1
|
Yang SC, Wang YH, Tsai YF, Chang YW, Wu TS, Ho CM, Hwang TL. A synthesized heterocyclic chalcone inhibits neutrophilic inflammation through K + -dependent pH regulation. FASEB J 2020; 34:7127-7143. [PMID: 32275103 DOI: 10.1096/fj.201903123r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/12/2020] [Accepted: 03/22/2020] [Indexed: 12/28/2022]
Abstract
Human neutrophils have a vital role in host defense and inflammatory responses in innate immune systems. Growing evidence shows that the overproduction of reactive oxygen species and granular proteolytic enzymes from activated neutrophils is linked to the pathogenesis of acute inflammatory diseases. However, adequate therapeutic targets are still lacking to regulate neutrophil functions. Herein, we report that MVBR-28, synthesized from the Mannich bases of heterocyclic chalcone, has anti-neutrophilic inflammatory effects through regulation of intracellular pH. MVBR-28 modulates neutrophil functions by attenuating respiratory burst, degranulation, and migration. Conversely, MVBR-28 has no antioxidant effects and fails to alter elastase activity in cell-free systems. The anti-inflammatory effects of MVBR-28 are not seen through cAMP pathways. Significantly, MVBR-28 potently inhibits extracellular Ca2+ influx in N-formyl-methionyl-leucyl-phenylalanine (fMLF)- and thapsigargin-activated human neutrophils. Notably, MVBR-28 attenuates fMLF-induced intracellular alkalization in a K+ -dependent manner, which is upstream of Ca2+ pathways. Collectively, these findings provide new insight into Mannich bases of heterocyclic chalcone regarding the regulation of neutrophil functions and the potential for the development of MVBR-28 as a lead compound for treating neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Shun-Chin Yang
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan.,Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Fong Tsai
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Wen Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tian-Shung Wu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan.,School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiu-Ming Ho
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
2
|
Portal L, Morin D, Motterlini R, Ghaleh B, Pons S. The CO-releasing molecule CORM-3 protects adult cardiomyocytes against hypoxia-reoxygenation by modulating pH restoration. Eur J Pharmacol 2019; 862:172636. [PMID: 31491405 DOI: 10.1016/j.ejphar.2019.172636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023]
Abstract
Several studies have reported that CORM-3, a water-soluble carbon monoxide releasing molecule, elicits cardioprotection against myocardial infarction but the mechanism remains to be investigated. Numerous reports indicate that inhibition of pH regulators, the Na+/H+ exchanger (NHE) and Na+/HCO3- symporter (NBC), protect cardiomyocytes from hypoxia/reoxygenation injury by delaying the intracellular pH (pHi) recovery at reperfusion. Our goal was to explore whether CORM-3-mediated cytoprotection involves the modulation of pH regulation. When added at reoxygenation, CORM-3 (50 μM) reduced the mortality of cardiomyocytes exposed to 3 h of hypoxia and 2 h of reoxygenation in HCO3--buffered solution. This effect was lost when using inactive iCORM-3, which is depleted of CO and used as control, thus implicating CO as the mediator of this cardioprotection. Interestingly, the cardioprotective effect of CORM-3 was abolished by switching to a bicarbonate-free medium. This effect of CORM-3 was also inhibited by 5-hydroxydecanoate, a mitochondrial ATP-dependent K+ (mKATP) channel inhibitor (500 μM) or PD098059, a MEK1/2 inhibitor (10 μM). In additional experiments and in the absence of hypoxia-reoxygenation, intracellular pH was monitored in cardiomyocytes exposed to cariporide to block NHE activity. CORM-3 inhibited alkalinisation and this effect was blocked by PD098059 and 5-HD. In conclusion, CORM-3 protects the cardiomyocyte against hypoxia-reoxygenation injury by inhibiting a bicarbonate transporter at reoxygenation, probably the Na+/HCO3- symporter. This cardioprotective effect of CORM-3 requires the activation of mKATP channels and the activation of MEK1/2.
Collapse
Affiliation(s)
- Lolita Portal
- U955-IMRB, Equipe 03, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - Didier Morin
- U955-IMRB, Equipe 03, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | | | - Bijan Ghaleh
- U955-IMRB, Equipe 03, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France.
| | - Sandrine Pons
- U955-IMRB, Equipe 03, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| |
Collapse
|
3
|
Tashiro M, Inoue H, Konishi M. Physiological pathway of magnesium influx in rat ventricular myocytes. Biophys J 2014; 107:2049-58. [PMID: 25418090 PMCID: PMC4223180 DOI: 10.1016/j.bpj.2014.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/03/2014] [Accepted: 09/16/2014] [Indexed: 11/16/2022] Open
Abstract
Cytoplasmic free Mg(2+) concentration ([Mg(2+)]i) was measured in rat ventricular myocytes with a fluorescent indicator furaptra (mag-fura-2) introduced by AM-loading. By incubation of the cells in a high-K(+) (Ca(2+)- and Mg(2+)-free) solution, [Mg(2+)]i decreased from ? 0.9 mM to 0.2 to 0.5 mM. The lowered [Mg(2+)]i was recovered by perfusion with Ca(2+)-free Tyrode's solution containing 1 mM Mg(2+). The time course of the [Mg(2+)]i recovery was fitted by a single exponential function, and the first derivative at time 0 was analyzed as being proportional to the initial Mg(2+) influx rate. The Mg(2+) influx rate was inversely related to [Mg(2+)]i, being higher at low [Mg(2+)]i. The Mg(2+) influx rate was augmented by the high extracellular Mg(2+) concentration (5 mM), whereas it was greatly reduced by cell membrane depolarization caused by high K(+). Known inhibitors of TRPM7 channels, 2-aminoethoxydiphenyl borate (2-APB), NS8593, and spermine reduced the Mg(2+) influx rate with half inhibitory concentrations (IC50) of, respectively, 17 ?M, 2.0 ?M, and 22 ?M. We also studied Ni(2+) influx by fluorescence quenching of intracellular furaptra by Ni(2+). The Ni(2+) influx was activated by lowering intra- and extracellular Mg(2+) concentrations, and it was inhibited by 2-APB and NS8593 with IC50 values comparable with those for the Mg(2+) influx. Intracellular alkalization (caused by pulse application of NH4Cl) enhanced, whereas intracellular acidification (induced after the removal of NH4Cl) slowed the Mg(2+) influx. Under the whole-cell patch-clamp configuration, the removal of intracellular and extracellular divalent cations induced large inward and outward currents, MIC (Mg-inhibited cation) currents or IMIC, carried by monovalent cations likely via TRPM7 channels. IMIC measured at -120 mV was diminished to ? 50% by 100 ?M 2-APB or 10 ?M NS8593. These results suggest that TRPM7/MIC channels serve as a major physiological pathway of Mg(2+) influx in rat ventricular myocytes.
Collapse
Affiliation(s)
- Michiko Tashiro
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan.
| | - Hana Inoue
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masato Konishi
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
4
|
Regulation of ion gradients across myocardial ischemic border zones: a biophysical modelling analysis. PLoS One 2013; 8:e60323. [PMID: 23577101 PMCID: PMC3618345 DOI: 10.1371/journal.pone.0060323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/24/2013] [Indexed: 12/19/2022] Open
Abstract
The myocardial ischemic border zone is associated with the initiation and sustenance of arrhythmias. The profile of ionic concentrations across the border zone play a significant role in determining cellular electrophysiology and conductivity, yet their spatial-temporal evolution and regulation are not well understood. To investigate the changes in ion concentrations that regulate cellular electrophysiology, a mathematical model of ion movement in the intra and extracellular space in the presence of ionic, potential and material property heterogeneities was developed. The model simulates the spatial and temporal evolution of concentrations of potassium, sodium, chloride, calcium, hydrogen and bicarbonate ions and carbon dioxide across an ischemic border zone. Ischemia was simulated by sodium-potassium pump inhibition, potassium channel activation and respiratory and metabolic acidosis. The model predicted significant disparities in the width of the border zone for each ionic species, with intracellular sodium and extracellular potassium having discordant gradients, facilitating multiple gradients in cellular properties across the border zone. Extracellular potassium was found to have the largest border zone and this was attributed to the voltage dependence of the potassium channels. The model also predicted the efflux of [Formula: see text] from the ischemic region due to electrogenic drift and diffusion within the intra and extracellular space, respectively, which contributed to [Formula: see text] depletion in the ischemic region.
