1
|
Cámara‐Checa A, Álvarez M, Rapún J, Pérez‐Martín S, Núñez‐Fernández R, Rubio‐Alarcón M, Crespo‐García T, Desviat LR, Delpón E, Caballero R, Richard E. Propionic Acidemia-Induced Proarrhythmic Electrophysiological Alterations in Human iPSC-Derived Cardiomyocytes. J Inherit Metab Dis 2025; 48:e70030. [PMID: 40302352 PMCID: PMC12041839 DOI: 10.1002/jimd.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
Propionic acidemia (PA) is a metabolic disorder caused by a deficiency of the mitochondrial enzyme propionyl-CoA carboxylase (PCC) due to mutations in the PCCA or PCCB genes, which encode the two PCC subunits. PA may lead to several types of cardiomyopathy and has been linked to cardiac electrical abnormalities such as QT interval prolongation, life-threatening arrhythmias, and sudden cardiac death. To gain insights into the mechanisms underlying PA-induced proarrhythmia, we recorded action potentials (APs) and ion currents using whole-cell patch-clamp in ventricular-like induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) from a PA patient carrying two pathogenic mutations in the PCCA gene (p.Cys616_Val633del and p.Gly477Glufs*9) (PCCA cells) and from a healthy subject (healthy cells). In cells driven at 1 Hz, PCC deficiency increased the latency and prolonged the AP duration (APD) measured at 20% of repolarization, without modifying resting membrane potential or AP amplitude. Moreover, delayed afterdepolarizations appeared at the end of the repolarization phase in unstimulated and paced PCCA cells. PCC deficiency significantly reduced peak sodium current (INa) but increased the late INa (INaL) component. In addition, L-type Ca2+ current (ICaL) density was reduced, while the inward and outward density of the Na+/Ca2+ exchanger current (INCX) was increased in PCCA cells compared to healthy ones. In conclusion, our results demonstrate that at the cellular level, PCC deficiency can modify the ion currents controlling cardiac excitability, APD, and intracellular Ca2+ handling, increasing the risk of arrhythmias independently of the progressive late-onset cardiomyopathy induced by PA disease.
Collapse
Affiliation(s)
- Anabel Cámara‐Checa
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Mar Álvarez
- Centro de Biología Molecular Severo Ochoa UAM‐CSICUniversidad Autónoma de MadridMadridSpain
| | - Josu Rapún
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Sara Pérez‐Martín
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Roberto Núñez‐Fernández
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Marcos Rubio‐Alarcón
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Teresa Crespo‐García
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Lourdes R. Desviat
- Centro de Biología Molecular Severo Ochoa UAM‐CSICUniversidad Autónoma de MadridMadridSpain
- Instituto Universitario de Biología Molecular (IUBM)MadridSpain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz)MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM‐CSICUniversidad Autónoma de MadridMadridSpain
- Instituto Universitario de Biología Molecular (IUBM)MadridSpain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz)MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos III (ISCIII)MadridSpain
| |
Collapse
|
2
|
Li YL, Li Y, Tu H, Evans AJ, Patel TA, Zheng H, Patel KP. Stellate Ganglia: A Key Therapeutic Target for Malignant Ventricular Arrhythmia in Heart Disease. Circ Res 2025; 136:1049-1069. [PMID: 40273204 PMCID: PMC12026290 DOI: 10.1161/circresaha.124.325384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Malignant ventricular arrhythmias (VAs), such as ventricular tachycardia and ventricular fibrillation, are the cause of approximately half a million deaths per year in the United States, which is a common lethal event in heart disease, such as hypertension, catecholaminergic polymorphic ventricular tachycardia, takotsubo cardiomyopathy, long-QT syndrome, and progressing into advanced heart failure. A common characteristic of these heart diseases, and the subsequent development of VAs, is the overactivation of the sympathetic nervous system. Current treatments for VAs in these heart diseases, such as β-adrenergic receptor blockers and cardiac sympathetic ablation, aim at inhibiting cardiac sympathetic overactivation. However, these treatments do not translate into becoming efficacious as long-term suppressors of ventricular tachycardia/ventricular fibrillation events. As a key regulatory component in the heart, cardiac postganglionic sympathetic neurons residing in the stellate ganglia (SGs) release neurotransmitters (such as norepinephrine and NPY [neuropeptide Y]) to perform their regulatory role in dictating cardiac function. Growing evidence from animal experiments and clinical studies has demonstrated that the remodeling of the SG may be intimately involved in malignant arrhythmogenesis. This identifies the SG as a key potential therapeutic target for the treatment of malignant VAs in heart disease. Therefore, this review summarizes the role of SG in ventricular arrhythmogenesis and updates the novel targeting of SG for clinical treatment of VAs in heart disease.
Collapse
Affiliation(s)
- Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Cellular and Integrated Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anthony J. Evans
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tapan A. Patel
- Department of Cellular and Integrated Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hong Zheng
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Kaushik P. Patel
- Department of Cellular and Integrated Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Camargo-Ayala L, Bedoya M, Dasí A, Prüser M, Schütte S, Prent-Peñaloza L, Adasme-Carreño F, Kiper AK, Rinné S, Camargo-Ayala PA, Peña-Martínez PA, Bueno-Orovio A, Varela D, Wiedmann F, Márquez Montesinos JCE, Mazola Y, Venturini W, Zúñiga R, Zúñiga L, Schmidt C, Rodriguez B, Ravens U, Decher N, Gutiérrez M, González W. Rational design, synthesis, and evaluation of novel polypharmacological compounds targeting Na V1.5, K V1.5, and K 2P channels for atrial fibrillation. J Biol Chem 2025; 301:108387. [PMID: 40054693 DOI: 10.1016/j.jbc.2025.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 04/19/2025] Open
Abstract
Atrial fibrillation (AF) involves electrical remodeling of the atria, with ion channels such as NaV1.5, KV1.5, and TASK-1 playing crucial roles. This study investigates acetamide-based compounds designed as multi-target inhibitors of these ion channels to address AF. Compound 6f emerged as the most potent in the series, demonstrating a strong inhibition of TASK-1 (IC50 ∼ 0.3 μM), a moderate inhibition of NaV1.5 (IC50 ∼ 21.2 μM) and a subtle inhibition of KV1.5 (IC50 ∼ 81.5 μM), alongside unexpected activation of TASK-4 (∼ 40% at 100 μM). Functional assays on human atrial cardiomyocytes from sinus rhythm (SR) and patients with AF revealed that 6f reduced action potential amplitude in SR (indicating NaV1.5 block), while in AF it increased action potential duration (APD), reflecting high affinity for TASK-1. Additionally, 6f caused hyperpolarization of the resting membrane potential in AF cardiomyocytes, consistent with the observed TASK-4 activation. Mathematical modeling further validated its efficacy in reducing AF burden. Pharmacokinetic analyses suggest favorable absorption and low toxicity. These findings identify 6f as a promising multi-target therapeutic candidate for AF management.
Collapse
Affiliation(s)
- Lorena Camargo-Ayala
- Doctorado en Ciencias Mención I + D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Laboratorio de Síntesis Orgánica, Universidad de Talca, Talca, Chile
| | - Mauricio Bedoya
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Albert Dasí
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Merten Prüser
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), partner site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Sven Schütte
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Luis Prent-Peñaloza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Viña del Mar, Chile
| | - Francisco Adasme-Carreño
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany; Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Paola Andrea Camargo-Ayala
- Doctorado en Ciencias Biomédicas, Laboratorio de Patología Molecular, Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Paula A Peña-Martínez
- Doctorado en Ciencias Agrarias, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile; Laboratorio de Química Enológica, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Alfonso Bueno-Orovio
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Diego Varela
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile; Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), partner site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - José C E Márquez Montesinos
- Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca, Chile; Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Yuliet Mazola
- Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca, Chile; Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Whitney Venturini
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Rafael Zúñiga
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Leandro Zúñiga
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), partner site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Ursula Ravens
- German Atrial Fibrillation Competence NETwork (AFNET), Freiburg, Germany; Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, Freiburg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany.
| | - Margarita Gutiérrez
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile.
| | - Wendy González
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile; Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca, Chile.
| |
Collapse
|
4
|
Gorenek B, Wijnmaalen AP, Goette A, Mert GO, Porter B, Gustafsson F, Dan GA, Ector J, Stuehlinger M, Spartalis M, Gosau N, Amir O, Chioncel O. Ventricular arrhythmias in acute heart failure. A clinical consensus statement of the Association for Acute CardioVascular Care (ACVC), the European Heart Rhythm Association (EHRA) and the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2025. [PMID: 40107728 DOI: 10.1002/ejhf.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Patients presenting with or alerting emergency networks due to acute heart failure (AHF) form a diverse group with a plethora of symptoms, risks, comorbidities, and aetiologies. During AHF, there is an increased risk of destabilizing the functional substrate and modulatory adding to the risk of ventricular arrhythmias (VAs) already created by the structural substrate. New VAs during AHF have previously identified patients with higher in-hospital and 60-day morbidity and mortality. Risk stratification and criteria/best time point for coronary intervention and implantable cardioverter-defibrillator implantation, however, are still controversial topics in this difficult clinical setting. The characteristics and logistics of pre-hospital emergency medicine, as well as the density of centres capable of treating AHF and VAs, differ massively throughout Europe. Scientific guidelines provide clear recommendations for the management of arrhythmias in chronic heart failure patients. However, the incidence, significance, and management of arrhythmias in patients with AHF have been less studied. This consensus paper aimed to address the identification and treatment of VAs that complicate the course of patients who have AHF, including cardiogenic shock.
Collapse
Affiliation(s)
- Bulent Gorenek
- Eskisehir Osmangazi University, Faculty of Medicine, Eskişehir, Turkey
| | | | | | - Gurbet Ozge Mert
- Eskisehir Osmangazi University, Faculty of Medicine, Eskişehir, Turkey
| | | | - Finn Gustafsson
- Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | | | | | | | - Offer Amir
- Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ovidiu Chioncel
- Institute of Cardiovascular Diseases 'Prof. C.C. Iliescu', Bucharest, Romania
| |
Collapse
|
5
|
Saksena S, Slee A. Rate Versus Rhythm Control for Atrial Fibrillation with Heart Failure. Card Electrophysiol Clin 2025; 17:19-41. [PMID: 39893035 DOI: 10.1016/j.ccep.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Atrial fibrillation with Heart Failure is a constellation of co-morbid conditions that now constitutes a major cardiovascular epidemic, with HF now the most common complication of AF. Mechanistically, both conditions promote substrate disease in the atrium and ventricle. AF is an independent rixk factor in HF progression and pump failure death. While early studies comparing rhythm control antiarrhythmic drugs and rate control drugs showed no significant benefit in cardiovascular outcomes, AF did promote HF emergence and hospitalizations. Newer rhythm control strategies with present day antiarrhythmic drugs and catheter ablation support benefits in cardiovascular outcomes in AF with HF. Catheter ablation improved HF outcomes in HF with reduced ejection fraction but further and larger studies are needed, especially for AF with HF with preserved ejection fraction.
Collapse
Affiliation(s)
- Sanjeev Saksena
- Department of Medicine, Rutgers -Robert Wood Johnson Medical School, Piscataway, NJ, USA; Biostatistics, Electrophysiology Research Foundation, Warren, NJ, USA.
| | - April Slee
- Biostatistics, Electrophysiology Research Foundation, Warren, NJ, USA
| |
Collapse
|
6
|
Antoniou CK, Chrysohoou C, Manolakou P, Tsiachris D, Kordalis A, Tsioufis K, Gatzoulis KA. Multipoint Left Ventricular Pacing as Alternative Approach in Cases of Biventricular Pacing Failure. J Clin Med 2025; 14:1065. [PMID: 40004595 PMCID: PMC11856938 DOI: 10.3390/jcm14041065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiac resynchronization therapy (CRT) is a cornerstone in the treatment of dyssynchronous heart failure with reduced ejection fraction. However, the phenomenon of non-response has plagued CRT since its initial application. Notwithstanding issues such as failure to capture the left ventricle, lower-than-required pacing delivery percent, and failure to optimize atrioventricular and interventricular delays, there are patients who fail to exhibit an adequate response to CRT in its classical biventricular pacing (BiVP) form. Several modalities have been proposed as a means to remedy this issue, including pacing the conduction system itself-His or left bundle branch pacing, allowing for intrinsic conduction in some myocardial segments, pacing the left ventricle from multiple points in the coronary sinus (multipoint pacing), or even combining the above (e.g., His/left bundle pacing and BiVP leading to His/left bundle-optimized CRT). In the present review, we present recent evidence for the advantages and disadvantages of each modality and attempt to formulate a pathophysiology and simulation-based strategy to determine the best way forward for delivering CRT in non-responders to BiVP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Konstantinos A. Gatzoulis
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, 114 Vasilissis Sofias Avenue, 11527 Athens, Greece; (C.-K.A.); (C.C.); (P.M.); (D.T.); (A.K.); (K.T.)
| |
Collapse
|
7
|
Martinez-Navarro H, Zhou X, Rodriguez B. Mechanisms and Implications of Electrical Heterogeneity in Cardiac Function in Ischemic Heart Disease. Annu Rev Physiol 2025; 87:25-51. [PMID: 39541224 DOI: 10.1146/annurev-physiol-042022-020541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A healthy heart shows intrinsic electrical heterogeneities that play a significant role in cardiac activation and repolarization. However, cardiac diseases may perturb the baseline electrical properties of the healthy cardiac tissue, leading to increased arrhythmic risk and compromised cardiac functions. Moreover, biological variability among patients produces a wide range of clinical symptoms, which complicates the treatment and diagnosis of cardiac diseases. Ischemic heart disease is usually caused by a partial or complete blockage of a coronary artery. The onset of the disease begins with myocardial ischemia, which can develop into myocardial infarction if it persists for an extended period. The progressive regional tissue remodeling leads to increased electrical heterogeneities, with adverse consequences on arrhythmic risk, cardiac mechanics, and mortality. This review aims to summarize the key role of electrical heterogeneities in the heart on cardiac function and diseases. Ischemic heart disease has been chosen as an example to show how adverse electrical remodeling at different stages may lead to variable manifestations in patients. For this, we have reviewed the dynamic electrophysiological and structural remodeling from the onset of acute myocardial ischemia and reperfusion to acute and chronic stages post-myocardial infarction. The arrhythmic mechanisms, patient phenotypes, risk stratification at different stages, and patient management strategies are also discussed. Finally, we provide a brief review on how computational approaches incorporate human electrophysiological heterogeneity to facilitate basic and translational research.
