1
|
Beverley KM, Ahn SJ, Levitan I. Flow-sensitive ion channels in vascular endothelial cells: Mechanisms of activation and roles in mechanotransduction. Biophys J 2025:S0006-3495(25)00193-6. [PMID: 40156185 DOI: 10.1016/j.bpj.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
The purpose of this review is to evaluate the current knowledge about the mechanisms by which mechanosensitive ion channels are activated by fluid shear stress in endothelial cells. We focus on three classes of endothelial ion channels that are most well studied for their sensitivity to flow and roles in mechanotransduction: inwardly rectifying K+ channels, Piezo channels, and TRPV channels. We also discuss the mechanisms by which these channels initiate and contribute to mechanosensitive signaling pathways. Three types of mechanisms have been described for flow-induced activation of ion channels: 1) through interaction with apical membrane flow sensors, such as glycocalyx, which is likely to be deformed by flow, 2) directly by sensing membrane stretch that is induced by shear stress, or 3) via flow-sensitive channel-channel or lipid channel interactions. We also demonstrate the physiological role of these channels and how they are related to cardiovascular and neurological diseases. Further studies are needed to determine how these channels function cooperatively to mediate the endothelial response to flow.
Collapse
Affiliation(s)
- Katie M Beverley
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| | - Sang Joon Ahn
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Do Couto NF, Fancher I, Granados ST, Cavalcante-Silva J, Beverley KM, Ahn SJ, Hwang CL, Phillips SA, Levitan I. Impairment of microvascular endothelial Kir2.1 channels contributes to endothelial dysfunction in human hypertension. Am J Physiol Heart Circ Physiol 2024; 327:H1004-H1015. [PMID: 39212765 PMCID: PMC11482249 DOI: 10.1152/ajpheart.00732.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Hypertension is associated with decreased endothelial function through reduced contributions of nitric oxide (NO). We previously discovered that flow-induced NO production in resistance arteries of mice and humans critically depends on endothelial inwardly rectifying K+ (Kir2.1) channels. The goal of this study was to establish whether these channels contribute to the impairment of endothelial function, measured by flow-induced vasodilation (FIV) in peripheral resistance arteries of humans with hypertension. We measured FIV in vessels isolated from subcutaneous fat biopsies from 32 subjects: normotensive [n = 19; 30.6 ± 9.8 yr old; systolic blood pressure (SBP): 115.2 ± 7 mmHg; diastolic blood pressure (DBP): 75.3 ± 5.7 mmHg] and hypertensive (n = 13; 45.3 ± 15.3 yr old; SBP: 146.1 ± 15.2 mmHg; DBP: 94.4 ± 6.9 mmHg). Consistent with previous studies, we find that FIV is impaired in hypertensive adults as demonstrated by a significant reduction in FIV when compared with the normotensive adults. Furthermore, our data suggest that the impairment of FIV in hypertensive adults is partially attributed to a reduction in Kir2.1-dependent vasodilation. Specifically, we show that blocking Kir2.1 with ML133 or functionally downregulating Kir2.1 with endothelial-specific adenoviral vector containing dominant-negative Kir2.1 (dnKir2.1) result in a significant reduction in FIV in normotensive subjects but with a smaller effect in hypertensive adults. The Kir2.1-dependent vasodilation was negatively correlated to both SBP and DBP, indicating that the Kir2.1 contribution to FIV decreases as blood pressure increases. In addition, we show that exposing vessels from normotensive adults to acute high-pressure results in loss of Kir2.1 contribution, as high pressure impairs vasodilation. No effect is seen when these vessels were incubated with dnKir2.1. Overexpressing wtKir2.1 in the endothelium resulted in some improvement in vasodilation in arteries from all participants, with a greater recovery in hypertensive adults. Our data suggest that hypertension-induced suppression of Kir2.1 is an important mechanism underlying endothelial dysfunction in hypertension.NEW & NOTEWORTHY Impairment of endothelial function under high blood pressure is linked to the loss of inwardly rectifying K+ (Kir2.1) channels activity in human resistance arteries, leading to a reduction in flow-induced vasodilation and possibly leading to a vicious cycle between elevation of blood pressure, and further impairment of Kir2.1 function and flow-induced vasodilation.
Collapse
Affiliation(s)
- Natalia F Do Couto
- Division of Pulmonary, Critical Care, Allergy and Sleep, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois,United States
| | - Ibra Fancher
- Department Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware, United States
| | - Sara T Granados
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States
| | - Jacqueline Cavalcante-Silva
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Katie M Beverley
- Division of Pulmonary, Critical Care, Allergy and Sleep, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Sang Joon Ahn
- Division of Pulmonary, Critical Care, Allergy and Sleep, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Chueh-Lung Hwang
- Department Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Shane A Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois,United States
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Allergy and Sleep, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
3
|
Santos J, La Fuente JM, Fernández A, Ruano P, Angulo J. LDL-c/HDL-c Ratio and NADPH-Oxidase-2-Derived Oxidative Stress as Main Determinants of Microvascular Endothelial Function in Morbidly Obese Subjects. Antioxidants (Basel) 2024; 13:1139. [PMID: 39334798 PMCID: PMC11444145 DOI: 10.3390/antiox13091139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The identification of obese subjects at higher risk for cardiovascular disease (CVD) is required. We aimed to characterize determinants of endothelial dysfunction, the initial step to CVD, in small omental arteries of visceral fat from obese subjects. The influences of analytical parameters and vascular oxidative stress mediated by NADPH-oxidase-2 (NOX2) on endothelial function were determined. Specimens were obtained from 51 obese subjects undergoing bariatric surgery and 14 non-obese subjects undergoing abdominal surgery. Obese subjects displayed reduced endothelial vasodilation to bradykinin (BK). Endothelial vasodilation (pEC50 for BK) among obese subjects was significantly and negatively associated with low-density lipoprotein cholesterol (LDL-c)/high-density lipoprotein cholesterol (HDL-c) ratio (r = -0.510, p = 0.0001) in both women and men, while other metabolic parameters and comorbidities failed to predict endothelial function. The vascular expression of NOX2 was upregulated in obese subjects and was related to decreased endothelial vasodilation (r = -0.529, p = 0.0006, n = 38) and increased oxidative stress (r = 0.783, p = 0.0044, n = 11) in arterial segments. High LDL-c/HDL-c (>2) and high NOX2 (above median) were independently associated with reduced endothelial function, but the presence of both conditions was related to a further impairment. Concomitant elevated LDL-c/HDL-c ratio and high vascular expression of NOX2 would exacerbate endothelial impairment in obesity and could reveal a deleterious profile for cardiovascular outcomes among obese subjects.
Collapse
Affiliation(s)
- Jorge Santos
- Unidade de Cirurgia Esofagogástrica e Tratamento Cirúrgico de Obesidade, Centro Hospitalar e Universitário de Santo António (CHUdSA), 4099-001 Porto, Portugal
| | - José M La Fuente
- Serviço de Urologia, Centro Hospitalar e Universitário de Santo António (CHUdSA), 4099-001 Porto, Portugal
| | - Argentina Fernández
- Servicio de Histología-Investigación. Unidad de Investigación Traslacional en Cardiología-IRYCIS/UFV, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Paula Ruano
- Servicio de Histología-Investigación. Unidad de Investigación Traslacional en Cardiología-IRYCIS/UFV, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Javier Angulo
- Servicio de Histología-Investigación. Unidad de Investigación Traslacional en Cardiología-IRYCIS/UFV, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Beverley KM, Levitan I. Cholesterol regulation of mechanosensitive ion channels. Front Cell Dev Biol 2024; 12:1352259. [PMID: 38333595 PMCID: PMC10850386 DOI: 10.3389/fcell.2024.1352259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
The purpose of this review is to evaluate the role of cholesterol in regulating mechanosensitive ion channels. Ion channels discussed in this review are sensitive to two types of mechanical signals, fluid shear stress and/or membrane stretch. Cholesterol regulates the channels primarily in two ways: 1) indirectly through localizing the channels into cholesterol-rich membrane domains where they interact with accessory proteins and/or 2) direct binding of cholesterol to the channel at specified putative binding sites. Cholesterol may also regulate channel function via changes of the biophysical properties of the membrane bilayer. Changes in cholesterol affect both mechanosensitivity and basal channel function. We focus on four mechanosensitive ion channels in this review Piezo, Kir2, TRPV4, and VRAC channels. Piezo channels were shown to be regulated by auxiliary proteins that enhance channel function in high cholesterol domains. The direct binding mechanism was shown in Kir2.1 and TRPV4 where cholesterol inhibits channel function. Finally, cholesterol regulation of VRAC was attributed to changes in the physical properties of lipid bilayer. Additional studies should be performed to determine the physiological implications of these sterol effects in complex cellular environments.
Collapse
Affiliation(s)
- Katie M. Beverley
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Steck TL, Ali Tabei SM, Lange Y. Estimating the Cholesterol Affinity of Integral Membrane Proteins from Experimental Data. Biochemistry 2024; 63:19-26. [PMID: 38099740 PMCID: PMC10765374 DOI: 10.1021/acs.biochem.3c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The cholesterol affinities of many integral plasma membrane proteins have been estimated by molecular computation. However, these values lack experimental confirmation. We therefore developed a simple mathematical model to extract sterol affinity constants and stoichiometries from published isotherms for the dependence of the activity of such proteins on the membrane cholesterol concentration. The binding curves for these proteins are sigmoidal, with strongly lagged thresholds attributable to competition for the cholesterol by bilayer phospholipids. The model provided isotherms that matched the experimental data using published values for the sterol association constants and stoichiometries of the phospholipids. Three oligomeric transporters were found to bind cholesterol without cooperativity, with dimensionless association constants of 35 for Kir3.4* and 100 for both Kir2 and a GAT transporter. (The corresponding ΔG° values were -8.8, -11.4, and -11.4 kJ/mol, respectively). These association constants are significantly lower than those for the phospholipids, which range from ∼100 to 6000. The BK channel, the nicotinic acetylcholine receptor, and the M192I mutant of Kir3.4* appear to bind multiple cholesterol molecules cooperatively (n = 2 or 4), with subunit affinities of 563, 950, and 700, respectively. The model predicts that the three less avid transporters are approximately half-saturated in their native plasma membranes; hence, they are sensitive to variations in cholesterol in vivo. The more avid proteins would be nearly saturated in vivo. The method can be applied to any integral protein or other ligands in any bilayer for which there are reasonable estimates of the sterol affinities and stoichiometries of the phospholipids.