Collapse
|
5
|
Schewe B, Blenau W, Walz B. Intracellular pH regulation in unstimulated Calliphora salivary glands is Na+ dependent and requires V-ATPase activity. J Exp Biol 2012; 215:1337-45. [DOI: 10.1242/jeb.063172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SUMMARY
Salivary gland cells of the blowfly Calliphora vicina have a vacuolar-type H+-ATPase (V-ATPase) that lies in their apical membrane and energizes the secretion of a KCl-rich primary saliva upon stimulation with serotonin (5-hydroxytryptamine). Whether and to what extent V-ATPase contributes to intracellular pH (pHi) regulation in unstimulated gland cells is unknown. We used the fluorescent dye BCECF to study intracellular pHi regulation microfluorometrically and show that: (1) under resting conditions, the application of Na+-free physiological saline induces an intracellular alkalinization attributable to the inhibition of the activity of a Na+-dependent glutamate transporter; (2) the maintenance of resting pHi is Na+, Cl–, concanamycin A and DIDS sensitive; (3) recovery from an intracellular acid load is Na+ sensitive and requires V-ATPase activity; (4) the Na+/H+ antiporter is not involved in pHi recovery after a NH4Cl prepulse; and (5) at least one Na+-dependent transporter and the V-ATPase maintain recovery from an intracellular acid load. Thus, under resting conditions, the V-ATPase and at least one Na+-dependent transporter maintain normal pHi values of pH 7.5. We have also detected the presence of a Na+-dependent glutamate transporter, which seems to act as an acid loader. Despite this not being a common pHi-regulating transporter, its activity affects steady-state pHi in C. vicina salivary gland cells.
Collapse
Affiliation(s)
- Bettina Schewe
- University of Potsdam, Institute of Nutrition Science, Department of Biochemistry of Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Wolfgang Blenau
- Oberursel Bee Research Institute, Goethe-University Frankfurt/Main, Department of Life Science, Karl-von-Frisch-Weg 2, 61440 Oberursel, Germany
| | - Bernd Walz
- University of Potsdam, Institute of Biochemistry and Biology, Department of Animal Physiology, University Campus Golm, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
6
|
Petrov AM, Naumenko NV, Uzinskaya KV, Giniatullin AR, Urazaev AK, Zefirov AL. Increased non-quantal release of acetylcholine after inhibition of endocytosis by methyl-β-cyclodextrin: the role of vesicular acetylcholine transporter. Neuroscience 2011; 186:1-12. [PMID: 21557989 DOI: 10.1016/j.neuroscience.2011.04.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/04/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
Abstract
We investigated the role of the vesicular acetylcholine transporter in the mechanism of non-quantal (non-vesicular) secretion of neurotransmitter in the neuromuscular synapse of the rat diaphragm muscle. Non-quantal secretion was estimated electrophysiologically by the amplitude of end-plate hyperpolarization after inhibition of cholinesterase and nicotinic receptors (H-effect) or measured by the optical detection of acetylcholine in the bathing solution. It was shown that 1 mM methyl-β-cyclodextrin (MCD) reduced both endocytosis and, to much lesser extent, exocytosis of synaptic vesicles (SV) thereby increasing non-quantal secretion of acetylcholine with a concurrent decrease in axoplasm pH. During high-frequency stimulation of the motor nerve, that substantially increases vesicles exocytosis, the non-quantal secretion was further enhanced if the endocytosis of SV was blocked by MCD. In contrast, non-quantal secretion of acetylcholine did not increase when the MCD-treated neuromuscular preparations were superfused with either vesamicol, an inhibitor of vesicular transporter of acetylcholine, or sodium propionate, which decreases intracellular pH. These results suggest that the proton-dependent, vesamicol-sensitive vesicular transporters of acetylcholine, which become inserted into the presynaptic membrane during SV exocytosis and removed during endocytotic recycling of SV, play the major role in the process of non-quantal secretion of neurotransmitter.
Collapse
Affiliation(s)
- A M Petrov
- Department of Physiology, Medical University, Kazan 420012, Russia
| | | | | | | | | | | |
Collapse
|
7
|
Metabolic inhibition strongly inhibits Na+-dependent Mg2+ efflux in rat ventricular myocytes. Biophys J 2009; 96:4941-50. [PMID: 19527653 DOI: 10.1016/j.bpj.2009.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/22/2009] [Accepted: 02/02/2009] [Indexed: 10/20/2022] Open
Abstract
We measured intracellular Mg2+ concentration ([Mg2+]i) in rat ventricular myocytes using the fluorescent indicator furaptra (25 degrees C). In normally energized cells loaded with Mg2+, the introduction of extracellular Na+ induced a rapid decrease in [Mg2+]i: the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) is thought to represent the rate of Na+-dependent Mg2+ efflux (putative Na+/Mg2+ exchange). To determine whether Mg2+ efflux depends directly on energy derived from cellular metabolism, in addition to the transmembrane Na+ gradient, we estimated the initial Delta[Mg2+]i/Deltat after metabolic inhibition. In the absence of extracellular Na+ and Ca2+, treatment of the cells with 1 microM carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, an uncoupler of mitochondria, caused a large increase in [Mg2+]i from approximately 0.9 mM to approximately 2.5 mM in a period of 5-8 min (probably because of breakdown of MgATP and release of Mg2+) and cell shortening to approximately 50% of the initial length (probably because of formation of rigor cross-bridges). Similar increases in [Mg2+]i and cell shortening were observed after application of 5 mM potassium cyanide (KCN) (an inhibitor of respiration) for > or = 90 min. The initial Delta[Mg2+]i/Deltat was diminished, on average, by 90% in carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone-treated cells and 92% in KCN-treated cells. When the cells were treated with 5 mM KCN for shorter times (59-85 min), a significant decrease in the initial Delta[Mg2+]i/Deltat (on average by 59%) was observed with only a slight shortening of the cell length. Intracellular Na+ concentration ([Na+]i) estimated with a Na+ indicator sodium-binding benzofuran isophthalate was, on average, 5.0-10.5 mM during the time required for the initial Delta[Mg2+]i/Deltat measurements, which is well below the [Na+]i level for half inhibition of the Mg2+ efflux (approximately 40 mM). Normalization of intracellular pH using 10 microM nigericin, a H+ ionophore, did not reverse the inhibition of the Mg2+ efflux. From these results, it seems likely that a decrease in ATP below the threshold of rigor cross-bridge formation (approximately 0.4 mM estimated indirectly in the this study), rather than elevation of [Na+]i or intracellular acidosis, inhibits the Mg2+ efflux, suggesting the absolute necessity of ATP for the Na+/Mg2+ exchange.
Collapse
|
8
|
Sheldon C, Diarra A, Cheng YM, Church J. Sodium influx pathways during and after anoxia in rat hippocampal neurons. J Neurosci 2005; 24:11057-69. [PMID: 15590922 PMCID: PMC6730285 DOI: 10.1523/jneurosci.2829-04.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mechanisms that contribute to Na+ influx during and immediately after 5 min anoxia were investigated in cultured rat hippocampal neurons loaded with the Na+-sensitive fluorophore sodium-binding benzofuran isophthalate. During anoxia, an influx of Na+ in the face of reduced Na+,K+-ATPase activity caused a rise in [Na+]i. After the return to normoxia, Na+,K+-ATPase activity mediated the recovery of [Na+]i despite continued Na+ entry. Sodium influx during and after anoxia occurred through multiple pathways and increased the longer neurons were maintained in culture. Under the experimental conditions used, Na+ entry during anoxia did not reflect the activation of ionotropic glutamate receptors, TTX- or lidocaine-sensitive Na+ channels, plasmalemmal Na+/Ca2+ exchange, Na+/H+ exchange, or HCO3--dependent mechanisms; rather, contributions were received from a Gd3+-sensitive pathway activated by reactive oxygen species and Na+/K+/2Cl- cotransport in neurons maintained for 6-10 and 11-14 d in vitro (DIV), respectively. Sodium entry immediately after anoxia was not attributable to the activation of ionotropic glutamate receptors, voltage-activated Na+ channels, or Na+/K+/2Cl- cotransport; rather, it occurred via Na+/Ca2+ exchange, Na+/H+ exchange, and a Gd3+-sensitive pathway similar to that observed during anoxia; 11-14 DIV neurons received an additional contribution from an -dependent mechanism(s). The results provide insight into the intrinsic mechanisms that contribute to disturbed internal Na+ homeostasis during and immediately after anoxia in rat hippocampal neurons and, in this way, may play a role in the pathogenesis of anoxic or ischemic cell injury.