Collapse
Affiliation(s)
- Hector Martinez-Navarro
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; , ,
| | - Xin Zhou
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; , ,
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; , ,
| |
Collapse
|
8
|
Li E, Boujeddaine N, Houtman MJC, Maas RGC, Sluijter JPG, Ecker GF, Stary-Weinzinger A, van Ham WB, van der Heyden MAG. Development of new K ir2.1 channel openers from propafenone analogues. Br J Pharmacol 2025; 182:633-650. [PMID: 39419581 DOI: 10.1111/bph.17377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/21/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND PURPOSES Reduced inward rectifier potassium channel (Kir2.1) functioning is associated with heart failure and may cause Andersen-Tawil Syndrome, among others characterized by ventricular arrhythmias. Most heart failure or Andersen-Tawil Syndrome patients are treated with β-adrenoceptor antagonists (β-blockers) or sodium channel blockers; however, these do not specifically address the inward rectifier current (IK1) nor aim to improve resting membrane potential stability. Consequently, additional pharmacotherapy for heart failure and Andersen-Tawil Syndrome treatment would be highly desirable. Acute propafenone treatment at low concentrations enhances IK1 current, but it also exerts many off-target effects. Therefore, discovering and exploring new IK1-channel openers is necessary. EXPERIMENTAL APPROACH Effects of propafenone and 10 additional propafenone analogues were analysed. Currents were measured by single-cell patch-clamp electrophysiology. Kir2.1 protein expression levels were determined by western blot analysis and action potential characteristics were further validated in human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMCs). Molecular docking was performed to obtain detailed information on drug-channel interactions. KEY RESULTS Analogues GPV0019, GPV0057 and GPV0576 strongly increased the outward component of IK1 while not affecting the Kir2.1 channel expression levels. GPV0057 did not block IKr at concentrations below 0.5 μmol L-1 nor NaV1.5 current below 1 μmol L-1. Moreover, hiPSC-CMC action potential duration was also not affected by GPV0057 at 0.5 and 1 μmol L-1. Structure analysis indicates a mechanism by which GPV0057 might enhance Kir2.1 channel activation. CONCLUSION AND IMPLICATIONS GPV0057 has a strong efficiency towards increasing IK1, which makes it a good candidate to address IK1 deficiency-associated diseases.
Collapse
Affiliation(s)
- Encan Li
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Najla Boujeddaine
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marien J C Houtman
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renee G C Maas
- Department of Cardiology, Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | | | - Willem B van Ham
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Zhou X, Wang ZJ, Camps J, Tomek J, Santiago A, Quintanas A, Vazquez M, Vaseghi M, Rodriguez B. Clinical phenotypes in acute and chronic infarction explained through human ventricular electromechanical modelling and simulations. eLife 2024; 13:RP93002. [PMID: 39711335 DOI: 10.7554/elife.93002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Zhinuo Jenny Wang
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Julia Camps
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Jakub Tomek
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Alfonso Santiago
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
- ELEM Biotech, Barcelona, Spain
| | - Adria Quintanas
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
| | - Mariano Vazquez
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
- ELEM Biotech, Barcelona, Spain
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, Los Angeles, United States
- Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Ryu DG, Yu F, Yoon KT, Liu H, Lee SS. The Cardiomyocyte in Cirrhosis: Pathogenic Mechanisms Underlying Cirrhotic Cardiomyopathy. Rev Cardiovasc Med 2024; 25:457. [PMID: 39742234 PMCID: PMC11683693 DOI: 10.31083/j.rcm2512457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 01/03/2025] Open
Abstract
Cirrhotic cardiomyopathy is defined as systolic and diastolic dysfunction in patients with cirrhosis, in the absence of any primary heart disease. These changes are mainly due to the malfunction or abnormalities of cardiomyocytes. Similar to non-cirrhotic heart failure, cardiomyocytes in cirrhotic cardiomyopathy demonstrate a variety of abnormalities: from the cell membrane to the cytosol and nucleus. At the cell membrane level, biophysical plasma membrane fluidity, and membrane-bound receptors such as the beta-adrenergic, muscarinic and cannabinoid receptors are abnormal either functionally or structurally. Other changes include ion channels such as L-type calcium channels, potassium channels, and sodium transporters. In the cytosol, calcium release and uptake processes are dysfunctional and the myofilaments such as myosin heavy chain and titin, are either functionally abnormal or have structural alterations. Like the fibrotic liver, the heart in cirrhosis also shows fibrotic changes such as a collagen isoform switch from more compliant collagen III to stiffer collagen I which also impacts diastolic function. Other abnormalities include the secondary messenger cyclic adenosine monophosphate, cyclic guanosine monophosphate, and their downstream effectors such as protein kinase A and G-proteins. Finally, other changes such as excessive apoptosis of cardiomyocytes also play a critical role in the pathogenesis of cirrhotic cardiomyopathy. The present review aims to summarize these changes and review their critical role in the pathogenesis of cirrhotic cardiomyopathy.
Collapse
Affiliation(s)
- Dae Gon Ryu
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Division of Gastroenterology, Yangsan Hospital, Pusan National University Faculty of Medicine, 50612 Pusan, Republic of Korea
| | - Fengxue Yu
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Telemedicine Center, Second Hospital of Hebei Medical University, 050004 Shijiazhuang, Hebei, China
| | - Ki Tae Yoon
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Division of Gastroenterology, Yangsan Hospital, Pusan National University Faculty of Medicine, 50612 Pusan, Republic of Korea
| | - Hongqun Liu
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Samuel S. Lee
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
11
|
Alvarez JAE, Jafri MS, Ullah A. Using a Failing Human Ventricular Cardiomyocyte Model to Re-Evaluate Ca 2+ Cycling, Voltage Dependence, and Spark Characteristics. Biomolecules 2024; 14:1371. [PMID: 39595549 PMCID: PMC11591732 DOI: 10.3390/biom14111371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Previous studies have observed alterations in excitation-contraction (EC) coupling during end-stage heart failure that include action potential and calcium (Ca2+) transient prolongation and a reduction of the Ca2+ transient amplitude. Underlying these phenomena are the downregulation of potassium (K+) currents, downregulation of the sarcoplasmic reticulum Ca2+ ATPase (SERCA), increase Ca2+ sensitivity of the ryanodine receptor, and the upregulation of the sodium-calcium (Na=-Ca2+) exchanger. However, in human heart failure (HF), debate continues about the relative contributions of the changes in calcium handling vs. the changes in the membrane currents. To understand the consequences of the above changes, they are incorporated into a computational human ventricular myocyte HF model that can explore the contributions of the spontaneous Ca2+ release from the sarcoplasmic reticulum (SR). The reduction of transient outward K+ current (Ito) is the main membrane current contributor to the decrease in RyR2 open probability and L-type calcium channel (LCC) density which emphasizes its importance to phase 1 of the action potential (AP) shape and duration (APD). During current-clamp conditions, RyR2 hyperphosphorylation exhibits the least amount of Ca2+ release from the SR into the cytosol and SR Ca2+ fractional release during a dynamic slow-rapid-slow (0.5-2.5-0.5 Hz) pacing, but it displays the most abundant and more lasting Ca2+ sparks two-fold longer than a normal cell. On the other hand, under voltage-clamp conditions, HF by decreased SERCA and upregulated INCX show the least SR Ca2+ uptake and EC coupling gain, as compared to HF by hyperphosphorylated RyR2s. Overall, this study demonstrates that the (a) combined effect of SERCA and NCX, and the (b) RyR2 dysfunction, along with the downregulation of the cardiomyocyte's potassium currents, could substantially contribute to Ca2+ mishandling at the spark level that leads to heart failure.
Collapse
Affiliation(s)
- Jerome Anthony E. Alvarez
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC 20375, USA
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
12
|
Young AM, Miller JA, Ednie AR, Bennett ES. Cardiomyocyte Reduction of Hybrid/Complex N-Glycosylation in the Adult Causes Heart Failure With Reduced Ejection Fraction in the Absence of Cellular Remodeling. J Am Heart Assoc 2024; 13:e036626. [PMID: 39392134 PMCID: PMC11935583 DOI: 10.1161/jaha.124.036626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Heart failure (HF) presents a massive burden to health care with a complex pathophysiology that results in HF with reduced left ventricle ejection fraction (EF) or HF with preserved EF. It has been shown that relatively modest changes in protein glycosylation, an essential posttranslational modification, are associated with clinical presentations of HF. We and others previously showed that such aberrant protein glycosylation in animal models can lead to HF. METHODS AND RESULTS We develop and characterize a novel, tamoxifen-inducible, cardiomyocyte Mgat1 knockout mouse strain, achieved through deletion of Mgat1, alpha-1,3-mannosyl-glycoproten 2-beta-N-acetlyglucosaminyltransferase, which encodes N-acetylglucosaminyltransferase I. We investigate the role of hybrid/complex N-glycosylation in adult HFrEF pathogenesis at the ion channel, cardiomyocyte, tissue, and gross cardiac level. The data demonstrate successful reduction of N-acetylglucosaminyltransferase I activity and confirm that hybrid/complex N-glycans modulate gating of cardiomyocyte voltage-gated calcium channels. A longitudinal study shows that the tamoxifen-inducible, cardiomyocyte Mgat1 knockout mice present with significantly reduced systolic function by 28 days post induction that progresses into HFrEF by 8 weeks post induction, without significant ventricular dilation or hypertrophy. Further, there was minimal, if any, physiologic or pathophysiologic cardiomyocyte electromechanical remodeling or fibrosis observed before (10-21 days post induction) or after (90-130 days post induction) HFrEF development. CONCLUSIONS The tamoxifen-inducible, cardiomyocyte Mgat1 knockout mouse strain created and characterized here provides a model to describe novel mechanisms and causes responsible for HFrEF onset in the adult, likely occurring primarily through tissue-level reductions in electromechanical activity in the absence of (or at least before) cardiomyocyte remodeling and fibrosis.
Collapse
Affiliation(s)
- Anthony M. Young
- Department of Neuroscience, Cell Biology & PhysiologyBoonshoft School of Medicine and College of Science and Mathematics, Wright State UniversityDaytonOH
| | - John A. Miller
- Department of Neuroscience, Cell Biology & PhysiologyBoonshoft School of Medicine and College of Science and Mathematics, Wright State UniversityDaytonOH
| | - Andrew R. Ednie
- Department of Neuroscience, Cell Biology & PhysiologyBoonshoft School of Medicine and College of Science and Mathematics, Wright State UniversityDaytonOH
| | - Eric S. Bennett
- Department of Neuroscience, Cell Biology & PhysiologyBoonshoft School of Medicine and College of Science and Mathematics, Wright State UniversityDaytonOH
| |
Collapse
|
13
|
Gorenek B, Wijnmaalen AP, Goette A, Mert GO, Porter B, Gustafsson F, Dan GA, Ector J, Stuehlinger M, Spartalis M, Gosau N, Amir O, Chioncel O. Ventricular arrhythmias in acute heart failure: a clinical consensus statement of the Association for Acute CardioVascular Care, the European Heart Rhythm Association, and the Heart Failure Association of the European Society of Cardiology. Europace 2024; 26:euae235. [PMID: 39270731 PMCID: PMC11525034 DOI: 10.1093/europace/euae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024] Open
Abstract
Patients presenting with or alerting emergency networks due to acute heart failure (AHF) form a diverse group with a plethora of symptoms, risks, comorbidities, and aetiologies. During AHF, there is an increased risk of destabilizing the functional substrate and modulatory adding to the risk of ventricular arrhythmias (VAs) already created by the structural substrate. New VAs during AHF have previously identified patients with higher intra-hospital and 60-day morbidity and mortality. Risk stratification and criteria/best time point for coronary intervention and implantable cardioverter defibrillator implantation, however, are still controversial topics in this difficult clinical setting. The characteristics and logistics of pre-hospital emergency medicine, as well as the density of centres capable of treating AHF and VAs, differ massively throughout Europe. Scientific guidelines provide clear recommendations for the management of arrhythmias in patients with chronic heart failure. However, the incidence, significance, and management of arrhythmias in patients with AHF have been less studied. This consensus paper aimed to address the identification and treatment of VAs that complicate the course of patients who have AHF, including cardiogenic shock.
