1
|
Lehners M, Schmidt H, Zaldivia MTK, Stehle D, Krämer M, Peter A, Adler J, Lukowski R, Feil S, Feil R. Single-cell analysis identifies the CNP/GC-B/cGMP axis as marker and regulator of modulated VSMCs in atherosclerosis. Nat Commun 2025; 16:429. [PMID: 39814746 PMCID: PMC11735800 DOI: 10.1038/s41467-024-55687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
A balanced activity of cGMP signaling contributes to the maintenance of cardiovascular homeostasis. Vascular smooth muscle cells (VSMCs) can generate cGMP via three ligand-activated guanylyl cyclases, the NO-sensitive guanylyl cyclase, the atrial natriuretic peptide (ANP)-activated GC-A, and the C-type natriuretic peptide (CNP)-stimulated GC-B. Here, we study natriuretic peptide signaling in murine VSMCs and atherosclerotic lesions. Correlative profiling of pathway activity and VSMC phenotype at the single-cell level shows that phenotypic modulation of contractile VSMCs to chondrocyte-like plaque cells during atherogenesis is associated with a switch from ANP/GC‑A to CNP/GC‑B signaling. Silencing of the CNP/GC-B axis in VSMCs results in an increase of chondrocyte-like plaque cells. These findings indicate that the CNP/GC-B/cGMP pathway is a marker and atheroprotective regulator of modulated VSMCs, limiting their transition to chondrocyte-like cells. Overall, this study highlights the plasticity of cGMP signaling in VSMCs and suggests analogies between CNP-dependent remodeling of bone and blood vessels.
Collapse
MESH Headings
- Animals
- Cyclic GMP/metabolism
- Natriuretic Peptide, C-Type/metabolism
- Natriuretic Peptide, C-Type/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Signal Transduction
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Receptors, Atrial Natriuretic Factor/metabolism
- Receptors, Atrial Natriuretic Factor/genetics
- Single-Cell Analysis
- Male
- Mice, Inbred C57BL
- Biomarkers/metabolism
Collapse
Affiliation(s)
- Moritz Lehners
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Hannes Schmidt
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Maria T K Zaldivia
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Daniel Stehle
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Michael Krämer
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Andreas Peter
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Julia Adler
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Vaes RDW, van Bijnen AA, Damink SWMO, Rensen SS. Pancreatic Tumor Organoid-Derived Factors from Cachectic Patients Disrupt Contractile Smooth Muscle Cells. Cancers (Basel) 2024; 16:542. [PMID: 38339292 PMCID: PMC10854749 DOI: 10.3390/cancers16030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Patients with pancreatic cancer often suffer from cachexia and experience gastrointestinal symptoms that may be related to intestinal smooth muscle cell (SMC) dysfunction. We hypothesized that pancreatic tumor organoids from cachectic patients release factors that perturb the SMC's contractile characteristics. Human visceral SMCs were exposed to conditioned medium (CM) from the pancreatic tumor organoid cultures of cachectic (n = 2) and non-cachectic (n = 2) patients. Contractile proteins and markers of inflammation, muscle atrophy, and proliferation were evaluated by qPCR and Western blot. SMC proliferation and migration were monitored by live cell imaging. The Ki-67-positive cell fraction was determined in the intestinal smooth musculature of pancreatic cancer patients. CM from the pancreatic tumor organoids of cachectic patients did not affect IL-1β, IL-6, IL-8, MCP-1, or Atrogin-1 expression. However, CM reduced the α-SMA, γ-SMA, and SM22-α levels, which was accompanied by a reduced SMC doubling time and increased expression of S100A4, a Ca2+-binding protein associated with the synthetic SMC phenotype. In line with this, Ki-67-positive nuclei were increased in the intestinal smooth musculature of patients with a low versus high L3-SMI. In conclusion, patient-derived pancreatic tumor organoids release factors that compromise the contractile SMC phenotype and increase SMC proliferation. This may contribute to the frequently observed gastrointestinal motility problems in these patients.
Collapse
Affiliation(s)
- Rianne D. W. Vaes
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Annemarie A. van Bijnen
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Steven W. M. Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Sander S. Rensen
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Cardoso Dos Santos LM, Azar P, Brun C, König S, Roatti A, Baertschi AJ, Chaabane C, Bochaton-Piallat ML. Apelin is expressed in intimal smooth muscle cells and promotes their phenotypic transition. Sci Rep 2023; 13:18736. [PMID: 37907514 PMCID: PMC10618247 DOI: 10.1038/s41598-023-45470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
During atherosclerotic plaque formation, smooth muscle cells (SMCs) switch from a contractile/differentiated to a synthetic/dedifferentiated phenotype. We previously isolated differentiated spindle-shaped (S) and dedifferentiated rhomboid (R) SMCs from porcine coronary artery. R-SMCs express S100A4, a calcium-binding protein. We investigated the role of apelin in this phenotypic conversion, as well as its relationship with S100A4. We found that apelin was highly expressed in R-SMCs compared with S-SMCs. We observed a nuclear expression of apelin in SMCs within experimentally-induced intimal thickening of the porcine coronary artery and rat aorta. Plasmids targeting apelin to the nucleus (N. Ap) and to the secretory vesicles (S. Ap) were transfected into S-SMCs where apelin was barely detectable. Both plasmids induced the SMC transition towards a R-phenotype. Overexpression of N. Ap, and to a lesser degree S. Ap, led to a nuclear localization of S100A4. Stimulation of S-SMCs with platelet-derived growth factor-BB, known to induce the transition toward the R-phenotype, yielded the direct interaction and nuclear expression of both apelin and S100A4. In conclusion, apelin induces a SMC phenotypic transition towards the synthetic phenotype. These results suggest that apelin acts via nuclear re-localization of S100A4, raising the possibility of a new pro-atherogenic relationship between apelin and S100A4.
Collapse
Affiliation(s)
| | - Pascal Azar
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Cécile Brun
- Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Stéphane König
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | - Angela Roatti
- Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alex J Baertschi
- Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chiraz Chaabane
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
4
|
Abstract
The medial layer of the arterial wall is composed mainly of vascular smooth muscle cells (VSMCs). Under physiological conditions, VSMCs assume a contractile phenotype, and their primary function is to regulate vascular tone. In contrast with terminally differentiated cells, VSMCs possess phenotypic plasticity, capable of transitioning into other cellular phenotypes in response to changes in the vascular environment. Recent research has shown that VSMC phenotypic switching participates in the pathogenesis of atherosclerosis, where the various types of dedifferentiated VSMCs accumulate in the atherosclerotic lesion and participate in the associated vascular remodeling by secreting extracellular matrix proteins and proteases. This review article discusses the 9 VSMC phenotypes that have been reported in atherosclerotic lesions and classifies them into differentiated VSMCs, intermediately dedifferentiated VSMCs, and dedifferentiated VSMCs. It also provides an overview of several methodologies that have been developed for studying VSMC phenotypic switching and discusses their respective advantages and limitations.
Collapse
Affiliation(s)
- Runji Chen
- Shantou University Medical CollegeShantouChina
| | - David G. McVey
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUnited Kingdom
| | - Daifei Shen
- Research Center for Translational MedicineThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | | | - Shu Ye
- Shantou University Medical CollegeShantouChina
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUnited Kingdom
- Cardiovascular‐Metabolic Disease Translational Research ProgrammeNational University of SingaporeSingapore
| |
Collapse
|
5
|
Pohl L, Schiessl IM. Endothelial cell plasticity in kidney fibrosis and disease. Acta Physiol (Oxf) 2023; 239:e14038. [PMID: 37661749 DOI: 10.1111/apha.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Renal endothelial cells demonstrate an impressive remodeling potential during angiogenic sprouting, vessel repair or while transitioning into mesenchymal cells. These different processes may play important roles in both renal disease progression or regeneration while underlying signaling pathways of different endothelial cell plasticity routes partly overlap. Angiogenesis contributes to wound healing after kidney injury and pharmaceutical modulation of angiogenesis may home a great therapeutic potential. Yet, it is not clear whether any differentiated endothelial cell can proliferate or whether regenerative processes are largely controlled by resident or circulating endothelial progenitor cells. In the glomerular compartment for example, a distinct endothelial progenitor cell population may remodel the glomerular endothelium after injury. Endothelial-to-mesenchymal transition (EndoMT) in the kidney is vastly documented and often associated with endothelial dysfunction, fibrosis, and kidney disease progression. Especially the role of EndoMT in renal fibrosis is controversial. Studies on EndoMT in vivo determined possible conclusions on the pathophysiological role of EndoMT in the kidney, but whether endothelial cells really contribute to kidney fibrosis and if not what other cellular and functional outcomes derive from EndoMT in kidney disease is unclear. Sequencing data, however, suggest no participation of endothelial cells in extracellular matrix deposition. Thus, more in-depth classification of cellular markers and the fate of EndoMT cells in the kidney is needed. In this review, we describe different signaling pathways of endothelial plasticity, outline methodological approaches and evidence for functional and structural implications of angiogenesis and EndoMT in the kidney, and eventually discuss controversial aspects in the literature.
Collapse
Affiliation(s)
- Layla Pohl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
6
|
Zhou Y, Zha Y, Yang Y, Ma T, Li H, Liang J. S100 proteins in cardiovascular diseases. Mol Med 2023; 29:68. [PMID: 37217870 DOI: 10.1186/s10020-023-00662-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Cardiovascular diseases have become a serious threat to human health and life worldwide and have the highest fatality rate. Therefore, the prevention and treatment of cardiovascular diseases have become a focus for public health experts. The expression of S100 proteins is cell- and tissue-specific; they are implicated in cardiovascular, neurodegenerative, and inflammatory diseases and cancer. This review article discusses the progress in the research on the role of S100 protein family members in cardiovascular diseases. Understanding the mechanisms by which these proteins exert their biological function may provide novel concepts for preventing, treating, and predicting cardiovascular diseases.
Collapse
Affiliation(s)
- Yue Zhou
- Medical College, Yangzhou University, Yangzhou, China
| | - Yiwen Zha
- Medical College, Yangzhou University, Yangzhou, China
| | - Yongqi Yang
- Medical College, Yangzhou University, Yangzhou, China
| | - Tan Ma
- Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Hongliang Li
- Medical College, Yangzhou University, Yangzhou, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Jingyan Liang
- Medical College, Yangzhou University, Yangzhou, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China.
| |
Collapse
|
7
|
iTRAQ Proteomics Identified the Potential Biomarkers of Coronary Artery Lesion in Kawasaki Disease and In Vitro Studies Demonstrated That S100A4 Treatment Made HCAECs More Susceptible to Neutrophil Infiltration. Int J Mol Sci 2022; 23:ijms232112770. [PMID: 36361563 PMCID: PMC9658444 DOI: 10.3390/ijms232112770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
Abstract
Coronary artery lesions (CAL) are a major complication of Kawasaki disease (KD). The early prediction of CAL enables the medical personnel to apply adequate medical intervention. We collected the serum samples from the KD patients with CAL (n = 32) and those without CAL (n = 31), followed by a global screening with isobaric tagging for relative and absolute quantification (iTRAQ) technology and specific validation with an enzyme-linked immunosorbent assay (ELISA). iTRAQ identified 846 proteins in total in the serum samples, and four candidate proteins related to CAL were selected for ELISA validation as follows: Protein S100-A4 (S100A4), Catalase (CAT), Folate receptor gamma (FOLR3), and Galectin 10 (CLC). ELISA validation showed that the S100A4 level was significantly higher in KD patients with CAL than in those without CAL (225.2 ± 209.5 vs. 143.3 ± 83 pg/mL, p < 0.05). In addition, KD patients with CAL had a significantly lower CAT level than those without CAL (1.6 ± 1.5 vs. 2.7 ± 2.3 ng/mL, p < 0.05). Next, we found that S100A4 treatment on human coronary artery endothelial cells (HCAECs) reduced the abundance of cell junction proteins, which promoted the migration of HCAECs. Further assays also demonstrated that S100A4 treatment enhanced the permeability of the endothelial layer. These results concluded that S100A4 treatment resulted in an incompact endothelial layer and made HCAECs more susceptible to in vitro neutrophil infiltration. In addition, both upregulated S100A4 and downregulated CAT increased the risk of CAL in KD. Further in vitro study implied that S100A4 could be a potential therapeutic target for CAL in KD.