Collapse
Affiliation(s)
- Claire Sheldon
- Department of Physiology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | |
Collapse
|
9
|
Humez S, Monet M, van Coppenolle F, Delcourt P, Prevarskaya N. The role of intracellular pH in cell growth arrest induced by ATP. Am J Physiol Cell Physiol 2004; 287:C1733-46. [PMID: 15355852 DOI: 10.1152/ajpcell.00578.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated ionic mechanisms involved in growth arrest induced by extracellular ATP in androgen-independent prostate cancer cells. Extracellular ATP reversibly induced a rapid and sustained intracellular pH (pH(i)) decrease from 7.41 to 7.11. Inhibition of Ca(2+) influx, lowering extracellular Ca(2+), and buffering cytoplasmic Ca(2+) inhibited ATP-induced acidification, thereby demonstrating that acidification is a consequence of Ca(2+) entry. We show that ATP induced reuptake of Ca(2+) by the mitochondria and a transient depolarization of the inner mitochondrial membrane. ATP-induced acidification was reduced after the dissipation of the mitochondrial proton gradient by rotenone and carbonyl cyanide p-trifluoromethoxyphenylhydrazone, after inhibition of Ca(2+) uptake into the mitochondria by ruthenium red, and after inhibition of the F(0)F(1)-ATPase with oligomycin. ATP-induced acidification was not induced by either stimulation of the Cl(-)/HCO(3)(-) exchanger or inhibition of the Na(+)/H(+) exchanger. In addition, intracellular acidification, induced by an ammonium prepulse method, reduced the amount of releasable Ca(2+) from the endoplasmic reticulum, assessed by measuring change in cytosolic Ca(2+) induced by thapsigargin or ATP in a Ca(2+)-free medium. This latter finding reveals cross talk between pH(i) and Ca(2+) homeostasis in which the Ca(2+)-induced intracellular acidification can in turn regulate the amount of Ca(2+) that can be released from the endoplasmic reticulum. Furthermore, pH(i) decrease was capable of reducing cell growth. Taken together, our results suggest that ATP-induced acidification in DU-145 cells results from specific effect of mitochondrial function and is one of the major mechanisms leading to growth arrest induced by ATP.
Collapse
Affiliation(s)
- Sandrine Humez
- Laboratoire de Physiologie Cellulaire, INSERM EMI 0228, Université des Sciences et Technologies de Lille, Bât. SN3, 59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | |
Collapse
|
10
|
Zaniboni M, Swietach P, Rossini A, Yamamoto T, Spitzer KW, Vaughan-Jones RD. Intracellular proton mobility and buffering power in cardiac ventricular myocytes from rat, rabbit, and guinea pig. Am J Physiol Heart Circ Physiol 2003; 285:H1236-46. [PMID: 12750065 DOI: 10.1152/ajpheart.00277.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Intracellular pH (pHi) is an important modulator of cardiac function. The spatial regulation of pH within the cytoplasm depends, in part, on intracellular H+ (Hi+) mobility. The apparent diffusion coefficient for Hi+, DHapp, was estimated in single ventricular myocytes isolated from the rat, guinea pig, and rabbit. DHapp was derived by best-fitting predictions of a two-dimensional model of H+ diffusion to the local rise of intracellular [H+], recorded confocally (ratiometric seminaphthorhodafluor fluorescence) downstream from an acid-filled, whole cell patch pipette. Under CO2/HCO3--free conditions, DHapp was similar in all three species (mean values: 8-12.5 x 10-7 cm2/s) and was over 200-fold lower than that for H+ in water. In guinea pig myocytes, DHapp was increased 2.5-fold in the presence of CO2/HCO3- buffer, in agreement with previous observations in rabbit myocytes. Hi+ mobility is therefore low in cardiac cells, a feature that may predispose them to the generation of pHi gradients in response to sarcolemmal acid/base transport or local cytoplasmic acid production. Low Hi+ mobility most likely results from H+ shuttling among cytoplasmic mobile and fixed buffers. This hypothesis was explored by comparing the pHi dependence of intrinsic, intracellular buffering capacity, measured for all three species, and subdividing buffering into mobile and fixed fractions. The proportion of buffer that is mobile will be the main determinant of DHapp. At a given pHi, this proportion appeared to be similar in all three species, consistent with a common value for DHapp. Over the pHi range of 6.0-8.0, the proportion is expected to change, predicting that DHapp may display some pHi sensitivity.
Collapse
Affiliation(s)
- Massimiliano Zaniboni
- Burdon Sanderson Cardiac Science Centre, University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | |
Collapse
|
11
|
Rodríguez E, Darszon A. Intracellular sodium changes during the speract response and the acrosome reaction in sea urchin sperm. J Physiol 2003; 546:89-100. [PMID: 12509481 PMCID: PMC2342476 DOI: 10.1113/jphysiol.2002.030510] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/08/2002] [Accepted: 10/14/2002] [Indexed: 11/08/2022] Open
Abstract
The sperm-activating peptide speract and fucose-sulphate glycoconjugate (FSG) are sea urchin egg-envelope components that modulate sperm ion permeability. They influence motility and induce acrosomal reaction (AR), respectively. A fluorescent Na(+)-sensitive dye (Na(+)-binding benzofuran isophthalate, SBFI) was used to determine how these egg envelope components influence sperm Na(+) permeability. [Ca(2+)](i) and pH(i) were also measured to correlate their changes in response to speract and FSG with those observed in [Na(+)](i). SBFI determinations indicate that the resting [Na(+)](i) is 20 +/- 8 mM in sea urchin sperm. Saturating levels of speract increased [Na(+)](i) by approximately 15 mM, while similar levels of FSG caused a further elevation of approximately 30 mM. The kinetics of the [Na(+)](i), [Ca(2+)](i) and pH(i) changes induced by saturating levels of speract were faster than those induced by FSG. Both egg ligands appeared to activate more than one Na(+) transport system. Nifedipine, Ni(2+) and TEA(+) inhibited the ionic changes and the AR induced by FSG but, importantly, did not alter those caused by speract. Thus, there are differences in some of the ionic transport mechanisms that operate in the speract and FSG responses. ZD2788, a blocker of hyperpolarization and cyclic-nucleotide-gated (HCN) channels such as SpHCN present in sea urchin sperm, did not decrease the speract-induced [Na(+)](i) increase, but slowed its kinetics. Therefore, SpHCN does not play a major role in the uptake of Na(+) triggered by this decapeptide. KB-R7943, an inhibitor of Na(+)/Ca(2+) exchangers, decreased the resting [Na(+)](i) and did not change significantly the speract-induced [Ca(2+)](i) increase, but slowed its recovery.