Collapse
Affiliation(s)
- Bulent Gorenek
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Cardiology, ESOGÜ Meselik Kampüsü, Büyükdere Mahallesi, Prof. Dr Nabi AVCI Bulvarı No: 4 Odunpazarı, Eskisehir 26040, Turkey
| | | | - Andreas Goette
- Department of Cardiology, Saint Vincenz Hospital Paderborn, Paderborn, Germany
| | - Gurbet Ozge Mert
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Cardiology, ESOGÜ Meselik Kampüsü, Büyükdere Mahallesi, Prof. Dr Nabi AVCI Bulvarı No: 4 Odunpazarı, Eskisehir 26040, Turkey
| | - Bradley Porter
- Cardiology Department, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet—Copenhagen University Hospital, Copenhagen, Denmark
| | - Gheorghe-Andrei Dan
- Carol Davila University of Medicine, Romanian Scientists Academy, Bucharest, Romania
| | - Joris Ector
- Department of Cardiology, KU Leuven, Leuven, Belgium
| | - Markus Stuehlinger
- Department of Internal Medicine III, Innsbruck Medical University, Innsbruck, Austria
| | - Michael Spartalis
- Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Nils Gosau
- Department of Cardiology, KH Hietzing, Vienna, Austria
| | - Offer Amir
- Department of Cardiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ovidiu Chioncel
- Department of Cardiology, Institute of Cardiovascular Diseases Prof. C.C. Iliescu, Bucharest, Romania
| |
Collapse
|
14
|
Ágoston M, Kohajda Z, Virág L, Baláti B, Nagy N, Lengyel C, Bitay M, Bogáts G, Vereckei A, Papp JG, Varró A, Jost N. A Comparative Study of the Rapid (I Kr) and Slow (I Ks) Delayed Rectifier Potassium Currents in Undiseased Human, Dog, Rabbit, and Guinea Pig Cardiac Ventricular Preparations. Pharmaceuticals (Basel) 2024; 17:1091. [PMID: 39204196 PMCID: PMC11357539 DOI: 10.3390/ph17081091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
To understand the large inter-species variations in drug effects on repolarization, the properties of the rapid (IKr) and the slow (IKs) components of the delayed rectifier potassium currents were compared in myocytes isolated from undiseased human donor (HM), dog (DM), rabbit (RM) and guinea pig (GM) ventricles by applying the patch clamp and conventional microelectrode techniques at 37 °C. The amplitude of the E-4031-sensitive IKr tail current measured at -40 mV after a 1 s long test pulse of 20 mV, which was very similar in HM and DM but significant larger in RM and GM. The L-735,821-sensitive IKs tail current was considerably larger in GM than in RM. In HM, the IKs tail was even smaller than in DM. At 30 mV, the IKr component was activated extremely rapidly and monoexponentially in each studied species. The deactivation of the IKr component in HM, DM, and RM measured at -40 mV. After a 30 mV pulse, it was slow and biexponential, while in GM, the IKr tail current was best fitted triexponentially. At 30 mV, the IKs component activated slowly and had an apparent monoxponential time course in HM, DM, and RM. In contrast, in GM, the activation was clearly biexponential. In HM, DM, and RM, IKs component deactivation measured at -40 mV was fast and monoexponential, while in GM, in addition to the fast component, another slower component was also revealed. These results suggest that the IK in HM resembles that measured in DM and RM and considerably differs from that observed in GM. These findings suggest that the dog and rabbit are more appropriate species than the guinea pig for preclinical evaluation of new potential drugs expected to affect cardiac repolarization.
Collapse
Affiliation(s)
- Márta Ágoston
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, P.O. Box 427, 6701 Szeged, Hungary
| | - Zsófia Kohajda
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, 6701 Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, P.O. Box 427, 6701 Szeged, Hungary
- Interdisciplinary Research and Development and Innovation Centre of Excellence, University of Szeged, 6720 Szeged, Hungary
| | - Beáta Baláti
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, P.O. Box 427, 6701 Szeged, Hungary
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, P.O. Box 427, 6701 Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, 6701 Szeged, Hungary
| | - Csaba Lengyel
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Miklós Bitay
- Department of Cardiac Surgery, Albert Szent-Györgyi Medical School, University of Szeged, 6742 Szeged, Hungary
| | - Gábor Bogáts
- Department of Cardiac Surgery, Albert Szent-Györgyi Medical School, University of Szeged, 6742 Szeged, Hungary
| | - András Vereckei
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary
| | - Julius Gy. Papp
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, P.O. Box 427, 6701 Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, 6701 Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, P.O. Box 427, 6701 Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, 6701 Szeged, Hungary
- Interdisciplinary Research and Development and Innovation Centre of Excellence, University of Szeged, 6720 Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, P.O. Box 427, 6701 Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, 6701 Szeged, Hungary
- Interdisciplinary Research and Development and Innovation Centre of Excellence, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
15
|
Zhou X, Levesque P, Chaudhary K, Davis M, Rodriguez B. Lower diastolic tension may be indicative of higher proarrhythmic propensity in failing human cardiomyocytes. Sci Rep 2024; 14:17351. [PMID: 39075069 PMCID: PMC11286957 DOI: 10.1038/s41598-024-65249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024] Open
Abstract
Chronic heart failure is one of the most common reasons for hospitalization. Current risk stratification is based on ejection fraction, whereas many arrhythmic events occur in patients with relatively preserved ejection fraction. We aim to investigate the mechanistic link between proarrhythmic abnormalities, reduced contractility and diastolic dysfunction in heart failure, using electromechanical modelling and simulations of human failing cardiomyocytes. We constructed, calibrated and validated populations of human electromechanical models of failing cardiomyocytes, that were able to reproduce the prolonged action potential, reduced contractility and diastolic dysfunction as observed in human data, as well as increased propensity to proarrhythmic incidents such as early afterdepolarization and beat-to-beat alternans. Our simulation data reveal that proarrhythmic incidents tend to occur in failing myocytes with lower diastolic tension, rather than with lower contractility, due to the relative preserved SERCA and sodium calcium exchanger current. These results support the inclusion of end-diastolic volume to be potentially beneficial in the risk stratifications of heart failure patients.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK.
| | - Paul Levesque
- Discovery Toxicology, Bristol Myers Squibb, Lawrenceville, NJ, USA
| | - Khuram Chaudhary
- Discovery Toxicology, Bristol Myers Squibb, Lawrenceville, NJ, USA
| | - Myrtle Davis
- Discovery Toxicology, Bristol Myers Squibb, Lawrenceville, NJ, USA
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| |
Collapse
|
16
|
Athari SS, Mehrabi Nasab E, Jing K, Wang J. Interaction between cardiac resynchronization therapy and cytokines in heart failure patients. Cytokine 2024; 175:156479. [PMID: 38199086 DOI: 10.1016/j.cyto.2023.156479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Congestive heart failure (CHF) is a complex multistage syndrome that has a great financial burden on human societies. It was known that the damaged myocardium sends a signal to stimulate the immune system and proliferation of leukocytes. In continuous, cytokine storm can be initiated and causes the probability of CHF. Persistent inflammation by increasing the levels of pro-inflammatory cytokines, plays an important role in the pathogenesis of CHF and causes remodeling, which is a progressive processs. Although treatment by drugs can reduce mortality and partially control the symptoms of heart failure patients, but complications and mortality are still high. Therefore, other treatment options such as Cardiac Resynchronization Therapy (CRT) are necessary. Today, it is known that CRT can be an effective treatment for many patients with heart failure. CRT is novel, non-pharmacological, and device-based therapy that would be beneficial to know more about its performance in the management of heart failure. In this study, we have reviewed the immunological processes involved in heart failure and the effect of CRT in controlling of the cytokine storm.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Entezar Mehrabi Nasab
- Department of Cardiology, School of Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Cardiology, School of Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kai Jing
- Department of Proctology, The People's Hospital of Huaiyin Jinan, 250021 Shandong, China
| | - Jin Wang
- Department of Cardiology, The Fifth People's Hospital of Jinan, 250022 Shandong, China.
| |
Collapse
|
17
|
Uehara H, Taguchi D, Osanai T, Oe Y, Yoshimura T, Yashiro S, Gunji T, Okuyama M. Naphazoline intoxication with transient QT prolongation and acute myocardial injury. J Cardiol Cases 2024; 29:11-14. [PMID: 38188313 PMCID: PMC10770086 DOI: 10.1016/j.jccase.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 08/23/2023] [Indexed: 01/09/2024] Open
Abstract
A 27-year-old Japanese woman with a history of depression and an eating disorder presented to our emergency department with a chief complaint of generalized weakness. Electrocardiography showed prominent QT prolongation with multiple ventricular contractions. Chest X-ray plain computed tomography revealed pulmonary edema. Echocardiography showed decreased left ventricular systolic function. Suspecting acute myocarditis, we performed a myocardial biopsy from the right ventricular septum. The biopsy histology revealed extensive myocardial fibrosis and a very mild inflammatory cell infiltrate. In an additional detailed medical interview, the patient admitted that she had consumed three bottles of a first-aid liquid containing naphazoline approximately ~12 h before her presentation, in a suicide attempt. Her QTc and left ventricular ejection fraction improved during hospitalization. Learning objective Acute drug intoxication can cause QT prolongation and ventricular arrhythmias, cardiomyopathy, and pulmonary edema. When acute QT prolongation, myocardial damage, and pulmonary edema are seen (suggesting acute myocarditis), naphazoline intoxication should be investigated in the differential diagnosis.
Collapse
Affiliation(s)
- Hiroki Uehara
- Department of Cardiovascular Medicine, Kin-ikyo Chuo Hospital, Sapporo, Japan
| | - Dai Taguchi
- Department of Emergency, Kin-ikyo Chuo Hospital, Sapporo, Japan
| | - Toshiaki Osanai
- Department of Cardiovascular Medicine, Kin-ikyo Chuo Hospital, Sapporo, Japan
| | - Yutaro Oe
- Department of Cardiovascular Medicine, Kin-ikyo Chuo Hospital, Sapporo, Japan
| | - Takaki Yoshimura
- Department of Cardiovascular Medicine, Kin-ikyo Chuo Hospital, Sapporo, Japan
| | | | - Takahiro Gunji
- Department of Cardiovascular Medicine, Kin-ikyo Chuo Hospital, Sapporo, Japan
| | - Masaki Okuyama
- Department of Cardiovascular Medicine, Kin-ikyo Chuo Hospital, Sapporo, Japan
| |
Collapse
|
18
|
Rahm AK, Hackbarth J, Müller ME, Pfeiffer J, Gampp H, Petersenn F, Rivinius R, Frey N, Lugenbiel P, Thomas D. Differential Effects of the Betablockers Carvedilol, Metoprolol and Bisoprolol on Cardiac K v4.3 (I to) Channel Isoforms. Int J Mol Sci 2023; 24:13842. [PMID: 37762145 PMCID: PMC10530285 DOI: 10.3390/ijms241813842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiac Kv4.3 channels contribute to the transient outward K+ current, Ito, during early repolarization of the cardiac action potential. Two different isoforms of Kv4.3 are present in the human ventricle and exhibit differential remodeling in heart failure (HF). Cardioselective betablockers are a cornerstone of HF with reduced ejection fraction therapy as well as ventricular arrhythmia treatment. In this study we examined pharmacological effects of betablockers on both Kv4.3 isoforms to explore their potential for isoform-specific therapy. Kv4.3 isoforms were expressed in Xenopus laevis oocytes and incubated with the respective betablockers. Dose-dependency and biophysical characteristics were examined. HEK 293T-cells were transfected with the two Kv4.3 isoforms and analyzed with Western blots. Carvedilol (100 µM) blocked Kv4.3 L by 77 ± 2% and Kv4.3 S by 67 ± 6%, respectively. Metoprolol (100 µM) was less effective with inhibition of 37 ± 3% (Kv4.3 L) and 35 ± 4% (Kv4.3 S). Bisoprolol showed no inhibitory effect. Current reduction was not caused by changes in Kv4.3 protein expression. Carvedilol inhibited Kv4.3 channels at physiologically relevant concentrations, affecting both isoforms. Metoprolol showed a weaker blocking effect and bisoprolol did not exert an effect on Kv4.3. Blockade of repolarizing Kv4.3 channels by carvedilol and metoprolol extend their pharmacological mechanism of action, potentially contributing beneficial antiarrhythmic effects in normal and failing hearts.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Juline Hackbarth
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Mara E. Müller
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Julia Pfeiffer
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Heike Gampp
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Finn Petersenn
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Rasmus Rivinius
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Norbert Frey
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Patrick Lugenbiel
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Dierk Thomas
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Yang PC, Rose A, DeMarco KR, Dawson JRD, Han Y, Jeng MT, Harvey RD, Santana LF, Ripplinger CM, Vorobyov I, Lewis TJ, Clancy CE. A multiscale predictive digital twin for neurocardiac modulation. J Physiol 2023; 601:3789-3812. [PMID: 37528537 PMCID: PMC10528740 DOI: 10.1113/jp284391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023] Open
Abstract
Cardiac function is tightly regulated by the autonomic nervous system (ANS). Activation of the sympathetic nervous system increases cardiac output by increasing heart rate and stroke volume, while parasympathetic nerve stimulation instantly slows heart rate. Importantly, imbalance in autonomic control of the heart has been implicated in the development of arrhythmias and heart failure. Understanding of the mechanisms and effects of autonomic stimulation is a major challenge because synapses in different regions of the heart result in multiple changes to heart function. For example, nerve synapses on the sinoatrial node (SAN) impact pacemaking, while synapses on contractile cells alter contraction and arrhythmia vulnerability. Here, we present a multiscale neurocardiac modelling and simulator tool that predicts the effect of efferent stimulation of the sympathetic and parasympathetic branches of the ANS on the cardiac SAN and ventricular myocardium. The model includes a layered representation of the ANS and reproduces firing properties measured experimentally. Model parameters are derived from experiments and atomistic simulations. The model is a first prototype of a digital twin that is applied to make predictions across all system scales, from subcellular signalling to pacemaker frequency to tissue level responses. We predict conditions under which autonomic imbalance induces proarrhythmia and can be modified to prevent or inhibit arrhythmia. In summary, the multiscale model constitutes a predictive digital twin framework to test and guide high-throughput prediction of novel neuromodulatory therapy. KEY POINTS: A multi-layered model representation of the autonomic nervous system that includes sympathetic and parasympathetic branches, each with sparse random intralayer connectivity, synaptic dynamics and conductance based integrate-and-fire neurons generates firing patterns in close agreement with experiment. A key feature of the neurocardiac computational model is the connection between the autonomic nervous system and both pacemaker and contractile cells, where modification to pacemaker frequency drives initiation of electrical signals in the contractile cells. We utilized atomic-scale molecular dynamics simulations to predict the association and dissociation rates of noradrenaline with the β-adrenergic receptor. Multiscale predictions demonstrate how autonomic imbalance may increase proclivity to arrhythmias or be used to terminate arrhythmias. The model serves as a first step towards a digital twin for predicting neuromodulation to prevent or reduce disease.