Collapse
Affiliation(s)
- Theodore L. Steck
- Department
of Biochemistry and Molecular Biology, University
of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - S. M. Ali Tabei
- Department
of Physics, University of Northern Iowa, Cedar Falls, Iowa 50614, United States
| | - Yvonne Lange
- Department
of Pathology, Rush University Medical Center, Chicago, Illinois 60612, United States
| |
Collapse
|
6
|
Li C, Yang Y. Advancements in the study of inward rectifying potassium channels on vascular cells. Channels (Austin) 2023; 17:2237303. [PMID: 37463317 PMCID: PMC10355679 DOI: 10.1080/19336950.2023.2237303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Inward rectifier potassium channels (Kir channels) exist in a variety of cells and are involved in maintaining resting membrane potential and signal transduction in most cells, as well as connecting metabolism and membrane excitability of body cells. It is closely related to normal physiological functions of body and the occurrence and development of some diseases. Although the functional expression of Kir channels and their role in disease have been studied, they have not been fully elucidated. In this paper, the functional expression of Kir channels in vascular endothelial cells and smooth muscle cells and their changes in disease states were reviewed, especially the recent research progress of Kir channels in stem cells was introduced, in order to have a deeper understanding of Kir channels in vascular tissues and provide new ideas and directions for the treatment of related ion channel diseases.
Collapse
Affiliation(s)
- Chunshu Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Fancher IS, Levitan I. Membrane Cholesterol Interactions with Proteins in Hypercholesterolemia-Induced Endothelial Dysfunction. Curr Atheroscler Rep 2023; 25:535-541. [PMID: 37418067 PMCID: PMC10471518 DOI: 10.1007/s11883-023-01127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to highlight work identifying mechanisms driving hypercholesterolemia-mediated endothelial dysfunction. We specifically focus on cholesterol-protein interactions and address specific questions related to the impact of hypercholesterolemia on cellular cholesterol and vascular endothelial function. We describe key approaches used to determine the effects of cholesterol-protein interactions in mediating endothelial dysfunction under dyslipidemic conditions. RECENT FINDINGS The benefits of removing the cholesterol surplus on endothelial function in models of hypercholesterolemia is clear. However, specific mechanisms driving cholesterol-induced endothelial dysfunction need to be determined. In this review, we detail the latest findings describing cholesterol-mediated endothelial dysfunction, highlighting our studies indicating that cholesterol suppresses endothelial Kir2.1 channels as a major underlying mechanism. The findings detailed in this review support the targeting of cholesterol-induced suppression of proteins in restoring endothelial function in dyslipidemic conditions. The identification of similar mechanisms regarding other cholesterol-endothelial protein interactions is warranted.
Collapse
Affiliation(s)
- Ibra S. Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE USA
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
8
|
Aitken C, Mehta V, Schwartz MA, Tzima E. Mechanisms of endothelial flow sensing. NATURE CARDIOVASCULAR RESEARCH 2023; 2:517-529. [PMID: 39195881 DOI: 10.1038/s44161-023-00276-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/14/2023] [Indexed: 08/29/2024]
Abstract
Fluid shear stress plays a key role in sculpting blood vessels during development, in adult vascular homeostasis and in vascular pathologies. During evolution, endothelial cells evolved several mechanosensors that convert physical forces into biochemical signals, a process termed mechanotransduction. This Review discusses our understanding of endothelial flow sensing and suggests important questions for future investigation.
Collapse
Affiliation(s)
- Claire Aitken
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vedanta Mehta
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Ellie Tzima
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
9
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
10
|
Rezende L, Couto NFD, Fernandes-Braga W, Epshtein Y, Alvarez-Leite JI, Levitan I, Andrade LDO. OxLDL induces membrane structure rearrangement leading to biomechanics alteration and migration deficiency in macrophage. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183951. [PMID: 35504320 DOI: 10.1016/j.bbamem.2022.183951] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Cholesterol sequestration from plasma membrane has been shown to induce lipid packing disruption, causing actin cytoskeleton reorganization and polymerization, increasing cell stiffness and inducing lysosomal exocytosis in non-professional phagocytes. Similarly, oxidized form of low-density lipoprotein (oxLDL) has also been shown to disrupt lipid organization and packing in endothelial cells, leading to biomechanics alterations that interfere with membrane injury and repair. For macrophages, much is known about oxLDL effects in cell activation, cytokine production and foam cell formation. However, little is known about its impact in the organization of macrophage membrane structured domains and cellular mechanics, the focus of the present study. Treatment of bone marrow-derived macrophages (BMDM) with oxLDL not only altered membrane structure, and potentially the distribution of raft domains, but also induced actin rearrangement, diffuse integrin distribution and cell shrinkage, similarly to observed upon treatment of these cells with MβCD. Those alterations led to decreased migration efficiency. For both treatments, higher co-localization of actin cytoskeleton and GM1 was observed, indicating a similar mechanism of action involving raft-like domain dynamics. Lastly, like MβCD treatment, oxLDL also induced lysosomal spreading in BMDM. We propose that OxLDL induced re-organization of membrane/cytoskeleton complex in macrophages can be attributed to the insertion of oxysterols into the membrane, which lead to changes in lipid organization and disruption of membrane structure, similar to the effect of cholesterol depletion by MβCD treatment. These results indicate that oxLDL can induce physical alterations in the complex membrane/cytoskeleton of macrophages, leading to significant biomechanical changes that compromise cell behavior.
Collapse
Affiliation(s)
- Luisa Rezende
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natalia Fernanda Do Couto
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Yulia Epshtein
- Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | | | - Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | | |
Collapse
|
11
|
Sherratt SCR, Libby P, Bhatt DL, Mason RP. A biological rationale for the disparate effects of omega-3 fatty acids on cardiovascular disease outcomes. Prostaglandins Leukot Essent Fatty Acids 2022; 182:102450. [PMID: 35690002 DOI: 10.1016/j.plefa.2022.102450] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 12/29/2022]
Abstract
The omega-3 fatty acids (n3-FAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) rapidly incorporate into cell membranes where they modulate signal transduction pathways, lipid raft formation, and cholesterol distribution. Membrane n3-FAs also form specialized pro-resolving mediators and other intracellular oxylipins that modulate inflammatory pathways, including T-cell differentiation and gene expression. Cardiovascular (CV) trials have shown that EPA, administered as icosapent ethyl (IPE), reduces composite CV events, along with plaque volume, in statin-treated, high-risk patients. Mixed EPA/DHA regimens have not shown these benefits, perhaps as the result of differences in formulation, dosage, or potential counter-regulatory actions of DHA. Indeed, EPA and DHA have distinct, tissue-specific effects on membrane structural organization and cell function. This review summarizes: (1) results of clinical outcome and imaging trials using n3-FA formulations; (2) membrane interactions of n3-FAs; (3) effects of n3-FAs on membrane oxidative stress and cholesterol crystalline domain formation during hyperglycemia; (4) n3-FA effects on endothelial function; (5) role of n3-FA-generated metabolites in inflammation; and (6) ongoing and future clinical investigations exploring treatment targets for n3-FAs, including COVID-19.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03823, USA; Elucida Research LLC, Beverly, MA 01915-0091, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA
| | - Deepak L Bhatt
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA
| | - R Preston Mason
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA; Elucida Research LLC, Beverly, MA 01915-0091, USA.
| |
Collapse
|
12
|
Corradi V, Bukiya AN, Miranda WE, Cui M, Plant LD, Logothetis DE, Tieleman DP, Noskov SY, Rosenhouse-Dantsker A. A molecular switch controls the impact of cholesterol on a Kir channel. Proc Natl Acad Sci U S A 2022; 119:e2109431119. [PMID: 35333652 PMCID: PMC9060494 DOI: 10.1073/pnas.2109431119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/12/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceCholesterol is one of the main components found in plasma membranes and is involved in lipid-dependent signaling enabled by integral membrane proteins such as inwardly rectifying potassium (Kir) channels. Similar to other ion channels, most of the Kir channels are down-regulated by cholesterol. One of the very few notable exceptions is Kir3.4, which is up-regulated by this important lipid. Here, we discovered and characterized a molecular switch that controls the impact (up-regulation vs. down-regulation) of cholesterol on Kir3.4. Our results provide a detailed molecular mechanism of tunable cholesterol regulation of a potassium channel.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre for Molecular Simulation, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Anna N. Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN 38163
| | - Williams E. Miranda
- Centre for Molecular Simulation, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Meng Cui
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115
| | - Leigh D. Plant
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115
| | - Diomedes E. Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - D. Peter Tieleman
- Centre for Molecular Simulation, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sergei Y. Noskov
- Centre for Molecular Simulation, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | |
Collapse
|
13
|
Sancho M, Fletcher J, Welsh DG. Inward Rectifier Potassium Channels: Membrane Lipid-Dependent Mechanosensitive Gates in Brain Vascular Cells. Front Cardiovasc Med 2022; 9:869481. [PMID: 35419431 PMCID: PMC8995785 DOI: 10.3389/fcvm.2022.869481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral arteries contain two primary and interacting cell types, smooth muscle (SMCs) and endothelial cells (ECs), which are each capable of sensing particular hemodynamic forces to set basal tone and brain perfusion. These biomechanical stimuli help confer tone within arterial networks upon which local neurovascular stimuli function. Tone development is intimately tied to arterial membrane potential (VM) and changes in intracellular [Ca2+] driven by voltage-gated Ca2+ channels (VGCCs). Arterial VM is in turn set by the dynamic interplay among ion channel species, the strongly inward rectifying K+ (Kir) channel being of special interest. Kir2 channels possess a unique biophysical signature in that they strongly rectify, display negative slope conductance, respond to elevated extracellular K+ and are blocked by micromolar Ba2+. While functional Kir2 channels are expressed in both smooth muscle and endothelium, they lack classic regulatory control, thus are often viewed as a simple background conductance. Recent literature has provided new insight, with two membrane lipids, phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol, noted to (1) stabilize Kir2 channels in a preferred open or closed state, respectively, and (2) confer, in association with the cytoskeleton, caveolin-1 (Cav1) and syntrophin, hemodynamic sensitivity. It is these aspects of vascular Kir2 channels that will be the primary focus of this review.