Collapse
Affiliation(s)
- Esmeralda Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular del Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo Postal 510-3, Cuernavaca, Morelos 62271, México
| | | |
Collapse
|
12
|
Hoshino K, Avkiran M. Effects of moderate hypothermia on sarcolemmal Na(+)/H(+) exchanger activity and its inhibition by cariporide in cardiac ventricular myocytes. Br J Pharmacol 2001; 134:1587-95. [PMID: 11724767 PMCID: PMC1573089 DOI: 10.1038/sj.bjp.0704405] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
1. Specific inhibitors of the sarcolemmal Na(+)/H(+) exchanger (NHE) such as cariporide are being evaluated for cardioprotective therapy during cardiac surgery. We determined the effects of moderate hypothermia (25 degrees C), as occurs during cardiac surgery, on (1) sarcolemmal NHE activity and (2) the NHE-inhibitory potency of cariporide, in isolated adult rat ventricular myocytes. 2. As the index of NHE activity, trans-sarcolemmal acid efflux rate (J(H)) was determined by microepifluorescence in single cells (n = 8 to 11 per group), during recovery from intracellular acidosis in bicarbonate-free conditions. 3. Initially, myocytes were subjected to two consecutive acid pulses; these both occurred at 37 degrees C in the normothermic control group but the second pulse was at 25 degrees C in the moderate hypothermia group. J(H) values obtained after the first pulse were superimposed in both groups, indicating comparable cell populations. However, after the second pulse, J(H) values in the moderate hypothermia group were approximately 50% of those in the normothermic control group over the pH(i) range 6.80 - 7.10. 4. Similar results were obtained in cells subjected to a single acid pulse at 37 or 25 degrees C, with J(H) values in the latter group measuring approximately 60% of those in the former over the pH(i) range 6.80-7.10. 5. Cariporide (0.01, 0.03, 0.1, 0.3, 1.0 or 3.0 microM), present during recovery from a single acid pulse, reduced J(H) in a concentration-dependent manner, with IC(50) values of 150 and 130 nM at 37 and 25 degrees C, respectively. 6. We conclude that moderate hypothermia produces (1) a significant, but partial, inhibition of sarcolemmal NHE activity, and (2) no significant effect on the NHE-inhibitory potency of cariporide.
Collapse
Affiliation(s)
- Kimihiko Hoshino
- Centre for Cardiovascular Biology and Medicine, King's College London, London SE1 7EH, UK
| | - Metin Avkiran
- Centre for Cardiovascular Biology and Medicine, King's College London, London SE1 7EH, UK
- Author for correspondence:
| |
Collapse
|
13
|
Chen WH, Chen CR, Yang KT, Chang WL, Su MJ, Wu CC, Wu ML. Arachidonic acid-induced H+ and Ca2+ increases in both the cytoplasm and nucleoplasm of rat cerebellar granule cells. J Physiol 2001; 537:497-510. [PMID: 11731581 PMCID: PMC2278964 DOI: 10.1111/j.1469-7793.2001.00497.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
1. Arachidonic acid (AA) exerts multiple physiological and pathophysiological effects in the brain. By continuously measuring the intracellular pH (pH(i)) and Ca2+ levels ([Ca2+]i) in primary cultured rat cerebellar granule cells, we have found, for the first time, that 20 min treatment with 10 microM AA resulted in marked increases in Ca2+ and H+ levels in both the cytosol and nucleus. 2. A much higher concentration (40 mM) of another weak acid, propionic acid, was needed to induce a similar change in pH(i). The [Ca2+]i increase was probably caused by AA-induced activation of Ni2+-sensitive cationic channels, but did not involve NMDA channels or the Na+-Ca2+ exchanger. 3. AA-induced acidosis occurs by a different mechanism involving predominantly the passive diffusion of the un-ionized form of AA, rather than a protein carrier, as proposed by Kamp & Hamilton for fatty acids (FAs) in artificial phospholipid bilayers (the 'flip-flop' model). The following results, which are similar to those observed in lipid bilayers, support this conclusion: (1) FAs containing a -COOH group (AA, linoleic acid, alpha-linolenic acid, and docosahexaenoic acid) induced intracellular acidosis, whereas a FA with a -COOCH3 group (AA methyl ester) had little effect on pH(i), (2) a FA amine, tetradecylamine, induced intracellular alkalosis, and (3) the AA-/FA-induced pH(i) changes were reversed by bovine serum albumin. 4. Further evidence in support of a passive diffusion model, rather than a membrane protein carrier, is that: (1) there was a linear relationship between the initial rate of acid flux and the concentration of AA (2-100 microM), (2) acidosis was not inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid, a potent inhibitor of the plasma membrane FA carrier protein, and (3) the involvement of most known H+-related membrane carriers and H+ conductance has been ruled out. 5. Since AA can be released under both physiological and pathophysiological conditions, the possible significance of the AA-evoked increases in H+ and Ca2+ in both the cytoplasm and nucleoplasm is discussed.
Collapse
Affiliation(s)
- W H Chen
- Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
14
|
Tanonaka K, Takasaki A, Kajiwara H, Takeo S. Contribution of sodium channel and sodium/hydrogen exchanger to sodium accumulation in the ischemic myocardium. GENERAL PHARMACOLOGY 2000; 34:167-74. [PMID: 11120378 DOI: 10.1016/s0306-3623(00)00057-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Contribution of sodium channels and sodium/hydrogen exchangers (NHEs) to sodium accumulation during ischemia in the ischemic/reperfused heart was examined. Ischemia increased the myocardial sodium. Reperfusion elicited a further increase in the myocardial sodium, which was associated with little recovery of the left ventricular developed pressure (LVDP) of the perfused heart. Treatment with tetrodotoxin or dimethylamirolide (DMA) dose-dependently attenuated the ischemia- and reperfusion-induced increase in myocardial sodium and enhanced the post-ischemic recovery of the LVDP. There was an inverse relationship between the increase in myocardial sodium during ischemia and the post-ischemic recovery of the LVDP.The myocardial sodium accumulation during ischemia is mainly attributed to sodium influx through sodium channels and NHEs.
Collapse
Affiliation(s)
- K Tanonaka
- Department of Pharmacology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Tokyo 192-0392, Hachioji, Japan
| | | | | | | |
Collapse
|
15
|
Wu ML, Chen JH, Chen WH, Chen YJ, Chu KC. Novel role of the Ca(2+)-ATPase in NMDA-induced intracellular acidification. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C717-27. [PMID: 10516102 DOI: 10.1152/ajpcell.1999.277.4.c717] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism involved in N-methyl-D-glucamine (NMDA)-induced Ca(2+)-dependent intracellular acidosis is not clear. In this study, we investigated in detail several possible mechanisms using cultured rat cerebellar granule cells and microfluorometry [fura 2-AM or 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-AM]. When 100 microM NMDA or 40 mM KCl was added, a marked increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) and a decrease in the intracellular pH were seen. Acidosis was completely prevented by the use of Ca(2+)-free medium or 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid-AM, suggesting that it resulted from an influx of extracellular Ca(2+). The following four mechanisms that could conceivably have been involved were excluded: 1) Ca(2+) displacement of intracellular H(+) from common binding sites; 2) activation of an acid loader or inhibition of acid extruders; 3) overproduction of CO(2) or lactate; and 4) collapse of the mitochondrial membrane potential due to Ca(2+) uptake, resulting in inhibition of cytosolic H(+) uptake. However, NMDA/KCl-induced acidosis was largely prevented by glycolytic inhibitors (iodoacetate or deoxyglucose in glucose-free medium) or by inhibitors of the Ca(2+)-ATPase (i.e., Ca(2+)/H(+) exchanger), including La(3+), orthovanadate, eosin B, or an extracellular pH of 8.5. Our results therefore suggest that Ca(2+)-ATPase is involved in NMDA-induced intracellular acidosis in granule cells. We also provide new evidence that NMDA-evoked intracellular acidosis probably serves as a negative feedback signal, probably with the acidification itself inhibiting the NMDA-induced [Ca(2+)](i) increase.