Collapse
Affiliation(s)
- Pei-Chi Yang
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
| | - Adam Rose
- Department of Mathematics, University of California Davis, Davis, CA
| | - Kevin R. DeMarco
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
| | - John R. D. Dawson
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
| | - Yanxiao Han
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
| | - Mao-Tsuen Jeng
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
| | | | - L. Fernando Santana
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
| | | | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
| | - Timothy J. Lewis
- Department of Mathematics, University of California Davis, Davis, CA
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
- Center for Precision Medicine and Data Science, University of California Davis, Sacramento, CA
| |
Collapse
|
20
|
MacLeod KT. Changes in cellular Ca 2+ and Na + regulation during the progression towards heart failure. J Physiol 2023; 601:905-921. [PMID: 35946572 PMCID: PMC10952717 DOI: 10.1113/jp283082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
In adapting to disease and loss of tissue, the heart shows great phenotypic plasticity that involves changes to its structure, composition and electrophysiology. Together with parallel whole body cardiovascular adaptations, the initial decline in cardiac function resulting from the insult is compensated. However, in the long term, the heart muscle begins to fail and patients with this condition have a very poor prognosis, with many dying from disturbances of rhythm. The surviving myocytes of these hearts gain Na+ , which is positively inotropic because of alterations to Ca2+ fluxes mediated by the Na+ /Ca2+ exchange, but compromises Ca2+ -dependent energy metabolism in mitochondria. Uptake of Ca2+ into the sarcoplasmic reticulum (SR) is reduced because of diminished function of SR Ca2+ ATPases. The result of increased Ca2+ influx and reduced SR Ca2+ uptake is an increase in the diastolic cytosolic Ca2+ concentration, which promotes spontaneous SR Ca2+ release and induces delayed afterdepolarisations. Action potential duration prolongs because of increased late Na+ current and changes in expression and function of other ion channels and transporters increasing the probability of the formation of early afterdepolarisations. There is a reduction in T-tubule density and so the normal spatial arrangements required for efficient excitation-contraction coupling are compromised and lead to temporal delays in Ca2+ release from the SR. Therefore, the structural and electrophysiological responses that occur to provide compensation do so at the expense of (1) increasing the likelihood of arrhythmogenesis; (2) activating hypertrophic, apoptotic and Ca2+ signalling pathways; and (3) decreasing the efficiency of SR Ca2+ release.
Collapse
Affiliation(s)
- Kenneth T. MacLeod
- National Heart & Lung InstituteImperial Centre for Translational and Experimental MedicineImperial CollegeHammersmith HospitalLondonUK
| |
Collapse
|
21
|
Mechanisms for the α-Adrenoceptor-Mediated Positive Inotropy in Mouse Ventricular Myocardium: Enhancing Effect of Action Potential Prolongation. Int J Mol Sci 2023; 24:ijms24043926. [PMID: 36835338 PMCID: PMC9964142 DOI: 10.3390/ijms24043926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Mechanisms for the α-adrenoceptor-mediated positive inotropy in neonatal mouse ventricular myocardium were studied with isolated myocardial preparations. The phenylephrine-induced positive inotropy was suppressed by prazosin, nifedipine, and chelerythrine, a protein kinase C inhibitor, but not by SEA0400, a selective Na+/Ca2+ exchanger inhibitor. Phenylephrine increased the L-type Ca2+ channel current and prolonged the action potential duration, while the voltage-dependent K+ channel current was not influenced. In the presence of cromakalim, an ATP-sensitive K+ channel opener, the phenylephrine-induced prolongation of action potential duration, as well as the positive inotropy, were smaller than in the absence of cromakalim. These results suggest that the α-adrenoceptor-mediated positive inotropy is mediated by an increase in Ca2+ influx through the L-type Ca2+ channel, and the concomitant increase in action potential duration acts as an enhancing factor.
Collapse
|
22
|
Electrical Remodelling in Cardiac Disease. Cells 2023; 12:cells12020230. [PMID: 36672164 PMCID: PMC9856618 DOI: 10.3390/cells12020230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The human heart responds to various diseases with structural, mechanical, and electrical remodelling processes [...].
Collapse
|
23
|
Jin X, Amoni M, Gilbert G, Dries E, Doñate Puertas R, Tomar A, Nagaraju CK, Pradhan A, Yule DI, Martens T, Menten R, Vanden Berghe P, Rega F, Sipido K, Roderick HL. InsP 3R-RyR Ca 2+ channel crosstalk facilitates arrhythmias in the failing human ventricle. Basic Res Cardiol 2022; 117:60. [PMID: 36378362 DOI: 10.1007/s00395-022-00967-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Dysregulated intracellular Ca2+ handling involving altered Ca2+ release from intracellular stores via RyR channels underlies both arrhythmias and reduced function in heart failure (HF). Mechanisms linking RyR dysregulation and disease are not fully established. Studies in animals support a role for InsP3 receptor Ca2+ channels (InsP3R) in pathological alterations in cardiomyocyte Ca2+ handling but whether these findings translate to the divergent physiology of human cardiomyocytes during heart failure is not determined. Using electrophysiological and Ca2+ recordings in human ventricular cardiomyocytes, we uncovered that Ca2+ release via InsP3Rs facilitated Ca2+ release from RyR and induced arrhythmogenic delayed after depolarisations and action potentials. InsP3R-RyR crosstalk was particularly increased in HF at RyR clusters isolated from the T-tubular network. Reduced SERCA activity in HF further facilitated the action of InsP3. Nanoscale imaging revealed co-localisation of InsP3Rs with RyRs in the dyad, which was increased in HF, providing a mechanism for augmented Ca2+ channel crosstalk. Notably, arrhythmogenic activity dependent on InsP3Rs was increased in tissue wedges from failing hearts perfused with AngII to promote InsP3 generation. These data indicate a central role for InsP3R-RyR Ca2+ signalling crosstalk in the pro-arrhythmic action of GPCR agonists elevated in HF and the potential for their therapeutic targeting.
Collapse
Affiliation(s)
- Xin Jin
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium.,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Matthew Amoni
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Guillaume Gilbert
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Eef Dries
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Rosa Doñate Puertas
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Ashutosh Tomar
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Chandan K Nagaraju
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Ankit Pradhan
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - David I Yule
- Department of Pharmacology and Physiology, Medical Center School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 711, Rochester, NY, 14642, USA
| | - Tobie Martens
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, 3000, Leuven, Belgium.,Cell and Tissue Imaging Cluster (CIC), KU Leuven, 3000, Leuven, Belgium
| | - Roxane Menten
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, 3000, Leuven, Belgium.,Cell and Tissue Imaging Cluster (CIC), KU Leuven, 3000, Leuven, Belgium
| | - Filip Rega
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium.,Department of Cardiology and Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Karin Sipido
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - H Llewelyn Roderick
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
24
|
Safabakhsh S, Al-Shaheen A, Swiggum E, Mielniczuk L, Tremblay-Gravel M, Laksman Z. Arrhythmic Sudden Cardiac Death in Heart Failure With Preserved Ejection Fraction: Mechanisms, Genetics, and Future Directions. CJC Open 2022; 4:959-969. [PMID: 36444369 PMCID: PMC9700220 DOI: 10.1016/j.cjco.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an increasingly recognized disorder. Many clinical trials have failed to demonstrate benefit in patients with HFpEF but have recognized alarming rates of sudden cardiac death (SCD). Genetic testing has become standard in the workup of patients with otherwise unexplained cardiac arrest, but the genetic architecture of HFpEF, and the overlap of a genetic predisposition to HFpEF and arrhythmias, is poorly understood. An understanding of the genetics of HFpEF and related SCD has the potential to redefine and generate novel diagnostic, prognostic, and therapeutic tools. In this review, we examine recent pathophysiological and clinical advancements in our understanding of HFpEF, which reinforce the heterogeneity of the condition. We also discuss data describing SCD events in patients with HFpEF and review the current literature on genetic underpinnings of HFpEF. Mechanisms of arrhythmogenesis which may lead to SCD in this population are also explored. Lastly, we outline several areas of promise for experimentation and clinical trials that have the potential to further advance our understanding of and contribute to improved clinical care of this patient population.
Collapse
Affiliation(s)
- Sina Safabakhsh
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Elizabeth Swiggum
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa Mielniczuk
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Zachary Laksman
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Bossuyt J, Borst JM, Verberckmoes M, Bailey LRJ, Bers DM, Hegyi B. Protein Kinase D1 Regulates Cardiac Hypertrophy, Potassium Channel Remodeling, and Arrhythmias in Heart Failure. J Am Heart Assoc 2022; 11:e027573. [PMID: 36172952 DOI: 10.1161/jaha.122.027573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Structural and electrophysiological remodeling characterize heart failure (HF) enhancing arrhythmias. PKD1 (protein kinase D1) is upregulated in HF and mediates pathological hypertrophic signaling, but its role in K+ channel remodeling and arrhythmogenesis in HF is unknown. Methods and Results We performed echocardiography, electrophysiology, and expression analysis in wild-type and PKD1 cardiomyocyte-specific knockout (cKO) mice following transverse aortic constriction (TAC). PKD1-cKO mice exhibited significantly less cardiac hypertrophy post-TAC and were protected from early decline in cardiac contractile function (3 weeks post-TAC) but not the progression to HF at 7 weeks post-TAC. Wild-type mice exhibited ventricular action potential duration prolongation at 8 weeks post-TAC, which was attenuated in PKD1-cKO, consistent with larger K+ currents via the transient outward current, sustained current, inward rectifier K+ current, and rapid delayed rectifier K+ current and increased expression of corresponding K+ channels. Conversely, reduction of slowly inactivating K+ current was independent of PKD1 in HF. Acute PKD inhibition slightly increased transient outward current in TAC and sham wild-type myocytes but did not alter other K+ currents. Sham PKD1-cKO versus wild-type also exhibited larger transient outward current and faster early action potential repolarization. Tachypacing-induced action potential duration alternans in TAC animals was increased and independent of PKD1, but diastolic arrhythmogenic activities were reduced in PKD1-cKO. Conclusions Our data indicate an important role for PKD1 in the HF-related hypertrophic response and K+ channel downregulation. Therefore, PKD1 inhibition may represent a therapeutic strategy to reduce hypertrophy and arrhythmias; however, PKD1 inhibition may not prevent disease progression and reduced contractility in HF.
