 signaling pathway [TLR4, myeloid differentiation primary response gene 88 (MyD88), nuclear factor kappa-B (NF-κB)], TNF-α, and interleukin 10 (IL-10) were also significantly increased in LPS-induced piglets with heart injury (p < 0.01, p < 0.05). The mRNA expression levels of the TGF-β signaling pathway (TGF-β, Smad2, and Smad4) in cardiac fibrosis-related genes were significantly increased on days 5 and 9 (p < 0.01, p < 0.05). The mRNA expression levels of Smad3 and Smad7 in cardiac fibrosis-related genes were also significantly increased on day 9 (p < 0.01). These results indicate that oxidative stress occurs in the heart tissue of LPS-induced piglets on the 1st and 5th days, leading to cardiac tissue damage. However, on the 9th and 13th days, the degree of heart damage in the piglets was less than that on the 1st and 5th days, which may be due to the tolerance of piglets' tissues and organs because of multiple same-dose LPS stimulations.
Collapse
Affiliation(s)
- Jinyan Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Guotong Zhao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Jin Liu
- Dezhou Agricultural and Rural Bureau, Dezhou 253000, China
| | - Xiaofen Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Wanting Yu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Jue Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Shengwei Zhong
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Wenlu Zhu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Tingyu Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Yunxiao Zhou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yijie Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Lingna Bai
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Mengyan Tu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Quan Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| | - Yong Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (J.L.); (G.Z.)
| |
Collapse
|
3
|
Guo B, Zhang F, Yin Y, Ning X, Zhang Z, Meng Q, Yang Z, Jiang W, Liu M, Wang Y, Sun L, Yu L, Mu N. Post-translational modifications of pyruvate dehydrogenase complex in cardiovascular disease. iScience 2024; 27:110633. [PMID: 39224515 PMCID: PMC11367490 DOI: 10.1016/j.isci.2024.110633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Pyruvate dehydrogenase complex (PDC) is a crucial enzyme that connects glycolysis and the tricarboxylic acid (TCA) cycle pathway. It plays an essential role in regulating glucose metabolism for energy production by catalyzing the oxidative decarboxylation of pyruvate to acetyl coenzyme A. Importantly, the activity of PDC is regulated through post-translational modifications (PTMs), phosphorylation, acetylation, and O-GlcNAcylation. These PTMs have significant effects on PDC activity under both physiological and pathophysiological conditions, making them potential targets for metabolism-related diseases. This review specifically focuses on the PTMs of PDC in cardiovascular diseases (CVDs) such as myocardial ischemia/reperfusion injury, diabetic cardiomyopathy, obesity-related cardiomyopathy, heart failure (HF), and vascular diseases. The findings from this review offer theoretical references for the diagnosis, treatment, and prognosis of CVD.
Collapse
Affiliation(s)
- Bo Guo
- Department of Pharmacy, Northwest Woman’s and Children’s Hospital, Xi’an, China
| | - Fujiao Zhang
- College of Life Sciences, Northwest University, Xi’an, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xingmin Ning
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zihui Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Qinglei Meng
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Ziqi Yang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Wenhua Jiang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Manling Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Lijuan Sun
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
4
|
Chen T, Xie Q, Tan B, Yi Q, Xiang H, Wang R, Zhou Q, He B, Tian J, Zhu J, Xu H. Inhibition of Pyruvate Dehydrogenase Kinase 4 Protects Cardiomyocytes from lipopolysaccharide-Induced Mitochondrial Damage by Reducing Lactate Accumulation. Inflammation 2024; 47:1356-1370. [PMID: 38401019 DOI: 10.1007/s10753-024-01981-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/26/2024]
Abstract
Mitochondrial dysfunction is considered one of the major pathogenic mechanisms of sepsis-induced cardiomyopathy (SIC). Pyruvate dehydrogenase kinase 4 (PDK4), a key regulator of mitochondrial metabolism, is essential for maintaining mitochondrial function. However, its specific role in SIC remains unclear. To investigate this, we established an in vitro model of septic cardiomyopathy using lipopolysaccharide (LPS)-induced H9C2 cardiomyocytes. Our study revealed a significant increase in PDK4 expression in LPS-treated H9C2 cardiomyocytes. Inhibiting PDK4 with dichloroacetic acid (DCA) improved cell survival, reduced intracellular lipid accumulation and calcium overload, and restored mitochondrial structure and respiratory capacity while decreasing lactate accumulation. Similarly, Oxamate, a lactate dehydrogenase inhibitor, exhibited similar effects to DCA in LPS-treated H9C2 cardiomyocytes. To further validate whether PDK4 causes cardiomyocyte and mitochondrial damage in SIC by promoting lactate production, we upregulated PDK4 expression using PDK4-overexpressing lentivirus in H9C2 cardiomyocytes. This resulted in elevated lactate levels, impaired mitochondrial structure, and reduced mitochondrial respiratory capacity. However, inhibiting lactate production reversed the mitochondrial dysfunction caused by PDK4 upregulation. In conclusion, our study highlights the pathogenic role of PDK4 in LPS-induced cardiomyocyte and mitochondrial damage by promoting lactate production. Therefore, targeting PDK4 and its downstream product lactate may serve as promising therapeutic approaches for treating SIC.
Collapse
Affiliation(s)
- Tangtian Chen
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Qiumin Xie
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Bin Tan
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qin Yi
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Han Xiang
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Rui Wang
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qin Zhou
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Bolin He
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jie Tian
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Cardiovascular (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jing Zhu
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Hao Xu
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Department of Clinical Laboratory, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Box 136, No. 3 Zhongshan RD, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
5
|
Menendez-Montes I, Garry DJ, Zhang J(J, Sadek HA. Metabolic Control of Cardiomyocyte Cell Cycle. Methodist Debakey Cardiovasc J 2023; 19:26-36. [PMID: 38028975 PMCID: PMC10655756 DOI: 10.14797/mdcvj.1309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Current therapies for heart failure aim to prevent the deleterious remodeling that occurs after MI injury, but currently no therapies are available to replace lost cardiomyocytes. Several organisms now being studied are capable of regenerating their myocardium by the proliferation of existing cardiomyocytes. In this review, we summarize the main metabolic pathways of the mammalian heart and how modulation of these metabolic pathways through genetic and pharmacological approaches influences cardiomyocyte proliferation and heart regeneration.
Collapse
Affiliation(s)
| | | | | | - Hesham A. Sadek
- University of Texas Southwestern Medical Center, Dallas, Texas, US
| |
Collapse
|
6
|
Vanni E, Lindner K, Gavin AC, Montessuit C. Differential intracellular management of fatty acids impacts on metabolic stress-stimulated glucose uptake in cardiomyocytes. Sci Rep 2023; 13:14805. [PMID: 37684349 PMCID: PMC10491837 DOI: 10.1038/s41598-023-42072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Stimulation of glucose uptake in response to ischemic metabolic stress is important for cardiomyocyte function and survival. Chronic exposure of cardiomyocytes to fatty acids (FA) impairs the stimulation of glucose uptake, whereas induction of lipid droplets (LD) is associated with preserved glucose uptake. However, the mechanisms by which LD induction prevents glucose uptake impairment remain elusive. We induced LD with either tetradecanoyl phorbol acetate (TPA) or 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). Triacylglycerol biosynthesis enzymes were inhibited in cardiomyocytes exposed to FA ± LD inducers, either upstream (glycerol-3-phosphate acyltransferases; GPAT) or downstream (diacylglycerol acyltransferases; DGAT) of the diacylglycerol step. Although both inhibitions reduced LD formation in cardiomyocytes treated with FA and LD inducers, only DGAT inhibition impaired metabolic stress-stimulated glucose uptake. DGAT inhibition in FA plus TPA-treated cardiomyocytes reduced triacylglycerol but not diacylglycerol content, thus increasing the diacylglycerol/triacylglycerol ratio. In cardiomyocytes exposed to FA alone, GPAT inhibition reduced diacylglycerol but not triacylglycerol, thus decreasing the diacylglycerol/triacylglycerol ratio, prevented PKCδ activation and improved metabolic stress-stimulated glucose uptake. Changes in AMP-activated Protein Kinase activity failed to explain variations in metabolic stress-stimulated glucose uptake. Thus, LD formation regulates metabolic stress-stimulated glucose uptake in a manner best reflected by the diacylglycerol/triacylglycerol ratio.