Collapse
Affiliation(s)
- M L Wu
- Department of Physiology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
16
|
Wu ML, Chen WH, Liu IH, Tseng CD, Wang SM. A novel effect of cyclic AMP on capacitative Ca2+ entry in cultured rat cerebellar astrocytes. J Neurochem 1999; 73:1318-28. [PMID: 10461927 DOI: 10.1046/j.1471-4159.1999.0731318.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the most important intracellular Ca2+ regulatory mechanisms in nonexcitable cells, "capacitative Ca2+ entry" (CCE), has not been adequately studied in astrocytes. We therefore investigated whether CCE exists in cultured rat cerebellar astrocytes and studied the roles of cyclic AMP (cAMP) and protein kinase C (PKC) in CCE. We found that (1) at least two different intracellular Ca2+ stores, the endoplasmic reticulum and mitochondria, are present in cerebellar astrocytes; (2) CCE does exist in these cells and can be inhibited by Ni2+, miconazole, and SKF 96365; (3) CCE can be directly enhanced by an increase in intracellular cAMP, as 8-bromoadenosine 3',5'-cyclic monophosphate (8-brcAMP), forskolin, and isobutylmethylxanthine have stimulatory effects on CCE; and (4) neither of the two potent protein kinase A (PKA) inhibitors, H8 and H89, nor a specific PKA agonist, Sp-adenosine 3',5'-cyclic monophosphothioate, had a significant effect on cAMP-enhanced Ca2+ entry. The [Ca2+]i increase was not due to a release from calcium stores, hyperpolarization of the membrane potential, inhibition of calcium extrusion, or a change in pHi, suggesting that cAMP itself probably acts as a novel messenger to modulate CCE. We also conclude that activation of PKC results in an increase in CCE. cAMP and PKC seem to modulate CCE by different pathways.
Collapse
Affiliation(s)
- M L Wu
- Institute of Physiology, College of Medicine, National Taiwan University, Taipei
| | | | | | | | | |
Collapse
|
17
|
Vidal G, Durand T, Canioni P, Gallis JL. Cytosolic pH regulation in perfused rat liver: role of intracellular bicarbonate production. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1425:224-34. [PMID: 9813342 DOI: 10.1016/s0304-4165(98)00075-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The contribution of metabolic bicarbonate to cytosolic pH (pHcyto) regulation was studied on isolated perfused rat liver using phosphorus-31 NMR spectroscopy. Removal of external HCO3- decreased proton efflux from 18.6+/-5.0 to 1.64+/-0.29 micromol/min per g liver wet weight (w.w.) and pHcyto from 7.17+/-0.06 to 6.87+/-0.06. In the nominal absence of bicarbonate, inhibition of carbonic anhydrase by acetazolamide induced a further decrease of proton efflux of 0.69+/-0.26 micromol/min per g liver w.w. reflecting a reduction in metabolic CO2 hydration, and hence a decrease of H+ and HCO3- supplies. Even though 27% of the proton efflux was amiloride-sensitive under bicarbonate-free conditions, amiloride did not change pHcyto, revealing the contribution of additional regulatory processes. Indeed, pH regulation was affected by the combined use of 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) and amiloride since pHcyto decreased by 0.16+/-0.05 and proton efflux by 0.60+/-0.14 micromol/min per g liver w.w. The data suggest that amiloride-sensitive or SITS-sensitive transport activities could achieve, by themselves, pHcyto regulation. The involvement of two mechanisms, most likely Na+/H+ antiport and Na+:HCO3 symport, was confirmed in the whole organ under intracellular and extracellular acidosis. The evidence of Na-dependent transport of HCO3- in the absence of exogenous bicarbonate implies that the amount of metabolic bicarbonate is sufficient to effectively participate to pHcyto regulation.
Collapse
Affiliation(s)
- G Vidal
- Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Université Victor Segalen Bordeaux 2, France
| | | | | | | |
Collapse
|
18
|
Fu WM, Liou HC, Chen YH, Wang SM. Release of acetylcholine from embryonic myocytes in Xenopus cell cultures. J Physiol 1998; 509 ( Pt 2):497-506. [PMID: 9575298 PMCID: PMC2230958 DOI: 10.1111/j.1469-7793.1998.497bn.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Acetylcholine (ACh) is important as the transmitter responsible for neuromuscular transmission. Here we report the non-quantal release of ACh from embryonic myocytes. 2. Co-cultures of spinal neurons and myotomal muscle cells were prepared from 1-day-old Xenopus embryos. Single channel currents were recorded in the non-innervated myocytes. When the patch pipette was filled with Ringer solution alone, spontaneous single channel currents occurred, which were inhibited by d-tubocurarine (d-Tc). 3. The channel conductance appearing in Ringer solution (37.3 pS) was similar to that of an embryonic-type ACh channel (36.9 pS), indicating that ACh is probably released from myocytes in normal Ringer solution. 4. When the patch pipette was filled with anticholinesterase alone to prevent hydrolysis of ACh released from myocytes, both physostigmine and neostigmine in a concentration-dependent manner increased channel open probability; it was reduced by d-Tc or alpha-bungarotoxin. 5. Vesamicol and quinacrine, vesicular transporter inhibitors, reduced the channel open probability caused by ACh released from myocytes in the presence of neostigmine or physostigmine. 6. Intracellular alkalinization with NH4Cl inhibited the ACh release from myocytes, whereas, extracellular alkalinization, brought about by replacing normal Ringer solution, with pH 8.6 Ringer solution enhanced ACh release. 7. The immunocytochemistry of choline acetyltransferase (ChAT) showed that ChAT exists in both myocytes and neuronal cells but not in fibroblasts. 8. These results suggest that embryonic myocytes are capable of synthesizing and releasing ACh in a non-quantal manner. Extracellular alkalinization enhanced and intracellular alkalinization inhibited ACh release from myocytes.
Collapse
Affiliation(s)
- W M Fu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | |
Collapse
|
19
|
Liaw YS, Yang PC, Yu CJ, Kuo SH, Luh KT, Lin YJ, Wu ML. PKC activation is required by EGF-stimulated Na(+)-H+ exchanger in human pleural mesothelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L665-72. [PMID: 9612280 DOI: 10.1152/ajplung.1998.274.5.l665] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor (EGF) stimulates the Na(+)-H+ exchanger, leading to enhanced cell proliferation. In human pleural mesothelial cells (PMCs), the intracellular signaling mechanism mediating the EGF-induced stimulation of the Na(+)-H+ exchanger has not yet been identified. Using a pH-sensitive fluorescent probe, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, to measure changes in intracellular pH (pHi), we found that 1) EGF and 12-O-tetradecanoylphorbol 13-acetate (TPA; a phorbol ester) both stimulate the ethylisopropyl amiloride-sensitive Na(+)-H+ exchanger; 2) TPA-induced alkalosis can be blocked by protein kinase C (PKC) inhibitors (chelerythrine and staurosporine) or by PKC down-regulation, indicating that PKC activation is involved in the stimulation of the Na(+)-H+ exchanger. However, TPA-induced alkalosis is not blocked by tyrosine kinase inhibitors; and 3) the stimulatory effect of EGF on the Na(+)-H+ exchanger acts via stimulation of tyrosine kinase-receptor activity because it is inhibited by tyrosine kinase inhibitors (genistein, lavendustin A, and herbimycin A). It also involves PKC activation because EGF-induced alkalosis was blocked by PKC inhibitors. These results suggest that PKC activation is one of the downstream signals for EGF-induced activation of the Na(+)-H+ exchanger in primary cultures of human pleural mesothelial cells.