Collapse
Affiliation(s)
- Julie Bossuyt
- Department of Pharmacology University of California Davis CA
| | - Johanna M Borst
- Department of Pharmacology University of California Davis CA
| | | | | | - Donald M Bers
- Department of Pharmacology University of California Davis CA
| | - Bence Hegyi
- Department of Pharmacology University of California Davis CA
| |
Collapse
|
26
|
Guarina L, Moghbel AN, Pourhosseinzadeh MS, Cudmore RH, Sato D, Clancy CE, Santana LF. Biological noise is a key determinant of the reproducibility and adaptability of cardiac pacemaking and EC coupling. J Gen Physiol 2022; 154:e202012613. [PMID: 35482009 PMCID: PMC9059386 DOI: 10.1085/jgp.202012613] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Each heartbeat begins with the generation of an action potential in pacemaking cells in the sinoatrial node. This signal triggers contraction of cardiac muscle through a process termed excitation-contraction (EC) coupling. EC coupling is initiated in dyadic structures of cardiac myocytes, where ryanodine receptors in the junctional sarcoplasmic reticulum come into close apposition with clusters of CaV1.2 channels in invaginations of the sarcolemma. Cooperative activation of CaV1.2 channels within these clusters causes a local increase in intracellular Ca2+ that activates the juxtaposed ryanodine receptors. A salient feature of healthy cardiac function is the reliable and precise beat-to-beat pacemaking and amplitude of Ca2+ transients during EC coupling. In this review, we discuss recent discoveries suggesting that the exquisite reproducibility of this system emerges, paradoxically, from high variability at subcellular, cellular, and network levels. This variability is attributable to stochastic fluctuations in ion channel trafficking, clustering, and gating, as well as dyadic structure, which increase intracellular Ca2+ variance during EC coupling. Although the effects of these large, local fluctuations in function and organization are sometimes negligible at the macroscopic level owing to spatial-temporal summation within and across cells in the tissue, recent work suggests that the "noisiness" of these intracellular Ca2+ events may either enhance or counterintuitively reduce variability in a context-dependent manner. Indeed, these noisy events may represent distinct regulatory features in the tuning of cardiac contractility. Collectively, these observations support the importance of incorporating experimentally determined values of Ca2+ variance in all EC coupling models. The high reproducibility of cardiac contraction is a paradoxical outcome of high Ca2+ signaling variability at subcellular, cellular, and network levels caused by stochastic fluctuations in multiple processes in time and space. This underlying stochasticity, which counterintuitively manifests as reliable, consistent Ca2+ transients during EC coupling, also allows for rapid changes in cardiac rhythmicity and contractility in health and disease.
Collapse
Affiliation(s)
- Laura Guarina
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Ariana Neelufar Moghbel
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | | | - Robert H. Cudmore
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Daisuke Sato
- Department of Pharmacology, University of California Davis School of Medicine, Davis, CA
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Luis Fernando Santana
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| |
Collapse
|
27
|
Feng W, Wang Z, Shi L. Effects of the Dectin-2/TNF- α Pathway on Ventricular Arrhythmia after Acute Myocardial Infarction in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2521816. [PMID: 35990845 PMCID: PMC9388250 DOI: 10.1155/2022/2521816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
Background Inflammatory responses are involved in ischemic injuries and cardiac repair after acute myocardial infarction (AMI). Dectin-2 is a C-type lectin receptor that induces cytokine production and promotes local inflammatory responses. Methods Sixty C57BL/6 mice were randomly assigned to a sham-surgery group, AMI group, or AMI + etanercept group, with 20 mice in each group. Programmed electrical stimulation (PES) was used to anesthetized mice to induce ventricular tachycardia. Real-time polymerase chain reaction (PCR) and western blot analysis were adopted to determine the expression and distribution of dectin-2 in heart tissues. The tumor necrosis factor-α (TNF-α), interferon-gamma (IFN)-γ, interleukin (IL) 4, and IL-5 levels in the serum were determined using ELISAs. Results The expression of dectin-2 and TNF-α was increased in the myocardium in AMI, and the susceptibility to ventricular arrhythmia (VA) was increased. The induction rate of VA was significantly decreased by etanercept. Compared with those in the sham-surgery group, the AMI group showed significantly higher serum TNF-α and IFN-γ levels and lower IL-4 and IL-5levels. Conclusion Dectin-2 intensifies the activation of the TNF-α immune reaction through the Th1 differentiation, which may increase vulnerability to VA in AMI.
Collapse
Affiliation(s)
- Wei Feng
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhaojun Wang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Leilei Shi
- Department of Cardiology, Langfang Fourth People's Hospital, Langfang, China
| |
Collapse
|
28
|
Chang GJ, Yeh YH, Chen WJ, Ko YS, Lai YJ, Lee YS. Candesartan Cilexetil Attenuates Arrhythmogenicity Following Pressure Overload in Rats via the Modulation of Cardiac Electrical and Structural Remodeling and Calcium Handling Dysfunction. J Am Heart Assoc 2022; 11:e024285. [PMID: 35862154 PMCID: PMC9375482 DOI: 10.1161/jaha.121.024285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Cardiac hypertrophy is associated with abnormal electrophysiology and increased arrhythmia risk. This study assessed whether candesartan cilexetil, an angiotensin II type 1 receptor blocker, could suppress arrhythmogenecity by attenuating cardiac electrical remodeling and calcium mishandling in rats with pressure‐overload hypertrophy. Methods and Results Male Sprague‐Dawley rats were randomly subjected to abdominal aorta banding or sham procedure and received either candesartan cilexetil (3.0 mg/kg per day) or vehicle by gavage for 5 weeks. Pressure overload was characterized by compensated left ventricular (LV) hypertrophy and fibrosis, increased LV pressure and its decay time, and prolonged corrected QT interval, all of which were attenuated by candesartan cilexetil treatment. Candesartan cilexetil–treated banded rat hearts displayed shorter QT intervals and lower vulnerability to atrial and ventricular tachyarrhythmias than vehicle‐treated banded hearts. Candesartan cilexetil prevented banding‐induced prolonged action potential duration and reduced the occurrence of triggered activity in LV papillary muscles. In addition, the prolonged time to 50% cell relengthening and calcium transient decay time were normalized in LV myocytes from candesartan cilexetil–treated banded rats, along with a normalization of decreased SERCA2a (sarco[endo]plasmic reticulum calcium‐ATPase) expression in LV tissues. Furthermore, candesartan cilexetil normalized depressed transient outward potassium current densities and protein and mRNA levels of both voltage‐gated potassium 4.2 and 4.3 channel subunits (Kv4.2 and Kv4.3) in banded rats. Conclusions Candesartan cilexetil protects the heart from pressure overload‐induced adverse electrical remodeling by preserving potassium channel densities. In addition, calcium handling and its molecular regulation also improved after treatment. These beneficial effects may contribute to a lower susceptibility to arrhythmias in hearts from candesartan cilexetil–treated pressure‐overloaded rats.
Collapse
Affiliation(s)
- Gwo-Jyh Chang
- Graduate Institute of Clinical Medicinal Sciences College of Medicine Chang Gung University Tao-Yuan Taiwan.,Cardiovascular Division of Medicine Chang Gung Memorial Hospital Tao-Yuan Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Division of Medicine Chang Gung Memorial Hospital Tao-Yuan Taiwan
| | - Wei-Jan Chen
- Cardiovascular Division of Medicine Chang Gung Memorial Hospital Tao-Yuan Taiwan
| | - Yu-Shien Ko
- Cardiovascular Division of Medicine Chang Gung Memorial Hospital Tao-Yuan Taiwan
| | - Ying-Ju Lai
- Cardiovascular Division of Medicine Chang Gung Memorial Hospital Tao-Yuan Taiwan.,Department of Respiratory Therapy College of Medicine Chang Gung University Tao-Yuan Taiwan
| | - Yun-Shien Lee
- Genomic Medicine Research Core Laboratory Chang Gung Memorial Hospital Tao-Yuan Taiwan.,Department of Biotechnology Ming Chuan University Tao-Yuan Taiwan
| |
Collapse
|
29
|
Yang J, Li H, Zhang C, Zhou Y. Indoxyl sulfate reduces Ito,f by activating ROS/MAPK and NF-κB signaling pathways. JCI Insight 2022; 7:e145475. [PMID: 35132967 PMCID: PMC8855797 DOI: 10.1172/jci.insight.145475] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/08/2021] [Indexed: 12/17/2022] Open
Abstract
There is a high prevalence of ventricular arrhythmias related to sudden cardiac death in patients with chronic kidney disease (CKD). To explored the possible mechanism of CKD-related ventricular arrhythmias, a CKD rat model was created, and indoxyl sulfate (IS) was further used in vivo and in vitro. This project used the following methods: patch clamp, electrocardiogram, and some molecular biology experimental techniques. IS was found to be significantly elevated in the serum of CKD rats. Interestingly, the expression levels of the fast transient outward potassium current-related (Ito,f-related) proteins (Kv4.2, Kv4.3, and KChIP2) in the heart of CKD rats and rats treated with IS decreased. IS dose-dependently reduced Ito,f density, accompanied by the decreases in Kv4.2, Kv4.3, and KChIP2 proteins in vitro. IS also prolonged the action potential duration and QT interval, and paroxysmal ventricular tachycardia could be induced by IS. In-depth studies have shown that ROS/p38MAPK, ROS-p44/42 MAPK, and NF-κB signaling pathways play key roles in the reduction of Ito,f density and Ito,f-related proteins caused by IS. These data suggest that IS reduces Ito,f-related proteins and Ito,f density by activating ROS/MAPK and NF-κB signaling pathways, and the action potential duration and QT interval are subsequently prolonged, which contributes to increasing the susceptibility to arrhythmia in CKD.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Electrocardiography
- Gene Expression Regulation
- Indican/pharmacology
- Male
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NF-kappa B/biosynthesis
- NF-kappa B/genetics
- Patch-Clamp Techniques
- RNA/genetics
- Rats
- Rats, Wistar
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Shaker Superfamily of Potassium Channels/metabolism
- Signal Transduction
- Tachycardia, Ventricular/drug therapy
- Tachycardia, Ventricular/etiology
- Tachycardia, Ventricular/genetics
Collapse
Affiliation(s)
- Jing Yang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chi Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yafeng Zhou
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
30
|
Pinocembrin mediates antiarrhythmic effects in rats with isoproterenol-induced cardiac remodeling. Eur J Pharmacol 2022; 920:174799. [DOI: 10.1016/j.ejphar.2022.174799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 11/23/2022]
|
31
|
Mene-Afejuku TO, Bamgboje AO, Ogunniyi MO, Akinboboye O, Ibebuogu UN. Ventricular Arrhythmias in Seniors with Heart Failure: Present Dilemmas and Therapeutic Considerations: A Systematic Review. Curr Cardiol Rev 2022; 18:e181021197279. [PMID: 34666644 PMCID: PMC9413729 DOI: 10.2174/1573403x17666211018095324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Heart Failure (HF) is a global public health problem, which affects over 23 million people worldwide. The prevalence of HF is higher among seniors in the USA and other developed countries. Ventricular Arrhythmias (VAs) account for 50% of deaths among patients with HF. We aim to elucidate the factors associated with VAs among seniors with HF, as well as therapies that may improve the outcomes. METHODS PubMed, Web of Science, Scopus, Cochrane Library databases, Science Direct, and Google Scholar were searched using specific keywords. The reference lists of relevant articles were searched for additional studies related to HF and VAs among seniors as well as associated outcomes. RESULTS The prevalence of VAs increases with worsening HF. A 24-hour Holter electrocardiogram may be useful in risk stratifying patients for device therapy if they do not meet the criterion of low ventricular ejection fraction. Implantable Cardiac Defibrillators (ICDs) are superior to anti-arrhythmic drugs in reducing mortality in patients with HF. Guideline-Directed Medical Therapy (GDMT) together with device therapy may be required to reduce symptoms. In general, the proportion of seniors on GDMT is low. A combination of ICDs and cardiac resynchronization therapy may improve outcomes in selected patients. CONCLUSION Seniors with HF and VAs have high mortality even with the use of device therapy and GDMT. The holistic effect of device therapy on outcomes among seniors with HF is equivocal. More studies focused on seniors with advanced HF as well as therapeutic options are, therefore, required.