Collapse
Affiliation(s)
- Ettore Vanni
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - Karina Lindner
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, Geneva, Switzerland
| | - Anne-Claude Gavin
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, Geneva, Switzerland
| | - Christophe Montessuit
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland.
| |
Collapse
|
7
|
Xiao Q, Wang D, Li D, Huang J, Ma F, Zhang H, Sheng Y, Zhang C, Ha X. Protein kinase C: A potential therapeutic target for endothelial dysfunction in diabetes. J Diabetes Complications 2023; 37:108565. [PMID: 37540984 DOI: 10.1016/j.jdiacomp.2023.108565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
Protein kinase C (PKC) is a family of serine/threonine protein kinases that play an important role in many organs and systems and whose activation contributes significantly to endothelial dysfunction in diabetes. The increase in diacylglycerol (DAG) under high glucose conditions mediates PKC activation and synthesis, which stimulates oxidative stress and inflammation, resulting in impaired endothelial cell function. This article reviews the contribution of PKC to the development of diabetes-related endothelial dysfunction and summarizes the drugs that inhibit PKC activation, with the aim of exploring therapeutic modalities that may alleviate endothelial dysfunction in diabetic patients.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Dan Wang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Danyang Li
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Jing Huang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Feifei Ma
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, Gansu, China
| | - Haocheng Zhang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Yingda Sheng
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Caimei Zhang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaoqin Ha
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
8
|
Hody S, Warren BE, Votion DM, Rogister B, Lemieux H. Eccentric Exercise Causes Specific Adjustment in Pyruvate Oxidation by Mitochondria. Med Sci Sports Exerc 2022; 54:1300-1308. [PMID: 35320143 DOI: 10.1249/mss.0000000000002920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The impact of eccentric exercise on mitochondrial function has only been poorly investigated and remains unclear. This study aimed to identify the changes in skeletal muscle mitochondrial respiration, specifically triggered by a single bout of eccentric treadmill exercise. METHODS Male adult mice were randomly divided into eccentric (ECC; downhill running), concentric (CON; uphill running), and unexercised control groups ( n = 5/group). Running groups performed 18 bouts of 5 min at 20 cm·s -1 on an inclined treadmill (±15° to 20°). Mice were sacrificed 48 h after exercise for blood and quadriceps muscles collection. Deep proximal (red) and superficial distal (white) muscle portions were used for high-resolution respirometric measurements. RESULTS Plasma creatine kinase activity was significantly higher in the ECC compared with CON group, reflecting exercise-induced muscle damage ( P < 0.01). The ECC exercise induced a significant decrease in oxidative phosphorylation capacity in both quadriceps femoris parts ( P = 0.032 in proximal portion, P = 0.010 in distal portion) in comparison with the CON group. This observation was only made for the nicotinamide adenine dinucleotide (NADH) pathway using pyruvate + malate as substrates. When expressed as a flux control ratio, indicating a change related to mitochondrial quality rather than quantity, this change seemed more prominent in distal compared with proximal portion of quadriceps muscle. No significant difference between groups was found for the NADH pathway with glutamate or glutamate + malate as substrates, for the succinate pathway or for fatty acid oxidation. CONCLUSIONS Our data suggest that ECC exercise specifically affects pyruvate mitochondrial transport and/or oxidation 48 h after exercise, and this alteration mainly concerns the distal white muscle portion. This study provides new perspectives to improve our understanding of the mitochondrial adaptation associated with ECC exercise.
Collapse
Affiliation(s)
- Stéphanie Hody
- Department of Motricity Sciences, University of Liège, Liège, BELGIUM
| | - Blair E Warren
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, CANADA
| | - Dominique-Marie Votion
- Equine Pole, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Liège, BELGIUM
| | | | | |
Collapse
|
9
|
Qvit N, Lin AJ, Elezaby A, Ostberg NP, Campos JC, Ferreira JCB, Mochly-Rosen D. A Selective Inhibitor of Cardiac Troponin I Phosphorylation by Delta Protein Kinase C (δPKC) as a Treatment for Ischemia-Reperfusion Injury. Pharmaceuticals (Basel) 2022; 15:271. [PMID: 35337069 PMCID: PMC8950820 DOI: 10.3390/ph15030271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Myocardial infarction is the leading cause of cardiovascular mortality, with myocardial injury occurring during ischemia and subsequent reperfusion (IR). We previously showed that the inhibition of protein kinase C delta (δPKC) with a pan-inhibitor (δV1-1) mitigates myocardial injury and improves mitochondrial function in animal models of IR, and in humans with acute myocardial infarction, when treated at the time of opening of the occluded blood vessel, at reperfusion. Cardiac troponin I (cTnI), a key sarcomeric protein in cardiomyocyte contraction, is phosphorylated by δPKC during reperfusion. Here, we describe a rationally-designed, selective, high-affinity, eight amino acid peptide that inhibits cTnI's interaction with, and phosphorylation by, δPKC (ψTnI), and prevents tissue injury in a Langendorff model of myocardial infarction, ex vivo. Unexpectedly, we also found that this treatment attenuates IR-induced mitochondrial dysfunction. These data suggest that δPKC phosphorylation of cTnI is critical in IR injury, and that a cTnI/δPKC interaction inhibitor should be considered as a therapeutic target to reduce cardiac injury after myocardial infarction.
Collapse
Affiliation(s)
- Nir Qvit
- Center for Clinical Sciences Research, Department of Chemical & Systems Biology, Stanford University School of Medicine, 269 Campus Dr. Room 3145, Stanford, CA 94305, USA; (N.Q.); (A.J.L.); (A.E.); (N.P.O.); (J.C.B.F.)
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel
| | - Amanda J. Lin
- Center for Clinical Sciences Research, Department of Chemical & Systems Biology, Stanford University School of Medicine, 269 Campus Dr. Room 3145, Stanford, CA 94305, USA; (N.Q.); (A.J.L.); (A.E.); (N.P.O.); (J.C.B.F.)
| | - Aly Elezaby
- Center for Clinical Sciences Research, Department of Chemical & Systems Biology, Stanford University School of Medicine, 269 Campus Dr. Room 3145, Stanford, CA 94305, USA; (N.Q.); (A.J.L.); (A.E.); (N.P.O.); (J.C.B.F.)
| | - Nicolai P. Ostberg
- Center for Clinical Sciences Research, Department of Chemical & Systems Biology, Stanford University School of Medicine, 269 Campus Dr. Room 3145, Stanford, CA 94305, USA; (N.Q.); (A.J.L.); (A.E.); (N.P.O.); (J.C.B.F.)
| | - Juliane C. Campos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Julio C. B. Ferreira
- Center for Clinical Sciences Research, Department of Chemical & Systems Biology, Stanford University School of Medicine, 269 Campus Dr. Room 3145, Stanford, CA 94305, USA; (N.Q.); (A.J.L.); (A.E.); (N.P.O.); (J.C.B.F.)
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Daria Mochly-Rosen
- Center for Clinical Sciences Research, Department of Chemical & Systems Biology, Stanford University School of Medicine, 269 Campus Dr. Room 3145, Stanford, CA 94305, USA; (N.Q.); (A.J.L.); (A.E.); (N.P.O.); (J.C.B.F.)
| |
Collapse
|
10
|
Miao LN, Pan D, Shi J, Du JP, Chen PF, Gao J, Yu Y, Shi DZ, Guo M. Role and Mechanism of PKC-δ for Cardiovascular Disease: Current Status and Perspective. Front Cardiovasc Med 2022; 9:816369. [PMID: 35242825 PMCID: PMC8885814 DOI: 10.3389/fcvm.2022.816369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Protein kinase C (PKC) is a protein kinase with important cellular functions. PKC-δ, a member of the novel PKC subfamily, has been well-documented over the years. Activation of PKC-δ plays an important regulatory role in myocardial ischemia/reperfusion (IRI) injury and myocardial fibrosis, and its activity and expression levels can regulate pathological cardiovascular diseases such as atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. This article aims to review the structure and function of PKC-δ, summarize the current research regarding its activation mechanism and its role in cardiovascular disease, and provide novel insight into further research on the role of PKC-δ in cardiovascular diseases.
Collapse
Affiliation(s)
- Li-na Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Deng Pan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Junhe Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-peng Du
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng-fei Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Da-Zhuo Shi
| | - Ming Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Ming Guo
| |
Collapse
|
11
|
Pasqua T, Rocca C, Giglio A, Angelone T. Cardiometabolism as an Interlocking Puzzle between the Healthy and Diseased Heart: New Frontiers in Therapeutic Applications. J Clin Med 2021; 10:721. [PMID: 33673114 PMCID: PMC7918460 DOI: 10.3390/jcm10040721] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiac metabolism represents a crucial and essential connecting bridge between the healthy and diseased heart. The cardiac muscle, which may be considered an omnivore organ with regard to the energy substrate utilization, under physiological conditions mainly draws energy by fatty acids oxidation. Within cardiomyocytes and their mitochondria, through well-concerted enzymatic reactions, substrates converge on the production of ATP, the basic chemical energy that cardiac muscle converts into mechanical energy, i.e., contraction. When a perturbation of homeostasis occurs, such as an ischemic event, the heart is forced to switch its fatty acid-based metabolism to the carbohydrate utilization as a protective mechanism that allows the maintenance of its key role within the whole organism. Consequently, the flexibility of the cardiac metabolic networks deeply influences the ability of the heart to respond, by adapting to pathophysiological changes. The aim of the present review is to summarize the main metabolic changes detectable in the heart under acute and chronic cardiac pathologies, analyzing possible therapeutic targets to be used. On this basis, cardiometabolism can be described as a crucial mechanism in keeping the physiological structure and function of the heart; furthermore, it can be considered a promising goal for future pharmacological agents able to appropriately modulate the rate-limiting steps of heart metabolic pathways.