Collapse
Affiliation(s)
- Y S Liaw
- Laboratory of Medicine, College of Medicine, National Taiwan University, Taipei, Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Regulation of presynaptic NMDA responses by external and intracellular pH changes at developing neuromuscular synapses. J Neurosci 1998. [PMID: 9526015 DOI: 10.1523/jneurosci.18-08-02982.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDA receptors play important roles in synaptic plasticity and neuronal development. The functions of NMDA receptors are modulated by many endogenous substances, such as external pH (pHe), as well as second messenger systems. In the present study, the nerve-muscle cocultures of Xenopus embryos were used to investigate the effects of both external and intracellular pH (pHi) changes on the functional responses of presynaptic NMDA receptors. Spontaneous synaptic currents (SSCs) were recorded from innervated myocyte using whole-cell recordings. Local perfusion of NMDA at synaptic regions increased the SSC frequency via the activation of presynaptic NMDA receptors. A decrease in pHe from 7.6 to 6.6 reduced NMDA responses to 23% of the control, and an increase in pHe from 7.6 to 8.6 potentiated the NMDA responses in increasing SSC frequency. The effect of NMDA on intracellular Ca2+ concentration ([Ca2+]i) was also affected by pHe changes: external acidification inhibited and alkalinization potentiated [Ca2+]i increases induced by NMDA. Intracellular pH changes of single soma were measured by ratio fluorometric method using 2,7-bis (carboxyethyl)-5, 6-carboxyfluorescein (BCECF). Cytosolic acidification was used in which NaCl in Ringer's solution was replaced with weak organic acids. Acetate and propionate but not methylsulfate substitution caused intracellular acidification and potentiated NMDA responses in increasing SSC frequency, intracellular free Ca2+ concentration, and NMDA-induced currents. On the other hand, cytosolic alkalinization with NH4Cl did not significantly affect these NMDA responses. These results suggest that the functions of NMDA receptors are modulated by both pHe and pHi changes, which may occur in some physiological or pathological conditions.
Collapse
|
21
|
Chen YH, Wu ML, Fu WM. Regulation of acetylcholine release by intracellular acidification of developing motoneurons in Xenopus cell cultures. J Physiol 1998; 507 ( Pt 1):41-53. [PMID: 9490814 PMCID: PMC2230776 DOI: 10.1111/j.1469-7793.1998.041bu.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The effects of intracellular pH changes on the acetylcholine (ACh) release and cytoplasmic Ca2+ concentration at developing neuromuscular synapses were studied in Xenopus nerve-muscle co-cultures. 2. Spontaneous and evoked ACh release of motoneurons was monitored by using whole-cell voltage-clamped myocytes. Intracellular alkalinization with 15 mM NH4Cl slightly reduced the frequency of spontaneous synaptic currents (SSCs). However, cytosolic acidification following withdrawal of extracellular NH4Cl caused a marked and transient increase in spontaneous ACh release. 3. Another method of cytosolic acidification was used in which NaCl in Ringer solution was replaced with weak organic acids. The increase in spontaneous ACh release paralleled the level of intracellular acidification resulting from addition of these organic acids. Acetate and propionate but not isethionate, methylsulphate and glucuronate, caused an increase in intracellular pH and a marked increase in spontaneous ACh release. 4. Impulse-evoked ACh release was slightly augmented by intracellular alkalinization and inhibited by cytosolic acidification. 5. Cytosolic acidification was accompanied by an elevation in the cytoplasmic Ca2+ concentration ([Ca2+]i), resulting from both external Ca2+ influx and intracellular Ca2+ mobilization. In contrast, the increase in [Ca2+]i induced by high K+ was inhibited by cytosolic acidification. 6. We conclude that cytosolic acidification regulates spontaneous and evoked ACh release differentially in Xenopus motoneurons, increasing spontaneous ACh release but inhibiting evoked ACh release.
Collapse
Affiliation(s)
- Y H Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
22
|
Lin WW, Chang SH, Wu ML. Lipoxygenase metabolites as mediators of UTP-induced intracellular acidification in mouse RAW 264.7 macrophages. Mol Pharmacol 1998; 53:313-21. [PMID: 9463490 DOI: 10.1124/mol.53.2.313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In previous studies, we have shown that mouse RAW 264.7 macrophages possess pyrimidinoceptors, coupled to a phosphoinositide-specific phospholipase C, with a higher specificity for UTP than for ATP. In the current study, we explored the mechanism involved in the UTP-induced intracellular acidification seen in this cell line. UTP (30 microM) caused a reversible pHi decrease of 0.16 +/- 0.01 unit; this effect was not influenced by the removal of extracellular Cl- or Na+ ions or by pretreatment with 5-(N-ethyl-N-isopropyl)-amiloride (10 microM), 5-nitro-2-(3-phenylpropylamino)benzoic acid (100 microM), staurosporine (1 microM), or Ro 31-8220 (1 microM) but was completely abolished by the removal of extracellular Ca2+. UTP (30 microM), thapsigargin (1 microM), and ionomycin (1 microM) each induced a similar extent of external Ca2+-dependent acidification with a similar time-dependency, but the effects were nonadditive. To further investigate the Ca2+-dependent mechanism, we studied the involvement of arachidonic acid (AA) and eicosanoid metabolites. The addition of AA (10 microM) but not arachidic acid (100 microM) produced a reduction in pHi. UTP, thapsigargin, and ionomycin induced Ca2+-dependent AA release. Furthermore, 4-bromo-phenacyl bromide [30 microM, a phospholipase A2 (PLA2) inhibitor-, nordihydroguaiaretic acid (50 microM, a lipoxygenase inhibitor), and MK-886 (10 microM, a 5-lipoxygenase-activating protein inhibitor) abolished the UTP- or ionomycin-induced responses, whereas indomethacin (30 microM, a cyclooxygenase inhibitor) and baicalein (10 microM, a selective 12-lipoxygenase inhibitor) had no effect. MAFP (a cPLA2 inhibitor) and REV 5901 (a 5-lipoxygenase inhibitor as well as a competitive antagonist of peptide leukotrienes), but not RHC 80267 (a diacylglycerol lipase inhibitor), also inhibited the UTP-induced response. In contrast, the pHi response to AA was unaffected by the presence of 4-bromo-phenacyl bromide or the removal of extracellular Ca2+ ions but abolished by addition of NDGA. Exogenous 5-hydroperoxyeicosatetraenoic acid (2 microM) also produced marked acidification, and UTP and ionomycin both induced peptide leukotriene formation. In conclusion, this is the first report indicating that lipoxygenase metabolites act as mediators of the Ca2+-dependent acidification seen in macrophages in response to UTP or ionomycin via activation of cPLA2 and AA release.
Collapse
Affiliation(s)
- W W Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | |
Collapse
|
23
|
Tsai KL, Wang SM, Chen CC, Fong TH, Wu ML. Mechanism of oxidative stress-induced intracellular acidosis in rat cerebellar astrocytes and C6 glioma cells. J Physiol 1997; 502 ( Pt 1):161-74. [PMID: 9234204 PMCID: PMC1159579 DOI: 10.1111/j.1469-7793.1997.161bl.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. Following ischaemic reperfusion, large amounts of superoxide anion (.O2-), hydroxyl radical (.OH) and H2O2 are produced, resulting in brain oedema and changes in cerebral vascular permeability. We have found that H2O2 (100 microM) induces a significant intracellular acidosis in both cultured rat cerebellar astrocytes (0.37 +/- 0.04 pH units) and C6 glioma cells (0.33 +/- 0.07 pH units). 2. Two membrane-crossing ferrous iron chelators, phenanthroline and deferoxamine, almost completely inhibited H2O2-induced intracellular acidosis, while the non-membrane-crossing iron chelator apo-transferrin had no effect. Furthermore, the acidosis was completely inhibited by two potent membrane-crossing .OH scavengers, N-(2-mercaptopropionyl)-glycine (N-MPG) and dimethyl thiourea (DMTU). Since .OH can be produced during iron-catalysed H2O2 breakdown (Fenton reaction), we have shown that a large reduction in pH1 in glial cells can result from the production of intracellular .OH via H2O2 oxidation. 3. We have ruled out the possible involvement of: (i) an increase in intracellular Ca2+ levels; and (ii) inhibition of oxidative phosphorylation. 4. Our results suggest that .OH inhibits glycolysis, leading to ATP hydrolysis and intracellular acidosis. This conclusion is based on the following observations: (i) in glucose-free medium, or in the presence of iodoacetate or 2-deoxy-D-glucose, H2O2-induced acidosis is completely suppressed; (ii) H2O2 and iodoacetate both produce an increase in levels of intracellular free Mg2+, an indicator of ATP breakdown; and (iii) direct measurement of intracellular ATP levels and lactate production show 50 and 55% reductions in ATP content and lactate production, respectively, following treatment with 100 microM H2O2. 5. Inhibition of the pH1 regulators (i.e. the Na(+)-H+ exchange and possibly the Na(+)-HCO3(-)-dependent pH1 transporters) resulting from H2O2-induced intracellular ATP reduction may also be involved in the H2O2-evoked intracellular acidosis in glial cells.