Collapse
Affiliation(s)
- Tuoyo O Mene-Afejuku
- Department of Medicine, Mayo Clinic Health System, Mankato, 1025 Marsh St, Mankato, MN 56001, USA.,Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Abayomi O Bamgboje
- Department of Medicine, New York Medical College, Metropolitan Hospital Center, NY, USA
| | - Modele O Ogunniyi
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Uzoma N Ibebuogu
- Department of Internal Medicine (Cardiology), University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| |
Collapse
|
32
|
Cho JH. Sudden Death and Ventricular Arrhythmias in Heart Failure With Preserved Ejection Fraction. Korean Circ J 2022; 52:251-264. [PMID: 35388994 PMCID: PMC8989786 DOI: 10.4070/kcj.2021.0420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jae Hyung Cho
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
33
|
Robinson VM, Alsalahat I, Freeman S, Antzelevitch C, Barajas-Martinez H, Venetucci L. A Carvedilol Analogue, VK-II-86, Prevents Hypokalaemia-induced Ventricular Arrhythmia through Novel multi-Channel Effects. Br J Pharmacol 2021; 179:2713-2732. [PMID: 34877651 DOI: 10.1111/bph.15775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/07/2021] [Accepted: 11/23/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE QT prolongation and intracellular Ca2+ loading with diastolic Ca2+ release via ryanodine receptors (RyR2) are the predominant mechanisms underlying hypokalaemia-induced ventricular arrhythmia. We investigated the antiarrhythmic actions of two RyR2 inhibitors: dantrolene and VK-II-86, a carvedilol analogue with no β-blocking activity, in hypokalaemia. EXPERIMENTAL APPROACH Surface ECG and ventricular action potentials (APs) were recorded from whole-heart murine Langendorff preparations. Ventricular arrhythmia incidence was compared in hearts perfused with low [K+ ], and those pre-treated with dantrolene or VK-II-86. Whole-cell patch clamping was used in murine and canine ventricular cardiomyocytes to study the effects of dantrolene and VK-II-86 on AP parameters in low [K+ ] and the effects of VK-II-86 on the inward rectifier current (IK1 ), late sodium current (INa_L ) and the L-type Ca2+ current (ICa ). Effects of VK-II-86 on IKr were investigated in transfected HEK-293 cells. A fluorogenic probe quantified the effects of VK-II-86 on oxidative stress in hypokalaemia. KEY RESULTS Dantrolene reduced the incidence of ventricular arrhythmias induced by low [K+ ] in explanted murine hearts by 94%, whereas VK-II-86 prevented all arrhythmias. VK-II-86 prevented hypokalaemia-induced AP prolongation and depolarization, but did not alter AP parameters in normokalaemia. Hypokalaemia was associated with a significant reduction of IK1 and IKr , and increase in INa-L , and ICa . VK-II-86 prevented all hypokalaemia-induced changes in ion channel activity and oxidative stress. CONCLUSIONS AND IMPLICATIONS VK-II-86 prevents hypokalaemia-induced arrhythmogenesis by normalising calcium homeostasis and repolarization reserve. VK-II-86 may provide an exciting treatment in hypokalaemia and other arrhythmias caused by delayed repolarization or Ca2+ overload.
Collapse
Affiliation(s)
- Victoria M Robinson
- The University of Manchester, UK.,Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | | | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood, PA, USA.,Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,Lankenau Heart Institute, Wynnewood, PA, USA
| | | | | |
Collapse
|
34
|
Tóth N, Soós A, Váradi A, Hegyi P, Tinusz B, Vágvölgyi A, Orosz A, Solymár M, Polyák A, Varró A, Farkas AS, Nagy N. Effect of ivabradine in heart failure: a meta-analysis of heart failure patients with reduced versus preserved ejection fraction. Can J Physiol Pharmacol 2021; 99:1159-1174. [PMID: 34636643 DOI: 10.1139/cjpp-2020-0700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In clinical trials of heart failure reduced ejection fraction (HFrEF), ivabradine seemed to be an effective heart rate lowering agent associated with lower risk of cardiovascular death. In contrast, ivabradine failed to improve cardiovascular outcomes in heart failure preserved ejection fraction (HFpEF) despite the significant effect on heart rate. This meta-analysis is the first to compare the effects of ivabradine on heart rate and mortality parameters in HFpEF versus HFrEF. We screened three databases: PubMed, Embase, and Cochrane Library. The outcomes of these studies were mortality, reduction in heart rate, and left ventricular function improvement. We compared the efficacy of ivabradine treatment in HFpEF versus HFrEF. Heart rate analysis of pooled data showed decrease in both HFrEF (-17.646 beats/min) and HFpEF (-11.434 beats/min), and a tendency to have stronger bradycardic effect in HFrEF (p = 0.094) in randomized clinical trials. Left ventricular ejection fraction analysis revealed significant improvement in HFrEF (5.936, 95% CI: [4.199-7.672], p < 0.001) when compared with placebo (p < 0.001). We found that ivabradine significantly improves left ventricular performance in HFrEF, at the same time it exerts a tendency to have improved bradycardic effect in HFrEF. These disparate effects of ivabradine and the higher prevalence of non-cardiac comorbidities in HFpEF may explain the observed beneficial effects in HFrEF and the unchanged outcomes in HFpEF patients after ivabradine treatment.
Collapse
Affiliation(s)
- Noémi Tóth
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary
| | - Alexandra Soós
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Alex Váradi
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Benedek Tinusz
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
- First Department of Medicine, Medical School, University of Pécs, Ifjúság Street 13, Pécs 7624, Hungary
| | - Anna Vágvölgyi
- Department of Internal Medicine, Albert Szent-Györgyi Medical School University of Szeged, Kálvária sgt. 57, Szeged 6720, Hungary
| | - Andrea Orosz
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary
| | - Margit Solymár
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Alexandra Polyák
- Department of Internal Medicine, Albert Szent-Györgyi Medical School University of Szeged, Kálvária sgt. 57, Szeged 6720, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Attila S Farkas
- Department of Internal Medicine, Albert Szent-Györgyi Medical School University of Szeged, Kálvária sgt. 57, Szeged 6720, Hungary
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| |
Collapse
|
35
|
Qauli AI, Marcellinus A, Lim KM. Sensitivity Analysis of Ion Channel Conductance on Myocardial Electromechanical Delay: Computational Study. Front Physiol 2021; 12:697693. [PMID: 34512377 PMCID: PMC8430256 DOI: 10.3389/fphys.2021.697693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/29/2021] [Indexed: 02/03/2023] Open
Abstract
It is well known that cardiac electromechanical delay (EMD) can cause dyssynchronous heart failure (DHF), a prominent cardiovascular disease (CVD). This work computationally assesses the conductance variation of every ion channel on the cardiac cell to give rise to EMD prolongation. The electrical and mechanical models of human ventricular tissue were simulated, using a population approach with four conductance reductions for each ion channel. Then, EMD was calculated by determining the difference between the onset of action potential and the start of cell shortening. Finally, EMD data were put into the optimized conductance dimensional stacking to show which ion channel has the most influence in elongating the EMD. We found that major ion channels, such as L-type calcium (CaL), slow-delayed rectifier potassium (Ks), rapid-delayed rectifier potassium (Kr), and inward rectifier potassium (K1), can significantly extend the action potential duration (APD) up to 580 ms. Additionally, the maximum intracellular calcium (Cai) concentration is greatly affected by the reduction in channel CaL, Ks, background calcium, and Kr. However, among the aforementioned major ion channels, only the CaL channel can play a superior role in prolonging the EMD up to 83 ms. Furthermore, ventricular cells with long EMD have been shown to inherit insignificant mechanical response (in terms of how strong the tension can grow and how far length shortening can go) compared with that in normal cells. In conclusion, despite all variations in every ion channel conductance, only the CaL channel can play a significant role in extending EMD. In addition, cardiac cells with long EMD tend to have inferior mechanical responses due to a lack of Cai compared with normal conditions, which are highly likely to result in a compromised pump function of the heart.
Collapse
Affiliation(s)
- Ali Ikhsanul Qauli
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Aroli Marcellinus
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Ki Moo Lim
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| |
Collapse
|
36
|
Marian AJ, Asatryan B, Wehrens XHT. Genetic basis and molecular biology of cardiac arrhythmias in cardiomyopathies. Cardiovasc Res 2021; 116:1600-1619. [PMID: 32348453 DOI: 10.1093/cvr/cvaa116] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias are common, often the first, and sometimes the life-threatening manifestations of hereditary cardiomyopathies. Pathogenic variants in several genes known to cause hereditary cardiac arrhythmias have also been identified in the sporadic cases and small families with cardiomyopathies. These findings suggest a shared genetic aetiology of a subset of hereditary cardiomyopathies and cardiac arrhythmias. The concept of a shared genetic aetiology is in accord with the complex and exquisite interplays that exist between the ion currents and cardiac mechanical function. However, neither the causal role of cardiac arrhythmias genes in cardiomyopathies is well established nor the causal role of cardiomyopathy genes in arrhythmias. On the contrary, secondary changes in ion currents, such as post-translational modifications, are common and contributors to the pathogenesis of arrhythmias in cardiomyopathies through altering biophysical and functional properties of the ion channels. Moreover, structural changes, such as cardiac hypertrophy, dilatation, and fibrosis provide a pro-arrhythmic substrate in hereditary cardiomyopathies. Genetic basis and molecular biology of cardiac arrhythmias in hereditary cardiomyopathies are discussed.
Collapse
Affiliation(s)
- Ali J Marian
- Department of Medicine, Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xander H T Wehrens
- Department of Biophysics and Molecular Physiology, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
37
|
Aronis KN, Prakosa A, Bergamaschi T, Berger RD, Boyle PM, Chrispin J, Ju S, Marine JE, Sinha S, Tandri H, Ashikaga H, Trayanova NA. Characterization of the Electrophysiologic Remodeling of Patients With Ischemic Cardiomyopathy by Clinical Measurements and Computer Simulations Coupled With Machine Learning. Front Physiol 2021; 12:684149. [PMID: 34335294 PMCID: PMC8317643 DOI: 10.3389/fphys.2021.684149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
RATIONALE Patients with ischemic cardiomyopathy (ICMP) are at high risk for malignant arrhythmias, largely due to electrophysiological remodeling of the non-infarcted myocardium. The electrophysiological properties of the non-infarcted myocardium of patients with ICMP remain largely unknown. OBJECTIVES To assess the pro-arrhythmic behavior of non-infarcted myocardium in ICMP patients and couple computational simulations with machine learning to establish a methodology for the development of disease-specific action potential models based on clinically measured action potential duration restitution (APDR) data. METHODS AND RESULTS We enrolled 22 patients undergoing left-sided ablation (10 ICMP) and compared APDRs between ICMP and structurally normal left ventricles (SNLVs). APDRs were clinically assessed with a decremental pacing protocol. Using genetic algorithms (GAs), we constructed populations of action potential models that incorporate the cohort-specific APDRs. The variability in the populations of ICMP and SNLV models was captured by clustering models based on their similarity using unsupervised machine learning. The pro-arrhythmic potential of ICMP and SNLV models was assessed in cell- and tissue-level simulations. Clinical measurements established that ICMP patients have a steeper APDR slope compared to SNLV (by 38%, p < 0.01). In cell-level simulations, APD alternans were induced in ICMP models at a longer cycle length compared to SNLV models (385-400 vs 355 ms). In tissue-level simulations, ICMP models were more susceptible for sustained functional re-entry compared to SNLV models. CONCLUSION Myocardial remodeling in ICMP patients is manifested as a steeper APDR compared to SNLV, which underlies the greater arrhythmogenic propensity in these patients, as demonstrated by cell- and tissue-level simulations using action potential models developed by GAs from clinical measurements. The methodology presented here captures the uncertainty inherent to GAs model development and provides a blueprint for use in future studies aimed at evaluating electrophysiological remodeling resulting from other cardiac diseases.
Collapse
Affiliation(s)
- Konstantinos N. Aronis
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
- Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Adityo Prakosa
- Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Teya Bergamaschi
- Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ronald D. Berger
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Patrick M. Boyle
- Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jonathan Chrispin
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Suyeon Ju
- Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Joseph E. Marine
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Sunil Sinha
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Harikrishna Tandri
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Hiroshi Ashikaga
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Natalia A. Trayanova
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
- Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
38
|
Hekmat AS, Navabi Z, Alipanah H, Javanmardi K. Alamandine significantly reduces doxorubicin-induced cardiotoxicity in rats. Hum Exp Toxicol 2021; 40:1781-1795. [PMID: 33882726 DOI: 10.1177/09603271211010896] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic. Despite its unwanted side effects, it has been successfully used in tumor therapy. Given that oxidative stress and inflammatory factors are essential to cardiotoxicity caused by DOX, we assumed that alamandine, which enhances endogenous antioxidants and has anti-inflammatory effects, may prevent DOX-induced cardiotoxicity. Rats received DOX (3.75 mg/kg) i.p on days 14, 21, 28, and 35 (total cumulative dose = 15 mg/kg) and alamandine (50 μg/kg/day) via mini-osmotic pumps for 42 days. At the end of the 42-day period, we evaluated hemodynamic parameters, electrocardiogram, cardiac troponin I (cTnI), superoxidase dismutase (SOD), total antioxidant capacity (TAC), malondialdehyde (MDA), inflammatory cytokines (tumor necrosis factor-α (TNF-α), IL-1β, NF-κB), apoptosis markers (caspase 3), and histopathology of haemotoxylin- and eosin-stained cardiac muscle fibers were evaluated. DOX significantly increased QT, corrected QT (QTc), and RR intervals. Alamandine co-therapy prevented ECG changes. Alamandine administration restored DOX-induced disruptions in the cardiac muscle architecture and vascular congestion. Alamandine co-therapy also alleviated other effects of DOX, including cardiac contractility, decreased systolic and diastolic blood pressure, and increased left ventricular end-diastolic pressure. Moreover, alamandine co-therapy substantially decreased the elevation of oxidative stress markers, inflammatory cytokines, and caspase 3 in DOX-treated rats. The results suggest that alamandine reduced DOX-induced cardiotoxicity via antioxidant, anti-inflammatory, and anti-apoptotic activities.