Collapse
|
8
|
Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution. Commun Biol 2022; 5:1084. [PMID: 36224302 PMCID: PMC9556750 DOI: 10.1038/s42003-022-04056-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Atherogenesis involves an interplay of inflammation, tissue remodeling and cellular transdifferentiation (CTD), making it especially difficult to precisely delineate its pathophysiology. Here we use single-cell RNA sequencing and systems-biology approaches to analyze the transcriptional profiles of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) in calcified atherosclerotic core (AC) plaques and patient-matched proximal adjacent (PA) portions of carotid artery tissue from patients undergoing carotid endarterectomy. Our results reveal an anatomic distinction whereby PA cells express inflammatory mediators, while cells expressing matrix-secreting genes occupy a majority of the AC region. Systems biology analysis indicates that inflammation in PA ECs and VSMCs may be driven by TNFa signaling. Furthermore, we identify POSTN, SPP1 and IBSP in AC VSMCs, and ITLN1, SCX and S100A4 in AC ECs as possible candidate drivers of CTD in the atherosclerotic core. These results establish an anatomic framework for atherogenesis which forms the basis for exploration of a site-specific strategy for disruption of disease progression. Single-cell RNA sequencing and systems biology are used to profile the human vascular cell populations in calcified atherosclerotic core plaques from carotid endarterectomy samples, showing an anatomic distinction between gene expression of inflammatory versus matrix-secreting factors.
Collapse
|
9
|
Fernandes A, Miéville A, Grob F, Yamashita T, Mehl J, Hosseini V, Emmert MY, Falk V, Vogel V. Endothelial-Smooth Muscle Cell Interactions in a Shear-Exposed Intimal Hyperplasia on-a-Dish Model to Evaluate Therapeutic Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202317. [PMID: 35971167 PMCID: PMC9534971 DOI: 10.1002/advs.202202317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 05/25/2023]
Abstract
Intimal hyperplasia (IH) represents a major challenge following cardiovascular interventions. While mechanisms are poorly understood, the inefficient preventive methods incentivize the search for novel therapies. A vessel-on-a-dish platform is presented, consisting of direct-contact cocultures with human primary endothelial cells (ECs) and smooth muscle cells (SMCs) exposed to both laminar pulsatile and disturbed flow on an orbital shaker. With contractile SMCs sitting below a confluent EC layer, a model that successfully replicates the architecture of a quiescent vessel wall is created. In the novel IH model, ECs are seeded on synthetic SMCs at low density, mimicking reendothelization after vascular injury. Over 3 days of coculture, ECs transition from a network conformation to confluent 2D islands, as promoted by pulsatile flow, resulting in a "defected" EC monolayer. In defected regions, SMCs incorporated plasma fibronectin into fibers, increased proliferation, and formed multilayers, similarly to IH in vivo. These phenomena are inhibited under confluent EC layers, supporting therapeutic approaches that focus on endothelial regeneration rather than inhibiting proliferation, as illustrated in a proof-of-concept experiment with Paclitaxel. Thus, this in vitro system offers a new tool to study EC-SMC communication in IH pathophysiology, while providing an easy-to-use translational disease model platform for low-cost and high-content therapeutic development.
Collapse
Affiliation(s)
- Andreia Fernandes
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| | - Arnaud Miéville
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| | - Franziska Grob
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| | - Tadahiro Yamashita
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
- Present address:
Department of System Design EngineeringKeio University108‐8345YokohamaJapan
| | - Julia Mehl
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
- Present address:
Julius Wolff InstituteBerlin Institute of HealthCharité Universitätsmedizin Berlin10117BerlinGermany
| | - Vahid Hosseini
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| | - Maximilian Y. Emmert
- Department of Cardiovascular SurgeryCharité Universitätsmedizin Berlin10117BerlinGermany
- Department of Cardiothoracic and Vascular SurgeryGerman Heart Center Berlin13353BerlinGermany
- Institute for Regenerative Medicine (IREM)University of Zurich8006ZurichSwitzerland
| | - Volkmar Falk
- Department of Cardiovascular SurgeryCharité Universitätsmedizin Berlin10117BerlinGermany
- Department of Cardiothoracic and Vascular SurgeryGerman Heart Center Berlin13353BerlinGermany
- Department of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| | - Viola Vogel
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| |
Collapse
|
10
|
Shen Y, Xu LR, Yan D, Zhou M, Han TL, Lu C, Tang X, Lin CP, Qian RZ, Guo DQ. BMAL1 modulates smooth muscle cells phenotypic switch towards fibroblast-like cells and stabilizes atherosclerotic plaques by upregulating YAP1. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166450. [PMID: 35598770 DOI: 10.1016/j.bbadis.2022.166450] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Ischemic heart diseases and ischemic stroke are closely related to circadian clock and unstable atherosclerotic plaques. Vascular smooth muscle cells (VSMCs) can stabilize or destabilize an atherosclerotic lesion through phenotypic switch. BMAL1 is not only an indispensable core component in circadian clock but also an important regulator in atherosclerosis and VSMCs proliferation. However, little is known about the modulation mechanisms of BMAL1 in VSMCs phenotypic switch and atherosclerotic plaque stability. METHODS We integrated histological analysis of human plaques, in vivo experiments of VSMC-specific Bmal1-/- mice, in vitro experiments, and gene set enrichment analysis (GSEA) of public datasets of human plaques to explore the function of BMAL1 in VSMCs phonotypic switch and plaque stability. FINDINGS Comparing to human unstable plaques, BMAL1 was higher in stable plaques, accompanied by elevated YAP1 and fibroblast maker FSP1 which were positively correlated with BMAL1. In response to Methyl-β-cyclodextrin-cholesterol, oxidized-low-density-lipoprotein and platelet-derived-growth-factor-BB, VSMCs embarked on phenotypic switch and upregulated BMAL, YAP1 and FSP1. Besides, BMAL1 overexpression promoted VSMCs phonotypic switch towards fibroblast-like cells by transcriptionally upregulating the expression of YAP1. BMAL1 or YAP1 knock-down inhibited VSMCs phonotypic switch and downregulated FSP1. Furthermore, VSMC-specific Bmal1-/- mice exhibited VSMCs with lower YAP1 and FSP1 levels, and more vulnerable plaques with less collagen content. In addition, BMAL1 suppressed the migration of VSMCs. The GSEA results of public datasets were consistent with our laboratory findings. INTERPRETATION Our results highlight the importance of BMAL1 as a major regulator in VSMCs phenotypic switch towards fibroblast-like cells which stabilize an atherosclerotic plaque.
Collapse
Affiliation(s)
- Yang Shen
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Li-Rong Xu
- Department of Pathology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dong Yan
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Min Zhou
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Tong-Lei Han
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Chao Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Rd., Shanghai 200032, China
| | - Xiao Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Chang-Po Lin
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China.
| | - Rui-Zhe Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Rd., Shanghai 200032, China.
| | - Da-Qiao Guo
- Department of Vascular Surgery, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China.
| |
Collapse
|
11
|
Yu W, MacIver B, Zhang L, Bien EM, Ahmed N, Chen H, Hanif SZ, de Oliveira MG, Zeidel ML, Hill WG. Deletion of Mechanosensory β1-integrin From Bladder Smooth Muscle Results in Voiding Dysfunction and Tissue Remodeling. FUNCTION 2022; 3:zqac042. [PMID: 38989038 PMCID: PMC11234651 DOI: 10.1093/function/zqac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 07/12/2024] Open
Abstract
The bladder undergoes large shape changes as it fills and empties and experiences complex mechanical forces. These forces become abnormal in diseases of the lower urinary tract such as overactive bladder, neurogenic bladder, and urinary retention. As the primary mechanosensors linking the actin cytoskeleton to the extracellular matrix (ECM), integrins are likely to play vital roles in maintaining bladder smooth muscle (BSM) homeostasis. In a tamoxifen-inducible smooth muscle conditional knockout of β1-integrin, there was concomitant loss of α1- and α3-integrins from BSM and upregulation of αV- and β3-integrins. Masson's staining showed a reduction in smooth muscle with an increase in collagenous ECM. Functionally, mice exhibited a changing pattern of urination by voiding spot assay up to 8 wk after tamoxifen. By 8 wk, there was increased frequency with reductions in voided volume, consistent with overactivity. Cystometrograms confirmed that there was a significant reduction in intercontractile interval with reduced maximal bladder pressure. Muscle strip myography revealed a loss of contraction force in response to electrical field stimulation, that was entirely due to the loss of muscarinic contractility. Quantitative western blotting showed a loss of M3 receptor and no change in P2X1. qPCR on ECM and interstitial genes revealed loss of Ntpd2, a marker of an interstitial cell subpopulation; and an upregulation of S100A4, which is often associated with fibroblasts. Collectively, the data show that the loss of appropriate mechanosensation through integrins results in cellular and extracellular remodeling, and concomitant bladder dysfunction that resembles lower urinary tract symptoms seen in older people.
Collapse
Affiliation(s)
- Weiqun Yu
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Bryce MacIver
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Lanlan Zhang
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Erica M Bien
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Nazaakat Ahmed
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Huan Chen
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sarah Z Hanif
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Mark L Zeidel
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Warren G Hill
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
12
|
Chen J, Zhuang R, Cheng HS, Jamaiyar A, Assa C, McCoy M, Rawal S, Pérez-Cremades D, Feinberg MW. Isolation and culture of murine aortic cells and RNA isolation of aortic intima and media: Rapid and optimized approaches for atherosclerosis research. Atherosclerosis 2022; 347:39-46. [PMID: 35306416 PMCID: PMC9007896 DOI: 10.1016/j.atherosclerosis.2022.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Isolation of cellular constituents from the mouse aorta is commonly used for expression or functional analyses in atherosclerosis research. However, current procedures to isolate primary cells are difficult, inefficient, and require separate mice. RNA extraction from aortic intima and media for transcriptomic analysis is also considered difficult with mixed RNA yields. To address these gaps, we provide: 1) a rapid, efficient protocol to isolate and culture diverse cell types concomitantly from the mouse aorta using immunomagnetic cell isolation; and 2) an optimized aortic intimal peeling technique for efficient RNA isolation from the intima and media. METHODS AND RESULTS Aortic cells were obtained using an enzymatic solution and different cell types were isolated by magnetic beads conjugated to antibodies targeting endothelial cells (CD31+), leukocytes (CD45+), and fibroblast cells (CD90.2+), and smooth muscle cells were isolated by negative selection. Our protocol allows the isolation of relatively large numbers of cells (10,000 cells per aorta) in a predictable manner with high purity (>90%) verified by cell-marker gene expression, immunofluorescence, and flow cytometry. These cells are all functionally active when grown in cell culture. We also provide a rapid method to collect aortic intima-enriched RNA from Ldlr-/- mice utilizing an intima peeling approach and assess transcriptomic profiling associated with accelerated lesion formation. CONCLUSIONS This protocol provides an effective means for magnetic bead-based isolation of different cell types from the mouse aortic wall, and the isolated cells can be utilized for functional and mechanistic studies for a range of vascular diseases including atherosclerosis.