Collapse
Affiliation(s)
- Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
| | - Anita Giglio
- Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy;
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
- National Institute of Cardiovascular Research (I.N.R.C.), 40126 Bologna, Italy
| |
Collapse
|
12
|
Insulin directly stimulates mitochondrial glucose oxidation in the heart. Cardiovasc Diabetol 2020; 19:207. [PMID: 33287820 PMCID: PMC7722314 DOI: 10.1186/s12933-020-01177-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Glucose oxidation is a major contributor to myocardial energy production and its contribution is orchestrated by insulin. While insulin can increase glucose oxidation indirectly by enhancing glucose uptake and glycolysis, it also directly stimulates mitochondrial glucose oxidation, independent of increasing glucose uptake or glycolysis, through activating mitochondrial pyruvate dehydrogenase (PDH), the rate-limiting enzyme of glucose oxidation. However, how insulin directly stimulates PDH is not known. To determine this, we characterized the impacts of modifying mitochondrial insulin signaling kinases, namely protein kinase B (Akt), protein kinase C-delta (PKC-δ) and glycogen synthase kinase-3 beta (GSK-3β), on the direct insulin stimulation of glucose oxidation. Methods We employed an isolated working mouse heart model to measure the effect of insulin on cardiac glycolysis, glucose oxidation and fatty acid oxidation and how that could be affected when mitochondrial Akt, PKC-δ or GSK-3β is disturbed using pharmacological modulators. We also used differential centrifugation to isolate mitochondrial and cytosol fraction to examine the activity of Akt, PKC-δ and GSK-3β between these fractions. Data were analyzed using unpaired t-test and two-way ANOVA. Results Here we show that insulin-stimulated phosphorylation of mitochondrial Akt is a prerequisite for transducing insulin’s direct stimulation of glucose oxidation. Inhibition of mitochondrial Akt completely abolishes insulin-stimulated glucose oxidation, independent of glucose uptake or glycolysis. We also show a novel role of mitochondrial PKC-δ in modulating mitochondrial glucose oxidation. Inhibition of mitochondrial PKC-δ mimics insulin stimulation of glucose oxidation and mitochondrial Akt. We also demonstrate that inhibition of mitochondrial GSK3β phosphorylation does not influence insulin-stimulated glucose oxidation. Conclusion We identify, for the first time, insulin-stimulated mitochondrial Akt as a prerequisite transmitter of the insulin signal that directly stimulates cardiac glucose oxidation. These novel findings suggest that targeting mitochondrial Akt is a potential therapeutic approach to enhance cardiac insulin sensitivity in condition such as heart failure, diabetes and obesity.
Collapse
|
13
|
Kim YK, Hammerling U. The mitochondrial PKCδ/retinol signal complex exerts real-time control on energy homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158614. [PMID: 31927141 PMCID: PMC7347429 DOI: 10.1016/j.bbalip.2020.158614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/17/2022]
Abstract
The review focuses on the role of vitamin A (retinol) in the control of energy homeostasis, and on the manner in which certain retinoids subvert this process, leading potentially to disease. In eukaryotic cells, the pyruvate dehydrogenase complex (PDHC) is negatively regulated by four pyruvate dehydrogenase kinases (PDKs) and two antagonistically acting pyruvate dehydrogenase phosphatases (PDPs). The second isoform, PDK2, is regulated by an autonomous mitochondrial signal cascade that is anchored on protein kinase Cδ (PKCδ), where retinoids play an indispensible co-factor role. Along with its companion proteins p66Shc, cytochrome c, and vitamin A, the PKCδ/retinol complex is located in the intermembrane space of mitochondria. At this site, and in contrast to cytosolic locations, PKCδ is activated by the site-specific oxidation of its cysteine-rich activation domain (CRD) that is configured into a complex RING-finger. Oxidation involves the transfer of electrons from cysteine moieties to oxidized cytochrome c, a step catalyzed by vitamin A. The PKCδ/retinol signalosome monitors the internal cytochrome c redox state that reflects the workload of the respiratory chain. Upon sensing demands for energy PKCδ signals the PDHC to increase glucose-derived fuel flux entering the KREBS cycle. Conversely, if excessive fuel flux surpasses the capacity of the respiratory chain, threatening the release of damaging reactive oxygen species (ROS), the polarity of the cytochrome c redox system is reversed, resulting in the chemical reduction of the PKCδ CRD, restoration of the RING-finger, refolding of PKCδ into the inactive, globular form, and curtailment of PDHC output, thereby constraining the respiratory capacity within safe margins. Several retinoids, notably anhydroretinol and fenretinide, capable of displacing retinol from binding sites on PKCδ, can co-activate PKCδ signaling but, owing to their extended system of conjugated double bonds, are unable to silence PKCδ in a timely manner. Left in the ON position, PKCδ causes chronic overload of the respiratory chain leading to mitochondrial dysfunction. This review explores how defects in the PKCδ signal machinery potentially contribute to metabolic and degenerative diseases.
Collapse
Affiliation(s)
- Youn-Kyung Kim
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Ulrich Hammerling
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
14
|
The Role of Tyrosine Phosphorylation of Protein Kinase C Delta in Infection and Inflammation. Int J Mol Sci 2019; 20:ijms20061498. [PMID: 30917487 PMCID: PMC6471617 DOI: 10.3390/ijms20061498] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/30/2022] Open
Abstract
Protein Kinase C (PKC) is a family composed of phospholipid-dependent serine/threonine kinases that are master regulators of inflammatory signaling. The activity of different PKCs is context-sensitive and these kinases can be positive or negative regulators of signaling pathways. The delta isoform (PKCδ) is a critical regulator of the inflammatory response in cancer, diabetes, ischemic heart disease, and neurodegenerative diseases. Recent studies implicate PKCδ as an important regulator of the inflammatory response in sepsis. PKCδ, unlike other members of the PKC family, is unique in its regulation by tyrosine phosphorylation, activation mechanisms, and multiple subcellular targets. Inhibition of PKCδ may offer a unique therapeutic approach in sepsis by targeting neutrophil-endothelial cell interactions. In this review, we will describe the overall structure and function of PKCs, with a focus on the specific phosphorylation sites of PKCδ that determine its critical role in cell signaling in inflammatory diseases such as sepsis. Current genetic and pharmacological tools, as well as in vivo models, that are used to examine the role of PKCδ in inflammation and sepsis are presented and the current state of emerging tools such as microfluidic assays in these studies is described.
Collapse
|
15
|
Marrocco V, Bogomolovas J, Ehler E, Dos Remedios CG, Yu J, Gao C, Lange S. PKC and PKN in heart disease. J Mol Cell Cardiol 2019; 128:212-226. [PMID: 30742812 PMCID: PMC6408329 DOI: 10.1016/j.yjmcc.2019.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The protein kinase C (PKC) and closely related protein kinase N (PKN) families of serine/threonine protein kinases play crucial cellular roles. Both kinases belong to the AGC subfamily of protein kinases that also include the cAMP dependent protein kinase (PKA), protein kinase B (PKB/AKT), protein kinase G (PKG) and the ribosomal protein S6 kinase (S6K). Involvement of PKC family members in heart disease has been well documented over the years, as their activity and levels are mis-regulated in several pathological heart conditions, such as ischemia, diabetic cardiomyopathy, as well as hypertrophic or dilated cardiomyopathy. This review focuses on the regulation of PKCs and PKNs in different pathological heart conditions and on the influences that PKC/PKN activation has on several physiological processes. In addition, we discuss mechanisms by which PKCs and the closely related PKNs are activated and turned-off in hearts, how they regulate cardiac specific downstream targets and pathways, and how their inhibition by small molecules is explored as new therapeutic target to treat cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA
| | - Julius Bogomolovas
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | - Jiayu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA.
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.
| |
Collapse
|
16
|
Sato PY, Chuprun JK, Grisanti LA, Woodall MC, Brown BR, Roy R, Traynham CJ, Ibetti J, Lucchese AM, Yuan A, Drosatos K, Tilley DG, Gao E, Koch WJ. Restricting mitochondrial GRK2 post-ischemia confers cardioprotection by reducing myocyte death and maintaining glucose oxidation. Sci Signal 2018; 11:11/560/eaau0144. [PMID: 30538174 DOI: 10.1126/scisignal.aau0144] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increased abundance of GRK2 [G protein-coupled receptor (GPCR) kinase 2] is associated with poor cardiac function in heart failure patients. In animal models, GRK2 contributes to the pathogenesis of heart failure after ischemia-reperfusion (IR) injury. In addition to its role in down-regulating activated GPCRs, GRK2 also localizes to mitochondria both basally and post-IR injury, where it regulates cellular metabolism. We previously showed that phosphorylation of GRK2 at Ser670 is essential for the translocation of GRK2 to the mitochondria of cardiomyocytes post-IR injury in vitro and that this localization promotes cell death. Here, we showed that mice with a S670A knock-in mutation in endogenous GRK2 showed reduced cardiomyocyte death and better cardiac function post-IR injury. Cultured GRK2-S670A knock-in cardiomyocytes subjected to IR in vitro showed enhanced glucose-mediated mitochondrial respiratory function that was partially due to maintenance of pyruvate dehydrogenase activity and improved glucose oxidation. Thus, we propose that mitochondrial GRK2 plays a detrimental role in cardiac glucose oxidation post-injury.
Collapse
Affiliation(s)
- Priscila Y Sato
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - J Kurt Chuprun
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Laurel A Grisanti
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Meryl C Woodall
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Brett R Brown
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rajika Roy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Christopher J Traynham
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Anna M Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ancai Yuan
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Konstantinos Drosatos
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Doug G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA. .,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
17
|
Dziubak A, Wójcicka G, Wojtak A, Bełtowski J. Metabolic Effects of Metformin in the Failing Heart. Int J Mol Sci 2018; 19:2869. [PMID: 30248910 PMCID: PMC6213955 DOI: 10.3390/ijms19102869] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023] Open
Abstract
Accumulating evidence shows that metformin is an insulin-sensitizing antidiabetic drug widely used in the treatment of type 2 diabetes mellitus (T2DM), which can exert favorable effects on cardiovascular risk and may be safely used in patients with heart failure (HF), and even able to reduce the incidence of HF and to reduce HF mortality. In failing hearts, metformin improves myocardial energy metabolic status through the activation of AMP (adenosine monophosphate)-activated protein kinase (AMPK) and the regulation of lipid and glucose metabolism. By increasing nitric oxide (NO) bioavailability, limiting interstitial fibrosis, reducing the deposition of advanced glycation end-products (AGEs), and inhibiting myocardial cell apoptosis metformin reduces cardiac remodeling and hypertrophy, and thereby preserves left ventricular systolic and diastolic functions. While a lot of preclinical and clinical studies showed the cardiovascular safety of metformin therapy in diabetic patients and HF, to confirm observed benefits, the specific large-scale trials configured for HF development in diabetic patients as a primary endpoints are necessary.