Collapse
Affiliation(s)
- Ava Soltani Hekmat
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Navabi
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Hiva Alipanah
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Kazem Javanmardi
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
39
|
Romanowicz J, Guerrelli D, Dhari Z, Mulvany C, Reilly M, Swift L, Vasandani N, Ramadan M, Leatherbury L, Ishibashi N, Posnack NG. Chronic perinatal hypoxia delays cardiac maturation in a mouse model for cyanotic congenital heart disease. Am J Physiol Heart Circ Physiol 2021; 320:H1873-H1886. [PMID: 33739154 DOI: 10.1152/ajpheart.00870.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Compared with acyanotic congenital heart disease (CHD), cyanotic CHD has an increased risk of lifelong mortality and morbidity. These adverse outcomes may be attributed to delayed cardiomyocyte maturation, since the transition from a hypoxic fetal milieu to oxygen-rich postnatal environment is disrupted. We established a rodent model to replicate hypoxic myocardial conditions spanning perinatal development, and tested the hypothesis that chronic hypoxia impairs cardiac development. Pregnant mice were housed in hypoxia beginning at embryonic day 16. Pups stayed in hypoxia until postnatal day (P)8 when cardiac development is nearly complete. Global gene expression was quantified at P8 and at P30, after recovering in normoxia. Phenotypic testing included electrocardiogram, echocardiogram, and ex vivo electrophysiology study. Hypoxic P8 animals were 47% smaller than controls with preserved heart size. Gene expression was grossly altered by hypoxia at P8 (1,427 genes affected), but normalized after recovery (P30). Electrocardiograms revealed bradycardia and slowed conduction velocity in hypoxic animals at P8, with noticeable resolution after recovery (P30). Notable differences that persisted after recovery (P30) included a 65% prolongation in ventricular effective refractory period, sinus node dysfunction, 23% reduction in ejection fraction, and 16% reduction in fractional shortening in animals exposed to hypoxia. We investigated the impact of chronic hypoxia on the developing heart. Perinatal hypoxia was associated with changes in gene expression and cardiac function. Persistent changes to the electrophysiological substrate and contractile function warrant further investigation and may contribute to adverse outcomes observed in the cyanotic CHD population.NEW & NOTEWORTHY We utilized a new mouse model of chronic perinatal hypoxia to simulate the hypoxic myocardial conditions present in cyanotic congenital heart disease. Hypoxia caused numerous abnormalities in cardiomyocyte gene expression, the electrophysiologic substrate of the heart, and contractile function. Taken together, alterations observed in the neonatal period suggest delayed cardiac development immediately following hypoxia.
Collapse
Affiliation(s)
- Jennifer Romanowicz
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia
| | - Devon Guerrelli
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia.,Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Zaenab Dhari
- Center for Neuroscience Research, Children's National Research Institute, Washington, District of Columbia
| | - Colm Mulvany
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia
| | - Marissa Reilly
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia
| | - Luther Swift
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia
| | - Nimisha Vasandani
- Center for Neuroscience Research, Children's National Research Institute, Washington, District of Columbia
| | - Manelle Ramadan
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia
| | - Linda Leatherbury
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia
| | - Nobuyuki Ishibashi
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia.,Center for Neuroscience Research, Children's National Research Institute, Washington, District of Columbia.,Department of Pediatrics, George Washington University, Washington, District of Columbia.,Department of Pharmacology & Physiology, George Washington University, Washington, District of Columbia
| | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia.,Department of Pediatrics, George Washington University, Washington, District of Columbia.,Department of Pharmacology & Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
40
|
Ozturk N, Uslu S, Ozdemir S. Diabetes-induced changes in cardiac voltage-gated ion channels. World J Diabetes 2021; 12:1-18. [PMID: 33520105 PMCID: PMC7807254 DOI: 10.4239/wjd.v12.i1.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus affects the heart through various mechanisms such as microvascular defects, metabolic abnormalities, autonomic dysfunction and incompatible immune response. Furthermore, it can also cause functional and structural changes in the myocardium by a disease known as diabetic cardiomyopathy (DCM) in the absence of coronary artery disease. As DCM progresses it causes electrical remodeling of the heart, left ventricular dysfunction and heart failure. Electrophysiological changes in the diabetic heart contribute significantly to the incidence of arrhythmias and sudden cardiac death in diabetes mellitus patients. In recent studies, significant changes in repolarizing K+ currents, Na+ currents and L-type Ca2+ currents along with impaired Ca2+ homeostasis and defective contractile function have been identified in the diabetic heart. In addition, insulin levels and other trophic factors change significantly to maintain the ionic channel expression in diabetic patients. There are many diagnostic tools and management options for DCM, but it is difficult to detect its development and to effectively prevent its progress. In this review, diabetes-associated alterations in voltage-sensitive cardiac ion channels are comprehensively assessed to understand their potential role in the pathophysiology and pathogenesis of DCM.
Collapse
Affiliation(s)
- Nihal Ozturk
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Serkan Uslu
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Semir Ozdemir
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| |
Collapse
|
41
|
McTiernan CF, Lemster BH, Bedi KC, Margulies KB, Moravec CS, Hsieh PN, Shusterman V, Saba S. Circadian Pattern of Ion Channel Gene Expression in Failing Human Hearts. Circ Arrhythm Electrophysiol 2020; 14:e009254. [PMID: 33301345 DOI: 10.1161/circep.120.009254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ventricular tachyarrhythmias and sudden cardiac death show a circadian pattern of occurrence in patients with heart failure. In the rodent ventricle, a significant portion of genes, including some ion channels, shows a circadian pattern of expression. However, genes that define electrophysiological properties in failing human heart ventricles have not been examined for a circadian expression pattern. METHODS Ventricular tissue samples were collected from patients at the time of cardiac transplantation. Two sets of samples (n=37 and 46, one set with a greater arrhythmic history) were selected to generate pseudo-time series according to their collection time. A third set (n=27) of samples was acquired from the nonfailing ventricles of brain-dead donors. The expression of 5 known circadian clock genes and 19 additional ion channel genes plausibly important to electrophysiological properties were analyzed by real-time polymerase chain reaction and then analyzed for the percentage of expression variation attributed to a 24-hour circadian pattern. RESULTS The 5 known circadian clock gene transcripts showed a strong circadian expression pattern. Compared with rodent hearts, the human circadian clock gene transcripts showed a similar temporal order of acrophases but with a ≈7.6 hours phase shift. Five of the ion channel genes also showed strong circadian expression. Comparable studies of circadian clock gene expression in samples recovered from nonheart failure brain-dead donors showed acrophase shifts, or weak or complete loss of circadian rhythmicity, suggesting alterations in circadian gene expression. CONCLUSIONS Ventricular tissue from failing human hearts display a circadian pattern of circadian clock gene expression but phase-shifted relative to rodent hearts. At least 5 ion channels show a circadian expression pattern in the ventricles of failing human hearts, which may underlie a circadian pattern of ventricular tachyarrhythmia/sudden cardiac death. Nonfailing hearts from brain-dead donors show marked differences in circadian clock gene expression patterns, suggesting fundamental deviations from circadian expression.
Collapse
Affiliation(s)
- Charles F McTiernan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA (C.F.M., B.H.L., S.S.)
| | - Bonnie H Lemster
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA (C.F.M., B.H.L., S.S.)
| | - Kenneth C Bedi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.C.B)
| | - Kenneth B Margulies
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.B.M.)
| | - Christine S Moravec
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, OH (C.S.M.)
| | | | | | - Samir Saba
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA (C.F.M., B.H.L., S.S.)
| |
Collapse
|
42
|
Trum M, Islam MMT, Lebek S, Baier M, Hegner P, Eaton P, Maier LS, Wagner S. Inhibition of cardiac potassium currents by oxidation-activated protein kinase A contributes to early afterdepolarizations in the heart. Am J Physiol Heart Circ Physiol 2020; 319:H1347-H1357. [PMID: 33035439 PMCID: PMC7792712 DOI: 10.1152/ajpheart.00182.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have been shown to prolong cardiac action potential duration resulting in afterdepolarizations, the cellular basis of triggered arrhythmias. As previously shown, protein kinase A type I (PKA I) is readily activated by oxidation of its regulatory subunits. However, the relevance of this mechanism of activation for cardiac pathophysiology is still elusive. In this study, we investigated the effects of oxidation-activated PKA I on cardiac electrophysiology. Ventricular cardiomyocytes were isolated from redox-dead PKA-RI Cys17Ser knock-in (KI) and wild-type (WT) mice and exposed to H2O2 (200 µmol/L) or vehicle (Veh) solution. In WT myocytes, exposure to H2O2 significantly increased oxidation of the regulatory subunit I (RI) and thus its dimerization (threefold increase in PKA RI dimer). Whole cell current clamp and voltage clamp were used to measure cardiac action potentials (APs), transient outward potassium current (Ito) and inward rectifying potassium current (IK1), respectively. In WT myocytes, H2O2 exposure significantly prolonged AP duration due to significantly decreased Ito and IK1 resulting in frequent early afterdepolarizations (EADs). Preincubation with the PKA-specific inhibitor Rp-8-Br-cAMPS (10 µmol/L) completely abolished the H2O2-dependent decrease in Ito and IK1 in WT myocytes. Intriguingly, H2O2 exposure did not prolong AP duration, nor did it decrease Ito, and only slightly enhanced EAD frequency in KI myocytes. Treatment of WT and KI cardiomyocytes with the late INa inhibitor TTX (1 µmol/L) completely abolished EAD formation. Our results suggest that redox-activated PKA may be important for H2O2-dependent arrhythmias and could be important for the development of specific antiarrhythmic drugs.NEW & NOTEWORTHY Oxidation-activated PKA type I inhibits transient outward potassium current (Ito) and inward rectifying potassium current (IK1) and contributes to ROS-induced APD prolongation as well as generation of early afterdepolarizations in murine ventricular cardiomyocytes.
Collapse
Affiliation(s)
- M. Trum
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - M. M. T. Islam
- 2Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
- 3Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - S. Lebek
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - M. Baier
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - P. Hegner
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - P. Eaton
- 4The William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - L. S. Maier
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - S. Wagner
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
43
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
44
|
Zasadny FM, Dyavanapalli J, Dowling NM, Mendelowitz D, Kay MW. Cholinergic stimulation improves electrophysiological rate adaptation during pressure overload-induced heart failure in rats. Am J Physiol Heart Circ Physiol 2020; 319:H1358-H1368. [PMID: 33006920 PMCID: PMC7792708 DOI: 10.1152/ajpheart.00293.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Left ventricular (LV) electrical maladaptation to increased heart rate in failing myocardium contributes to morbidity and mortality. Recently, cardiac cholinergic neuron activation reduced loss of contractile function resulting from chronic trans-aortic constriction (TAC) in rats. We hypothesized that chronic activation of cardiac cholinergic neurons would also reduce TAC-induced derangement of cardiac electrical activity. METHODS We investigated electrophysiological rate adaptation in TAC rat hearts with and without daily chemogenetic activation of hypothalamic oxytocin neurons for downstream cardiac cholinergic neuron stimulation. Sprague Dawley rat hearts were excised, perfused, and optically mapped under dynamic pacing after 16 weeks of TAC with or without 12 weeks of daily chemogenetic treatment. Action potential duration (APD60) and conduction velocity (CV) maps were analyzed for regional rate adaptation to dynamic pacing. RESULTS At lower pacing rates, untreated TAC induced elevated LV epicardial APD60. Fitted APD60 steady state (APDss) was reduced in treated TAC hearts. At higher pacing rates, treatment heterogeneously reduced APD60 compared to untreated TAC hearts. Variance of conduction loss was reduced in treated hearts compared to untreated hearts during fast pacing. However, CV was markedly reduced in both treated and untreated TAC hearts throughout dynamic pacing. At 150msec pacing cycle length, APD60 v. diastolic interval (DI) dispersion was reduced in treated hearts compared to untreated hearts. CONCLUSIONS Chronic activation of cardiac cholinergic neurons improved electrophysiological adaptation to increases in pacing rate during development of TAC-induced heart failure. This provides insight into the electrophysiological benefits of cholinergic stimulation as a treatment for heart failure patients.