Collapse
Affiliation(s)
- Jingshu Chen
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rulin Zhuang
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Henry S Cheng
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anurag Jamaiyar
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Carmel Assa
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael McCoy
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shruti Rawal
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel Pérez-Cremades
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Physiology, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, 46010, Spain
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
De Munck DG, Leloup AJA, De Moudt S, De Meyer GRY, Martinet W, Fransen P. Mouse aortic biomechanics are affected by short-term defective autophagy in vascular smooth muscle cells. J Physiol Sci 2022; 72:7. [PMID: 35277137 PMCID: PMC10717727 DOI: 10.1186/s12576-022-00829-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The physiology of vascular smooth muscle (VSMC) cells is affected by autophagy, a catabolic cellular mechanism responsible for nutrient recycling. Autophagy-inducing compounds may reverse arterial stiffening, whereas congenital VSMC-specific autophagy deficiency promotes arterial stiffening. The elevated aortic stiffness in 3.5-month-old C57Bl/6 mice, in which the essential autophagy-related gene Atg7 was specifically deleted in the VSMCs (Atg7F/F SM22α-Cre+ mice) was mainly due to passive aortic wall remodeling. The present study investigated whether aortic stiffness was also modulated by a shorter duration of autophagy deficiency. Therefore, aortic segments of 2-month-old Atg7F/F SM22α-Cre+ mice were studied. Similarly to the older mice, autophagy deficiency in VSMCs promoted aortic stiffening by elastin degradation and elastin breaks, and increased the expression of the calcium binding protein S100A4 (+ 157%), the aortic wall thickness (+ 27%), the sensitivity of the VSMCs to depolarization and the contribution of VGCC mediated Ca2+ influx to α1 adrenergic contractions. Hence, all these phenomena occurred before the age of 2 months. When compared to autophagy deficiency in VSMCs at 3.5 months, shorter term autophagy deficiency led to higher segment diameter at 80 mmHg (+ 7% versus - 2%), normal baseline tonus (versus increased), unchanged IP3-mediated phasic contractions (versus enhanced), and enhanced endothelial cell function (versus normal). Overall, and because in vivo cardiac parameters or aortic pulse wave velocity were not affected, these observations indicate that congenital autophagy deficiency in VSMCs of Atg7F/F SM22α-Cre+ mice initiates compensatory mechanisms to maintain circulatory homeostasis.
Collapse
Affiliation(s)
- Dorien G De Munck
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Arthur J A Leloup
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Sofie De Moudt
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Paul Fransen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
14
|
Sakic A, Chaabane C, Ambartsumian N, Klingelhöfer J, Lemeille S, Kwak BR, Grigorian M, Bochaton-Piallat ML. Neutralization of S100A4 induces stabilization of atherosclerotic plaques: role of smooth muscle cells. Cardiovasc Res 2022; 118:141-155. [PMID: 33135065 PMCID: PMC8752361 DOI: 10.1093/cvr/cvaa311] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/20/2020] [Indexed: 01/20/2023] Open
Abstract
AIMS During atherosclerosis, smooth muscle cells (SMCs) accumulate in the intima where they switch from a contractile to a synthetic phenotype. From porcine coronary artery, we isolated spindle-shaped (S) SMCs exhibiting features of the contractile phenotype and rhomboid (R) SMCs typical of the synthetic phenotype. S100A4 was identified as a marker of R-SMCs in vitro and intimal SMCs, in pig and man. S100A4 exhibits intra- and extracellular functions. In this study, we investigated the role of extracellular S100A4 in SMC phenotypic transition. METHODS AND RESULTS S-SMCs were treated with oligomeric recombinant S100A4 (oS100A4), which induced nuclear factor (NF)-κB activation. Treatment of S-SMCs with oS100A4 in combination with platelet-derived growth factor (PDGF)-BB induced a complete SMC transition towards a pro-inflammatory R-phenotype associated with NF-κB activation, through toll-like receptor-4. RNA sequencing of cells treated with oS100A4/PDGF-BB revealed a strong up-regulation of pro-inflammatory genes and enrichment of transcription factor binding sites essential for SMC phenotypic transition. In a mouse model of established atherosclerosis, neutralization of extracellular S100A4 decreased area of atherosclerotic lesions, necrotic core, and CD68 expression and increased α-smooth muscle actin and smooth muscle myosin heavy chain expression. CONCLUSION We suggest that the neutralization of extracellular S100A4 promotes the stabilization of atherosclerotic plaques. Extracellular S100A4 could be a new target to influence the evolution of atherosclerotic plaques.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Antibodies, Neutralizing/pharmacology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/drug therapy
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Becaplermin/pharmacology
- Cells, Cultured
- Disease Models, Animal
- Humans
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myosin Heavy Chains/metabolism
- Phenotype
- Plaque, Atherosclerotic
- S100 Calcium-Binding Protein A4/antagonists & inhibitors
- S100 Calcium-Binding Protein A4/metabolism
- S100 Calcium-Binding Protein A4/pharmacology
- Signal Transduction
- Smooth Muscle Myosins/metabolism
- Sus scrofa
- Toll-Like Receptor 4/metabolism
- Mice
Collapse
Affiliation(s)
- Antonija Sakic
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chiraz Chaabane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Noona Ambartsumian
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jörg Klingelhöfer
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sylvain Lemeille
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mariam Grigorian
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | |
Collapse
|
15
|
Okuno K, Eguchi S. Extracellular role of S100 calcium-binding protein A4 in atherosclerosis. Cardiovasc Res 2021; 118:1-3. [PMID: 33964135 DOI: 10.1093/cvr/cvab166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Keisuke Okuno
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19002
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19002
| |
Collapse
|
16
|
Aujla PK, Kassiri Z. Diverse origins and activation of fibroblasts in cardiac fibrosis. Cell Signal 2020; 78:109869. [PMID: 33278559 DOI: 10.1016/j.cellsig.2020.109869] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
Cardiac fibroblasts (cFBs) have emerged as a heterogenous cell population. Fibroblasts are considered the main cell source for synthesis of the extracellular matrix (ECM) and as such a dysregulation in cFB function, activity, or viability can lead to disrupted ECM structure or fibrosis. Fibrosis can be initiated in response to different injuries and stimuli, and can be reparative (beneficial) or reactive (damaging). FBs need to be activated to myofibroblasts (MyoFBs) which have augmented capacity in synthesizing ECM proteins, causing fibrosis. In addition to the resident FBs in the myocardium, a number of other cells (pericytes, fibrocytes, mesenchymal, and hematopoietic cells) can transform into MyoFBs, further driving the fibrotic response. Multiple molecules including hormones, cytokines, and growth factors stimulate this process leading to generation of activated MyoFBs. Contribution of different cell types to cFBs and MyoFBs can result in an exponential increase in the number of MyoFBs and an accelerated pro-fibrotic response. Given the diversity of the cell sources, and the array of interconnected signalling pathways that lead to formation of MyoFBs and subsequently fibrosis, identifying a single target to limit the fibrotic response in the myocardium has been challenging. This review article will delineate the importance and relevance of fibroblast heterogeneity in mediating fibrosis in different models of heart failure and will highlight important signalling pathways implicated in myofibroblast activation.
Collapse
Affiliation(s)
- Preetinder K Aujla
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
17
|
Bruijn LE, van den Akker BEWM, van Rhijn CM, Hamming JF, Lindeman JHN. Extreme Diversity of the Human Vascular Mesenchymal Cell Landscape. J Am Heart Assoc 2020; 9:e017094. [PMID: 33190596 PMCID: PMC7763765 DOI: 10.1161/jaha.120.017094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Background Human mesenchymal cells are culprit factors in vascular (patho)physiology and are hallmarked by phenotypic and functional heterogeneity. At present, they are subdivided by classic umbrella terms, such as "fibroblasts," "myofibroblasts," "smooth muscle cells," "fibrocytes," "mesangial cells," and "pericytes." However, a discriminative marker-based subclassification has to date not been established. Methods and Results As a first effort toward a classification scheme, a systematic literature search was performed to identify the most commonly used phenotypical and functional protein markers for characterizing and classifying vascular mesenchymal cell subpopulation(s). We next applied immunohistochemistry and immunofluorescence to inventory the expression pattern of identified markers on human aorta specimens representing early, intermediate, and end stages of human atherosclerotic disease. Included markers comprise markers for mesenchymal lineage (vimentin, FSP-1 [fibroblast-specific protein-1]/S100A4, cluster of differentiation (CD) 90/thymocyte differentiation antigen 1, and FAP [fibroblast activation protein]), contractile/non-contractile phenotype (α-smooth muscle actin, smooth muscle myosin heavy chain, and nonmuscle myosin heavy chain), and auxiliary contractile markers (h1-Calponin, h-Caldesmon, Desmin, SM22α [smooth muscle protein 22α], non-muscle myosin heavy chain, smooth muscle myosin heavy chain, Smoothelin-B, α-Tropomyosin, and Telokin) or adhesion proteins (Paxillin and Vinculin). Vimentin classified as the most inclusive lineage marker. Subset markers did not separate along classic lines of smooth muscle cell, myofibroblast, or fibroblast, but showed clear temporal and spatial diversity. Strong indications were found for presence of stem cells/Endothelial-to-Mesenchymal cell Transition and fibrocytes in specific aspects of the human atherosclerotic process. Conclusions This systematic evaluation shows a highly diverse and dynamic landscape for the human vascular mesenchymal cell population that is not captured by the classic nomenclature. Our observations stress the need for a consensus multiparameter subclass designation along the lines of the cluster of differentiation classification for leucocytes.
Collapse
Affiliation(s)
- Laura E. Bruijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | | | - Connie M. van Rhijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jaap F. Hamming
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jan H. N. Lindeman
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
18
|
He S, Yang F, Yang M, An W, Maguire EM, Chen Q, Xiao R, Wu W, Zhang L, Wang W, Xiao Q. miR-214-3p-Sufu-GLI1 is a novel regulatory axis controlling inflammatory smooth muscle cell differentiation from stem cells and neointimal hyperplasia. Stem Cell Res Ther 2020; 11:465. [PMID: 33143723 PMCID: PMC7640405 DOI: 10.1186/s13287-020-01989-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/21/2020] [Indexed: 01/02/2023] Open
Abstract
Background Inflammatory smooth muscle cells (iSMCs) generated from adventitial stem/progenitor cells (AdSPCs) have been recognised as a new player in cardiovascular disease, and microRNA-214-3p (miR-214-3p) has been implicated in mature vascular SMC functions and neointimal hyperplasia. Here, we attempted to elucidate the functional involvements of miR-214-3p in iSMC differentiation from AdSPCs and unravel the therapeutic potential of miR-214-3p signalling in AdSPCs for injury-induced neointimal hyperplasia. Methods The role of miR-214-3p in iSMC differentiation from AdSPCs was evaluated by multiple biochemistry assays. The target of miR-214-3p was identified through binding site mutation and reporter activity analysis. A murine model of injury-induced arterial remodelling and stem cell transplantation was conducted to study the therapeutic potential of miR-214-3p. RT-qPCR analysis was performed to examine the gene expression in healthy and diseased human arteries. Results miR-214-3p prevented iSMC differentiation/generation from AdSPCs by restoring sonic hedgehog-glioma-associated oncogene 1 (Shh-GLI1) signalling. Suppressor of fused (Sufu) was identified as a functional target of miR-214-3p during iSMC generation from AdSPCs. Mechanistic studies revealed that miR-214-3p over-expression or Sufu inhibition can promote nuclear accumulation of GLI1 protein in AdSPCs, and the consensus sequence (GACCACCCA) for GLI1 binding within smooth muscle alpha-actin (SMαA) and serum response factor (SRF) gene promoters is required for their respective regulation by miR-214-3p and Sufu. Additionally, Sufu upregulates multiple inflammatory gene expression (IFNγ, IL-6, MCP-1 and S100A4) in iSMCs. In vivo, transfection of miR-214-3p into the injured vessels resulted in the decreased expression level of Sufu, reduced iSMC generation and inhibited neointimal hyperplasia. Importantly, perivascular transplantation of AdSPCs increased neointimal hyperplasia, whereas transplantation of AdSPCs over-expressing miR-214-3p prevented this. Finally, decreased expression of miR-214-3p but increased expression of Sufu was observed in diseased human arteries. Conclusions We present a previously unexplored role for miR-214-3p in iSMC differentiation and neointima iSMC hyperplasia and provide new insights into the therapeutic effects of miR-214-3p in vascular disease. Supplementary information Supplementary information accompanies this paper at 10.1186/s13287-020-01989-w.