Collapse
Affiliation(s)
- Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
- Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Maria Sancho,
| | - Jacob Fletcher
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Donald G. Welsh
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Donald G. Welsh,
| |
Collapse
|
14
|
Ahn SJ, Fancher IS, Granados ST, Do Couto NF, Hwang CL, Phillips SA, Levitan I. Cholesterol-Induced Suppression of Endothelial Kir Channels Is a Driver of Impairment of Arteriolar Flow-Induced Vasodilation in Humans. Hypertension 2022; 79:126-138. [PMID: 34784737 PMCID: PMC8845492 DOI: 10.1161/hypertensionaha.121.17672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dyslipidemia-induced endothelial dysfunction is an important factor in the progression of cardiovascular disease; however, the underlying mechanisms are unclear. Our recent studies demonstrated that flow-induced vasodilation (FIV) is regulated by inwardly rectifying K+ channels (Kir2.1) in resistance arteries. Furthermore, we showed that hypercholesterolemia inhibits Kir2.1-dependent vasodilation. In this study, we introduced 2 new mouse models: (1) endothelial-specific deletion of Kir2.1 to demonstrate the role of endothelial Kir2.1 in FIV and (2) cholesterol-insensitive Kir2.1 mutant to determine the Kir2.1 regulation in FIV under hypercholesterolemia. FIV was significantly reduced in endothelial-specific Kir2.1 knock-out mouse mesenteric arteries compared with control groups. In cholesterol-insensitive Kir2.1 mutant mice, Kir2.1 currents were not affected by cyclodextrin and FIV was restored in cells and arteries, respectively, with a hypercholesterolemic background. To extend our observations to humans, 16 healthy subjects were recruited with LDL (low-density lipoprotein)-cholesterol ranging from 51 to 153 mg/dL and FIV was assessed in resistance arteries isolated from gluteal adipose. Resistance arteries from participants with >100 mg/dL LDL (high-LDL) exhibited reduced FIV as compared with those participants with <100 mg/dL LDL (low-LDL). A significant negative correlation was observed between LDL cholesterol and FIV in high-LDL. Expressing dominant-negative Kir2.1 in endothelium blunted FIV in arteries from low-LDL but had no further effect on FIV in arteries from high-LDL. The Kir2.1-dependent vasodilation more negatively correlated to LDL cholesterol in high-LDL. Overexpressing wild-type Kir2.1 in endothelium fully recovered FIV in arteries from participants with high-LDL. Our data suggest that cholesterol-induced suppression of Kir2.1 is a major mechanism underlying endothelial dysfunction in hypercholesterolemia.
Collapse
Affiliation(s)
- Sang Joon Ahn
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep, College of Medicine, University of Illinois at Chicago
| | - Ibra S. Fancher
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep, College of Medicine, University of Illinois at Chicago,Department of Kinesiology and Applied Physiology, University of Delaware
| | - Sara T. Granados
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep, College of Medicine, University of Illinois at Chicago
| | - Natalia F. Do Couto
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep, College of Medicine, University of Illinois at Chicago,Department of Physical Therapy, College of Applied Health Science, University of Illinois at Chicago
| | - Chueh-Lung Hwang
- Department of Physical Therapy, College of Applied Health Science, University of Illinois at Chicago
| | - Shane A. Phillips
- Department of Physical Therapy, College of Applied Health Science, University of Illinois at Chicago
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep, College of Medicine, University of Illinois at Chicago
| |
Collapse
|
15
|
Hakim MA, Behringer EJ. Methyl-Beta-Cyclodextrin Restores K IR Channel Function in Brain Endothelium of Female Alzheimer's Disease Mice. J Alzheimers Dis Rep 2021; 5:693-703. [PMID: 34755043 PMCID: PMC8543374 DOI: 10.3233/adr-210016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background: As the sixth-leading cause of death in the United States, Alzheimer’s disease (AD) entails deteriorating endothelial control of blood flow throughout the brain. In particular, reduced inward-rectifying K+ (KIR) channel function in animal models of aging and AD compromises endothelial function and optimal perfusion of brain parenchyma. Deficient endothelial KIR channels may result from aberrant interaction with plasma membrane cholesterol as a primary regulator of membrane fluidity and ion channels. Objective: We tested the hypothesis that mild methyl-β-cyclodextrin (MβCD) treatment to reduce membrane cholesterol may restore endothelial KIR channel function in brain endothelium of old AD mice. Methods: Membrane potential was continuously measured in isolated endothelial tubes from posterior cerebral arteries of young (1 to 3 months) and old (16 to 19 months) female 3xTg-AD mice before and after mild treatment with the cholesterol-removing agent MβCD (1 mmol/L). Elevated extracellular potassium ([K+]E; 15 mmol/L) and NS309 (1μmol/L) activated KIR and Ca2+-activated K+ (SKCa/IKCa) channels respectively before and after MβCD treatment. Results: SKCa/IKCa channel function for producing hyperpolarization remained stable regardless of age group and MβCD treatment (ΔVm: ∼–33 mV). However, as deficient during AD, KIR channel function was restored (ΔVm: –9±1 mV) versus pre-MβCD conditions (–5±1 mV); a progressive effect that reached –14±1 mV hyperpolarization at 60 min following MβCD washout. Conclusion: In female animals, MβCD treatment of brain endothelium selectively restores KIR versus SKCa/IKCa channel function during AD. Thus, the endothelial cholesterol-KIR channel interface is a novel target for ameliorating perfusion of the AD brain.
Collapse
Affiliation(s)
- Md A Hakim
- Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | | |
Collapse
|
16
|
Fancher IS. Cardiovascular mechanosensitive ion channels-Translating physical forces into physiological responses. CURRENT TOPICS IN MEMBRANES 2021; 87:47-95. [PMID: 34696889 DOI: 10.1016/bs.ctm.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells and tissues are constantly exposed to mechanical stress. In order to respond to alterations in mechanical stimuli, specific cellular machinery must be in place to rapidly convert physical force into chemical signaling to achieve the desired physiological responses. Mechanosensitive ion channels respond to such physical stimuli in the order of microseconds and are therefore essential components to mechanotransduction. Our understanding of how these ion channels contribute to cellular and physiological responses to mechanical force has vastly expanded in the last few decades due to engineering ingenuities accompanying patch clamp electrophysiology, as well as sophisticated molecular and genetic approaches. Such investigations have unveiled major implications for mechanosensitive ion channels in cardiovascular health and disease. Therefore, in this chapter I focus on our present understanding of how biophysical activation of various mechanosensitive ion channels promotes distinct cell signaling events with tissue-specific physiological responses in the cardiovascular system. Specifically, I discuss the roles of mechanosensitive ion channels in mediating (i) endothelial and smooth muscle cell control of vascular tone, (ii) mechano-electric feedback and cell signaling pathways in cardiomyocytes and cardiac fibroblasts, and (iii) the baroreflex.
Collapse
Affiliation(s)
- Ibra S Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
17
|
Li J, Fang Y, Wu D. Mechanical forces and metabolic changes cooperate to drive cellular memory and endothelial phenotypes. CURRENT TOPICS IN MEMBRANES 2021; 87:199-253. [PMID: 34696886 PMCID: PMC8639155 DOI: 10.1016/bs.ctm.2021.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endothelial cells line the innermost layer of arterial, venous, and lymphatic vascular tree and accordingly are subject to hemodynamic, stretch, and stiffness mechanical forces. Normally quiescent, endothelial cells have a hemodynamic set point and become "activated" in response to disturbed hemodynamics, which may signal impending nutrient or gas depletion. Endothelial cells in the majority of tissue beds are normally inactivated and maintain vessel barrier functions, are anti-inflammatory, anti-coagulant, and anti-thrombotic. However, under aberrant mechanical forces, endothelial signaling transforms in response, resulting cellular changes that herald pathological diseases. Endothelial cell metabolism is now recognized as the primary intermediate pathway that undergirds cellular transformation. In this review, we discuss the various mechanical forces endothelial cells sense in the large vessels, microvasculature, and lymphatics, and how changes in environmental mechanical forces result in changes in metabolism, which ultimately influence cell physiology, cellular memory, and ultimately disease initiation and progression.
Collapse
Affiliation(s)
- Jin Li
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Yun Fang
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - David Wu
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
18
|
Tanaka K, Joshi D, Timalsina S, Schwartz MA. Early events in endothelial flow sensing. Cytoskeleton (Hoboken) 2021; 78:217-231. [PMID: 33543538 DOI: 10.1002/cm.21652] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Responses of vascular and lymphatic endothelial cells (ECs) to fluid shear stress (FSS) from blood or lymphatic fluid flow govern the development, physiology, and diseases of these structures. Extensive research has characterized the signaling, gene expression and cytoskeletal pathways that mediate effects on EC phenotype and vascular morphogenesis. But the primary mechanisms by which ECs transduce the weak forces from flow into biochemical signals are less well understood. This review covers recent advances in our understanding of the immediate mechanisms of FSS mechanotransduction, integrating results from different disciplines, addressing their roles in development, physiology and disease, and suggesting important questions for future work.