Collapse
Affiliation(s)
| | | | | | - David Mendelowitz
- Pharmacology and Physiology, George Washington University, United States
| | - Matthew W Kay
- Biomedical Engineering, George Washington University, United States
| |
Collapse
|
45
|
Stølen TO, Høydal MA, Ahmed MS, Jørgensen K, Garten K, Hortigon-Vinagre MP, Zamora V, Scrimgeour NR, Berre AMO, Nes BM, Skogvoll E, Johnsen AB, Moreira JBN, McMullen JR, Attramadal H, Smith GL, Ellingsen Ø, Wisløff U. Exercise training reveals micro-RNAs associated with improved cardiac function and electrophysiology in rats with heart failure after myocardial infarction. J Mol Cell Cardiol 2020; 148:106-119. [PMID: 32918915 DOI: 10.1016/j.yjmcc.2020.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/09/2023]
Abstract
AIMS Endurance training improves aerobic fitness and cardiac function in individuals with heart failure. However, the underlying mechanisms are not well characterized. Exercise training could therefore act as a tool to discover novel targets for heart failure treatment. We aimed to associate changes in Ca2+ handling and electrophysiology with micro-RNA (miRNA) profile in exercise trained heart failure rats to establish which miRNAs induce heart failure-like effects in Ca2+ handling and electrophysiology. METHODS AND RESULTS Post-myocardial infarction (MI) heart failure was induced in Sprague Dawley rats. Rats with MI were randomized to sedentary control (sed), moderate (mod)- or high-intensity (high) endurance training for 8 weeks. Exercise training improved cardiac function, Ca2+ handling and electrophysiology including reduced susceptibility to arrhythmia in an exercise intensity-dependent manner where high intensity gave a larger effect. Fifty-five miRNAs were significantly regulated (up or down) in MI-sed, of which 18 and 3 were changed towards Sham-sed in MI-high and MI-mod, respectively. Thereafter we experimentally altered expression of these "exercise-miRNAs" individually in human induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CM) in the same direction as they were changed in MI. Of the "exercise-miRNAs", miR-214-3p prolonged AP duration, whereas miR-140 and miR-208a shortened AP duration. miR-497-5p prolonged Ca2+ release whereas miR-214-3p and miR-31a-5p prolonged Ca2+ decay. CONCLUSION Using exercise training as a tool, we discovered that miR-214-3p, miR-497-5p, miR-31a-5p contribute to heart-failure like behaviour in Ca2+ handling and electrophysiology and could be potential treatment targets.
Collapse
Affiliation(s)
- Tomas O Stølen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Cardiothoracic Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Morten A Høydal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Cardiothoracic Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Muhammad Shakil Ahmed
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kari Jørgensen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Karin Garten
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maria P Hortigon-Vinagre
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Victor Zamora
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Nathan R Scrimgeour
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Marie Ormbostad Berre
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjarne M Nes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Eirik Skogvoll
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Anesthesia and Intensive Care Medicine, St. Olav University Hospital, Trondheim, Norway
| | - Anne Berit Johnsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jose B N Moreira
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julie R McMullen
- Cardiac Hypertrophy Laboratory, Baker Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Godfrey L Smith
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Øyvind Ellingsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; School of Human Movement & Nutrition Sciences, University of Queensland, Australia
| |
Collapse
|
46
|
Lippi M, Stadiotti I, Pompilio G, Sommariva E. Human Cell Modeling for Cardiovascular Diseases. Int J Mol Sci 2020; 21:E6388. [PMID: 32887493 PMCID: PMC7503257 DOI: 10.3390/ijms21176388] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022] Open
Abstract
The availability of appropriate and reliable in vitro cell models recapitulating human cardiovascular diseases has been the aim of numerous researchers, in order to retrace pathologic phenotypes, elucidate molecular mechanisms, and discover therapies using simple and reproducible techniques. In the past years, several human cell types have been utilized for these goals, including heterologous systems, cardiovascular and non-cardiovascular primary cells, and embryonic stem cells. The introduction of induced pluripotent stem cells and their differentiation potential brought new prospects for large-scale cardiovascular experiments, bypassing ethical concerns of embryonic stem cells and providing an advanced tool for disease modeling, diagnosis, and therapy. Each model has its advantages and disadvantages in terms of accessibility, maintenance, throughput, physiological relevance, recapitulation of the disease. A higher level of complexity in diseases modeling has been achieved with multicellular co-cultures. Furthermore, the important progresses reached by bioengineering during the last years, together with the opportunities given by pluripotent stem cells, have allowed the generation of increasingly advanced in vitro three-dimensional tissue-like constructs mimicking in vivo physiology. This review provides an overview of the main cell models used in cardiovascular research, highlighting the pros and cons of each, and describing examples of practical applications in disease modeling.
Collapse
Affiliation(s)
- Melania Lippi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
| | - Ilaria Stadiotti
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
| |
Collapse
|
47
|
Towards the Development of AgoKirs: New Pharmacological Activators to Study K ir2.x Channel and Target Cardiac Disease. Int J Mol Sci 2020; 21:ijms21165746. [PMID: 32796537 PMCID: PMC7461056 DOI: 10.3390/ijms21165746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Inward rectifier potassium ion channels (IK1-channels) of the Kir2.x family are responsible for maintaining a stable negative resting membrane potential in excitable cells, but also play a role in processes of non-excitable tissues, such as bone development. IK1-channel loss-of-function, either congenital or acquired, has been associated with cardiac disease. Currently, basic research and specific treatment are hindered by the absence of specific and efficient Kir2.x channel activators. However, twelve different compounds, including approved drugs, show off-target IK1 activation. Therefore, these compounds contain valuable information towards the development of agonists of Kir channels, AgoKirs. We reviewed the mechanism of IK1 channel activation of these compounds, which can be classified as direct or indirect activators. Subsequently, we examined the most viable starting points for rationalized drug development and possible safety concerns with emphasis on cardiac and skeletal muscle adverse effects of AgoKirs. Finally, the potential value of AgoKirs is discussed in view of the current clinical applications of potentiators and activators in cystic fibrosis therapy.
Collapse
|
48
|
Sattayaprasert P, Vasireddi SK, Bektik E, Jeon O, Hajjiri M, Mackall JA, Moravec CS, Alsberg E, Fu J, Laurita KR. Human Cardiac Mesenchymal Stem Cells Remodel in Disease and Can Regulate Arrhythmia Substrates. Circ Arrhythm Electrophysiol 2020; 13:e008740. [PMID: 32755466 PMCID: PMC7578059 DOI: 10.1161/circep.120.008740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The mesenchymal stem cell (MSC), known to remodel in disease and have an extensive secretome, has recently been isolated from the human heart. However, the effects of normal and diseased cardiac MSCs on myocyte electrophysiology remain unclear. We hypothesize that in disease the inflammatory secretome of cardiac human MSCs (hMSCs) remodels and can regulate arrhythmia substrates. METHODS hMSCs were isolated from patients with or without heart failure from tissue attached to extracted device leads and from samples taken from explanted/donor hearts. Failing hMSCs or nonfailing hMSCs were cocultured with normal human cardiac myocytes derived from induced pluripotent stem cells. Using fluorescent indicators, action potential duration, Ca2+ alternans, and spontaneous calcium release (SCR) incidence were determined. RESULTS Failing and nonfailing hMSCs from both sources exhibited similar trilineage differentiation potential and cell surface marker expression as bone marrow hMSCs. Compared with nonfailing hMSCs, failing hMSCs prolonged action potential duration by 24% (P<0.001, n=15), increased Ca2+ alternans by 300% (P<0.001, n=18), and promoted spontaneous calcium release activity (n=14, P<0.013) in human cardiac myocytes derived from induced pluripotent stem cells. Failing hMSCs exhibited increased secretion of inflammatory cytokines IL (interleukin)-1β (98%, P<0.0001) and IL-6 (460%, P<0.02) compared with nonfailing hMSCs. IL-1β or IL-6 in the absence of hMSCs prolonged action potential duration but only IL-6 increased Ca2+ alternans and promoted spontaneous calcium release activity in human cardiac myocytes derived from induced pluripotent stem cells, replicating the effects of failing hMSCs. In contrast, nonfailing hMSCs prevented Ca2+ alternans in human cardiac myocytes derived from induced pluripotent stem cells during oxidative stress. Finally, nonfailing hMSCs exhibited >25× higher secretion of IGF (insulin-like growth factor)-1 compared with failing hMSCs. Importantly, IGF-1 supplementation or anti-IL-6 treatment rescued the arrhythmia substrates induced by failing hMSCs. CONCLUSIONS We identified device leads as a novel source of cardiac hMSCs. Our findings show that cardiac hMSCs can regulate arrhythmia substrates by remodeling their secretome in disease. Importantly, therapy inhibiting (anti-IL-6) or mimicking (IGF-1) the cardiac hMSC secretome can rescue arrhythmia substrates.
Collapse
Affiliation(s)
- Prasongchai Sattayaprasert
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| | - Sunil K Vasireddi
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| | - Emre Bektik
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA (E.B.)
| | - Oju Jeon
- Departments of Biomedical Engineering (O.J., E.A.), University of Illinois at Chicago
| | - Mohammad Hajjiri
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| | - Judith A Mackall
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center (J.A.M.)
| | - Christine S Moravec
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland (C.S.M.)
| | - Eben Alsberg
- Departments of Biomedical Engineering (O.J., E.A.), University of Illinois at Chicago.,Orthopaedics (E.A.), University of Illinois at Chicago.,Pharmacology (E.A.), University of Illinois at Chicago.,Mechanical & Industrial Engineering (E.A.), University of Illinois at Chicago
| | - Jidong Fu
- Department of Physiology & Cell Biology, The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus (J.F.)
| | - Kenneth R Laurita
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| |
Collapse
|
49
|
Ritchie LA, Qin S, Penson PE, Henney NC, Lip GY. Vernakalant hydrochloride for the treatment of atrial fibrillation: evaluation of its place in clinical practice. Future Cardiol 2020; 16:585-595. [PMID: 32460637 DOI: 10.2217/fca-2020-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vernakalant is an intravenous anti-arrhythmic drug available in Europe, Canada and some countries in Asia for the restoration of sinus rhythm in acute onset atrial fibrillation. Currently, it is not available in USA because the US FDA have ongoing concerns about its safety. Vernakalant has a unique pharmacological profile of multi-ion channel activity and atrial-specificity that distinguishes it from other anti-arrhythmic drugs. This is thought to enhance efficacy but there are concerns of adverse events stemming from its diverse pharmacology. This ambiguity has prompted a review of the available clinical evidence on efficacy and safety to help re-evaluate its place in clinical practice.
Collapse
Affiliation(s)
- Leona A Ritchie
- Liverpool Centre for Cardiovascular Science, University of Liverpool & Liverpool Heart & Chest Hospital, Liverpool, L7 8TX, UK
| | - Shuguang Qin
- Liverpool Centre for Cardiovascular Science, University of Liverpool & Liverpool Heart & Chest Hospital, Liverpool, L7 8TX, UK.,Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710004, China
| | - Peter E Penson
- Liverpool Centre for Cardiovascular Science, University of Liverpool & Liverpool Heart & Chest Hospital, Liverpool, L7 8TX, UK.,School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Neil C Henney
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Gregory Yh Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool & Liverpool Heart & Chest Hospital, Liverpool, L7 8TX, UK
| |
Collapse
|
50
|
Rahm AK, Müller ME, Gramlich D, Lugenbiel P, Uludag E, Rivinius R, Ullrich ND, Schmack B, Ruhparwar A, Heimberger T, Weis T, Karck M, Katus HA, Thomas D. Inhibition of cardiac K v4.3 (I to) channel isoforms by class I antiarrhythmic drugs lidocaine and mexiletine. Eur J Pharmacol 2020; 880:173159. [PMID: 32360350 DOI: 10.1016/j.ejphar.2020.173159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/01/2020] [Accepted: 04/23/2020] [Indexed: 12/29/2022]
Abstract
Transient outward K+ current, Ito, contributes to cardiac action potential generation and is primarily carried by Kv4.3 (KCND3) channels. Two Kv4.3 isoforms are expressed in human ventricle and show differential remodeling in heart failure (HF). Lidocaine and mexiletine may be applied in selected patients to suppress ventricular arrhythmias, without effects on sudden cardiac death or mortality. Isoform-dependent effects of antiarrhythmic drugs on Kv4.3 channels and potential implications for remodeling-based antiarrhythmic management have not been assessed to date. We sought to test the hypotheses that Kv4.3 channels are targeted by lidocaine and mexiletine, and that drug sensitivity is determined in isoform-specific manner. Expression of KCND3 isoforms was quantified using qRT-PCR in left ventricular samples of patients with HF due to either ischemic or dilated cardiomyopathies (ICM or DCM). Long (Kv4.3-L) and short (Kv4.3-S) isoforms were heterologously expressed in Xenopus laevis oocytes to study drug sensitivity and effects on biophysical characteristics activation, deactivation, inactivation, and recovery from inactivation. In the present HF patient cohort KCND3 isoform expression did not differ between ICM and DCM. In vitro, lidocaine (IC50-Kv4.3-L: 0.8 mM; IC50-Kv4.3-S: 1.2 mM) and mexiletine (IC50-Kv4.3-L: 146 μM; IC50-Kv4.3-S: 160 μM) inhibited Kv4.3 with different sensitivity. Biophysical analyses identified accelerated and enhanced inactivation combined with delayed recovery from inactivation as primary biophysical mechanisms underlying Kv4.3 current reduction. In conclusion, differential effects on Kv4.3 isoforms extend the electropharmacological profile of lidocaine and mexiletine. Patient-specific remodeling of Kv4.3 isoforms may determine individual drug responses and requires consideration during clinical application of compounds targeting Kv4.3.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Mara Elena Müller
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Dominik Gramlich
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Ecem Uludag
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Rasmus Rivinius
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Nina D Ullrich
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Bastian Schmack
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Arjang Ruhparwar
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Tanja Heimberger
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Tanja Weis
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|