Collapse
Affiliation(s)
- Aleksandra Dziubak
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Grażyna Wójcicka
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Andrzej Wojtak
- Department of Vascular Surgery, Medical University of Lubin, 20-090 Lublin, Poland.
| | - Jerzy Bełtowski
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| |
Collapse
|
18
|
Abstract
Heart failure (HF) is a physiological state in which cardiac output is insufficient to meet the needs of the body. It is a clinical syndrome characterized by impaired ability of the left ventricle to either fill or eject blood efficiently. HF is a disease of multiple aetiologies leading to progressive cardiac dysfunction and it is the leading cause of deaths in both developed and developing countries. HF is responsible for about 73,000 deaths in the UK each year. In the USA, HF affects 5.8 million people and 550,000 new cases are diagnosed annually. Cardiac remodelling (CD), which plays an important role in pathogenesis of HF, is viewed as stress response to an index event such as myocardial ischaemia or imposition of mechanical load leading to a series of structural and functional changes in the viable myocardium. Protein kinase C (PKC) isozymes are a family of serine/threonine kinases. PKC is a central enzyme in the regulation of growth, hypertrophy, and mediators of signal transduction pathways. In response to circulating hormones, activation of PKC triggers a multitude of intracellular events influencing multiple physiological processes in the heart, including heart rate, contraction, and relaxation. Recent research implicates PKC activation in the pathophysiology of a number of cardiovascular disease states. Few reports are available that examine PKC in normal and diseased human hearts. This review describes the structure, functions, and distribution of PKCs in the healthy and diseased heart with emphasis on the human heart and, also importantly, their regulation in heart failure.
Collapse
Affiliation(s)
- Raphael M Singh
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, England, PR1 2HE, UK.
- Faculty of Medicine and Health Sciences, University of Guyana, Turkeyen, Georgetown, Guyana.
| | - Emanuel Cummings
- Faculty of Medicine and Health Sciences, University of Guyana, Turkeyen, Georgetown, Guyana
| | - Constantinos Pantos
- Department of Pharmacology, School of Medicine, University of Athens, Athens, Greece
| | - Jaipaul Singh
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, England, PR1 2HE, UK
| |
Collapse
|
19
|
Yuan L, Zhai L, Qian L, Huang D, Ding Y, Xiang H, Liu X, Thompson JW, Liu J, He YH, Chen XQ, Hu J, Kong QP, Tan M, Wang XF. Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. Cell Res 2018; 28:625-643. [PMID: 29808012 DOI: 10.1038/s41422-018-0043-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Cellular senescence is a fundamental cell fate playing a significant role throughout the natural aging process. However, the molecular determinants distinguishing senescence from other cell-cycle arrest states such as quiescence and post-mitotic state, and the specified mechanisms underlying cell-fate decisions towards senescence versus cell death in response to cellular stress stimuli remain less understood. Employing multi-omics approaches, we revealed that switching off the specific mitochondrial processing machinery involving the peptidase IMMP2L serves as the foundation of the senescence program, which was also observed during the mammalian aging process. Mechanistically, we demonstrate that IMMP2L processes and thus activates at least two substrates, mitochondrial metabolic enzyme glycerol-3-phosphate dehydrogenase (GPD2) and cell death regulator apoptosis-inducing factor (AIF). For cells destined to senesce, concerted shutdown of the IMMP2L-GPD2 and IMMP2L-AIF signaling axes collaboratively drives the senescent process by reprogramming mitochondria-associated redox status, phospholipid metabolism and signaling network, and simultaneously blocking cell death under oxidative stress conditions.
Collapse
Affiliation(s)
- Lifeng Yuan
- Graduate Program in Molecular Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Linhui Zhai
- Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lili Qian
- Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yi Ding
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Handan Xiang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - J Will Thompson
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yong-Han He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiao-Qiong Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Jing Hu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Minjia Tan
- Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Fan Wang
- Graduate Program in Molecular Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
20
|
Morales-Alamo D, Guerra B, Santana A, Martin-Rincon M, Gelabert-Rebato M, Dorado C, Calbet JAL. Skeletal Muscle Pyruvate Dehydrogenase Phosphorylation and Lactate Accumulation During Sprint Exercise in Normoxia and Severe Acute Hypoxia: Effects of Antioxidants. Front Physiol 2018; 9:188. [PMID: 29615918 PMCID: PMC5867337 DOI: 10.3389/fphys.2018.00188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 02/23/2018] [Indexed: 12/30/2022] Open
Abstract
Compared to normoxia, during sprint exercise in severe acute hypoxia the glycolytic rate is increased leading to greater lactate accumulation, acidification, and oxidative stress. To determine the role played by pyruvate dehydrogenase (PDH) activation and reactive nitrogen and oxygen species (RNOS) in muscle lactate accumulation, nine volunteers performed a single 30-s sprint (Wingate test) on four occasions: two after the ingestion of placebo and another two following the intake of antioxidants, while breathing either hypoxic gas (PIO2 = 75 mmHg) or room air (PIO2 = 143 mmHg). Vastus lateralis muscle biopsies were obtained before, immediately after, 30 and 120 min post-sprint. Antioxidants reduced the glycolytic rate without altering performance or VO2. Immediately after the sprints, Ser293- and Ser300-PDH-E1α phosphorylations were reduced to similar levels in all conditions (~66 and 91%, respectively). However, 30 min into recovery Ser293-PDH-E1α phosphorylation reached pre-exercise values while Ser300-PDH-E1α was still reduced by 44%. Thirty minutes after the sprint Ser293-PDH-E1α phosphorylation was greater with antioxidants, resulting in 74% higher muscle lactate concentration. Changes in Ser293 and Ser300-PDH-E1α phosphorylation from pre to immediately after the sprints were linearly related after placebo (r = 0.74, P < 0.001; n = 18), but not after antioxidants ingestion (r = 0.35, P = 0.15). In summary, lactate accumulation during sprint exercise in severe acute hypoxia is not caused by a reduced activation of the PDH. The ingestion of antioxidants is associated with increased PDH re-phosphorylation and slower elimination of muscle lactate during the recovery period. Ser293 re-phosphorylates at a faster rate than Ser300-PDH-E1α during the recovery period, suggesting slightly different regulatory mechanisms.
Collapse
Affiliation(s)
- David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| | - Borja Guerra
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain.,Clinical Genetics Unit, Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| | - José A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
21
|
Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2835-2847. [DOI: 10.1016/j.bbadis.2017.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/04/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022]
|
22
|
Liu ZY, Hu S, Zhong QW, Tian CN, Ma HM, Yu JJ. N-Methyl-D-Aspartate Receptor-Driven Calcium Influx Potentiates the Adverse Effects of Myocardial Ischemia-Reperfusion Injury Ex Vivo. J Cardiovasc Pharmacol 2017; 70:329-338. [PMID: 28777252 PMCID: PMC5673305 DOI: 10.1097/fjc.0000000000000527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 05/18/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Despite the adverse effects of N-methyl-D-aspartate receptor (NMDAR) activity in cardiomyocytes, no study has yet examined the effects of NMDAR activity under ex vivo ischemic-reperfusion (I/R) conditions. Therefore, our aim was to comprehensively evaluate the effects of NMDAR activity through an ex vivo myocardial I/R rat model. METHODS Isolated rat hearts were randomly segregated into 6 groups (n = 20 in each group): (1) an untreated control group; (2) a NMDA-treated control group; (3) an untreated I/R group; (4) an I/R+NMDA group treated with NMDA; (5) an I/R+NMDA+MK-801 group treated with NMDA and the NMDAR inhibitor MK-801; and (6) an I/R+NMDA+[Ca]-free group treated with NMDA and [Ca]-free buffer. The 4 I/R groups underwent 30 minutes of ischemia followed by 50 minutes of reperfusion. Left ventricular pressure signals were analyzed to assess cardiac performance. Myocardial intracellular calcium levels ([Ca]i) were assessed in isolated ventricular cardiomyocytes. Creatine kinase, creatine kinase isoenzyme MB, lactate dehydrogenase, cardiac troponin I, and cardiac troponin T were assayed from coronary effluents. TTC and TUNEL staining were used to measure generalized myocardial necrosis and apoptosis levels, respectively. Western blotting was applied to assess the phosphorylation of PKC-δ, PKC-ε, Akt, and extracellular signal-regulated kinase. RESULTS Enhanced NMDAR activity under control conditions had no significant effects on the foregoing variables. In contrast, enhanced NMDAR activity under I/R conditions produced significant increases in [Ca]i levels (∼1.2% increase), significant losses in left ventricular function (∼5.4% decrease), significant multi-fold increases in creatine kinase, creatine kinase isoenzyme MB, lactate dehydrogenase, cardiac troponin I, and cardiac troponin T, significant increases in generalized myocardial necrosis (∼36% increase) and apoptosis (∼150% increase), and significant multi-fold increases in PKC-δ, PKC-ε, Akt, and extracellular signal-regulated kinase phosphorylation (all P < 0.05). These adverse effects were rescued by the NMDAR inhibitor MK-801 or [Ca]-free buffer (all P < 0.05). CONCLUSIONS NMDAR-driven calcium influx potentiates the adverse effects of myocardial I/R injury ex vivo.