Collapse
Affiliation(s)
- Shiping He
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.,Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Feng Yang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.,Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Mei Yang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.,Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Eithne Margaret Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qishan Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.,Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Rui Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Wei Wu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China. .,Department of Cardiology, and Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Wen Wang
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, EC1M 6BQ, UK.
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK. .,Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong, 511436, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, Guangdong, China.
| |
Collapse
|
19
|
Zhang W, Gunst SJ. S100A4 is activated by RhoA and catalyses the polymerization of non-muscle myosin, adhesion complex assembly and contraction in airway smooth muscle. J Physiol 2020; 598:4573-4590. [PMID: 32767681 DOI: 10.1113/jp280111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS S100A4 is expressed in many tissues, including smooth muscle (SM), but its physiologic function is unknown. S100A4 regulates the motility of metastatic cancer cells by binding to non-muscle (NM) myosin II. Contractile stimulation causes the polymerization of NM myosin in airway SM, which is necessary for tension development. NM myosin regulates the assembly of adhesion junction signalling complexes (adhesomes) that catalyse actin polymerization. In airway SM, ACh (acetylcholine) stimulated the binding of S100A4 to the NM myosin heavy chain, which was catalysed by RhoA GTPase via the RhoA-binding protein, rhotekin. The binding of S100A4 to NM myosin was required for NM myosin polymerization, adhesome assembly and actin polymerization. S100A4 plays a critical function in the regulation of airway SM contraction by catalysing NM myosin filament assembly. The interaction of S100A4 with NM myosin may also play an important role in the physiologic function of other tissues. ABSTRACT S100A4 binds to the heavy chain of non-muscle (NM) myosin II and can regulate the motility of crawling cells. S100A4 is widely expressed in many tissues including smooth muscle (SM), although its role in the regulation of their physiologic function is not known. We hypothesized that S100A4 contributes to the regulation of contraction in airway SM by regulating a pool of NM myosin II at the cell cortex. NM myosin II undergoes polymerization in airway SM and regulates contraction by catalysing the assembly of integrin-associated adhesome complexes that activate pathways that catalyse actin polymerization. ACh stimulated the interaction of S100A4 with NM myosin II in airway SM at the cell cortex and catalysed NM myosin filament assembly. RhoA GTPase regulated the activation of S100A4 via rhotekin, which facilitated the formation of a complex between RhoA, S100A4 and NM myosin II. The depletion of S100A4, RhoA or rhotekin from airway SM tissues using short hairpin RNA or small interfering RNA prevented NM myosin II polymerization as well as the recruitment of vinculin and paxillin to adhesome signalling complexes in response to ACh, and inhibited actin polymerization and tension development. S100A4 depletion did not affect ACh-stimulated SM myosin regulatory light chain phosphorylation. The results show that S100A4 plays a critical role in tension development in airway SM tissue by catalysing NM myosin filament assembly, and that the interaction of S100A4 with NM myosin in response to contractile stimulation is activated by RhoA GTPase. These results may be broadly relevant to the physiologic function of S100A4 in other cell and tissue types.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan J Gunst
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
20
|
Liu YZ, Xiao X, Hu CT, Dai Y, Qu SL, Huang L, Zhang C. SUMOylation in atherosclerosis. Clin Chim Acta 2020; 508:228-233. [DOI: 10.1016/j.cca.2020.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022]
|
21
|
Furmanik M, Chatrou M, van Gorp R, Akbulut A, Willems B, Schmidt H, van Eys G, Bochaton-Piallat ML, Proudfoot D, Biessen E, Hedin U, Perisic L, Mees B, Shanahan C, Reutelingsperger C, Schurgers L. Reactive Oxygen-Forming Nox5 Links Vascular Smooth Muscle Cell Phenotypic Switching and Extracellular Vesicle-Mediated Vascular Calcification. Circ Res 2020; 127:911-927. [PMID: 32564697 DOI: 10.1161/circresaha.119.316159] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE Vascular calcification, the formation of calcium phosphate crystals in the vessel wall, is mediated by vascular smooth muscle cells (VSMCs). However, the underlying molecular mechanisms remain elusive, precluding mechanism-based therapies. OBJECTIVE Phenotypic switching denotes a loss of contractile proteins and an increase in migration and proliferation, whereby VSMCs are termed synthetic. We examined how VSMC phenotypic switching influences vascular calcification and the possible role of the uniquely calcium-dependent reactive oxygen species (ROS)-forming Nox5 (NADPH oxidase 5). METHODS AND RESULTS In vitro cultures of synthetic VSMCs showed decreased expression of contractile markers CNN-1 (calponin 1), α-SMA (α-smooth muscle actin), and SM22-α (smooth muscle protein 22α) and an increase in synthetic marker S100A4 (S100 calcium binding protein A4) compared with contractile VSMCs. This was associated with increased calcification of synthetic cells in response to high extracellular Ca2+. Phenotypic switching was accompanied by increased levels of ROS and Ca2+-dependent Nox5 in synthetic VSMCs. Nox5 itself regulated VSMC phenotype as siRNA knockdown of Nox5 increased contractile marker expression and decreased calcification, while overexpression of Nox5 decreased contractile marker expression. ROS production in synthetic VSMCs was cytosolic Ca2+-dependent, in line with it being mediated by Nox5. Treatment of VSMCs with Ca2+ loaded extracellular vesicles (EVs) lead to an increase in cytosolic Ca2+. Inhibiting EV endocytosis with dynasore blocked the increase in cytosolic Ca2+ and VSMC calcification. Increased ROS production resulted in increased EV release and decreased phagocytosis by VSMCs. CONCLUSIONS We show here that contractile VSMCs are resistant to calcification and identify Nox5 as a key regulator of VSMC phenotypic switching. Additionally, we describe a new mechanism of Ca2+ uptake via EVs and show that Ca2+ induces ROS production in VSMCs via Nox5. ROS production is required for release of EVs, which promote calcification. Identifying molecular pathways that control Nox5 and VSMC-derived EVs provides potential targets to modulate vascular remodeling and calcification in the context of mineral imbalance. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Malgorzata Furmanik
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Martijn Chatrou
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Rick van Gorp
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Asim Akbulut
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Brecht Willems
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Harald Schmidt
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Guillaume van Eys
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Marie-Luce Bochaton-Piallat
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Diane Proudfoot
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Erik Biessen
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Ulf Hedin
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Ljubica Perisic
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Barend Mees
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Catherine Shanahan
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Chris Reutelingsperger
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Leon Schurgers
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| |
Collapse
|
22
|
De Munck DG, Leloup AJA, De Meyer GRY, Martinet W, Fransen P. Defective autophagy in vascular smooth muscle cells increases passive stiffness of the mouse aortic vessel wall. Pflugers Arch 2020; 472:1031-1040. [PMID: 32488322 DOI: 10.1007/s00424-020-02408-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/28/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022]
Abstract
Aging and associated progressive arterial stiffening are both important predictors for the development of cardiovascular diseases. Recent evidence showed that autophagy, a catabolic cellular mechanism responsible for nutrient recycling, plays a major role in the physiology of vascular cells such as endothelial cells and vascular smooth muscle cells (VSMCs). Moreover, several autophagy inducing compounds are effective in treating arterial stiffness. Yet, a direct link between VSMC autophagy and arterial stiffness remains largely unidentified. Therefore, we investigated the effects of a VSMC-specific deletion of the essential autophagy-related gene Atg7 in young mice (3.5 months) (Atg7F/F SM22α-Cre+ mice) on the biomechanical properties of the aorta, using an in-house developed Rodent Oscillatory Tension Set-up to study Arterial Compliance (ROTSAC). Aortic segments of Atg7F/F SM22α-Cre+ mice displayed attenuated compliance and higher arterial stiffness, which was more evident at higher distention pressures. Passive aortic wall remodeling, rather than differences in VSMC tone, is responsible for these phenomena, since differences in compliance and stiffness between Atg7+/+ SM22α-Cre+ and Atg7F/F SM22α-Cre+ aortas were more pronounced when VSMCs were completely relaxed by the addition of exogenous nitric oxide. These observations are supported by histological data showing a 13% increase in medial wall thickness and a 14% decrease in elastin along with elevated elastin fragmentation. In addition, expression of the calcium-binding protein S100A4, which is linked to matrix remodeling, was elevated in aortic segments of Atg7F/F SM22α-Cre+ mice. Overall, these findings illustrate that autophagy exerts a crucial role in defining arterial wall compliance.
Collapse
Affiliation(s)
- Dorien G De Munck
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Arthur J A Leloup
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Paul Fransen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
23
|
Wojahn I, Lüdtke TH, Christoffels VM, Trowe MO, Kispert A. TBX2-positive cells represent a multi-potent mesenchymal progenitor pool in the developing lung. Respir Res 2019; 20:292. [PMID: 31870435 PMCID: PMC6929292 DOI: 10.1186/s12931-019-1264-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
Background In the embryonic mammalian lung, mesenchymal cells act both as a signaling center for epithelial proliferation, differentiation and morphogenesis as well as a source for a multitude of differentiated cell types that support the structure of the developing and mature organ. Whether the embryonic pulmonary mesenchyme is a homogenous precursor pool and how it diversifies into different cell lineages is poorly understood. We have previously shown that the T-box transcription factor gene Tbx2 is expressed in the pulmonary mesenchyme of the developing murine lung and is required therein to maintain branching morphogenesis. Methods We determined Tbx2/TBX2 expression in the developing murine lung by in situ hybridization and immunofluorescence analyses. We used a genetic lineage tracing approach with a Cre line under the control of endogenous Tbx2 control elements (Tbx2cre), and the R26mTmG reporter line to trace TBX2-positive cells in the murine lung. We determined the fate of the TBX2 lineage by co-immunofluorescence analysis of the GFP reporter and differentiation markers in normal murine lungs and in lungs lacking or overexpressing TBX2 in the pulmonary mesenchyme. Results We show that TBX2 is strongly expressed in mesenchymal progenitors in the developing murine lung. In differentiated smooth muscle cells and in fibroblasts, expression of TBX2 is still widespread but strongly reduced. In mesothelial and endothelial cells expression is more variable and scattered. All fetal smooth muscle cells, endothelial cells and fibroblasts derive from TBX2+ progenitors, whereas half of the mesothelial cells have a different descent. The fate of TBX2-expressing cells is not changed in Tbx2-deficient and in TBX2-constitutively overexpressing mice but the distribution and abundance of endothelial and smooth muscle cells is changed in the overexpression condition. Conclusion The fate of pulmonary mesenchymal progenitors is largely independent of TBX2. Nevertheless, a successive and precisely timed downregulation of TBX2 is necessary to allow proper differentiation and functionality of bronchial smooth muscle cells and to limit endothelial differentiation. Our work suggests expression of TBX2 in an early pulmonary mesenchymal progenitor and supports a role of TBX2 in maintaining the precursor state of these cells.