Collapse
Affiliation(s)
- Keiichiro Tanaka
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Sushma Timalsina
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Cell Biology, Yale University, New Haven, Connecticut, USA.,Department of Biomedical engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Goto K, Kitazono T. Endothelium-dependent hyperpolarization (EDH) in diet-induced obesity. ENDOCRINE AND METABOLIC SCIENCE 2020. [DOI: 10.1016/j.endmts.2020.100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
20
|
Fancher IS, Le Master E, Ahn SJ, Adamos C, Lee JC, Berdyshev E, Dull RO, Phillips SA, Levitan I. Impairment of Flow-Sensitive Inwardly Rectifying K + Channels via Disruption of Glycocalyx Mediates Obesity-Induced Endothelial Dysfunction. Arterioscler Thromb Vasc Biol 2020; 40:e240-e255. [PMID: 32698687 DOI: 10.1161/atvbaha.120.314935] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine if endothelial dysfunction in a mouse model of diet-induced obesity and in obese humans is mediated by the suppression of endothelial Kir (inwardly rectifying K+) channels. Approach and Results: Endothelial dysfunction, observed as reduced dilations to flow, occurred after feeding mice a high-fat, Western diet for 8 weeks. The functional downregulation of endothelial Kir2.1 using dominant-negative Kir2.1 construct resulted in substantial reductions in the response to flow in mesenteric arteries of lean mice, whereas no effect was observed in arteries of obese mice. Overexpressing wild-type-Kir2.1 in endothelium of arteries from obese mice resulted in full recovery of the flow response. Exposing freshly isolated endothelial cells to fluid shear during patch-clamp electrophysiology revealed that the flow-sensitivity of Kir was virtually abolished in cells from obese mice. Atomic force microscopy revealed that the endothelial glycocalyx was stiffer and the thickness of the glycocalyx layer reduced in arteries from obese mice. We also identified that the length of the glycocalyx is critical to the flow-activation of Kir. Overexpressing Kir2.1 in endothelium of arteries from obese mice restored flow- and heparanase-sensitivity, indicating an important role for heparan sulfates in the flow-activation of Kir. Furthermore, the Kir2.1-dependent component of flow-induced vasodilation was lost in the endothelium of resistance arteries of obese humans obtained from biopsies collected during bariatric surgery. CONCLUSIONS We conclude that obesity-induced impairment of flow-induced vasodilation is attributed to the loss of flow-sensitivity of endothelial Kir channels and propose that the latter is mediated by the biophysical alterations of the glycocalyx.
Collapse
Affiliation(s)
- Ibra S Fancher
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine (I.S.F., E.L.M., S.J.A., C.A., I.L.), University of Illinois at Chicago
| | - Elizabeth Le Master
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine (I.S.F., E.L.M., S.J.A., C.A., I.L.), University of Illinois at Chicago
| | - Sang Joon Ahn
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine (I.S.F., E.L.M., S.J.A., C.A., I.L.), University of Illinois at Chicago
| | - Crystal Adamos
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine (I.S.F., E.L.M., S.J.A., C.A., I.L.), University of Illinois at Chicago
| | - James C Lee
- Departement of Bioengineering (J.C.L.), University of Illinois at Chicago
| | - Evgeny Berdyshev
- Division of Pulmonary, Critical Care and Sleep Medicine, Departement of Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Randal O Dull
- Department of Anesthesiology, University of Arizona College of Medicine, Banner-University Medical Center, Tucson (R.O.D.)
| | - Shane A Phillips
- Department of Physical Therapy (S.A.P.), University of Illinois at Chicago
| | - Irena Levitan
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine (I.S.F., E.L.M., S.J.A., C.A., I.L.), University of Illinois at Chicago
| |
Collapse
|
21
|
Sancho M, Welsh DG. K IR channels in the microvasculature: Regulatory properties and the lipid-hemodynamic environment. CURRENT TOPICS IN MEMBRANES 2020; 85:227-259. [PMID: 32402641 DOI: 10.1016/bs.ctm.2020.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Basal tone and perfusion control is set in cerebral arteries by the sensing of pressure and flow, key hemodynamic stimuli. These forces establish a contractile foundation within arterial networks upon which local neurovascular stimuli operate. This fundamental process is intimately tied to arterial VM and the rise in cytosolic [Ca2+] by the graded opening of voltage-operated Ca2+ channels. Arterial VM is in turn controlled by a dynamic interaction among several resident ion channels, KIR being one of particular significance. As the name suggests, KIR displays strong inward rectification, retains a small outward component, potentiated by extracellular K+ and blocked by micromolar Ba2+. Cerebrovascular KIR is unique from other K+ currents as it is present in both smooth muscle and endothelium yet lacking in classical regulatory modulation. Such observations have fostered the view that KIR is nothing more than a background conductance, activated by extracellular K+ and which passively facilitates dilation. Recent work in cell model systems has; however, identified two membrane lipids, phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol, that interact with KIR2.x, to stabilize the channel in the preferred open or silent state, respectively. Translating this unique form of regulation, recent studies have demonstrated that specific lipid-protein interactions enable unique KIR populations to sense distinct hemodynamic stimuli and set basal tone. This review summarizes the current knowledge of vascular KIR channels and how the lipid and hemodynamic impact their activity.
Collapse
Affiliation(s)
- Maria Sancho
- Robarts Research Institute and the Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Donald G Welsh
- Robarts Research Institute and the Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
22
|
Fancher IS, Levitan I. Endothelial inwardly-rectifying K + channels as a key component of shear stress-induced mechanotransduction. CURRENT TOPICS IN MEMBRANES 2020; 85:59-88. [PMID: 32402645 DOI: 10.1016/bs.ctm.2020.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been recognized for decades that fluid shear stress plays a major role in vascular function. Acting on the endothelium shear stress induces vasorelaxation of resistance arteries and plays a major role in the propensity of the major arteries to atherosclerosis. Many elements of shear-induced signaling have been identified yet we are just beginning to decipher the roles that mechanosensitive ion channels may play in the signaling pathways initiated by shear stress. Endothelial inwardly-rectifying K+ channels were identified as potential primary mechanosensors in the late 1980s yet until our recent works, highlighted in the forthcoming chapter, the functional effect of a shear-activated K+ current was completely unknown. In this chapter, we present the physiological effects of shear stress in arteries in health and disease and highlight the most prevalent of today's investigated mechanosensitive ion channels. Ultimately, we focus on Kir2.1 channels and discuss in detail our findings regarding the downstream signaling events that are induced by shear-activated endothelial Kir2.1 channels. Most importantly, we examine our findings regarding hypercholesterolemia-induced inhibition of Kir channel shear-sensitivity and the impact on endothelial function in the context of flow (shear)-mediated vasodilation and atherosclerosis.
Collapse
Affiliation(s)
- Ibra S Fancher
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
23
|
Bogachkov YY, Chen L, Le Master E, Fancher IS, Zhao Y, Aguilar V, Oh MJ, Wary KK, DiPietro LA, Levitan I. LDL induces cholesterol loading and inhibits endothelial proliferation and angiogenesis in Matrigels: correlation with impaired angiogenesis during wound healing. Am J Physiol Cell Physiol 2020; 318:C762-C776. [PMID: 31995410 DOI: 10.1152/ajpcell.00495.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hypercholesterolemia is a major risk factor for adverse cardiovascular outcomes, but its effect on angiogenesis and wound healing is not well understood. In this study, using a combination of mass spectrometry and laurdan two-photon imaging, we show that elevated levels of low-density lipoprotein (LDL), like those seen in hypercholesterolemic patients, lead to an increase in both free cholesterol and cholesterol esters, as well as increase in lipid order of endothelial cell membranes. Notably, these effects are distinct and opposite to the lack of cholesterol loading and the disruption of lipid order observed in our earlier studies in response to oxidized LDL (oxLDL). The same pathological level of LDL leads to a significant inhibition of endothelial proliferation and cell cycle arrest in G2/M phase, whereas oxLDL enhances endothelial proliferation in S phase of the cycle. LDL but not oxLDL suppresses the expression of vascular endothelial growth factor receptor-2 while enhancing the expression of vascular endothelial growth factor (VEGF). Furthermore, we show that aged (8-10 mo) hypercholesterolemic apolipoprotein E-deficient (ApoE-/-) mice display delayed wound closure compared with age-matched C57/BL6 wild-type controls following a skin punch biopsy. The delay in wound healing is associated with a decreased expression of cluster of differentiation 31 platelet endothelial cell adhesion molecule endothelial marker and decreased angiogenesis within the wound bed. Furthermore, decreased endothelial responsiveness to the growth factors VEGF and basic fibroblast growth factor is observed in ApoE-/- mice in Matrigel plugs and in Matrigels with high levels of LDL in wild-type mice. We propose that plasma hypercholesterolemia is antiangiogenic due to elevated levels of LDL.
Collapse
Affiliation(s)
- Yedida Y Bogachkov
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.,Department of Cellular and Molecular Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Elizabeth Le Master
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ibra S Fancher
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Yan Zhao
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Victor Aguilar
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Myung-Jin Oh
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Kishore K Wary
- Department of Cellular and Molecular Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Irena Levitan
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.,Department of Cellular and Molecular Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
24
|
Cellular microdomains for nitric oxide signaling in endothelium and red blood cells. Nitric Oxide 2020; 96:44-53. [PMID: 31911123 DOI: 10.1016/j.niox.2020.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
Abstract
There is accumulating evidence that biological membranes are not just homogenous lipid structures, but are highly organized in microdomains, i.e. compartmentalized areas of protein and lipid complexes, which facilitate necessary interactions for various signaling pathways. Each microdomain exhibits unique composition, membrane location and dynamics, which ultimately shape their functional characteristics. In the vasculature, microdomains are crucial for organizing and compartmentalizing vasodilatory signals that contribute to blood pressure homeostasis. In this review we aim to describe how membrane microdomains in both the endothelium and red blood cells allow context-specific regulation of the vasodilatory signal nitric oxide (NO) and its corresponding metabolic products, and how this results in tightly controlled systemic physiological responses. We will describe (1) structural characteristics of microdomains including lipid rafts and caveolae; (2) endothelial cell caveolae and how they participate in mechanosensing and NO-dependent mechanotransduction; (3) the myoendothelial junction of resistance arterial endothelial cells and how protein-protein interactions within it have profound systemic effects on blood pressure regulation, and (4) putative/proposed NO microdomains in RBCs and how they participate in control of systemic NO bioavailability. The sum of these discussions will provide a current view of NO regulation by cellular microdomains.