Collapse
Affiliation(s)
- Zi-You Liu
- Department of Heart Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jianxi, China
| | | | | | | | | | | |
Collapse
|
23
|
Protein kinase C mechanisms that contribute to cardiac remodelling. Clin Sci (Lond) 2017; 130:1499-510. [PMID: 27433023 DOI: 10.1042/cs20160036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/18/2016] [Indexed: 12/12/2022]
Abstract
Protein phosphorylation is a highly-regulated and reversible process that is precisely controlled by the actions of protein kinases and protein phosphatases. Factors that tip the balance of protein phosphorylation lead to changes in a wide range of cellular responses, including cell proliferation, differentiation and survival. The protein kinase C (PKC) family of serine/threonine kinases sits at nodal points in many signal transduction pathways; PKC enzymes have been the focus of considerable attention since they contribute to both normal physiological responses as well as maladaptive pathological responses that drive a wide range of clinical disorders. This review provides a background on the mechanisms that regulate individual PKC isoenzymes followed by a discussion of recent insights into their role in the pathogenesis of diseases such as cancer. We then provide an overview on the role of individual PKC isoenzymes in the regulation of cardiac contractility and pathophysiological growth responses, with a focus on the PKC-dependent mechanisms that regulate pump function and/or contribute to the pathogenesis of heart failure.
Collapse
|
24
|
Wen SY, Velmurugan BK, Day CH, Shen CY, Chun LC, Tsai YC, Lin YM, Chen RJ, Kuo CH, Huang CY. High density lipoprotein (HDL) reverses palmitic acid induced energy metabolism imbalance by switching CD36 and GLUT4 signaling pathways in cardiomyocyte. J Cell Physiol 2017; 232:3020-3029. [PMID: 28500736 DOI: 10.1002/jcp.26007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 01/16/2023]
Abstract
In our previous study palmitic acid (PA) induced lipotoxicity and switches energy metabolism from CD36 to GLUT4 in H9c2 cells. Low level of high density lipoprotein (HDL) is an independent risk factor for cardiac hypertrophy. Therefore, we in the present study investigated whether HDL can reverse PA induced lipotoxicity in H9c2 cardiomyoblast cells. In this study, we treated H9c2 cells with PA to create a hyperlipidemia model in vitro and analyzed for CD36 and GLUT4 metabolic pathway proteins. CD36 metabolic pathway proteins (phospho-AMPK, SIRT1, PGC1α, PPARα, CPT1β, and CD36) were decreased by high PA (150 and 200 μg/μl) concentration. Interestingly, expression of GLUT4 metabolic pathway proteins (p-PI3K and pAKT) were increased at low concentration (50 μg/μl) and decreased at high PA concentration. Whereas, phospho-PKCζ, GLUT4 and PDH proteins expression was increased in a dose dependent manner. PA treated H9c2 cells were treated with HDL and analyzed for cell viability. Results showed that HDL treatment induced cell proliferation efficiency in PA treated cells. In addition, HDL reversed the metabolic effects of PA: CD36 translocation was increased and reduced GLUT4 translocation, but HDL treatment significantly increased CD36 metabolic pathway proteins and reduced GLUT4 pathway proteins. Rat neonatal cardiomyocytes showed similar results. In conclusion, HDL reversed palmatic acid-induced lipotoxicity and energy metabolism imbalance in H9c2 cardiomyoblast cells and in neonatal rat cardiomyocyte cells.
Collapse
Affiliation(s)
- Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan.,Center for General Education, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | | | | | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - Li-Chin Chun
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan County, Taiwan
| | - Yi-Chieh Tsai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Biological Science and Technology, Asia University, Taichung, Taiwan
| |
Collapse
|
25
|
Viglino C, Khoramdin B, Praplan G, Montessuit C. Pleiotropic Effects of Chronic Phorbol Ester Treatment to Improve Glucose Transport in Insulin-Resistant Cardiomyocytes. J Cell Biochem 2017; 118:4716-4727. [PMID: 28513986 DOI: 10.1002/jcb.26139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 05/16/2017] [Indexed: 11/08/2022]
Abstract
Stimulation of glucose transport is an important determinant of myocardial susceptibility to ischemia and reperfusion. Stimulation of glucose transport is markedly impaired in cardiomyocytes exposed to free fatty acids (FFA). Deactivation of the Focal Adhesion Kinase (FAK) by FFA contributes to glucose transport impairment, and could be corrected by chronic treatment with the phorbol ester TPA. However, TPA must have effects in addition to FAK reactivation to restore stimulated glucose transport. Chronic treatment with TPA improved basal and stimulated glucose transport in FFA-exposed, but not in control cardiomyocytes. Chronic FFA exposure induced the activation of PKCδ and PKCϵ. TPA markedly downregulated the expression of PKCα, PKCδ, and PKCϵ, suggesting that PKCδ or PKCϵ activation could contribute to inhibition of glucose transport by FFA. Rottlerin, a specific PKCδ inhibitor, improved glucose transport in FFA-exposed cardiomyocytes; and PKCδ was reduced in the particulate fraction of FFA + TPA-exposed cardiomyocytes. TPA also activated Protein Kinase D 1(PKD1) in FFA-exposed cardiomyocytes, as assessed by autophosphorylation of PKD1 on Y916. Pharmaceutical inhibition of PKD1 only partially prevented the improvement of glucose transport by TPA. Chronic TPA treatment also increased basal and stimulated glycolysis and favored accumulation of lipid droplets in FFA-exposed cardiomyocytes. In conclusion, basal and stimulated glucose transport in cardiomyocytes is reduced by chronic FFA exposure, but restored by concomitant treatment with a phorbol ester. The mechanism of action of phorbol esters may involve downregulation of PKCδ, activation of PKD1 and a general switch from fatty acid to glucose metabolism. J. Cell. Biochem. 9999: 4716-4727, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christelle Viglino
- Division of Cardiology, Department of Medical Specialties, University of Geneva School of Medicine, Geneva, Switzerland
| | - Bahareh Khoramdin
- Division of Cardiology, Department of Medical Specialties, University of Geneva School of Medicine, Geneva, Switzerland
| | - Guillaume Praplan
- Division of Cardiology, Department of Medical Specialties, University of Geneva School of Medicine, Geneva, Switzerland
| | - Christophe Montessuit
- Division of Cardiology, Department of Medical Specialties, University of Geneva School of Medicine, Geneva, Switzerland.,Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
26
|
Ischemia/Reperfusion-Induced Translocation of PKCβII to Mitochondria as an Important Mediator of a Protective Signaling Mechanism in an Ischemia-Resistant Region of the Hippocampus. Neurochem Res 2017; 42:2392-2403. [PMID: 28401402 PMCID: PMC5524878 DOI: 10.1007/s11064-017-2263-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/13/2017] [Accepted: 04/07/2017] [Indexed: 01/01/2023]
Abstract
Emerging reports indicate that activated PKC isoforms that translocate to the mitochondria are pro- or anti-apoptotic to mitochondrial function. Here, we concentrate on the role of PKCβ translocated to mitochondria in relation to the fate of neurons following cerebral ischemia. As we have demonstrated previously ischemia/reperfusion injury (I/R) results in translocation of PKCβ from cytoplasm to mitochondria, but only in ischemia-resistant regions of the hippocampus (CA2-4, DG), we hypothesize that this translocation may be a mediator of a protective signaling mechanism in this region. We have therefore sought to demonstrate a possible relationship between PKCβII translocation and ischemic resistance of CA2-4, DG. Here, we reveal that I/R injury induces a marked elevation of PKCβII protein levels, and consequent enzymatic activity, in CA2-4, DG in the mitochondrial fraction. Moreover, the administration of an isozyme-selective PKCβII inhibitor showed inhibition of I/R-induced translocation of PKCβII to the mitochondria and an increase in neuronal death following I/R injury in CA1 and CA2-4, DG in both an in vivo and an in vitro model of ischemia. The present results suggest that PKCβII translocated to mitochondria is involved in providing ischemic resistance of CA2-4, DG. However, the exact mechanisms by which PKCβII-mediated neuroprotection is achieved are in need of further elucidation.
Collapse
|
27
|
Wang S, Zhang F, Zhao G, Cheng Y, Wu T, Wu B, Zhang YE. Mitochondrial PKC-ε deficiency promotes I/R-mediated myocardial injury via GSK3β-dependent mitochondrial permeability transition pore opening. J Cell Mol Med 2017; 21:2009-2021. [PMID: 28266127 PMCID: PMC5571523 DOI: 10.1111/jcmm.13121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 01/05/2017] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)‐induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase‐2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross‐clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2−/−) and wild‐type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin‐related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N‐acetylcysteine (NAC) or PKC‐δ shRNA treatment on glycogen synthase kinase‐3β (GSK‐3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2−/− mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC‐ε translocation was lower in ALDH2−/− mice than in WT mice, and PKC‐δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre‐treatment under I/R injury. In addition, PKC‐ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK‐3β (inactive form) was lower in ALDH2−/− mice than in WT mice, and both were increased by NAC pre‐treatment. I/R‐induced mitochondrial translocation of GSK‐3β was inhibited by PKC‐δ shRNA or NAC pre‐treatment. In addition, mitochondrial membrane potential (∆Ψm) was reduced in ALDH2−/− mice after I/R, which was partly reversed by the GSK‐3β inhibitor (SB216763) or PKC‐δ shRNA. Collectively, our data provide the evidence that abnormal PKC‐ε/PKC‐δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK‐3β‐dependent mPTP opening, which results in mitochondrial injury‐triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2−/− mice following I/R stress.