Collapse
Affiliation(s)
- Irina Wojahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany.
| |
Collapse
|
24
|
Ahmetaj-Shala B, Kawai R, Marei I, Nikolakopoulou Z, Shih CC, Konain B, Reed DM, Mongey R, Kirkby NS, Mitchell JA. A bioassay system of autologous human endothelial, smooth muscle cells, and leukocytes for use in drug discovery, phenotyping, and tissue engineering. FASEB J 2019; 34:1745-1754. [PMID: 31914612 PMCID: PMC6972557 DOI: 10.1096/fj.201901379rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023]
Abstract
Blood vessels are comprised of endothelial and smooth muscle cells. Obtaining both types of cells from vessels of living donors is not possible without invasive surgery. To address this, we have devised a strategy whereby human endothelial and smooth muscle cells derived from blood progenitors from the same donor could be cultured with autologous leukocytes to generate a same donor “vessel in a dish” bioassay. Autologous sets of blood outgrowth endothelial cells (BOECs), smooth muscle cells (BO‐SMCs), and leukocytes were obtained from four donors. Cells were treated in monoculture and cumulative coculture conditions. The endothelial specific mediator endothelin‐1 along with interleukin (IL)‐6, IL‐8, tumor necrosis factor α, and interferon gamma‐induced protein 10 were measured under control culture conditions and after stimulation with cytokines. Cocultures remained viable throughout. The profile of individual mediators released from cells was consistent with what we know of endothelial and smooth muscle cells cultured from blood vessels. For the first time, we report a proof of concept study where autologous blood outgrowth “vascular” cells and leukocytes were studied alone and in coculture. This novel bioassay has usefulness in vascular biology research, patient phenotyping, drug testing, and tissue engineering.
Collapse
Affiliation(s)
- Blerina Ahmetaj-Shala
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Ryota Kawai
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.,Medicinal Safety Research Laboratories, Daiichi-Sankyo Co. Ltd., Tokyo, Japan
| | - Isra Marei
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.,Qatar Foundation Research and Development Division, Doha, Qatar
| | - Zacharoula Nikolakopoulou
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.,Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - Chih-Chin Shih
- Department of Pharmacology, National Defense Medical Center, Taipei, R.O.C., Taiwan
| | - Bhatti Konain
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel M Reed
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Róisín Mongey
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Nicholas S Kirkby
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jane A Mitchell
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
25
|
Yang L, Song L, Ma D, Zhang J, Xie H, Wu H, Liu H, Yu S, Liang H, Zhang P, Cui L, Yuan H, Chen L. Plasma S100A4 level and cardiovascular risk in patients with unstable angina pectoris. Biomark Med 2019; 13:1459-1467. [PMID: 31596125 DOI: 10.2217/bmm-2019-0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We investigated whether S100A4 level is associated with pathophysiology of unstable angina pectoris (UAP), and its potential prognostic value for subsequent cardiovascular events. Methods: We compared plasma levels of S100A4 and a set of clinical markers in three groups (59 with UAP, 32 with stable angina pectoris and 30 healthy controls). Results: S100A4 levels in patients with UAP were significantly elevated. In UAP group, baseline S100A4 levels were significantly higher in patients with subsequent cardiovascular events than those without, a positive correlation was identified between the risk of subsequent cardiovascular events and the plasma levels of S100A4. Conclusion: Elevated S100A4 levels may be involved in the pathogenesis of UAP, and may be a marker predictive of post-treatment cardiovascular events.
Collapse
Affiliation(s)
- Le Yang
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Shandong, PR China
| | - Liang Song
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, PR China
| | - Danfeng Ma
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Shandong, PR China
| | - Jingjing Zhang
- Department of Obstetrics, Weifang Yidu Central Hospital, Shandong, PR China
| | - Hao Xie
- Department of Cardiology, Nanjing Drum Tower Hospital, Jiangsu, PR China
| | - Hongpeng Wu
- Department of Medical Imaging, Shandong Provincial Hospital affiliated to Shandong University, Shandong, PR China
| | - Hang Liu
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Henan, PR China
| | - Shuang Yu
- Department of Cardiology, Zibo Zhoucun People's Hospital, Shandong, PR China
| | - Hengyi Liang
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Shandong, PR China
| | - Pu Zhang
- Department of Cardiology, Taian City Central Hospital, Shandong, PR China
| | - Lianqun Cui
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Shandong, PR China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Shandong, PR China
| | - Liming Chen
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Shandong, PR China
| |
Collapse
|
26
|
Wang W, Ma K, Liu J, Li F. Ginkgo bilobaextract may alleviate viral myocarditis by suppression of S100A4 and MMP‐3. J Med Virol 2019; 91:2083-2092. [PMID: 31359441 DOI: 10.1002/jmv.25558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/25/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Wei Wang
- Outpatient Department of PediatricsThe First Hospital of Jilin University, Changchun Jilin China
| | - Ke Ma
- Outpatient Department of PediatricsThe First Hospital of Jilin University, Changchun Jilin China
| | - Jiangtao Liu
- Outpatient Department of PediatricsThe First Hospital of Jilin University, Changchun Jilin China
| | - Feng Li
- Outpatient Department of PediatricsThe First Hospital of Jilin University, Changchun Jilin China
| |
Collapse
|
27
|
Allahverdian S, Chaabane C, Boukais K, Francis GA, Bochaton-Piallat ML. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc Res 2019; 114:540-550. [PMID: 29385543 DOI: 10.1093/cvr/cvy022] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Current knowledge suggests that intimal smooth muscle cells (SMCs) in native atherosclerotic plaque derive mainly from the medial arterial layer. During this process, SMCs undergo complex structural and functional changes giving rise to a broad spectrum of phenotypes. Classically, intimal SMCs are described as dedifferentiated/synthetic SMCs, a phenotype characterized by reduced expression of contractile proteins. Intimal SMCs are considered to have a beneficial role by contributing to the fibrous cap and thereby stabilizing atherosclerotic plaque. However, intimal SMCs can lose their properties to such an extent that they become hard to identify, contribute significantly to the foam cell population, and acquire inflammatory-like cell features. This review highlights mechanisms of SMC plasticity in different stages of native atherosclerotic plaque formation, their potential for monoclonal or oligoclonal expansion, as well as recent findings demonstrating the underestimated deleterious role of SMCs in this disease.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Chiraz Chaabane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet-1, 1211 Geneva 4, Switzerland
| | - Kamel Boukais
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Gordon A Francis
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Marie-Luce Bochaton-Piallat
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet-1, 1211 Geneva 4, Switzerland
| |
Collapse
|
28
|
Wen JY, Gao SS, Chen FL, Chen S, Wang M, Chen ZW. Role of CSE-Produced H 2S on Cerebrovascular Relaxation via RhoA-ROCK Inhibition and Cerebral Ischemia-Reperfusion Injury in Mice. ACS Chem Neurosci 2019; 10:1565-1574. [PMID: 30406996 DOI: 10.1021/acschemneuro.8b00533] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The role of CSE-produced H2S on cerebrovascular relaxation and cerebral ischemia-reperfusion (I/R) injury was investigated using CSE knockout (CSE-/-) and wild-type (CSE+/+) mice. The relaxation of the cerebral basilar artery (BA) to CSE-produced H2S and its mechanism were detected. The results revealed that both NaHS, a donor of exogenous H2S, and ROCK inhibitor Y27632 could induce significant relaxation of the BA, but the relaxation of the BA to NaHS was significantly attenuated by Y27632. In addition, removal of endothelium could reduce the relaxation of the BA to Y27632; CSE knockout also significantly attenuated Y27632-induced BA relaxation with endothelium rather than without endothelium. By contrast, the contraction of the BA from CSE-/- mice to RhoA agonist LPA or U46619 was stronger than that from CSE+/+ mice. Furthermore, RhoA activity and ROCK protein expression remarkably increased in the BA vascular smooth muscle cells (VSMCs) from CSE-/- mouse, which were inhibited by NaHS pretreatment. These findings revealed that the CSE-produced H2S induced cerebrovascular relaxation is generated from endothelial cells and the mechanism of vascular relaxation may relate to inhibition of RhoA-ROCK pathway. We next sought to confirm the protective effect of CSE-produced H2S on cerebral I/R injury produced by middle cerebral artery occlusion and bilateral common carotid artery occlusion in mice. We investigated the changes of neurological deficit, cerebral infarct, brain water content, LDH decrease, MDA increase as well as impairment of learning and memory function. The results showed that the cerebral injury became more grievous in CSE-/-mice than that in CSE+/+mice, which could be remarkably alleviated by NaHS pretreatment.
Collapse
Affiliation(s)
- Ji-Yue Wen
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shan-Shan Gao
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fang-Lin Chen
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shuo Chen
- Department of Physiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Mei Wang
- Department of pharmacy, Children’s Hospital of Soochow University, Suzhou, Jiangsu 215025, China
| | - Zhi-Wu Chen
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
29
|
Sudden coronary death in the young: Evidence of contractile phenotype of smooth muscle cells in the culprit atherosclerotic plaque. Int J Cardiol 2019; 264:1-6. [PMID: 29776555 DOI: 10.1016/j.ijcard.2018.02.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Culprit coronary atherosclerotic plaques (APs) from young sudden cardiac death (SCD) victims are mostly non-atheromatous, i.e., consisting of proliferative smooth muscle cells (SMCs). Coronary vasospasm has been advocated to explain plaque instability in the absence of thrombosis. Our aim was to characterize the SMC phenotype in the intima and media of coronary arteries from young SCD victims. METHODS AND RESULTS A total of 38 coronary artery segments were studied: (a) 18 APs from young (≤40 years old) SCD patients, (b) 9 APs from old (>40 years old) SCD patients, (c) 11 non-atherosclerotic coronary arteries from young patients (≤40 years old). Markers of differentiated SMCs such as α-smooth muscle actin (α-SMA), smooth muscle myosin heavy chains (SMMHCs), and heavy-caldesmon (h-CaD), were assessed in intima and media by immunohistochemistry and quantified morphometrically. In the intima, their expression was higher in non-atherosclerotic arteries (44.37 ± 3.03% for α-SMA, 14.21 ± 2.01% for SMMHCs, 8.90 ± 1.33% for h-CaD) and APs from young SCD victims (38.95 ± 2.29% for α-SMA, 11.92 ± 1.92% for SMMHCs, 8.93 ± 1.12% for h-CaD) compared with old patients (22.01 ± 3.56% for α-SMA, 6.39 ± 0.7% for SMMHCs, 3.00 ± 0.57% for h-CaD; all P statistically significant). The media of non-atherosclerotic arteries and APs from young SCD victims exhibited strong positivity for the differentiation markers unlike that of old patients. CONCLUSIONS SMCs of coronary APs as well as from the underlying media from young SCD victims exhibit strong contractile phenotype. In the setting of critical stenosis, both intima and media SMC contractility might contribute to transient coronary spasm leading to myocardial ischemia and SCD.
Collapse
|
30
|
Fei F, Qu J, Li C, Wang X, Li Y, Zhang S. Role of metastasis-induced protein S100A4 in human non-tumor pathophysiologies. Cell Biosci 2017; 7:64. [PMID: 29204268 PMCID: PMC5702147 DOI: 10.1186/s13578-017-0191-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/20/2017] [Indexed: 12/24/2022] Open
Abstract
S100A4, an important member of the S100 family of proteins, is best known for its significant role in promoting cancer progression and metastasis. In addition to its expression in tumors, upregulation of S100A4 expression has been associated with various non-tumor pathophysiology processes. However, the mechanisms underlying the role of S100A4 remain unclear. Activated “host” cells (fibroblasts, immunocytes, vascular cells, among others) secrete S100A4 into the extracellular space in various non-tumor human disorders, where it executes its biological functions by interacting with intracellular target proteins. However, the exact molecular mechanisms underlying these interactions in different non-tumor pathophysiologies vary, and S100A4 is likely one of the cross-linking factors that acts as common intrinsic constituents of biological mechanisms. Numerous studies have indicated that the S100A4-mediated epithelial–mesenchymal transition plays a vital role in the occurrence and development of various non-tumor pathophysiologies. Epithelial–mesenchymal transition can be categorized into three general subtypes based on the phenotype and function of the output cells. S100A4 regulates tissue fibrosis associated with the type II epithelial–mesenchymal transition via various signaling pathways. Additionally, S100A4 stimulates fibroblasts to secrete fibronectin and collagen, thus forming the structural components of the extracellular matrix (ECM) and stimulating their deposition in tissues, contributing to the formation of a pro-inflammatory niche. Simultaneously, S100A4 enhances the motility of macrophages, neutrophils, and leukocytes and promotes the recruitment and chemotaxis of these inflammatory cells to regulate inflammation and immune functions. S100A4 also exerts a neuroprotective pro-survival effect on neurons by rescuing them from brain injury and participates in angiogenesis by interacting with other target molecules. In this review, we summarize the role of S100A4 in fibrosis, inflammation, immune response, neuroprotection, angiogenesis, and some common non-tumor diseases as well as its possible involvement in molecular pathways and potential clinical value.