Collapse
|
25
|
Alaaeddine R, Elkhatib MAW, Mroueh A, Fouad H, Saad EI, El-Sabban ME, Plane F, El-Yazbi AF. Impaired Endothelium-Dependent Hyperpolarization Underlies Endothelial Dysfunction during Early Metabolic Challenge: Increased ROS Generation and Possible Interference with NO Function. J Pharmacol Exp Ther 2019; 371:567-582. [PMID: 31511364 DOI: 10.1124/jpet.119.262048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
Endothelial dysfunction is a hallmark of diabetic vasculopathies. Although hyperglycemia is believed to be the culprit causing endothelial damage, the mechanism underlying early endothelial insult in prediabetes remains obscure. We used a nonobese high-calorie (HC)-fed rat model with hyperinsulinemia, hypercholesterolemia, and delayed development of hyperglycemia to unravel this mechanism. Compared with aortic rings from control rats, HC-fed rat rings displayed attenuated acetylcholine-mediated relaxation. While sensitive to nitric oxide synthase (NOS) inhibition, aortic relaxation in HC-rat tissues was not affected by blocking the inward-rectifier potassium (Kir) channels using BaCl2 Although Kir channel expression was reduced in HC-rat aorta, Kir expression, endothelium-dependent relaxation, and the BaCl2-sensitive component improved in HC rats treated with atorvastatin to reduce serum cholesterol. Remarkably, HC tissues demonstrated increased reactive species (ROS) in smooth muscle cells, which was reversed in rats receiving atorvastatin. In vitro ROS reduction, with superoxide dismutase, improved endothelium-dependent relaxation in HC-rat tissues. Significantly, connexin-43 expression increased in HC aortic tissues, possibly allowing ROS movement into the endothelium and reduction of eNOS activity. In this context, gap junction blockade with 18-β-glycyrrhetinic acid reduced vascular tone in HC rat tissues but not in controls. This reduction was sensitive to NOS inhibition and SOD treatment, possibly as an outcome of reduced ROS influence, and emerged in BaCl2-treated control tissues. In conclusion, our results suggest that early metabolic challenge leads to reduced Kir-mediated endothelium-dependent hyperpolarization, increased vascular ROS potentially impairing NO synthesis and highlight these channels as a possible target for early intervention with vascular dysfunction in metabolic disease. SIGNIFICANCE STATEMENT: The present study examines early endothelial dysfunction in metabolic disease. Our results suggest that reduced inward-rectifier potassium channel function underlies a defective endothelium-mediated relaxation possibly through alteration of nitric oxide synthase activity. This study provides a possible mechanism for the augmentation of relatively small changes in one endothelium-mediated relaxation pathway to affect overall endothelial response and highlights the potential role of inward-rectifier potassium channel function as a therapeutic target to treat vascular dysfunction early in the course of metabolic disease.
Collapse
Affiliation(s)
- Rana Alaaeddine
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| | - Mohammed A W Elkhatib
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| | - Ali Mroueh
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| | - Hosny Fouad
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| | - Evan I Saad
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| | - Marwan E El-Sabban
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| | - Frances Plane
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| | - Ahmed F El-Yazbi
- Departments of Pharmacology and Therapeutics (R.A., A.M., A.F.E.-Y.) and Anatomy, Cell Biology, and Physiology (M.E.E.-S.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (M.A.W.E., H.F., E.I.S., A.F.E.-Y.); and Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada (F.P.)
| |
Collapse
|
26
|
Boriushkin E, Fancher IS, Levitan I. Shear-Stress Sensitive Inwardly-Rectifying K + Channels Regulate Developmental Retinal Angiogenesis by Vessel Regression. Cell Physiol Biochem 2019; 52:1569-1583. [PMID: 31145841 PMCID: PMC7063968 DOI: 10.33594/000000109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Shear stress plays major roles in developmental angiogenesis, particularly in blood vessel remodeling and maturation but little is known about the shear stress sensors involved in this process. Our recent study identified endothelial Kir2.1 channels as major contributors to flow-induced vasodilation, a hallmark of the endothelial flow response. The goal of this study is to establish the role of Kir2.1 in the regulation of retinal angiogenesis. METHODS The retina of newly born Kir2.1+/- mice were used to investigate the sprouting angiogenesis and remodeling of newly formed branched vessels. The structure, blood density and mural cell coverage have been evaluated by immunohistochemistry of the whole-mount retina. Endothelial cell alignment was assessed using CD31 staining. The experiments with flow-induced vasodilation were used to study the cerebrovascular response to flow. RESULTS Using Kir2.1-deficient mice, we show that the retinas of Kir2.1+/- mice have higher vessel density, increased lengths and increased number of the branching points, as compared to WT littermates. In contrast, the coverage by αSMA is decreased in Kir2.1+/- mice while pericyte coverage does not change. Furthermore, to determine whether deficiency of Kir2.1 affects vessel pruning, we discriminated between intact and degraded vessels or "empty matrix sleeves" and found a significant reduction in the number of empty sleeves on the peripheral part of the retina or "angiogenic front" in Kir2.1+/- mice. We also show that Kir2.1 deficiency results in decreased endothelial alignment in retinal endothelium and impaired flow-induced vasodilation of cerebral arteries, verifying the involvement of Kir2.1 in shear-stress sensing in retina and cerebral circulation. CONCLUSION This study shows that shear-stress sensitive Kir2.1 channels play an important role in pruning of excess vessels and vascular remodeling during retinal angiogenesis. We propose that Kir2.1 mediates the effect of shear stress on vessel maturation.
Collapse
Affiliation(s)
| | - Ibra S Fancher
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Sancho M, Fabris S, Hald BO, Brett SE, Sandow SL, Poepping TL, Welsh DG. Membrane Lipid-K
IR
2.x Channel Interactions Enable Hemodynamic Sensing in Cerebral Arteries. Arterioscler Thromb Vasc Biol 2019; 39:1072-1087. [DOI: 10.1161/atvbaha.119.312493] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objective—
Inward rectifying K
+
(K
IR
) channels are present in cerebral arterial smooth muscle and endothelial cells, a tandem arrangement suggestive of a dynamic yet undiscovered role for this channel. This study defined whether distinct pools of cerebral arterial K
IR
channels were uniquely modulated by membrane lipids and hemodynamic stimuli.
Approach and Results—
A Ba
2+
-sensitive K
IR
current was isolated in smooth muscle and endothelial cells of rat cerebral arteries; molecular analyses subsequently confirmed K
IR
2.1/K
IR
2.2 mRNA and protein expression in both cells. Patch-clamp electrophysiology next demonstrated that each population of K
IR
channels was sensitive to key membrane lipids and hemodynamic stimuli. In this regard, endothelial K
IR
was sensitive to phosphatidylinositol 4,5-bisphosphate content, with depletion impairing the ability of laminar shear stress to activate this channel pool. In contrast, smooth muscle K
IR
was sensitive to membrane cholesterol content, with sequestration blocking the ability of pressure to inhibit channel activity. The idea that membrane lipids help confer shear stress and pressure sensitivity of K
IR
channels was confirmed in intact arteries using myography. Virtual models integrating structural/electrical observations reconceptualized K
IR
as a dynamic regulator of membrane potential working in concert with other currents to set basal tone across a range of shear stresses and intravascular pressures.
Conclusions—
The data show for the first time that specific membrane lipid-K
IR
interactions enable unique channel populations to sense hemodynamic stimuli and drive vasomotor responses to set basal perfusion in the cerebral circulation.
Collapse
Affiliation(s)
- Maria Sancho
- From the Department of Physiology and Pharmacology, Robarts Research Institute (M.S., S.F., S.E.B., D.G.W.), University of Western Ontario, London, Canada
| | - Sergio Fabris
- From the Department of Physiology and Pharmacology, Robarts Research Institute (M.S., S.F., S.E.B., D.G.W.), University of Western Ontario, London, Canada
| | - Bjorn O. Hald
- Department of Neuroscience, Translational Neurobiology, University of Copenhagen, Denmark (B.O.H.)
| | - Suzanne E. Brett
- From the Department of Physiology and Pharmacology, Robarts Research Institute (M.S., S.F., S.E.B., D.G.W.), University of Western Ontario, London, Canada
| | - Shaun L. Sandow
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia (S.L.S.)
| | - Tamie L. Poepping
- Department of Physics and Astronomy (T.L.P.), University of Western Ontario, London, Canada
| | - Donald G. Welsh
- From the Department of Physiology and Pharmacology, Robarts Research Institute (M.S., S.F., S.E.B., D.G.W.), University of Western Ontario, London, Canada
- Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada (D.G.W.)