Collapse
Affiliation(s)
- Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Cheng
- Heart Centre of Zhengzhou Ninth People's Hospital, Zhengzhou, Henan, China
| | - Ting Wu
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Bing Wu
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - You-En Zhang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
28
|
Necela BM, Axenfeld BC, Serie DJ, Kachergus JM, Perez EA, Thompson EA, Norton N. The antineoplastic drug, trastuzumab, dysregulates metabolism in iPSC-derived cardiomyocytes. Clin Transl Med 2017; 6:5. [PMID: 28101782 PMCID: PMC5243239 DOI: 10.1186/s40169-016-0133-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/21/2016] [Indexed: 01/14/2023] Open
Abstract
Background The targeted ERBB2 therapy, trastuzumab, has had a tremendous impact on management of patients with HER2+ breast cancer, leading to development and increased use of further HER2 targeted therapies. The major clinical side effect is cardiotoxicity but the mechanism is largely unknown. On the basis that gene expression is known to be altered in multiple models of heart failure, we examined differential gene expression of iPSC-derived cardiomyocytes treated at day 11 with the ERBB2 targeted monoclonal antibody, trastuzumab for 48 h and the small molecule tyrosine kinase inhibitor of EGFR and ERBB2. Results Transcriptome sequencing was performed on four replicates from each group (48 h untreated, 48 h trastuzumab and 48 h lapatinib) and differential gene expression analyses were performed on each treatment group relative to untreated cardiomyocytes. 517 and 1358 genes were differentially expressed, p < 0.05, respectively in cardiomyocytes treated with trastuzumab and lapatinib. Gene ontology analyses revealed in cardiomyocytes treated with trastuzumab, significant down-regulation of genes involved in small molecule metabolism (p = 3.22 × 10−9) and cholesterol (p = 0.01) and sterol (p = 0.03) processing. We next measured glucose uptake and lactate production in iPSC-derived cardiomyocytes 13 days post-plating, treated with trastuzumab up to 96 h. We observed significantly decreased glucose uptake from the media of iPSC-derived cardiomyocytes treated with trastuzumab as early as 24 h (p = 0.001) and consistently up to 96 h (p = 0.03). Conclusions Our study suggests dysregulation of cardiac gene expression and metabolism as key elements of ERBB2 signaling that could potentially be early biomarkers of cardiotoxicity. Electronic supplementary material The online version of this article (doi:10.1186/s40169-016-0133-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brian M Necela
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Daniel J Serie
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | - Edith A Perez
- Department of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Nadine Norton
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
29
|
Ringvold HC, Khalil RA. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:203-301. [PMID: 28212798 PMCID: PMC5319769 DOI: 10.1016/bs.apha.2016.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca2+-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca2+-dependent α, β, and γ, novel Ca2+-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease.
Collapse
Affiliation(s)
- H C Ringvold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
30
|
Thibodeau A, Geng X, Previch LE, Ding Y. Pyruvate dehydrogenase complex in cerebral ischemia-reperfusion injury. Brain Circ 2016; 2:61-66. [PMID: 30276274 PMCID: PMC6126256 DOI: 10.4103/2394-8108.186256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/02/2016] [Accepted: 06/14/2016] [Indexed: 11/11/2022] Open
Abstract
Pyruvate dehydrogenase (PDH) complex is a mitochondrial matrix enzyme that serves a critical role in the conversion of anaerobic to aerobic cerebral energy. The regulatory complexity of PDH, coupled with its significant influence in brain metabolism, underscores its susceptibility to, and significance in, ischemia-reperfusion injury. Here, we evaluate proposed mechanisms of PDH-mediated neurodysfunction in stroke, including oxidative stress, altered regulatory enzymatic control, and loss of PDH activity. We also describe the neuroprotective influence of antioxidants, dichloroacetate, acetyl-L-carnitine, and combined therapy with ethanol and normobaric oxygen, explained in relation to PDH modulation. Our review highlights the significance of PDH impairment in stroke injury through an understanding of the mechanisms by which it is modulated, as well as an exploration of neuroprotective strategies available to limit its impairment.
Collapse
Affiliation(s)
- Alexa Thibodeau
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA.,China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Lauren E Previch
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA.,China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Qvit N, Disatnik MH, Sho J, Mochly-Rosen D. Selective Phosphorylation Inhibitor of Delta Protein Kinase C-Pyruvate Dehydrogenase Kinase Protein-Protein Interactions: Application for Myocardial Injury in Vivo. J Am Chem Soc 2016; 138:7626-35. [PMID: 27218445 PMCID: PMC5065007 DOI: 10.1021/jacs.6b02724] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein kinases regulate numerous cellular processes, including cell growth, metabolism, and cell death. Because the primary sequence and the three-dimensional structure of many kinases are highly similar, the development of selective inhibitors for only one kinase is challenging. Furthermore, many protein kinases are pleiotropic, mediating diverse and sometimes even opposing functions by phosphorylating multiple protein substrates. Here, we set out to develop an inhibitor of a selective protein kinase phosphorylation of only one of its substrates. Focusing on the pleiotropic delta protein kinase C (δPKC), we used a rational approach to identify a distal docking site on δPKC for its substrate, pyruvate dehydrogenase kinase (PDK). We reasoned that an inhibitor of PDK's docking should selectively inhibit the phosphorylation of only PDK without affecting phosphorylation of the other δPKC substrates. Our approach identified a selective inhibitor of PDK docking to δPKC with an in vitro Kd of ∼50 nM and reducing cardiac injury IC50 of ∼5 nM. This inhibitor, which did not affect the phosphorylation of other δPKC substrates even at 1 μM, demonstrated that PDK phosphorylation alone is critical for δPKC-mediated injury by heart attack. The approach we describe is likely applicable for the identification of other substrate-specific kinase inhibitors.
Collapse
Affiliation(s)
- Nir Qvit
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| | - Marie-Hélène Disatnik
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| | - Jie Sho
- Kunming Biomed International Chenggong, Kunming, P.R. China
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| |
Collapse
|
32
|
Qvit N, Joshi AU, Cunningham AD, Ferreira JCB, Mochly-Rosen D. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Protein-Protein Interaction Inhibitor Reveals a Non-catalytic Role for GAPDH Oligomerization in Cell Death. J Biol Chem 2016; 291:13608-21. [PMID: 27129213 DOI: 10.1074/jbc.m115.711630] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 12/16/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an important glycolytic enzyme, has a non-catalytic (thus a non-canonical) role in inducing mitochondrial elimination under oxidative stress. We recently demonstrated that phosphorylation of GAPDH by δ protein kinase C (δPKC) inhibits this GAPDH-dependent mitochondrial elimination. δPKC phosphorylation of GAPDH correlates with increased cell injury following oxidative stress, suggesting that inhibiting GAPDH phosphorylation should decrease cell injury. Using rational design, we identified pseudo-GAPDH (ψGAPDH) peptide, an inhibitor of δPKC-mediated GAPDH phosphorylation that does not inhibit the phosphorylation of other δPKC substrates. Unexpectedly, ψGAPDH decreased mitochondrial elimination and increased cardiac damage in an animal model of heart attack. Either treatment with ψGAPDH or direct phosphorylation of GAPDH by δPKC decreased GAPDH tetramerization, which corresponded to reduced GAPDH glycolytic activity in vitro and ex vivo Taken together, our study identified the potential mechanism by which oxidative stress inhibits the protective GAPDH-mediated elimination of damaged mitochondria. Our study also identified a pharmacological tool, ψGAPDH peptide, with interesting properties. ψGAPDH peptide is an inhibitor of the interaction between δPKC and GAPDH and of the resulting phosphorylation of GAPDH by δPKC. ψGAPDH peptide is also an inhibitor of GAPDH oligomerization and thus an inhibitor of GAPDH glycolytic activity. Finally, we found that ψGAPDH peptide is an inhibitor of the elimination of damaged mitochondria. We discuss how this unique property of increasing cell damage following oxidative stress suggests a potential use for ψGAPDH peptide-based therapy.
Collapse
Affiliation(s)
- Nir Qvit
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| | - Amit U Joshi
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| | - Anna D Cunningham
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| | - Julio C B Ferreira
- the Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Daria Mochly-Rosen
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| |
Collapse
|
33
|
Zhao EY, Efendizade A, Cai L, Ding Y. The role of Akt (protein kinase B) and protein kinase C in ischemia-reperfusion injury. Neurol Res 2016; 38:301-8. [PMID: 27092987 DOI: 10.1080/01616412.2015.1133024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Stroke is a leading cause of long-term disability and death in the United States. Currently, tissue plasminogen activator (tPA), is the only Food and Drug Administration-approved treatment for acute ischemic stroke. However, the use of tPA is restricted to a small subset of acute stroke patients due to its limited 3-h therapeutic time window. Given the limited therapeutic options at present and the multi-factorial progression of ischemic stroke, emphasis has been placed on the discovery and use of combination therapies aimed at various molecular targets contributing to ischemic cell death. Protein kinase C (PKC) and Akt (protein kinase B) are serine/threonine kinases that play a critical role in mediating ischemic-reperfusion injury and cellular growth and survival, respectively. The present review will examine the role of PKC and Akt in the cellular response to ischemic-reperfusion injury.
Collapse
Affiliation(s)
- Ethan Y Zhao
- a Departmentof Neurosurgery , Wayne State University School of Medicine , Detroit , MI 48201 , USA
| | - Aslan Efendizade
- b Michigan State University College of Osteopathic Medicine , East Lansing , MI 48825 , USA
| | - Lipeng Cai
- c Department of Neurology , China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| | - Yuchuan Ding
- a Departmentof Neurosurgery , Wayne State University School of Medicine , Detroit , MI 48201 , USA.,c Department of Neurology , China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
34
|
Hammerling U. Retinol as electron carrier in redox signaling, a new frontier in vitamin A research. Hepatobiliary Surg Nutr 2016; 5:15-28. [PMID: 26904553 PMCID: PMC4739943 DOI: 10.3978/j.issn.2304-3881.2016.01.02] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/06/2015] [Indexed: 01/26/2023]
Abstract
Nature uses carotenoids and retinoids as chromophores for diverse energy conversion processes. The key structural feature enabling the interaction with light and other manifestations of electro-magnetism is the conjugated double-bond system that all members of this superfamily share in common. Among retinoids, retinaldehyde alone was long known as the active chromophore of vision in vertebrates and invertebrates, as well of various light-driven proton and ion pumps in Archaea. Until now, vitamin A (retinol) was solely regarded as a biochemical precursor for bioactive retinoids such as retinaldehyde and retinoic acid (RA), but recent results indicate that this compound has its own physiology. It functions as an electron carrier in mitochondria. By electronically coupling protein kinase Cδ (PCKδ) with cytochrome c, vitamin A enables the redox activation of this enzyme. This review focuses on the biochemistry and biology of the PCKδ signaling system, comprising PKCδ, the adapter protein p66Shc, cytochrome c and retinol. This complex positively regulates the conversion of pyruvate to acetyl-coenzyme A (CoA) by the pyruvate dehydrogenase enzyme. Vitamin A therefore plays a key role in glycolytic energy generation. The emerging paradigm of retinol as electron-transfer agent is potentially transformative, opening new frontiers in retinoid research.