Collapse
Affiliation(s)
- Fei Fei
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People's Republic of China.,Departments of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Jie Qu
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People's Republic of China.,Departments of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Chunyuan Li
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People's Republic of China.,Departments of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Xinlu Wang
- Departments of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193 People's Republic of China
| | - Yuwei Li
- Departments of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Shiwu Zhang
- Departments of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| |
Collapse
|
31
|
Vasileva E, Sluysmans S, Bochaton-Piallat ML, Citi S. Cell-specific diversity in the expression and organization of cytoplasmic plaque proteins of apical junctions. Ann N Y Acad Sci 2017; 1405:160-176. [PMID: 28617990 DOI: 10.1111/nyas.13391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 01/11/2023]
Abstract
Tight and adherens junctions play critical roles in the barrier, adhesion, and signaling functions of epithelial and endothelial cells. How the molecular organization of these junctions is tuned to the widely diverse physiological requirements of each tissue type is not well understood. Here, we address this question by examining the expression, localization, and interactions of major cytoplasmic plaque proteins of tight and adherens junctions in different cultured epithelial and endothelial cell lines. Immunoblotting and immunofluorescence analyses show that the expression profiles of cingulin, paracingulin, ZO-1, ZO-2, ZO-3, PLEKHA7, afadin, PDZD11, p120-catenin, and α-catenin, as well as the transmembrane junctional proteins occludin, E-cadherin, and VE-cadherin, are significantly diverse when comparing kidney cells (MDCK, mCCD), keratinocytes (HaCaT), lung carcinoma (A427, A549), and endothelium-derived cells (bEnd.3, meEC, H5V). Proximity ligation and co-immunoprecipitation assays show that PLEKHA7 and PDZD11 are significantly more associated with the tight junction proteins cingulin and ZO-1 in aortic endothelium-derived (meEC) cells but not kidney collecting duct epithelial (mCCD) cells. These results provide evidence that the cytoplasmic plaques of tight and adherens junctions are diverse in their composition and molecular architecture and establish a conceptual framework by which we can rationally address the mechanisms of tissue-dependent junction physiology and signaling by cytoplasmic junctional proteins.
Collapse
Affiliation(s)
- Ekaterina Vasileva
- Department of Cell Biology, Faculty of Sciences, Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Sophie Sluysmans
- Department of Cell Biology, Faculty of Sciences, Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | | | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| |
Collapse
|
32
|
Hannan RT, Peirce SM, Barker TH. Fibroblasts: Diverse Cells Critical to Biomaterials Integration. ACS Biomater Sci Eng 2017; 4:1223-1232. [PMID: 31440581 DOI: 10.1021/acsbiomaterials.7b00244] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibroblasts are key participants in wound healing and inflammation, and are capable of driving the progression of tissue repair to fully functional tissue or pathologic scar, or fibrosis, depending on the specific mechanical and biochemical cues with which they are presented. Thus, understanding and modulating the fibroblastic response to implanted materials is paramount to achieving desirable outcomes, such as long-term implant function or tissue regeneration. However, fibroblasts are remarkably heterogeneous and can differ vastly in their contributions to regeneration and fibrosis. This heterogeneity exists between tissues and within tissues, down to the level of individual cells. This review will discuss the role of fibroblasts, the pitfalls of describing them as a collective, the specifics of their function, and potential future directions to better understand and organize their highly variable biology.
Collapse
Affiliation(s)
- Riley T Hannan
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| | - Shayn M Peirce
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| |
Collapse
|
33
|
Lu YW, Lowery AM, Sun LY, Singer HA, Dai G, Adam AP, Vincent PA, Schwarz JJ. Endothelial Myocyte Enhancer Factor 2c Inhibits Migration of Smooth Muscle Cells Through Fenestrations in the Internal Elastic Lamina. Arterioscler Thromb Vasc Biol 2017; 37:1380-1390. [PMID: 28473437 DOI: 10.1161/atvbaha.117.309180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/25/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Laminar flow activates myocyte enhancer factor 2 (MEF2) transcription factors in vitro to induce expression of atheroprotective genes in the endothelium. Here we sought to establish the role of Mef2c in the vascular endothelium in vivo. APPROACH AND RESULTS To study endothelial Mef2c, we generated endothelial-specific deletion of Mef2c using Tie2-Cre or Cdh5-Cre-ERT2 and examined aortas and carotid arteries by en face immunofluorescence. We observed enhanced actin stress fiber formation in the Mef2c-deleted thoracic aortic endothelium (laminar flow region), similar to those observed in normal aortic inner curvature (disturbed flow region). Furthermore, Mef2c deletion resulted in the de novo formation of subendothelial intimal cells expressing markers of differentiated smooth muscle in the thoracic aortas and carotids. Lineage tracing showed that these cells were not of endothelial origin. To define early events in intimal development, we induced endothelial deletion of Mef2c and examined aortas at 4 and 12 weeks postinduction. The number of intimal cell clusters increased from 4 to 12 weeks, but the number of cells within a cluster peaked at 2 cells in both cases, suggesting ongoing migration but minimal proliferation. Moreover, we identified cells extending from the media through fenestrations in the internal elastic lamina into the intima, indicating transfenestral smooth muscle migration. Similar transfenestral migration was observed in wild-type carotid arteries ligated to induce neointimal formation. CONCLUSIONS These results indicate that endothelial Mef2c regulates the endothelial actin cytoskeleton and inhibits smooth muscle cell migration into the intima.
Collapse
Affiliation(s)
- Yao Wei Lu
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Anthony M Lowery
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Li-Yan Sun
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Harold A Singer
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Guohao Dai
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Alejandro P Adam
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Peter A Vincent
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - John J Schwarz
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.).
| |
Collapse
|
34
|
Choe N, Kwon DH, Shin S, Kim YS, Kim YK, Kim J, Ahn Y, Eom GH, Kook H. The microRNA miR-124 inhibits vascular smooth muscle cell proliferation by targeting S100 calcium-binding protein A4 (S100A4). FEBS Lett 2017; 591:1041-1052. [PMID: 28235243 DOI: 10.1002/1873-3468.12606] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/08/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022]
Abstract
S100 calcium-binding protein A4 (S100A4) induces proliferation and migration of vascular smooth muscle cells (VSMCs). We aimed to find the microRNA regulating S100A4 expression. S100A4 transcripts are abruptly increased in the acute phase of carotid arterial injury 1 day later (at day 1) but gradually decreases at days 7 and 14. Bioinformatics analysis reveals that miR-124 targets S100A4. VSMC survival is attenuated by miR-124 mimic but increased by miR-124 inhibitor. miR-124 decreases immediately after carotid arterial injury but dramatically increases at days 7 and 14. miR-124 inhibitor-induced cell proliferation is blocked by S100A4 siRNA, whereas miR-124-induced cell death is recovered by S100A4. Our findings suggest that miR-124 is a novel regulator of VSMC proliferation and may play a role in the development of neointimal proliferation.
Collapse
Affiliation(s)
- Nakwon Choe
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
| | - Duk-Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
| | - Sera Shin
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
| | - Yong Sook Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Young-Kook Kim
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea.,Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Jaetaek Kim
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Gwang H Eom
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju, Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
35
|
Boteanu RM, Suica VI, Uyy E, Ivan L, Dima SO, Popescu I, Simionescu M, Antohe F. Alarmins in chronic noncommunicable diseases: Atherosclerosis, diabetes and cancer. J Proteomics 2017; 153:21-29. [DOI: 10.1016/j.jprot.2016.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/18/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022]
|
36
|
Phenotypic transformation of smooth muscle cells from porcine coronary arteries is associated with connexin 43. Mol Med Rep 2016; 14:41-8. [PMID: 27175888 PMCID: PMC4918540 DOI: 10.3892/mmr.2016.5286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022] Open
Abstract
The current study aimed to investigate the relevance of the gap junction protein connexin Cx43 in coronary artery smooth muscle cell (SMC) heterogeneity and coronary artery restenosis. SMCs were isolated from the coronary artery of 3‑month‑old pigs using enzymatic digestion. Two distinct SMC populations were isolated: Rhomboid (R) and spindle‑shaped (S) cells. S‑SMCs exhibited relatively lower rates of proliferation, exhibiting a classic ''hills‑and valleys'' growth pattern; R‑SMCs displayed increased proliferation rates, growing as mono‑ or multi‑layers. Immunofluorescent staining, polymerase chain reaction and western blotting were used to assess the expression of Cx40 and Cx43 in SMCs. For further evaluation, cultured SMCs were treated with 10 ng/ml platelet‑derived growth factor (PDGF)‑BB with or without the gap junction blocker 18α‑glycyrrhetinic acid. Stent‑induced restenosis was assessed in vivo. Different expression patterns were observed for Cx40 and Cx43 in R‑ and S‑SMCs. Cx40 was the most abundant Cx in S‑SMCs, whereas CX43 was identified at relatively higher levels than Cx40 in R‑SMCs. Notably, PDGF‑BB converted S‑SMCs to R‑SMCs, with increased Cx43 expression, while 18α‑glycyrrhetinic acid inhibited the PDGF‑BB‑induced phenotypic alterations in S‑SMCs. Additionally, restenosis was confirmed in pigs 1‑month subsequent to stent placement. R‑SMCs were the major cell population isolated from stent‑induced restenosis artery tissues, and exhibited markedly increased Cx43 expression, in accordance with the in vitro data described above. In conclusion, the phenotypic transformation of coronary artery SMCs is closely associated with Cx43, which is involved in restenosis. These observations provide a basis for the use of Cx43 as a novel target in restenosis prevention.
Collapse
|
37
|
Geronimo FRB, Barter PJ, Rye KA, Heather AK, Shearston KD, Rodgers KJ. Plaque stabilizing effects of apolipoprotein A-IV. Atherosclerosis 2016; 251:39-46. [PMID: 27240254 DOI: 10.1016/j.atherosclerosis.2016.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/20/2016] [Accepted: 04/24/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Apolipoprotein (apo) A-IV, the third most abundant HDL-associated protein, is atheroprotective and shares similar properties as apoA-I. We have reported previously that apoA-I, the most abundant apolipoprotein in HDL, inhibits plaque disruption in a mouse model. We aimed at examining the effects of apoA-IV on markers of plaque stability in vivo. METHODS Plaques within brachiocephalic arteries of 16-week old apoE-knockout C57BL/6 mice were examined for changes in composition after 10 weeks on a high-fat diet (HFD). The animals received twice-weekly injections of human lipid-free apoA-IV (1 mg/kg, n = 31) or PBS (n = 32) during the 9th and 10th weeks of the HFD. RESULTS In the apoA-IV treated mice, there were significantly fewer hemorrhagic plaque disruptions (9/31 vs. 18/32, p < 0.05), thicker fibrous caps, smaller lipid cores, a lower macrophage:SMC ratio, less MMP-9 protein, more collagen, and fewer proliferating cells. In the plaques of mice given apoA-IV, MCP-1, VCAM-1, and inducible NOS were also significantly lower. Based on the percentage of cleaved PARP-positive and TUNEL-positive plaque nuclei, apoA-IV reduced apoptosis. in HMDMs, apoA-IV reduced MMP-9 mRNA expression by half, doubled mRNA levels of TIMP1 and decreased MMP-9 activity. CONCLUSIONS ApoA-IV treatment is associated with a more stable plaque phenotype and a reduced incidence of acute disruptions in this mouse model.