| |
Collapse
|
28
|
Alaaeddine RA, Mroueh A, Gust S, Eid AH, Plane F, El-Yazbi AF. Impaired cross-talk between NO and hyperpolarization in myoendothelial feedback: a novel therapeutic target in early endothelial dysfunction of metabolic disease. Curr Opin Pharmacol 2019; 45:33-41. [DOI: 10.1016/j.coph.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/12/2019] [Accepted: 03/15/2019] [Indexed: 12/27/2022]
|
29
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Zhang B, Paffett ML, Naik JS, Jernigan NL, Walker BR, Resta TC. Cholesterol Regulation of Pulmonary Endothelial Calcium Homeostasis. CURRENT TOPICS IN MEMBRANES 2018; 82:53-91. [PMID: 30360783 DOI: 10.1016/bs.ctm.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cholesterol is a key structural component and regulator of lipid raft signaling platforms critical for cell function. Such regulation may involve changes in the biophysical properties of lipid microdomains or direct protein-sterol interactions that alter the function of ion channels, receptors, enzymes, and membrane structural proteins. Recent studies have implicated abnormal membrane cholesterol levels in mediating endothelial dysfunction that is characteristic of pulmonary hypertensive disorders, including that resulting from long-term exposure to hypoxia. Endothelial dysfunction in this setting is characterized by impaired pulmonary endothelial calcium entry and an associated imbalance that favors production vasoconstrictor and mitogenic factors that contribute to pulmonary hypertension. Here we review current knowledge of cholesterol regulation of pulmonary endothelial Ca2+ homeostasis, focusing on the role of membrane cholesterol in mediating agonist-induced Ca2+ entry and its components in the normal and hypertensive pulmonary circulation.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
31
|
Jackson WF. Boosting the signal: Endothelial inward rectifier K + channels. Microcirculation 2018; 24. [PMID: 27652592 DOI: 10.1111/micc.12319] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022]
Abstract
Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of KIR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K+ channel (KIR ) currents display a region of negative slope conductance at membrane potentials positive to the K+ equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting KIR to amplify hyperpolarization induced by other K+ channels and ion transporters. Increases in extracellular K+ concentration activate KIR allowing them to sense extracellular K+ concentration and transduce this change into membrane hyperpolarization. These properties position KIR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of KIR in capillaries in electrically active tissues may allow KIR to sense extracellular K+ , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial KIR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
32
|
Fancher IS, Ahn SJ, Adamos C, Osborn C, Oh MJ, Fang Y, Reardon CA, Getz GS, Phillips SA, Levitan I. Hypercholesterolemia-Induced Loss of Flow-Induced Vasodilation and Lesion Formation in Apolipoprotein E-Deficient Mice Critically Depend on Inwardly Rectifying K + Channels. J Am Heart Assoc 2018; 7:e007430. [PMID: 29502106 PMCID: PMC5866319 DOI: 10.1161/jaha.117.007430] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/17/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Hypercholesterolemia-induced decreased availability of nitric oxide (NO) is a major factor in cardiovascular disease. We previously established that cholesterol suppresses endothelial inwardly rectifying K+ (Kir) channels and that Kir2.1 is an upstream mediator of flow-induced NO production. Therefore, we tested the hypothesis that suppression of Kir2.1 is responsible for hypercholesterolemia-induced inhibition of flow-induced NO production and flow-induced vasodilation (FIV). We also tested the role of Kir2.1 in the development of atherosclerotic lesions. METHODS AND RESULTS Kir2.1 currents are significantly suppressed in microvascular endothelial cells exposed to acetylated-low-density lipoprotein or isolated from apolipoprotein E-deficient (Apoe-/- ) mice and rescued by cholesterol depletion. Genetic deficiency of Kir2.1 on the background of hypercholesterolemic Apoe-/- mice, Kir2.1+/-/Apoe-/- exhibit the same blunted FIV and flow-induced NO response as Apoe-/- or Kir2.1+/- alone, but while FIV in Apoe-/- mice can be rescued by cholesterol depletion, in Kir2.1+/-/Apoe-/- mice cholesterol depletion has no effect on FIV. Endothelial-specific overexpression of Kir2.1 in arteries from Apoe-/- and Kir2.1+/-/Apoe-/- mice results in full rescue of FIV and NO production in Apoe-/- mice with and without the addition of a high-fat diet. Conversely, endothelial-specific expression of dominant-negative Kir2.1 results in the opposite effect. Kir2.1+/-/Apoe-/- mice also show increased lesion formation, particularly in the atheroresistant area of descending aorta. CONCLUSIONS We conclude that hypercholesterolemia-induced reduction in FIV is largely attributable to cholesterol suppression of Kir2.1 function via the loss of flow-induced NO production, whereas the stages downstream of flow-induced Kir2.1 activation appear to be mostly intact. Kir2.1 channels also have an atheroprotective role.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/physiopathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Cells, Cultured
- Cholesterol/blood
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Hypercholesterolemia/genetics
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/pathology
- Hypercholesterolemia/physiopathology
- Male
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/physiopathology
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Nitric Oxide/metabolism
- Plaque, Atherosclerotic
- Potassium Channels, Inwardly Rectifying/deficiency
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Signal Transduction
- Vasodilation
Collapse
Affiliation(s)
- Ibra S Fancher
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL
- Department of Physical Therapy, University of Illinois at Chicago, IL
| | - Sang Joon Ahn
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL
| | - Crystal Adamos
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL
- Department of Physical Therapy, University of Illinois at Chicago, IL
| | - Catherine Osborn
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL
| | - Myung-Jin Oh
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, IL
| | - Yun Fang
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, IL
| | | | | | - Shane A Phillips
- Department of Physical Therapy, University of Illinois at Chicago, IL
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL
| |
Collapse
|
33
|
Ranchoux B, Harvey LD, Ayon RJ, Babicheva A, Bonnet S, Chan SY, Yuan JXJ, Perez VDJ. Endothelial dysfunction in pulmonary arterial hypertension: an evolving landscape (2017 Grover Conference Series). Pulm Circ 2018; 8:2045893217752912. [PMID: 29283043 PMCID: PMC5798691 DOI: 10.1177/2045893217752912] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial dysfunction is a major player in the development and progression of vascular pathology in pulmonary arterial hypertension (PAH), a disease associated with small vessel loss and obstructive vasculopathy that leads to increased pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past ten years, there has been tremendous progress in our understanding of pulmonary endothelial biology as it pertains to the genetic and molecular mechanisms that orchestrate the endothelial response to direct or indirect injury, and how their dysregulation can contribute to the pathogenesis of PAH. As one of the major topics included in the 2017 Grover Conference Series, discussion centered on recent developments in four areas of pulmonary endothelial biology: (1) angiogenesis; (2) endothelial-mesenchymal transition (EndMT); (3) epigenetics; and (4) biology of voltage-gated ion channels. The present review will summarize the content of these discussions and provide a perspective on the most promising aspects of endothelial dysfunction that may be amenable for therapeutic development.
Collapse
Affiliation(s)
| | - Lloyd D. Harvey
- University of Pittsburgh Vascular Medicine Institute Division of Cardiology, Pittsburgh, PA, USA
| | - Ramon J. Ayon
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Aleksandra Babicheva
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - Stephen Y. Chan
- University of Pittsburgh Vascular Medicine Institute Division of Cardiology, Pittsburgh, PA, USA
| | - Jason X.-J. Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, CA, USA
- The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, CA, USA
| |
Collapse
|
34
|
Hayoz S, Pettis J, Bradley V, Segal SS, Jackson WF. Increased amplitude of inward rectifier K + currents with advanced age in smooth muscle cells of murine superior epigastric arteries. Am J Physiol Heart Circ Physiol 2017; 312:H1203-H1214. [PMID: 28432059 PMCID: PMC6146378 DOI: 10.1152/ajpheart.00679.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 01/15/2023]
Abstract
Inward rectifier K+ channels (KIR) may contribute to skeletal muscle blood flow regulation and adapt to advanced age. Using mouse abdominal wall superior epigastric arteries (SEAs) from either young (3-6 mo) or old (24-26 mo) male C57BL/6 mice, we investigated whether SEA smooth muscle cells (SMCs) express functional KIR channels and how aging may affect KIR function. Freshly dissected SEAs were either enzymatically dissociated to isolate SMCs for electrophysiological recording (perforated patch) and mRNA expression or used intact for pressure myography. With 5 mM extracellular K+ concentration ([K+]o), exposure of SMCs to the KIR blocker Ba2+ (100 μM) had no significant effect (P > 0.05) on whole cell currents elicited by membrane potentials spanning -120 to -30 mV. Raising [K+]o to 15 mM activated Ba2+-sensitive KIR currents between -120 and -30 mV, which were greater in SMCs from old mice than in SMCs from young mice (P < 0.05). Pressure myography of SEAs revealed that while aging decreased maximum vessel diameter by ~8% (P < 0.05), it had no significant effect on resting diameter, myogenic tone, dilation to 15 mM [K+]o, Ba2+-induced constriction in 5 mM [K+]o, or constriction induced by 15 mM [K+]o in the presence of Ba2+ (P > 0.05). Quantitative RT-PCR revealed SMC expression of KIR2.1 and KIR2.2 mRNA that was not affected by age. Barium-induced constriction of SEAs from young and old mice suggests an integral role for KIR in regulating resting membrane potential and vasomotor tone. Increased functional expression of KIR channels during advanced age may compensate for other age-related changes in SEA function.NEW & NOTEWORTHY Ion channels are integral to blood flow regulation. We found greater functional expression of inward rectifying K+ channels in smooth muscle cells of resistance arteries of mouse skeletal muscle with advanced age. This adaptation to aging may contribute to the maintenance of vasomotor tone and blood flow regulation during exercise.
Collapse
Affiliation(s)
- Sebastien Hayoz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Jessica Pettis
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Vanessa Bradley
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan;
| |
Collapse
|
35
|
Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P 2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1233-1241. [PMID: 28377218 DOI: 10.1016/j.bbamem.2017.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/16/2017] [Accepted: 03/31/2017] [Indexed: 11/23/2022]
Abstract
G-protein gated inwardly rectifying potassium (GIRK or Kir3) channels play a major role in the control of the heart rate, and require the membrane phospholipid phosphatidylinositol-bis-phosphate (PI(4,5)P2) for activation. Recently, we have shown that the activity of the heterotetrameric Kir3.1/Kir3.4 channel that underlies atrial KACh currents was enhanced by cholesterol. Similarly, the activities of both the Kir3.4 homomer and its active pore mutant Kir3.4* (Kir3.4_S143T) were also enhanced by cholesterol. Here we employ planar lipid bilayers to investigate the crosstalk between PI(4,5)P2 and cholesterol, and demonstrate that these two lipids act synergistically to activate Kir3.4* currents. Further studies using the Xenopus oocytes heterologous expression system suggest that PI(4,5)P2 and cholesterol act via distinct binding sites. Whereas PI(4,5)P2 binds to the cytosolic domain of the channel, the putative binding region of cholesterol is located at the center of the transmembrane domain overlapping the central glycine hinge region of the channel. Together, our data suggest that changes in the levels of two key membrane lipids - cholesterol and PI(4,5)P2 - could act in concert to provide fine-tuning of Kir3 channel function.