Collapse
Affiliation(s)
- K L Tsai
- Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
24
|
Taouil K, Féray JC, Brunet J, Christen MO, Garay RP, Hannaert P. Inhibition by xipamide of amiloride-induced acidification in cultured rat cardiocytes. Eur J Pharmacol 1997; 324:289-94. [PMID: 9145785 DOI: 10.1016/s0014-2999(97)00087-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The diuretic drug xipamide improves myocardial relaxation in hypertensive patients with left ventricular hypertrophy, but its mechanism of action is unknown. Here, xipamide was tested in cultured rat heart myogenic H9c2 cells and newborn cardiomyocytes for its effects on cell acidification (and Ca2+ mobilization). In H9c2 cells, blocking Na+/H+ exchange with amiloride (2 mM) provoked cell acidification with rate = 0.82 +/- 0.17 pH units/h (n = 6). Xipamide 1 microM maximally inhibited 50 +/- 7% (n = 9) of cell acidification. The action of xipamide required the presence of HCO3- and was antagonized by the HCO3(-)-transport blocker DIDS (4,4'-diisothiocyanostilbene-2.2'-disulfonic acid). Conversely, the carbonic anhydrase (EC 4.2.1.1) inhibitor acetazolamide failed to prevent xipamide action. Finally, xipamide was without significant effect on the Ca2+ signals induced by endothelin-1, vasopressin or the Ca2+ ionophore ionomycin. In newborn rat cardiomyocytes, xipamide reduced amiloride-induced cell acidification at similar concentrations as in H9c2 cardiocytes, but with a slightly higher extent of maximal inhibition (70-80%). In conclusion, xipamide reduced amiloride-dependent cell acidification in the rat heart myogenic H9c2 cell line and in newborn rat cultured cardiomyocytes. This action of xipamide seems to be related to a complex interaction with DIDS-sensitive HCO3- movements. Prevention of cell acidification by xipamide could be involved in the beneficial effects of this compound in myocardial relaxation and left ventricle filling in hypertensive patients with left ventricular hypertrophy.
Collapse
Affiliation(s)
- K Taouil
- INSERM U400, Faculté de Médecine de Créteil, France
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
To test the hypothesis that culture conditions influence meiotic regulation in mouse oocytes, we have examined the effects of six culture media, four organic buffers, and pH on spontaneous maturation, the maintenance of meiotic arrest and ligand-induced maturation in cumulus cell-enclosed oocytes from hormonally primed immature mice. The media tested were Eagle's minimum essential medium (MEM), Ham's F-10 (F-10), M199, M16, Waymouth's MB 752/1 (MB 752/1), and Leibovitz's L-15 (L-15). All six media supported > or = 94% spontaneous germinal vesicle breakdown (GVB) during a 17-18 hr incubation period, but polar body formation was lower in M199 and MB 752/1 than in the other media. The incidence of polar bodies could be increased in these two media by the addition of pyruvate. With the exception of M16 and MB 752/1, 4 mM hypoxanthine maintained a significant number of cumulus cell-enclosed oocytes in meiotic arrest. Inhibition could be restored by the addition of glutamine to M16 and pyruvate to MB 752/1. Follicle-stimulating hormone (FSH) and epidermal growth factor (EGF) stimulated GVB in those media in which hypoxanthine was inhibitory. dbcAMP was able to maintain meiotic arrest in all of the media, but was least effective in M16. FSH stimulated GVB in all dbcAMP-arrested groups except L-15, and FSH became stimulatory in L-15 when the pyruvate level was reduced to 0.23 mM and galactose was replaced with 5.5 mM glucose. When MEM was buffered principally with the organic buffers MOPS, HEPES, DIPSO, or PIPES (at 20 mM), high frequencies of GVB and polar body formation were observed in inhibitor-free medium. dbcAMP suppressed GVB in all groups; hypoxanthine also maintained meiotic arrest in all buffering conditions, although this effect was nominal in PIPES-buffered medium. FSH and EGF stimulated GVB in all dbcAMP- and hypoxanthine-treated groups. When the concentration of HEPES was increased from 20 mM to 25 mM, a more pronounced suppressive effect on maturation in both dbcAMP- and hypoxanthine-supplemented groups was observed in the absence of FSH. But whereas HEPES reduced the induction of maturation by FSH in dbcAMP-arrested oocytes, this buffer had no effect on FSH action in hypoxanthine-treated oocytes. When MEM was buffered with HEPES and the pH was adjusted to 6.8, 7.0, 7.2, or 7.4, a dramatic effect of pH on meiotic maturation was observed. pH had no significant effect on hypoxanthine salvage by oocyte-cumulus cell complexes, but FSH-induced de novo purine synthesis was significantly augmented by increased pH, in parallel with increased induction of GVB. The results of this study demonstrate that the use of different culture media, or minor changes in culture conditions, can lead to significant variation in (1) the spontaneous maturation of oocytes, (2) the ability of meiotic inhibitors to suppress GVB, or (3) the efficacy of meiosis-inducing ligands. Furthermore, such observations provide a unique opportunity to examine specific molecules and metabolic pathways that can account for this variation and thereby gain valuable insights into the mechanisms involved in meiotic regulation.
Collapse
Affiliation(s)
- S M Downs
- Biology Department, Marquette University, Milwaukee, WI 53233, USA
| | | |
Collapse
|
26
|
Sun B, Leem CH, Vaughan-Jones RD. Novel chloride-dependent acid loader in the guinea-pig ventricular myocyte: part of a dual acid-loading mechanism. J Physiol 1996; 495 ( Pt 1):65-82. [PMID: 8866352 PMCID: PMC1160725 DOI: 10.1113/jphysiol.1996.sp021574] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The fall of intracellular pH (pH1) following the reduction of extracellular pH (pH0) was investigated in guinea-pig isolated ventricular myocytes using intracellular fluorescence measurements of carboxy-SNARF-1 (to monitor pH1). Cell superfusates were buffered either with a 5% CO2-HCO3- system or were nominally CO2-HCO3-free. 2. Reduction of pH0 from 7.4 to 6.4 reversibly reduced pH1 by about 0.4 pH units, independent of the buffer system used. 3. In HCO3(-)-free conditions, acid loading in low pH0 was not dependent on Na(+)-H+ exchange or on the presence of Na+. It was unaffected by high-K+ solution, by voltage-clamp depolarization, by various divalent cations (Zn2+, Cd2+, Ni2+ and Ba2+) and by the organic Ca2+ channel blocker diltiazem, thus ruling out proton influx through H(+)-or Ca(2+)-conductance channels or influx via a K(+)-H+ exchanger. The fall also persisted in the presence of glycolytic inhibitors, or the lactate transport inhibitor, alpha-cyano-4-hydroxy cinnamate. 4. In HCO3(-)-free conditions, acid loading in low pH0 was reversibly inhibited (by up to 85%) by Cl(-)0 removal and was slowed by the stilbene drug DBDS (dibenzamidostilbene disulphonic acid). In contrast, the Cl(-)-HCO3-exchange inhibitor DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) had no inhibitory effect. Acid loading is therefore mediated by a novel Cl(-)-dependent, acid influx pathway. 5. After switching to CO2-HCO3(-)-buffered conditions, acid loading was doubled. It was still not inhibited by Na(+)-free or high-K+ solutions but was once again inhibited (by 78%) in Cl(-)-free solution. The HCO3(-)-stimulated fraction of acid loading was inhibited by DIDS. 6. We propose a model of acid loading in the cardiomyocyte which consists of two parallel carriers. One is Cl(-)-HCO3-exchange, while we suggest the other to be a novel Cl(-)-OH-exchanger (although we do not rule out the alternative configuration of H(+)-Cl-co-influx). The proposed dual acid-loading mechanism accounts for most of the sensitivity of pH1 to a fall of pH0.