Collapse
Affiliation(s)
| | - P J Barter
- School of Medical Sciences, University of New South Wales, Australia.
| | - K A Rye
- School of Medical Sciences, University of New South Wales, Australia.
| | - A K Heather
- The Heart Research Institute, Sydney, Australia; School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | - K D Shearston
- School of Dentistry, University of Western Australia, Australia.
| | - K J Rodgers
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, Australia.
| |
Collapse
|
38
|
Ramnath NWM, Hawinkels LJAC, van Heijningen PM, te Riet L, Paauwe M, Vermeij M, Danser AHJ, Kanaar R, ten Dijke P, Essers J. Fibulin-4 deficiency increases TGF-β signalling in aortic smooth muscle cells due to elevated TGF-β2 levels. Sci Rep 2015; 5:16872. [PMID: 26607280 PMCID: PMC4660353 DOI: 10.1038/srep16872] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022] Open
Abstract
Fibulins are extracellular matrix proteins associated with elastic fibres. Homozygous Fibulin-4 mutations lead to life-threatening abnormalities such as aortic aneurysms. Aortic aneurysms in Fibulin-4 mutant mice were associated with upregulation of TGF-β signalling. How Fibulin-4 deficiency leads to deregulation of the TGF-β pathway is largely unknown. Isolated aortic smooth muscle cells (SMCs) from Fibulin-4 deficient mice showed reduced growth, which could be reversed by treatment with TGF-β neutralizing antibodies. In Fibulin-4 deficient SMCs increased TGF-β signalling was detected using a transcriptional reporter assay and by increased SMAD2 phosphorylation. Next, we investigated if the increased activity was due to increased levels of the three TGF-β isoforms. These data revealed slightly increased TGF-β1 and markedly increased TGF-β2 levels. Significantly increased TGF-β2 levels were also detectable in plasma from homozygous Fibulin-4(R/R) mice, not in wild type mice. TGF-β2 levels were reduced after losartan treatment, an angiotensin-II type-1 receptor blocker, known to prevent aortic aneurysm formation. In conclusion, we have shown increased TGF-β signalling in isolated SMCs from Fibulin-4 deficient mouse aortas, not only caused by increased levels of TGF-β1, but especially TGF-β2. These data provide new insights in the molecular interaction between Fibulin-4 and TGF-β pathway regulation in the pathogenesis of aortic aneurysms.
Collapse
Affiliation(s)
- N W M Ramnath
- Department of Genetics, Cancer Genomics Centre Netherlands, Erasmus MC, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - L J A C Hawinkels
- Department of Molecular Cell Biology Leiden University Medical Centre, Leiden, The Netherlands, Cancer Genomics Centre.,Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - P M van Heijningen
- Department of Genetics, Cancer Genomics Centre Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | - L te Riet
- Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands.,Department of Pharmacology, Erasmus MC, Rotterdam, The Netherlands
| | - M Paauwe
- Department of Molecular Cell Biology Leiden University Medical Centre, Leiden, The Netherlands, Cancer Genomics Centre
| | - M Vermeij
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - A H J Danser
- Department of Pharmacology, Erasmus MC, Rotterdam, The Netherlands
| | - R Kanaar
- Department of Genetics, Cancer Genomics Centre Netherlands, Erasmus MC, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - P ten Dijke
- Department of Molecular Cell Biology Leiden University Medical Centre, Leiden, The Netherlands, Cancer Genomics Centre
| | - J Essers
- Department of Genetics, Cancer Genomics Centre Netherlands, Erasmus MC, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
39
|
Site-Specific Secretome Map Evidences VSMC-Related Markers of Coronary Atherosclerosis Grade and Extent in the Hypercholesterolemic Swine. DISEASE MARKERS 2015; 2015:465242. [PMID: 26379359 PMCID: PMC4561865 DOI: 10.1155/2015/465242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/29/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022]
Abstract
A major drawback in coronary atherosclerosis (ATS) research is the difficulty of investigating early phase of plaque growth and related features in the clinical context. In this study, secreted proteins from atherosclerotic coronary arteries in a hypercholesterolemic swine model were characterized by a proteomics approach and their expression was correlated to site-specific ATS stage and extent. A wide coronary artery map of secreted proteins has been obtained in high fat (HF) diet induced ATS swine model and a significantly different expression of many proteins related to vascular smooth muscle cell (VSMC) activation/migration has been identified. Significant associations with ATS stage of HF coronary lesions were found for several VSMC-derived proteins and validated for chitinase 3 like protein 1 (CHI3L1) by tissue immunoexpression. A direct correlation (R(2) = 0.85) was evidenced with intima to media thickness ratio values and ELISA confirmed the higher blood concentrations of CHI3L1 in HF cases. These findings confirmed the pivotal role of VSMCs in coronary plaque development and demonstrated a strong site-specific relation between VSMC-secreted CHI3L1 and lesion grade, suggesting that this protein could be proposed as a useful biomarker for diagnosing and staging of atherosclerotic lesions in coronary artery disease.
Collapse
|
40
|
Abstract
Myofibroblasts are activated in response to tissue injury with the primary task to repair lost or damaged extracellular matrix. Enhanced collagen secretion and subsequent contraction - scarring - are part of the normal wound healing response and crucial to restore tissue integrity. Due to myofibroblasts ability to repair but not regenerate, accumulation of scar tissue is always associated with reduced organ performance. This is a fair price to pay by the body for not falling apart. Whereas myofibroblasts typically vanish after successful repair, dysregulation of the normal repair process can lead to persistent myofibroblast activation, for instance by chronic inflammation or mechanical stress in the tissue. Excessive repair leads to the accumulation of stiff collagenous ECM contractures - fibrosis - with dramatic consequences for organ function. The clinical need to terminate detrimental myofibroblast activities has stimulated researchers to answer a number of essential questions: where do myofibroblasts come from, what are the factors leading to their activation, how do we discriminate myofibroblasts from other cells, what is the molecular basis for their contractile activity, and how can we stop or at least control them? This article reviews the current state of the myofibroblast literature by emphasizing their role in ocular repair and fibrosis. It appears that although the eye is quite an extraordinary organ, ocular myofibroblasts behave or misbehave just like their siblings in other organs.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, 150 College Street, FitzGerald Building, Room 234, Toronto, M5S 3E2 Ontario, Canada.
| |
Collapse
|
41
|
Thomson S, Edin ML, Lih FB, Davies M, Yaqoob MM, Hammock BD, Gilroy D, Zeldin DC, Bishop-Bailey D. Intimal smooth muscle cells are a source but not a sensor of anti-inflammatory CYP450 derived oxylipins. Biochem Biophys Res Commun 2015; 463:774-80. [PMID: 26086108 PMCID: PMC4533761 DOI: 10.1016/j.bbrc.2015.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 12/14/2022]
Abstract
Vascular pathologies are associated with changes in the presence and expression of morphologically distinct vascular smooth muscle cells. In particular, in complex human vascular lesions and models of disease in pigs and rodents, an intimal smooth muscle cell (iSMC) which exhibits a stable epithelioid or rhomboid phenotype in culture is often found to be present in high numbers, and may represent the reemergence of a distinct developmental vascular smooth muscle cell phenotype. The CYP450-oxylipin - soluble epoxide hydrolase (sEH) pathway is currently of great interest in targeting for cardiovascular disease. sEH inhibitors limit the development of hypertension, diabetes, atherosclerosis and aneurysm formation in animal models. We have investigated the expression of CYP450-oxylipin-sEH pathway enzymes and their metabolites in paired intimal (iSMC) and medial (mSMC) cells isolated from rat aorta. iSMC basally released significantly larger amounts of epoxy-oxylipin CYP450 products from eicosapentaenoic acid > docosahexaenoic acid > arachidonic acid > linoleic acid, and expressed higher levels of CYP2C12, CYP2B1, but not CYP2J mRNA compared to mSMC. When stimulated with the pro-inflammatory TLR4 ligand LPS, epoxy-oxylipin production did not change greatly in iSMC. In contrast, LPS induced epoxy-oxylipin products in mSMC and induced CYP2J4. iSMC and mSMC express sEH which metabolizes primary epoxy-oxylipins to their dihydroxy-counterparts. The sEH inhibitors TPPU or AUDA inhibited LPS-induced NFκB activation and iNOS induction in mSMC, but had no effect on NFκB nuclear localization or inducible nitric oxide synthase in iSMC; effects which were recapitulated in part by addition of authentic epoxy-oxylipins. iSMCs are a rich source but not a sensor of anti-inflammatory epoxy-oxylipins. Complex lesions that contain high levels of iSMCs may be more resistant to the protective effects of sEH inhibitors. We examined oxylipin production in different SMC phenotypes. Intimal SMC produced more oxylipins than medial SMC. CYPs were differentially expressed and regulated by LPS in intimal and medial SMC. sEH inhibitors reduce inflammation in medial but not intimal SMC. Intimal SMC are a source but not sensor of epoxy-oxylipins.
Collapse
Affiliation(s)
- Scott Thomson
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC 27709, USA
| | - Fred B Lih
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC 27709, USA
| | - Michael Davies
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Muhammad M Yaqoob
- Barts and the London, Queen Mary University, Charterhouse Square, London EC1M 6BQ, UK
| | - Bruce D Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davies, CA 95616-8584, USA
| | - Derek Gilroy
- University College London, University Street, London, UK
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC 27709, USA
| | - David Bishop-Bailey
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
42
|
Migration of smooth muscle cells from the arterial anastomosis of arteriovenous fistulas requires Notch activation to form neointima. Kidney Int 2015; 88:490-502. [PMID: 25786100 PMCID: PMC4677993 DOI: 10.1038/ki.2015.73] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 01/31/2023]
Abstract
A major factor contributing to failure of arteriovenous fistulas (AVFs) is migration of smooth muscle cells into the forming neointima. To identify the source of smooth muscle cells in neointima, we created end-to-end AVFs by anastomosing the common carotid artery to the jugular vein and studied neural crest-derived smooth muscle cells from the carotid artery which are Wnt1-positive during development. In Wnt1-cre-GFP mice, smooth muscle cells in the carotid artery but not the jugular vein are labeled with GFP. About half of the cells were GFP-positive in the neointima indicating their migration from the carotid artery to the jugular vein in AVFs created in these mice. Since fibroblast-specific protein-1 (FSP-1) regulates smooth muscle cell migration, we examined FSP-1 in failed AVFs and polytetrafluoroethylene (PTFE) grafts from patients with ESRD or from AVFs in mice with chronic kidney disease. In smooth muscle cells of AVFs or PTFE grafts, FSP-1 and activation of Notch1 are present. In smooth muscle cells, Notch1 increased RBP-Jκ transcription factor activity and RBP-Jκ stimulated FSP-1 expression. Conditional knockout of RBP-Jκ in smooth muscle cells or general knockout of FSP-1, suppressed neointima formation in AVFs in mice. Thus, the artery of AVFs is the major source of smooth muscle cells during neointima formation. Knockout of RBP-Jκ or FSP-1 ameliorates neointima formation and might improve AVF patency during long-term follow up.