Collapse
|
36
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
37
|
Amiya E. Interaction of hyperlipidemia and reactive oxygen species: Insights from the lipid-raft platform. World J Cardiol 2016; 8:689-694. [PMID: 28070236 PMCID: PMC5183968 DOI: 10.4330/wjc.v8.i12.689] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/07/2016] [Accepted: 10/09/2016] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) and oxidative stress are closely associated with the development of atherosclerosis, and the most important regulator of ROS production in endothelial cells is NADPH oxidase. Activation of NADPH oxidase requires the assembly of multiple subunits into lipid rafts, which include specific lipid components, including free cholesterol and specific proteins. Disorders of lipid metabolism such as hyperlipidemia affect the cellular lipid components included in rafts, resulting in modification of cellular reactions that produce ROS. In the similar manner, several pathways associating ROS production are affected by the presence of lipid disorder through raft compartments. In this manuscript, we review the pathophysiological implications of hyperlipidemia and lipid rafts in the production of ROS.
Collapse
|
38
|
Abstract
Fluid shear stress is an important environmental cue that governs vascular physiology and pathology, but the molecular mechanisms that mediate endothelial responses to flow are only partially understood. Gating of ion channels by flow is one mechanism that may underlie many of the known responses. Here, we review the literature on endothelial ion channels whose activity is modulated by flow with an eye toward identifying important questions for future research.
Collapse
Affiliation(s)
- Kristin A Gerhold
- Department of Internal Medicine (Cardiology), Yale Cardiovascular Research Center, Yale University, New Haven, Connecticut; and
| | - Martin A Schwartz
- Department of Internal Medicine (Cardiology), Yale Cardiovascular Research Center, Yale University, New Haven, Connecticut; and Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, Connecticut
| |
Collapse
|
39
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
40
|
Andrews AM, Muzorewa TT, Zaccheo KA, Buerk DG, Jaron D, Barbee KA. Cholesterol Enrichment Impairs Capacitative Calcium Entry, eNOS Phosphorylation & Shear Stress-Induced NO Production. Cell Mol Bioeng 2016; 10:30-40. [PMID: 28138348 DOI: 10.1007/s12195-016-0456-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Endothelial dysfunction, characterized by decreased production or availability of nitric oxide (NO), is widely believed to be the hallmark of early-stage atherosclerosis. In addition, hypercholesterolemia is considered a major risk factor for development of atherosclerosis and is associated with impaired flow-induced dilation. However, the mechanism by which elevated cholesterol levels leads to decreased production of NO is unclear. NO is released in response to shear stress and agonist-evoked changes in intracellular calcium. Although calcium signaling is complex, we have previously shown that NO production by endothelial nitric oxide synthase (eNOS) is preferentially activated by calcium influx via store-operated channels. We hypothesized that cholesterol enrichment altered this signaling pathway (known as capacitive calcium entry; CCE) ultimately leading to decreased NO. Our results show that cholesterol enrichment abolished ATP-induced eNOS phosphorylation and attenuated the calcium response by the preferential inhibition of CCE. Furthermore, cholesterol enrichment also inhibited shear stress-induced NO production and eNOS phosporylation, consistent with our previous results showing a significant role for ATP autocrine stimulation and subsequent activation of CCE in the endothelial flow response.
Collapse
Affiliation(s)
- Allison M Andrews
- Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine at Temple University, 3500N. Broad St., Philadelphia, PA 19140, USA
| | - Tenderano T Muzorewa
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA
| | - Kelly A Zaccheo
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA
| | - Donald G Buerk
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA
| | - Dov Jaron
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA
| | - Kenneth A Barbee
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Sonkusare SK, Dalsgaard T, Bonev AD, Nelson MT. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators. J Physiol 2016; 594:3271-85. [PMID: 26840527 DOI: 10.1113/jp271652] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/20/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Increase in endothelial cell (EC) calcium activates calcium-sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium-dependent vasodilatation. Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium-dependent vasodilatation is not clear. In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform. Endothelium-dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown. These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. ABSTRACT Endothelium-dependent vasodilators, such as acetylcholine, increase intracellular Ca(2+) through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca(2+) -sensitive intermediate and small conductance K(+) (IK and SK, respectively) channels. Although strong inward rectifier K(+) (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC-dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC-dependent vasodilatation of resistance-sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC-specific Kir2.1 knockdown (EC-Kir2.1(-/-) ) mice. Elevation of extracellular K(+) to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel inhibitors (Ba(2+) , ML-133) or in the arteries from EC-Kir2.1(-/-) mice. Potassium-induced dilatations were unaffected by inhibitors of TRPV4, IK and SK channels. The Kir channel blocker, Ba(2+) , did not affect currents through TRPV4, IK or SK channels. Endothelial cell-dependent vasodilatations in response to activation of muscarinic receptors, TRPV4 channels or IK/SK channels were reduced, but not eliminated, by Kir channel inhibitors or EC-Kir2.1(-/-) . In angiotensin II-induced hypertension, the Kir channel function was not altered, although the endothelium-dependent vasodilatation was severely impaired. Our results support the concept that EC Kir2 channels boost vasodilatory signals that are generated by Ca(2+) -dependent activation of IK and SK channels.
Collapse
Affiliation(s)
- Swapnil K Sonkusare
- Department of Pharmacology, University of Vermont, VT, USA.,Department of Molecular Physiology and Biological Physics, University of Virginia, VA, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, VA, USA
| | | | - Adrian D Bonev
- Department of Pharmacology, University of Vermont, VT, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, VT, USA.,Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
42
|
Potential Signal Transduction Regulation by HDL of the β2-Adrenergic Receptor Pathway. Implications in Selected Pathological Situations. Arch Med Res 2015; 46:361-71. [PMID: 26009249 DOI: 10.1016/j.arcmed.2015.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 01/09/2023]
Abstract
The main atheroprotective mechanism of high-density lipoprotein (HDL) has been regarded as reverse cholesterol transport, whereby cholesterol from peripheral tissues is removed and transported to the liver for elimination. Although numerous additional atheroprotective mechanisms have been suggested, the role of HDL in modulating signal transduction of cell membrane-bound receptors has received little attention to date. This potential was recently highlighted following the identification of a polymorphism in the adenylyl cyclase 9 gene (ADCY9) that was shown to be a determining factor in the risk of cardiovascular (CV) events in patients treated with the HDL-raising compound dalcetrapib. Indeed, ADCY9 is part of the signaling pathway of the β2-adrenergic receptor (β2-AR) and both are membrane-bound proteins affected by changes in membrane-rich cholesterol plasma membrane domains (caveolae). Numerous G-protein-coupled receptors (GPCRs) and ion channels are affected by caveolae, with caveolae composition acting as a 'signalosome'. Polymorphisms in the genes encoding ADCY9 and β2-AR are associated with response to β2-agonist drugs in patients with asthma, malaria and with sickle cell disease. Crystallization of the β2-AR has found cholesterol tightly bound to transmembrane structures of the receptor. Cholesterol has also been shown to modulate the activity of this receptor. Apolipoprotein A1 (ApoA1), the major protein component of HDL, destabilizes and removes cholesterol from caveolae with high affinity through interaction with ATP-binding cassette transporter. Furthermore, β2-AR activity may be affected by ApoA1/HDL-targeted therapies. Taken together, these observations suggest a common pathway that potentially links a primary HDL function to the regulation of signal transduction.
Collapse
|
43
|
Han H, Rosenhouse-Dantsker A, Gnanasambandam R, Epshtein Y, Chen Z, Sachs F, Minshall RD, Levitan I. Silencing of Kir2 channels by caveolin-1: cross-talk with cholesterol. J Physiol 2014; 592:4025-38. [PMID: 25038242 PMCID: PMC4198012 DOI: 10.1113/jphysiol.2014.273177] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/22/2014] [Indexed: 02/06/2023] Open
Abstract
A growing number of studies show that different types of ion channels localize in caveolae and are regulated by the level of membrane cholesterol. Furthermore, it has been proposed that cholesterol-induced regulation of ion channels might be attributed to partitioning into caveolae and association with caveolin-1 (Cav-1). We tested, therefore, whether Cav-1 regulates the function of inwardly rectifying potassium channels Kir2.1 that play major roles in the regulation of membrane potentials of numerous mammalian cells. Our earlier studies demonstrated that Kir2.1 channels are cholesterol sensitive. In this study, we show that Kir2.1 channels co-immunoprecipitate with Cav-1 and that co-expression of Kir2.1 channels with Cav-1 in HEK293 cells results in suppression of Kir2 current indicating that Cav-1 is a negative regulator of Kir2 function. These observations are confirmed by comparing Kir currents in bone marrow-derived macrophages isolated from Cav-1(-/-) and wild-type animals. We also show, however, that Kir2 channels maintain their sensitivity to cholesterol in HEK293 cells that have very low levels of endogenous Cav-1 and in bone marrow-derived macrophages isolated from Cav-1(-/-) knockout mice. Thus, these studies indicate that Cav-1 and/or intact caveolae are not required for cholesterol sensitivity of Kir channels. Moreover, a single point mutation of Kir2.1, L222I that abrogates the sensitivity of the channels to cholesterol also abolishes their sensitivity to Cav-1 suggesting that the two modulators regulate Kir2 channels via a common mechanism.