Collapse
|
35
|
Marquez J, Lee SR, Kim N, Han J. Post-Translational Modifications of Cardiac Mitochondrial Proteins in Cardiovascular Disease: Not Lost in Translation. Korean Circ J 2016; 46:1-12. [PMID: 26798379 PMCID: PMC4720839 DOI: 10.4070/kcj.2016.46.1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/08/2023] Open
Abstract
Protein post-translational modifications (PTMs) are crucial in regulating cellular biology by playing key roles in processes such as the rapid on and off switching of signaling network and the regulation of enzymatic activities without affecting gene expressions. PTMs lead to conformational changes in the tertiary structure of protein and resultant regulation of protein function such as activation, inhibition, or signaling roles. PTMs such as phosphorylation, acetylation, and S-nitrosylation of specific sites in proteins have key roles in regulation of mitochondrial functions, thereby contributing to the progression to heart failure. Despite the extensive study of PTMs in mitochondrial proteins much remains unclear. Further research is yet to be undertaken to elucidate how changes in the proteins may lead to cardiovascular and metabolic disease progression in particular. We aimed to summarize the various types of PTMs that occur in mitochondrial proteins, which might be associated with heart failure. This study will increase the understanding of cardiovascular diseases through PTM.
Collapse
Affiliation(s)
- Jubert Marquez
- Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea
| | - Sung Ryul Lee
- Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea.; National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Nari Kim
- Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea.; National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Jin Han
- Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea.; National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| |
Collapse
|
36
|
Abstract
For the past century, vitamin A has been considered to serve as a precursor for retinoids that facilitate vision or as a precursor for retinoic acid (RA), a signaling molecule that modulates gene expression. However, vitamin A circulates in plasma at levels that far exceed the amount needed for vision or the synthesis of nanomolar levels of RA, and this suggests that vitamin A alcohol (i.e. retinol) may possess additional biological activity. We have pursued this question for the last 20 years, and in this chapter, we unfold the story of our quest and the data that support a novel and distinct role for vitamin A (alcohol) action. Our current model supports direct binding of vitamin A to the activation domains of serine/threonine kinases, such as protein kinase C (PKC) and Raf isoforms, where it is involved in redox activation of these proteins. Redox activation of PKCs was first described by the founders of the PKC field, but several hurdles needed to be overcome before a detailed understanding of the biochemistry could be provided. Two discoveries moved the field forward. First, was the discovery that the PKCδ isoform was activated by cytochrome c, a protein with oxidoreduction activity in mitochondria. Second, was the revelation that both PKCδ and cytochrome c are tethered to p66Shc, an adapter protein that brings the PKC zinc-finger substrate into close proximity with its oxidizing partner. Detailed characterization of the PKCδ signalosome complex was made possible by the work of many investigators. Our contribution was determining that vitamin A is a vital co-factor required to support an unprecedented redox-activation mechanism. This unique function of vitamin A is the first example of a general system that connects the one-electron redox chemistry of a heme protein (cytochrome c) with the two-electron chemistry of a classical phosphoprotein (PKCδ). Furthermore, contributions to the regulation of mitochondrial energetics attest to biological significance of vitamin A alcohol action.
Collapse
Affiliation(s)
- Ulrich Hammerling
- Member Emeritus, Immunology Program, Sloan-Kettering Institute for Cancer Research, 10065, New York, NY, USA.
| |
Collapse
|
37
|
Kornfeld OS, Hwang S, Disatnik MH, Chen CH, Qvit N, Mochly-Rosen D. Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. Circ Res 2015; 116:1783-99. [PMID: 25999419 DOI: 10.1161/circresaha.116.305432] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in a variety of age-related diseases, including multiple cardiovascular disorders. However, translation of ROS scavengers (antioxidants) into the clinic has not been successful. These antioxidants grossly reduce total levels of cellular ROS including ROS that participate in physiological signaling. In this review, we challenge the traditional antioxidant therapeutic approach that targets ROS directly with novel approaches that improve mitochondrial functions to more effectively treat cardiovascular diseases.
Collapse
Affiliation(s)
- Opher S Kornfeld
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Sunhee Hwang
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Marie-Hélène Disatnik
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Che-Hong Chen
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Nir Qvit
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA
| | - Daria Mochly-Rosen
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, CA.
| |
Collapse
|
38
|
Abstract
A large number of protein substrates are phosphorylated by each protein kinase under physiological and pathological conditions. However, it remains a challenge to determine which of these phosphorylated substrates of a given kinase is critical for each cellular response. Genetics enabled the generation of separation-of-function mutations that selectively cause a loss of one molecular event without affecting others, thus providing some tools to assess the importance of that one event for the measured physiological response. However, the genetic approach is laborious and not adaptable to all systems. Furthermore, pharmacological tools of the catalytic site are not optimal due to their non-selective nature. In the present brief review, we discuss some of the challenges in drug development that will regulate the multifunctional protein kinase Cδ (PKCδ).
Collapse
|
39
|
Key proteins of activating cell death can be predicted through a kainic acid-induced excitotoxic stress. BIOMED RESEARCH INTERNATIONAL 2015; 2015:478975. [PMID: 25695085 PMCID: PMC4324491 DOI: 10.1155/2015/478975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 11/23/2022]
Abstract
Epilepsy is a major neurological disorder characterized by spontaneous seizures accompanied by neurophysiological changes. Repeated seizures can damage the brain as neuronal death occurs. A better understanding of the mechanisms of brain cell death could facilitate the discovery of novel treatments for neurological disorders such as epilepsy. In this study, a model of kainic acid- (KA-) induced neuronal death was established to investigate the early protein markers associated with apoptotic cell death due to excitotoxic damage in the rat cortex. The results indicated that KA induces both apoptotic and necrotic cell death in the cortex. Incubation with high concentrations (5 and 500 μM, >75%) and low concentrations (0.5 pM: 95% and 50 nM: 8%) of KA for 180 min led to necrotic and apoptotic cell death, respectively. Moreover, proteomic analysis using two-dimensional gel electrophoresis and mass spectrometry demonstrated that antiapoptotic proteins, including heat shock protein 70, 3-mercaptopyruvate sulfurtransferase, tubulin-B-5, and pyruvate dehydrogenase E1 component subunit beta, were significantly higher in apoptosis than in necrosis induced by KA. Our findings provide direct evidence that several proteins are associated with apoptotic and necrotic cell death in excitotoxicity model. The results indicate that these proteins can be apoptotic biomarkers from the early stages of cell death.
Collapse
|
40
|
Testai L, Rapposelli S, Martelli A, Breschi M, Calderone V. Mitochondrial Potassium Channels as Pharmacological Target for Cardioprotective Drugs. Med Res Rev 2014; 35:520-53. [DOI: 10.1002/med.21332] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- L. Testai
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - S. Rapposelli
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - A. Martelli
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - M.C. Breschi
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - V. Calderone
- Department of Pharmacy; University of Pisa; Pisa Italy
| |
Collapse
|
41
|
Egea-Jiménez AL, Corbalán-García S, Gómez-Fernández JC. The C1B domains of novel PKCε and PKCη have a higher membrane binding affinity than those of the also novel PKCδ and PKCθ. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1898-909. [DOI: 10.1016/j.bbamem.2014.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
42
|
Abstract
Pyruvate is an obligatory intermediate in the oxidative disposal of glucose and a major precursor for the synthesis of glucose, glycerol, fatty acids, and non-essential amino acids. Stringent control of the fate of pyruvate is critically important for cellular homeostasis. The regulatory mechanisms for its metabolism are therefore of great interest. Recent advances include the findings that (a) the mitochondrial pyruvate carrier is sensitive to inhibition by thiazolidinediones; (b) pyruvate dehydrogenase kinases induce the Warburg effect in many disease states; and (c) pyruvate carboxylase is an important determinate of the rates of gluconeogenesis in humans with type 2 diabetes. These enzymes are potential therapeutic targets for several diseases.
Collapse
Affiliation(s)
- Nam Ho Jeoung
- Department of Fundamental Medical and Pharmaceutical Sciences, Catholic University of Daegu, Gyeongsan, Korea
| | | | | |
Collapse
|
43
|
Fiedler LR, Maifoshie E, Schneider MD. Mouse models of heart failure: cell signaling and cell survival. Curr Top Dev Biol 2014; 109:171-247. [PMID: 24947238 DOI: 10.1016/b978-0-12-397920-9.00002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heart failure is one of the paramount global causes of morbidity and mortality. Despite this pandemic need, the available clinical counter-measures have not altered substantially in recent decades, most notably in the context of pharmacological interventions. Cell death plays a causal role in heart failure, and its inhibition poses a promising approach that has not been thoroughly explored. In previous approaches to target discovery, clinical failures have reflected a deficiency in mechanistic understanding, and in some instances, failure to systematically translate laboratory findings toward the clinic. Here, we review diverse mouse models of heart failure, with an emphasis on those that identify potential targets for pharmacological inhibition of cell death, and on how their translation into effective therapies might be improved in the future.