Collapse
Affiliation(s)
- B Sun
- University Laboratory of Physiology, Oxford, UK
| | | | | |
Collapse
|
27
|
Loh SH, Sun B, Vaughan-Jones RD. Effect of Hoe 694, a novel Na(+)-H+ exchange inhibitor, on intracellular pH regulation in the guinea-pig ventricular myocyte. Br J Pharmacol 1996; 118:1905-12. [PMID: 8864522 PMCID: PMC1909868 DOI: 10.1111/j.1476-5381.1996.tb15623.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Hoe 694 (3-methylsulphonyl-4-piperidinobenzoyl, guanidine hydrochloride) is a Na+/H+ exchange (NHE) inhibitor exhibiting cardioprotective properties during ischaemia and reperfusion in animal hearts. We have (i) tested the selectivity of Hoe 694 for NHE over other pHi-regulating mechanisms in the myocardium, and (ii) tested if the functionally important NHE isoform contributing to intracellular pH regulation in heart is NHE-1, as suggested from molecular biology studies of this protein. 2. pHi was recorded by fluorescence microscopy with carboxy SNARF-1, AM-loaded into single ventricular myocytes of guinea-pig. 3. In nominally HCO3-free media, recovery of pHi from an intracellular acid load is mediated by NHE, and was inhibited by Hoe 694, amiloride (an NHE inhibitor) or dimethyl amiloride (DMA, a high affinity NHE inhibitor) with potency values of 2.05, 87.3 and 1.96 microM respectively, giving the potency series: Hoe 694 congruent to DMA > > amiloride. This potency series, and the potency values (corrected for drug competition with extracellular Na+) match those determined previously for cloned NHE-1 expressed in mutant fibroblasts. In the absence of extracellular Na+ (to inhibit NHE), Hoe 694 had no effect on pHi. 4. In 5% CO2/HCO3(-)-buffered solution containing DMA, pHi recovery from acidosis is mediated by Na(+)-HCO3- symport and was unaffected by Hoe 694. The drug also had no effect on pHi recovery from an alkali-load, a process largely mediated by Cl(-)-HCO3- exchange. Finally, the fall of pHi upon adding extracellular Na-lactate is assisted by H(+)-lactate symport, and this too was unaffected by Hoe 694. 5. We conclude (i) Hoe 694 has no detectable inhibitory potency for pH-regulating carriers in heart other than NHE. (ii) native NHE functioning during pHi-regulation in the cardiomyocyte is the NHE-1 isoform. These data strengthen the case for NHE-1 being the receptor for mediating the cardioprotective effects of Hoe 694.
Collapse
Affiliation(s)
- S H Loh
- University Laboratory of Physiology, Oxford
| | | | | |
Collapse
|
28
|
Lagadic-Gossmann D, Le Prigent K, Feuvray D. Effects of trimetazidine on pHi regulation in the rat isolated ventricular myocyte. Br J Pharmacol 1996; 117:831-8. [PMID: 8851498 PMCID: PMC1909418 DOI: 10.1111/j.1476-5381.1996.tb15268.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. We have examined the effects of trimetazidine (TMZ) on intracellular pH (pHi) regulation in rat isolated ventricular myocytes. pHi was recorded ratiometrically by use of the pH-sensitive fluoroprobe, carboxy-SNARF-1 (carboxy-seminaphtorhodafluor). 2. Following an intracellular acid load (induced by 10 mM NH4Cl removal), pHi recovery in HEPES-buffered Tyrode solution was significantly slowed down upon application of 0.3 mM TMZ only when myocytes were pretreated for 5 h 30 min (slowing by approximately 50%; P < 0.01). This effect of TMZ on pHi recovery was shown to be not only time- but also dose-dependent with a large, quickly reversible, effect obtained with 1 mM TMZ applied for 2-3 h (slowing by approximately 64%; P < 0.001). This slowing of pHi recovery was also associated with a decrease of the NH4+ removal-induced acidification. 3. Relationship between intracellular intrinsic buffering power (beta i) and pHi was assessed in absence or presence of TMZ (0.3 mM or 1 mM). As expected, beta i increased roughly linearly with a decrease in pHi in all cases. However, both concentrations of TMZ significantly increased beta i (by approximately 55 and 65% at pHi 7.1, respectively). 4. When Na+/H+ exchange was inhibited by dimethyl amiloride (DMA; 40 microM), trimetazidine (1 mM) did not change the H+ flux estimated at pHi 7.1 (0.31 +/- 0.03 mequiv l-1 min-1, n = 5, control, versus 0.30 +/- 0.025 mequiv l-1 min-1, n = 5, TMZ), ruling out any effect of TMZ on background acid loading. 5. Acid efflux carried by Na+/H+ exchange was significantly decreased only when myocytes were pretreated with 1 mM TMZ, for 2-3 h (JeH = 2.86 +/- 0.38 mequiv l-1 min-1, n = 26, control, versus 1.66 +/- 0.26 mequiv l-1 min-1, n = 10, TMZ, estimated at pHi 7.1; P < 0.05). 6. In conclusion, the present work demonstrates that, following an intracellular acid load in HEPES-buffered medium, trimetazidine slows down pHi recovery in rat isolated ventricular myocytes, primarily through an increase of beta i. An effect on Na+/H+ exchange is also detected but only after long-term incubation of the myocytes with TMZ.
Collapse
Affiliation(s)
- D Lagadic-Gossmann
- Laboratoire de Physiologie Cellulaire, Université Paris XI, Orsay, France
| | | | | |
Collapse
|
29
|
Shaw S, Naegeli P, Etter JD, Weidmann P. Inhibition of rat glomerular mesangial cell sodium/hydrogen exchange by hydrogen peroxide. Clin Exp Pharmacol Physiol 1995; 22:817-23. [PMID: 8593736 DOI: 10.1111/j.1440-1681.1995.tb01941.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1. pHi regulation in glomerular mesangial cells (GMC) includes both Na+/H+ and Cl-/HCO3-exchange. As a fall in pHi may protect against H2O2-mediated GMC damage during ischaemia-reperfusion, the involvement of these mechanisms in the GMC pH1 response to H2O2 was assessed using confluent GMC grown in RPMI medium with 20% fetal calf serum (10-15 passages). 2. Cells were loaded with BCECF-AM and pH1 evaluated using standard fluorometric-ratio techniques. In HEPES buffer, GMC exposure to H2O2 dose-dependently (25 mumol/L-1 mmol/L) decreased pHi over 10 min from 7.3 +/- 0.1 to 6.7 +/- 0.1 (at 100 mumol/L) partly due to rapid non-competitive inhibition of amiloride-sensitive Na+/H+ exchange. 3. BCECF fluorescence in free solution was unchanged by H2O2 and averaged 100 +/- 9 nmol/2.6 x 10(6) cells/pH unit. Similarly, zero-Na+/high-K+ buffer, used to minimize passive H+ entry, did not prevent the fall in pHi while GMC H+-formation/extrusion, assessed by the rate of extracellular acidification in low-capacity buffer (0.05 mmol/L), was rapidly inhibited. 4. In contrast, following only a brief 3 min exposure to 1 mmol/L H2O2, HCO3-/CO2 buffer potentiated the inhibition of Na+/H+ exchange from 50 to 80% of control and reduced the acidification from pHi 6.6 +/- 0.1 to 7.15 +/- 0.05. This effect was reversed (to pHi 6.8 +/- 0.07) by pretreatment with 200 mumol/L DIDS, an inhibitor of Cl-/HCO3- exchange. 5. Thus, the decrease in GMC pHi in response to H2O2 in HEPES, partly mediated by inhibition of Na+/H+ exchange and a possible redistribution of intracellular H+, is antagonized in HCO3-/CO2 through a DIDS-sensitive Cl-/HCO3- exchange mechanism. This may act to negate potentially protective effects of low pHi and potentiate oxidative damage to membrane lipids, enzymes and intracellular organelles on reperfusion.
Collapse
Affiliation(s)
- S Shaw
- Medizinische Universitäts-Poliklinik Inselspital, Bern, Switzerland
| | | | | | | |
Collapse
|