Collapse
Affiliation(s)
- Huazhi Han
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Avia Rosenhouse-Dantsker
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | - Yulia Epshtein
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zhenlong Chen
- Departments of Anesthesiology and Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, SUNY, Buffalo, NY, 14214, USA
| | - Richard D Minshall
- Departments of Anesthesiology and Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Irena Levitan
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
44
|
Sheng R, Kim H, Lee H, Xin Y, Chen Y, Tian W, Cui Y, Choi JC, Doh J, Han JK, Cho W. Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat Commun 2014; 5:4393. [PMID: 25024088 PMCID: PMC4100210 DOI: 10.1038/ncomms5393] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/13/2014] [Indexed: 12/19/2022] Open
Abstract
Wnt proteins control diverse biological processes through β-catenin-dependent canonical signalling and β-catenin-independent non-canonical signalling. The mechanisms by which these signalling pathways are differentially triggered and controlled are not fully understood. Dishevelled (Dvl) is a scaffold protein that serves as the branch point of these pathways. Here, we show that cholesterol selectively activates canonical Wnt signalling over non-canonical signalling under physiological conditions by specifically facilitating the membrane recruitment of the PDZ domain of Dvl and its interaction with other proteins. Single-molecule imaging analysis shows that cholesterol is enriched around the Wnt-activated Frizzled and low-density lipoprotein receptor-related protein 5/6 receptors and plays an essential role for Dvl-mediated formation and maintenance of the canonical Wnt signalling complex. Collectively, our results suggest a new regulatory role of cholesterol in Wnt signalling and a potential link between cellular cholesterol levels and the balance between canonical and non-canonical Wnt signalling activities.
Collapse
Affiliation(s)
- Ren Sheng
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | - Yao Xin
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yong Chen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Wen Tian
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yang Cui
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jong-Cheol Choi
- Mechanical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Junsang Doh
- Mechanical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
45
|
Sider KL, Zhu C, Kwong AV, Mirzaei Z, de Langé CFM, Simmons CA. Evaluation of a porcine model of early aortic valve sclerosis. Cardiovasc Pathol 2014; 23:289-97. [PMID: 24998316 DOI: 10.1016/j.carpath.2014.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/05/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is associated with significant cardiovascular morbidity. While late-stage CAVD is well-described, early pathobiological processes are poorly understood due to the lack of animal models that faithfully replicate early human disease. Here we evaluated a hypercholesterolemic porcine model of early diet-induced aortic valve sclerosis. METHODS Yorkshire swine were fed either a standard or high-fat/high-cholesterol diet for 2 or 5 months. Right coronary aortic valve leaflets were excised and analyzed (immuno)histochemically. RESULTS Early human-like proteoglycan-rich onlays formed between the endothelial layer and elastic lamina in the fibrosa layer of valve leaflets, with accelerated formation associated with hypercholesterolemia (P<.05). Lipid deposition was more abundant in hypercholesterolemic swine (P<.001), but was present in a minority (28%) of onlays. No myofibroblasts, MAC387-positive macrophages, or fascin-positive dendritic cells were detected in 2-month onlays, with only scarce myofibroblasts present at 5 months. Cells that expressed osteochondral markers Sox9 and Msx2 were preferentially found in dense proteoglycan-rich onlays (P<.05) and with hypercholesterolemia (P<.05). Features of more advanced human CAVD, including calcification, were not observed in this necessarily short study. CONCLUSIONS Early aortic valve sclerosis in hypercholesterolemic swine is characterized by the formation of proteoglycan-rich onlays in the fibrosa, which can occur prior to significant lipid accumulation, inflammatory cell infiltration, or myofibroblast activation. These characteristics mimic those of early human aortic valve disease, and thus the porcine model has utility for the study of early valve sclerosis.
Collapse
Affiliation(s)
- Krista L Sider
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9
| | - Cuilan Zhu
- Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Building #70, Guelph, Ontario, Canada, N1G 2W1
| | - Andrea V Kwong
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9
| | - Zahra Mirzaei
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9
| | - Cornelius F M de Langé
- Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Building #70, Guelph, Ontario, Canada, N1G 2W1
| | - Craig A Simmons
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada, M5S 3G8.
| |
Collapse
|
46
|
Levitan I, Singh DK, Rosenhouse-Dantsker A. Cholesterol binding to ion channels. Front Physiol 2014; 5:65. [PMID: 24616704 PMCID: PMC3935357 DOI: 10.3389/fphys.2014.00065] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/03/2014] [Indexed: 11/13/2022] Open
Abstract
Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV) are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions.
Collapse
Affiliation(s)
- Irena Levitan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at ChicagoChicago, IL, USA
| | | | | |
Collapse
|
47
|
Chatterjee S, Fisher AB. Mechanotransduction in the endothelium: role of membrane proteins and reactive oxygen species in sensing, transduction, and transmission of the signal with altered blood flow. Antioxid Redox Signal 2014; 20:899-913. [PMID: 24328670 PMCID: PMC3924805 DOI: 10.1089/ars.2013.5624] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Changes in shear stress associated with alterations in blood flow initiate a signaling cascade that modulates the vascular phenotype. Shear stress is "sensed" by the endothelium via a mechanosensitive complex on the endothelial cell (EC) membrane that has been characterized as a "mechanosome" consisting of caveolae, platelet endothelial cell adhesion molecule (PECAM), vascular endothelial growth factor receptor 2 (VEGFR2), vascular endothelial (VE)-cadherin, and possibly other elements. This shear signal is transduced by cell membrane ion channels and various kinases and results in the activation of NADPH oxidase (type 2) with the production of reactive oxygen species (ROS). RECENT ADVANCES The signaling cascade associated with stop of shear, as would occur in vivo with various obstructive pathologies, leads to cell proliferation and eventual revascularization. CRITICAL ISSUES AND FUTURE DIRECTIONS Although several elements of mechanosensing such as the sensing event, the transduction, transmission, and reception of the mechanosignal are now reasonably well understood, the links among these discrete steps in the pathway are not clear. Thus, identifying the mechanisms for the interaction of the K(ATP) channel, the kinases, and ROS to drive long-term adaptive responses in ECs is necessary. A critical re-examination of the signaling events associated with complex flow patterns (turbulent, oscillatory) under physiological conditions is also essential for the progress in the field. Since these complex shear patterns may be associated with an atherosclerosis susceptible phenotype, a specific challenge will be the pharmacological modulation of the responses to altered signaling events that occur at specific sites of disturbed or obstructed flow.
Collapse
Affiliation(s)
- Shampa Chatterjee
- Institute for Environmental Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | |
Collapse
|
48
|
Goonasekara CL, Balse E, Hatem S, Steele DF, Fedida D. Cholesterol and cardiac arrhythmias. Expert Rev Cardiovasc Ther 2014; 8:965-79. [DOI: 10.1586/erc.10.79] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Koskinas KC, Chatzizisis YS, Papafaklis MI, Coskun AU, Baker AB, Jarolim P, Antoniadis A, Edelman ER, Stone PH, Feldman CL. Synergistic effect of local endothelial shear stress and systemic hypercholesterolemia on coronary atherosclerotic plaque progression and composition in pigs. Int J Cardiol 2013; 169:394-401. [PMID: 24148915 PMCID: PMC4191915 DOI: 10.1016/j.ijcard.2013.10.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/05/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Systemic risk factors and local hemodynamic factors both contribute to coronary atherosclerosis, but their possibly synergistic inter-relationship remains unknown. The purpose of this natural history study was to investigate the combined in-vivo effect of varying levels of systemic hypercholesterolemia and local endothelial shear stress (ESS) on subsequent plaque progression and histological composition. METHODS Diabetic, hyperlipidemic swine with higher systemic total cholesterol (TC) (n=4) and relatively lower TC levels (n=5) underwent three-vessel intravascular ultrasound (IVUS) at 3-5 consecutive time-points in-vivo. ESS was calculated serially using computational fluid dynamics. 3-D reconstructed coronary arteries were divided into 3mm-long segments (n=595), which were stratified according to higher vs. relatively lower TC and low (<1.2Pa) vs. higher local ESS (≥1.2Pa). Arteries were harvested at 9months, and a subset of segments (n=114) underwent histopathologic analyses. RESULTS Change of plaque volume (ΔPV) by IVUS over time was most pronounced in low-ESS segments from higher-TC animals. Notably, higher-ESS segments from higher-TC animals had greater ΔPV compared to low-ESS segments from lower-TC animals (p<0.001). The time-averaged ESS in segments that resulted in significant plaque increased with increasing TC levels (slope: 0.24Pa/100mg/dl; r=0.80; p<0.01). At follow-up, low-ESS segments from higher-TC animals had the highest mRNA levels of lipoprotein receptors and inflammatory mediators and, consequently, the greatest lipid accumulation and inflammation. CONCLUSIONS This study redefines the principle concept that "low" ESS promotes coronary plaque growth and vulnerability by demonstrating that: (i.) the pro-atherogenic threshold of low ESS is not uniform, but cholesterol-dependent; and (ii.) the atherogenic effects of local low ESS are amplified, and the athero-protective effects of higher ESS may be outweighed, by increasing cholesterol levels. Intense hypercholesterolemia and very low ESS are synergistic in favoring rapid atheroma progression and high-risk composition.
Collapse
Affiliation(s)
- Konstantinos C. Koskinas
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA
| | - Yiannis S. Chatzizisis
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA
| | - Michail I. Papafaklis
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA
| | - Ahmet U. Coskun
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA
| | - Aaron B. Baker
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA
| | - Petr Jarolim
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Antonios Antoniadis
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Elazer R. Edelman
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA
| | - Peter H. Stone
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Charles L. Feldman
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
50
|
Wu W, Wang Y, Deng XL, Sun HY, Li GR. Cholesterol down-regulates BK channels stably expressed in HEK 293 cells. PLoS One 2013; 8:e79952. [PMID: 24260325 PMCID: PMC3832390 DOI: 10.1371/journal.pone.0079952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 09/28/2013] [Indexed: 12/23/2022] Open
Abstract
Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yan Wang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hai-Ying Sun
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gui-Rong Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- * E-mail:
| |
Collapse
|