Collapse
Affiliation(s)
- Lorna R Fiedler
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK.
| | - Evie Maifoshie
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK
| | - Michael D Schneider
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
44
|
Kolwicz SC, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 2013; 113:603-16. [PMID: 23948585 DOI: 10.1161/circresaha.113.302095] [Citation(s) in RCA: 589] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP-producing and non-ATP-producing end points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies used as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | | |
Collapse
|
45
|
Oxidative stress induced mitochondrial protein kinase A mediates cytochrome c oxidase dysfunction. PLoS One 2013; 8:e77129. [PMID: 24130844 PMCID: PMC3795003 DOI: 10.1371/journal.pone.0077129] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/29/2013] [Indexed: 11/30/2022] Open
Abstract
Previously we showed that Protein kinase A (PKA) activated in hypoxia and myocardial ischemia/reperfusion mediates phosphorylation of subunits I, IVi1 and Vb of cytochrome c oxidase. However, the mechanism of activation of the kinase under hypoxia remains unclear. It is also unclear if hypoxic stress activated PKA is different from the cAMP dependent mitochondrial PKA activity reported under normal physiological conditions. In this study using RAW 264.7 macrophages and in vitro perfused mouse heart system we investigated the nature of PKA activated under hypoxia. Limited protease treatment and digitonin fractionation of intact mitochondria suggests that higher mitochondrial PKA activity under hypoxia is mainly due to increased sequestration of PKA Catalytic α (PKAα) subunit in the mitochondrial matrix compartment. The increase in PKA activity is independent of mitochondrial cAMP and is not inhibited by adenylate cyclase inhibitor, KH7. Instead, activation of hypoxia-induced PKA is dependent on reactive oxygen species (ROS). H89, an inhibitor of PKA activity and the antioxidant Mito-CP prevented loss of CcO activity in macrophages under hypoxia and in mouse heart under ischemia/reperfusion injury. Substitution of wild type subunit Vb of CcO with phosphorylation resistant S40A mutant subunit attenuated the loss of CcO activity and reduced ROS production. These results provide a compelling evidence for hypoxia induced phosphorylation as a signal for CcO dysfunction. The results also describe a novel mechanism of mitochondrial PKA activation which is independent of mitochondrial cAMP, but responsive to ROS.
Collapse
|
46
|
Heather LC, Pates KM, Atherton HJ, Cole MA, Ball DR, Evans RD, Glatz JF, Luiken JJ, Griffin JL, Clarke K. Differential translocation of the fatty acid transporter, FAT/CD36, and the glucose transporter, GLUT4, coordinates changes in cardiac substrate metabolism during ischemia and reperfusion. Circ Heart Fail 2013; 6:1058-66. [PMID: 23940308 DOI: 10.1161/circheartfailure.112.000342] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 07/30/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Fatty acid and glucose transporters translocate between the sarcolemma and intracellular compartments to regulate substrate metabolism acutely. We hypothesised that during ischemia fatty acid translocase (FAT/CD36) would translocate away from the sarcolemma to limit fatty acid uptake when fatty acid oxidation is inhibited. METHODS AND RESULTS Wistar rat hearts were perfused during preischemia, low-flow ischemia, and reperfusion, using (3)H-substrates for measurement of metabolic rates, followed by metabolomic analysis and subcellular fractionation. During ischemia, there was a 32% decrease in sarcolemmal FAT/CD36 accompanied by a 95% decrease in fatty acid oxidation rates, with no change in intramyocardial lipids. Concomitantly, the sarcolemmal content of the glucose transporter, GLUT4, increased by 90% during ischemia, associated with an 86% increase in glycolytic rates, 45% decrease in glycogen content, and a 3-fold increase in phosphorylated AMP-activated protein kinase. Following reperfusion, decreased sarcolemmal FAT/CD36 persisted, but fatty acid oxidation rates returned to preischemic levels, resulting in a 35% decrease in myocardial triglyceride content. Elevated sarcolemmal GLUT4 persisted during reperfusion; in contrast, glycolytic rates decreased to 30% of preischemic rates, accompanied by a 5-fold increase in intracellular citrate levels and restoration of glycogen content. CONCLUSIONS During ischemia, FAT/CD36 moved away from the sarcolemma as GLUT4 moved toward the sarcolemma, associated with a shift from fatty acid oxidation to glycolysis, while intramyocardial lipid accumulation was prevented. This relocation was maintained during reperfusion, which was associated with replenishing glycogen stores as a priority, occurring at the expense of glycolysis and mediated by an increase in citrate levels.
Collapse
Affiliation(s)
- Lisa C Heather
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy, and Genetics, University of Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Campos JC, Gomes KMS, Ferreira JCB. Impact of exercise training on redox signaling in cardiovascular diseases. Food Chem Toxicol 2013; 62:107-19. [PMID: 23978413 DOI: 10.1016/j.fct.2013.08.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/05/2013] [Accepted: 08/18/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species regulate a wide array of signaling pathways that governs cardiovascular physiology. However, oxidant stress resulting from disrupted redox signaling has an adverse impact on the pathogenesis and progression of cardiovascular diseases. In this review, we address how redox signaling and oxidant stress affect the pathophysiology of cardiovascular diseases such as ischemia-reperfusion injury, hypertension and heart failure. We also summarize the benefits of exercise training in tackling the hyperactivation of cellular oxidases and mitochondrial dysfunction seen in cardiovascular diseases.
Collapse
Affiliation(s)
- Juliane C Campos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
48
|
Yogalingam G, Hwang S, Ferreira JCB, Mochly-Rosen D. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) phosphorylation by protein kinase Cδ (PKCδ) inhibits mitochondria elimination by lysosomal-like structures following ischemia and reoxygenation-induced injury. J Biol Chem 2013; 288:18947-60. [PMID: 23653351 DOI: 10.1074/jbc.m113.466870] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After cardiac ischemia and reperfusion or reoxygenation (I/R), damaged mitochondria propagate tissue injury by promoting cell death. One possible mechanism to protect from I/R-induced injury is the elimination of damaged mitochondria by mitophagy. Here we identify new molecular events that lead to mitophagy using a cell culture model and whole hearts subjected to I/R. We found that I/R induces glyceraldehyde-3-phosphate dehydrogenase (GAPDH) association with mitochondria and promotes direct uptake of damaged mitochondria into multiorganellar lysosomal-like (LL) structures for elimination independently of the macroautophagy pathway. We also found that protein kinase C δ (PKCδ) inhibits GAPDH-driven mitophagy by phosphorylating the mitochondrially associated GAPDH at threonine 246 following I/R. Phosphorylated GAPDH promotes the accumulation of mitochondria at the periphery of LL structures, which coincides with increased mitochondrial permeability. Either inhibition of PKCδ or expression of a phosphorylation-defective GAPDH mutant during I/R promotes a reduction in mitochondrial mass and apoptosis, thus indicating rescued mitophagy. Taken together, we identified a GAPDH/PKCδ signaling switch, which is activated during oxidative stress to regulate the balance between cell survival by mitophagy and cell death due to accumulation of damaged mitochondria.
Collapse
Affiliation(s)
- Gouri Yogalingam
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Protein kinase C (PKC) has been a tantalizing target for drug discovery ever since it was first identified as the receptor for the tumour promoter phorbol ester in 1982. Although initial therapeutic efforts focused on cancer, additional indications--including diabetic complications, heart failure, myocardial infarction, pain and bipolar disorder--were targeted as researchers developed a better understanding of the roles of eight conventional and novel PKC isozymes in health and disease. Unfortunately, both academic and pharmaceutical efforts have yet to result in the approval of a single new drug that specifically targets PKC. Why does PKC remain an elusive drug target? This Review provides a short account of some of the efforts, challenges and opportunities in developing PKC modulators to address unmet clinical needs.
Collapse
|
50
|
Penna C, Perrelli MG, Pagliaro P. Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal 2013; 18:556-99. [PMID: 22668069 DOI: 10.1089/ars.2011.4459] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reperfusion therapy is the indispensable treatment of acute myocardial infarction (AMI) and must be applied as soon as possible to attenuate the ischemic insult. However, reperfusion is responsible for additional myocardial damage likely involving opening of the mitochondrial permeability transition pore (mPTP). A great part of reperfusion injury occurs during the first minute of reperfusion. The prolonged opening of mPTP is considered one of the endpoints of the cascade to myocardial damage, causing loss of cardiomyocyte function and viability. Opening of mPTP and the consequent oxidative stress due to reactive oxygen and nitrogen species (ROS/RNS) are considered among the major mechanisms of mitochondrial and myocardial dysfunction. Kinases and mitochondrial components constitute an intricate network of signaling molecules and mitochondrial proteins, which interact in response to stressors. Cardioprotective pathways are activated by stimuli such as preconditioning and postconditioning (PostC), obtained with brief intermittent ischemia or with pharmacological agents, which drastically reduce the lethal ischemia/reperfusion injury. The protective pathways converging on mitochondria may preserve their function. Protection involves kinases, adenosine triphosphate-dependent potassium channels, ROS signaling, and the mPTP modulation. Some clinical studies using ischemic PostC during angioplasty support its protective effects, and an interesting alternative is pharmacological PostC. In fact, the mPTP desensitizer, cyclosporine A, has been shown to induce appreciable protections in AMI patients. Several factors and comorbidities that might interfere with cardioprotective signaling are considered. Hence, treatments adapted to the characteristics of the patient (i.e., phenotype oriented) might be feasible in the future.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | | | | |
Collapse
|