Collapse
|
43
|
Ardila DC, Tamimi E, Danford FL, Haskett DG, Kellar RS, Doetschman T, Vande Geest JP. TGFβ2 differentially modulates smooth muscle cell proliferation and migration in electrospun gelatin-fibrinogen constructs. Biomaterials 2015; 37:164-73. [PMID: 25453947 PMCID: PMC4312204 DOI: 10.1016/j.biomaterials.2014.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/02/2014] [Indexed: 01/14/2023]
Abstract
A main goal of tissue engineering is the development of scaffolds that replace, restore and improve injured tissue. These scaffolds have to mimic natural tissue, constituted by an extracellular matrix (ECM) support, cells attached to the ECM, and signaling molecules such as growth factors that regulate cell function. In this study we created electrospun flat sheet scaffolds using different compositions of gelatin and fibrinogen. Smooth muscle cells (SMCs) were seeded on the scaffolds, and proliferation and infiltration were evaluated. Additionally, different concentrations of Transforming Growth Factor-beta2 (TGFβ2) were added to the medium with the aim of elucidating its effect on cell proliferation, migration and collagen production. Our results demonstrated that a scaffold with a composition of 80% gelatin-20% fibrinogen is suitable for tissue engineering applications since it promotes cell growth and migration. The addition of TGFβ2 at low concentrations (≤ 1 ng/ml) to the culture medium resulted in an increase in SMC proliferation and scaffold infiltration, and in the reduction of collagen production. In contrast, TGFβ2 at concentrations >1 ng/ml inhibited cell proliferation and migration while stimulating collagen production. According to our results TGFβ2 concentration has a differential effect on SMC function and thus can be used as a biochemical modulator that can be beneficial for tissue engineering applications.
Collapse
Affiliation(s)
- Diana C Ardila
- Graduate Interdisciplinary Program of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Ehab Tamimi
- Graduate Interdisciplinary Program of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Forest L Danford
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Darren G Haskett
- Graduate Interdisciplinary Program of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Robert S Kellar
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ 86011, USA; Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011, USA; Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Tom Doetschman
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA; Sarver Heart Center, The University of Arizona, Tucson, AZ 85724, USA; BIO5 Institute for Biocollaborative Research, The University of Arizona, Tucson, AZ 85721, USA
| | - Jonathan P Vande Geest
- Graduate Interdisciplinary Program of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA; BIO5 Institute for Biocollaborative Research, The University of Arizona, Tucson, AZ 85721, USA; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
44
|
Pugliese SC, Poth JM, Fini MA, Olschewski A, El Kasmi KC, Stenmark KR. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol 2014; 308:L229-52. [PMID: 25416383 DOI: 10.1152/ajplung.00238.2014] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop "out-of-proportion" severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines ("second hit") antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease.
Collapse
Affiliation(s)
- Steven C Pugliese
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado;
| | - Jens M Poth
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Mehdi A Fini
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; and
| | - Karim C El Kasmi
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
45
|
Chaabane C, Coen M, Bochaton-Piallat ML. Smooth muscle cell phenotypic switch: implications for foam cell formation. Curr Opin Lipidol 2014; 25:374-9. [PMID: 25110900 DOI: 10.1097/mol.0000000000000113] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW It is well accepted that LDLs and its modified form oxidized-LDL (ox-LDL) play a major role in the development of atherosclerosis and foam cell formation. Whereas the majority of these cells have been demonstrated to be derived from macrophages, smooth muscle cells (SMCs) give rise to a significant number of foam cells as well. During atherosclerotic plaque formation, SMCs switch from a contractile to a synthetic phenotype. The contribution of this process to foam cell formation is still not well understood. RECENT FINDINGS It has been confirmed that a large proportion of foam cells in human atherosclerotic plaques and in experimental intimal thickening arise from SMCs. SMC-derived foam cells express receptors involved in ox-LDL uptake and HDL reverse transport. In-vitro studies show that treatment of SMCs with ox-LDL induces typical foam-cell formation; this process is associated with a transition of SMCs toward a synthetic phenotype. SUMMARY This review summarizes data regarding the phenotypic switch of arterial SMCs within atherosclerotic lesion and their contribution to intimal foam cell formation.
Collapse
Affiliation(s)
- Chiraz Chaabane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
46
|
Chaabane C, Heizmann CW, Bochaton-Piallat ML. Extracellular S100A4 induces smooth muscle cell phenotypic transition mediated by RAGE. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:2144-57. [PMID: 25110349 DOI: 10.1016/j.bbamcr.2014.07.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/20/2014] [Accepted: 07/29/2014] [Indexed: 01/11/2023]
Abstract
We identified S100A4 as a marker of rhomboid (R) smooth muscle cells (SMCs) in vitro (the synthetic phenotype, typical of intimal SMCs) in the porcine coronary artery and of intimal SMCs in vivo in both pigs and humans. S100A4 is an intracellular Ca²⁺ signaling protein and can be secreted; it has extracellular functions via the receptor for advanced glycation end products (RAGE). Our objective was to explore the role of S100A4 in SMC phenotypic change, a phenomenon characteristic of atherosclerotic plaque formation. Transfection of a human S100A4-containing plasmid in spindle-shaped (S) SMCs (devoid of S100A4) led to approximately 10% of S100A4-overexpressing SMCs, S100A4 release, and a transition towards a R-phenotype of the whole SMC population. Furthermore treatment of S-SMCs with S100A4-rich conditioned medium collected from S100A4-transfected S-SMCs induced a transition towards a R-phenotype, which was associated with decreased SMC differentiation markers and increased proliferation and migration by activating the urokinase-type plasminogen activator (uPA), matrix metalloproteinases (MMPs) and their inhibitors (TIMPs). It yielded NF-κB activation in a RAGE-dependent manner. Blockade of extracellular S100A4 in R-SMCs with S100A4 neutralizing antibody induced a transition from R- to S-phenotype, decreased proliferative activity and upregulation of SMC differentiation markers. By contrast, silencing of S100A4 mRNA in R-SMCs did not change the level of extracellular S100A4 or SMC morphology in spite of decreased proliferative activity. Our results show that extracellular S100A4 plays a pivotal role in SMC phenotypic changes. It could be a new target to prevent SMC accumulation during atherosclerosis and restenosis. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Chiraz Chaabane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
47
|
Valence SD, Tille JC, Chaabane C, Gurny R, Bochaton-Piallat ML, Walpoth BH, Möller M. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur J Pharm Biopharm 2014; 85:78-86. [PMID: 23958319 DOI: 10.1016/j.ejpb.2013.06.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/06/2013] [Accepted: 06/12/2013] [Indexed: 11/25/2022]
Abstract
Biodegradable synthetic scaffolds are being evaluated by many groups for the application of vascular tissue engineering. In addition to the choice of the material and the structure of the scaffold, tailoring the surface properties can have an important effect on promoting adequate tissue regeneration. The objective of this study was to evaluate the effect of an increased hydrophilicity of a polycaprolactone vascular graft by treatment with a cold air plasma. To this end, treated and untreated scaffolds were characterized, evaluated in vitro with smooth muscle cells, and implanted in vivo in the rat model for 3 weeks, both in the subcutaneous location and as an aortic replacement. The plasma treatment significantly increased the hydrophilicity of the scaffold, with complete wetting after a treatment of 60 sec, but did not change fiber morphology or mechanical properties. Smooth muscle cells cultured on plasma treated patches adopt a spread out morphology compared to a small, rounded morphology on untreated patches. Subcutaneous implantation revealed a low foreign body reaction for both types of scaffolds and a more extended and dense cellular infiltrate in the plasma treated scaffolds. In the vascular position, the plasma treatment induced a better cellularization of the graft wall, while it did not affect endothelialization rate or intimal hyperplasia. Plasma treatment is therefore an accessible tool to easily increase the biocompatibility of a scaffold and accelerate tissue regeneration without compromising mechanical strength, which are valuable advantages for vascular tissue engineering.
Collapse
Affiliation(s)
- Sarra de Valence
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
48
|
Fujiu K, Nagai R. Fibroblast-mediated pathways in cardiac hypertrophy. J Mol Cell Cardiol 2014; 70:64-73. [PMID: 24492068 DOI: 10.1016/j.yjmcc.2014.01.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 12/26/2022]
Abstract
Under normal physiological conditions, cardiac fibroblasts are the primary producers of extracellular matrix and supply a mechanical scaffold for efficacious heart contractions induced by cardiomyocytes. In the hypertrophic heart, cardiac fibroblasts provide a pivotal contribution to cardiac remodeling. Many growth factors and extracellular matrix components secreted by cardiac fibroblasts induce and modify cardiomyocyte hypertrophy. Recent evidence revealed that cardiomyocyte-cardiac fibroblast communications are complex and multifactorial. Many growth factors and molecules contribute to cardiac hypertrophy via different roles that include induction of hypertrophy and the feedback hypertrophic response, fine-tuning of adaptive hypertrophy, limitation of left ventricular dilation, and modification of interstitial changes. This review focuses on recent work and topics and provides a mechanistic insight into cardiomyocyte-cardiac fibroblast communication in cardiac hypertrophy. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ".
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, Japan.
| | - Ryozo Nagai
- Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program), Tokyo, Japan; Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
49
|
Wan J, Xiao Z, Chao S, Xiong S, Gan X, Qiu X, Xu C, Ma Y, Tu X. Pioglitazone modulates the proliferation and apoptosis of vascular smooth muscle cells via peroxisome proliferators-activated receptor-gamma. Diabetol Metab Syndr 2014; 6:101. [PMID: 25302079 PMCID: PMC4190377 DOI: 10.1186/1758-5996-6-101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 08/10/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND PPARγ is a member of the nuclear hormone receptor superfamily. It has been considered as a mediator regulating metabolism, anti-inflammation, and pro-proliferation in the Vascular Smooth Muscle Cells (VSMCs). Thiazolidinediones (TZDs), synthetic ligands of PPARγ, have anti-proliferative and pro-apoptotic effects on VSMCs, which prevent the formation and progression of atherosclerosis and restenosis following percutaneous coronary intervention (PCI). However, the underlying mechanism remains elusive. This present study therefore aimed to investigate the signaling pathway by which pioglitazone, one of TZDs, inhibits proliferation and induces apoptosis of VSMCs. METHODS The effects of pioglitazone on VSMC proliferation and apoptosis were studied. Cell proliferation was determined using BrdU incorporation assay. Cell apoptosis was monitored with Hoechst and Annexin V staining. The expression of caspases and cyclins was determined using real-time PCR and Western blot. RESULTS Pioglitazone treatment and PPARγ overexpression inhibited proliferation and induced apoptosis of VSMCs, whereas blocking by antagonist or silencing by siRNA of PPARγ significantly attenuated pioglitazone's effect. Furthermore, pioglitazone treatment or PPARγ overexpression increased caspase 3 and caspase 9 expression, and decreased the expression of cyclin B1 and cyclin D1 in VSMCs. CONCLUSIONS Pioglitazone inhibits VSMCs proliferation and promotes apoptosis of VSMCs through a PPARγ signaling pathway. Up-regulation of caspase 3 and down-regulation of cyclins mediates pioglitazone's anti-proliferative and pro-apoptotic effects. Our results imply that pioglitazone prevents the VSMCs proliferation via modulation of caspase and cyclin signaling pathways in a PPARγ-dependent manner.
Collapse
Affiliation(s)
- Jing Wan
- />Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei China
| | - Zhichao Xiao
- />Department of Cardiology, Tongji Medical College of Huazhong University of Science and Technology affiliated Tongji Hospital, Wuhan, Hubei China
| | - Shengping Chao
- />Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei China
| | - Shixi Xiong
- />Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei China
| | - Xuedong Gan
- />Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei China
| | - Xuguang Qiu
- />Department of Cardiology, Tongji Medical College of Huazhong University of Science and Technology affiliated Tongji Hospital, Wuhan, Hubei China
| | - Chang Xu
- />Department of Cardiology, Tongji Medical College of Huazhong University of Science and Technology affiliated Tongji Hospital, Wuhan, Hubei China
| | - Yexin Ma
- />Department of Cardiology, Tongji Medical College of Huazhong University of Science and Technology affiliated Tongji Hospital, Wuhan, Hubei China
| | - Xin Tu
- />Cardiovascular Research, Life Science and Technology College, Human Genome Research Center, Huazhong University of Science and Technology, Wuhan, Hubei China
| |
Collapse
|
50
|
Calmodulin Expression Distinguishes the Smooth Muscle Cell Population of Human Carotid Plaque. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:996-1009. [DOI: 10.1016/j.ajpath.2013.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/06/2013] [Accepted: 06/03/2013] [Indexed: 11/20/2022]
|