1
|
Dutta B, Loo S, Kam A, Wang X, Wei N, Luo KQ, Liu CF, Tam JP. Cell-Permeable Microprotein from Panax Ginseng Protects Against Doxorubicin-Induced Oxidative Stress and Cardiotoxicity. Antioxidants (Basel) 2025; 14:493. [PMID: 40298878 PMCID: PMC12024455 DOI: 10.3390/antiox14040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
(1) Background: Doxorubicin (DOX) is a frontline chemotherapeutic, but its side-effects from oxidative stress, leading to cardiotoxicity, pose significant challenges to its clinical use. We recently discovered a novel family of proteolysis-resistant, cystine-dense, and cell-penetrating microproteins from Panax ginseng that we term ginsentides. Ginsentides, such as the 31-residue TP1, coordinate multiple biological systems to prevent vascular dysfunction and endoplasmic reticulum stress induced by internal and external stressors. (2) Methods: We assessed the protective effects of ginsentide TP1 on DOX-induced cardiotoxicity using both in vitro functional studies on H9c2 cardiomyocytes and in vivo animal models by zebrafish and ICR mouse models. In these models, we examined oxidative stress, apoptosis, intracellular calcium levels, mitochondrial function, inflammatory responses, and cardiac function. (3) Results: We show that ginsentide TP1 protects against DOX-induced cytotoxicity in the mitochondria-rich H9c2 cardiomyocytes and reduces myocardial injury in zebrafish and mice by mitigating oxidative stress, inflammation, calcium, and mitochondrial dysfunction, as well as apoptosis-mediated cell death. Importantly, TP1 preserves cellular homeostasis without compromising the anticancer potency of DOX in breast cancer cells. (4) Conclusions: our findings highlight a specific antioxidative function of ginsentide TP1 in managing DOX-induced cardiotoxicity during cancer treatment and provide a promising lead for developing cardioprotective peptides and microproteins against oxidative stress.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
- School of Pharmacy, The Neotia University, Sarisa, Diamond Harbour Road, 24 Parganas (South), West Bengal 743368, India
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Xiaoliang Wang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Na Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore;
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China;
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, China
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (X.W.); (C.-F.L.)
| |
Collapse
|
2
|
Feng W, Wang Q, Tan Y, Qiao J, Liu Q, Yang B, Yang S, Cui L. Early detection of anthracycline-induced cardiotoxicity. Clin Chim Acta 2025; 565:120000. [PMID: 39401650 DOI: 10.1016/j.cca.2024.120000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Although anthracyclines are important anticancer agents, their use is limited due to various adverse effects, particularly cardiac toxicity. Mechanisms underlying anthracycline-induced cardiotoxicity (AIC) are complex. Given the irreplaceable role of anthracyclines in treatment of malignancies and other serious diseases, early monitoring of AIC is paramount. In recent years, multiple studies have investigated various biomarkers for early detection of AIC. Currently, the two most common are cardiac troponin and B-type natriuretic peptide. In addition, a range of other molecules, including RNAs, myeloperoxidase (MPO), C-reactive protein (CRP), various genes, and others, also play roles in AIC prediction. Unfortunately, current research indicates a need to validate their sensitivity and specificity of these biomarkers especially in large study populations. In this review, we summarize the mechanisms and potential biomarkers of AIC, although some remain preliminary.
Collapse
Affiliation(s)
- Weimin Feng
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Qingchen Wang
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Jiao Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Boxin Yang
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
3
|
Wang Q, Liu M, Liu T, Li L, Wang C, Wang X, Rong S, Zhou X. Alterations in the gut microbiome and metabolism with doxorubicin-induced heart failure severity. Front Microbiol 2024; 15:1348403. [PMID: 39777147 PMCID: PMC11703658 DOI: 10.3389/fmicb.2024.1348403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/14/2024] [Indexed: 01/11/2025] Open
Abstract
Objective This study aimed to explore the changes in gut microbiota and its metabolites in different pathophysiological stages of doxorubicin (DOX)-induced heart failure (DIHF) and the relationship between gut microbiota and metabolites in various degrees of DIHF. Materials and methods C57BL/6 J mice were injected intraperitoneally with 5 mg/kg of DOX once a week for 5 consecutive weeks. At different times after injection, the cardiac function and histopathological analysis was conducted, the serum levels of creatine kinase (CK), CK-MB, lactic dehydrogenase, and cardiac troponin T were determined. 16S rRNA gene sequencing of feces and the nontargeted metabolomics analysis of serum were performed. Multi-omics analyses were used to explore the correlation between gut microbiota and serum metabolites. Results The results showed that DOX caused cardiac contractile dysfunction and left ventricular (LV) dilation. The levels of myocardial enzymes significantly increase in 3 and 5 weeks after DOX injection. DOX-treated mice showed significant differences in the composition and abundance of gut microorganisms, and the levels of serum metabolites at different times of treatment. Multi-omics analyses showed that intestinal bacteria were significantly correlated with the differential metabolites. Some bacteria and metabolites can be used as biomarkers of DIHF (AUC > 0.8). KEGG analyses showed the involvement of different metabolic pathways in various degrees of DIHF. Conclusion Marked differences were found in the composition and abundance of gut microorganisms, the levels of serum metabolites and metabolic pathways in different degrees of DIHF. The intestinal bacteria were significantly correlated with differential metabolites in different degrees of DIHF. The gut microbiota may serve as new targets for the treatment of DIHF.
Collapse
Affiliation(s)
- Qian Wang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Meihua Liu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, The Shanxi Medical University, Taiyuan, China
| | - Tianpei Liu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, The Shanxi Medical University, Taiyuan, China
| | - Long Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chenyang Wang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaolin Wang
- Department of Neonatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuling Rong
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Zheng Y, Xiang G, Zeng L, Yang C, Ke J, Yu H, Zhang J. MiR-24-3p modulates cardiac function in doxorubicin -induced heart failure via the Sp1/PI3K signaling pathway. Cell Signal 2024; 124:111407. [PMID: 39278455 DOI: 10.1016/j.cellsig.2024.111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
PURPOSE The goal of this research was to explore the role of miR-24-3p in heart failure (HF), with a focus on its impact on the specificity protein 1 (Sp1)/phosphoinositide 3-kinase (PI3K) pathway. METHODS HF rat and HF cell models were established using doxorubicin(Dox). Cardiac function was assessed through echocardiography, while histological changes were observed via hematoxylin-eosin (HE) staining. To further investigate the underlying mechanisms, HF cell models were treated with either an Sp1 inhibitor or a PI3K inhibitor. Additionally, models with miR-24-3p overexpression or silencing were constructed. N-terminal pro-brain natriuretic peptide (NT-proBNP) levels were determined by ELISA. Cell apoptosis was evaluated using TUNEL staining, and lactate dehydrogenase (LDH) levels were measured by colorimetry. Reactive oxygen species (ROS) production was analyzed using flow cytometry. Related gene and protein expressions were assessed via qRT-PCR and Western blotting. Finally, the relationship between miR-24-3p and Sp1 was confirmed through dual-luciferase assays. RESULTS Dox treatment increased the left ventricular internal diameter (LVIDd) while decreasing ejection fraction (EF) and fractional shortening (FS), leading to disorganized cardiomyocyte arrangement, cellular edema, and necrosis in rats. In HF rats, NT-proBNP, Caspase-3, and miR-24-3p expression levels were elevated, whereas Sp1 and PI3K mRNA and protein expression levels were decreased. Similarly, Dox-induced damage in H9c2 cardiomyocytes resulted in increased NT-proBNP, apoptosis, Caspase-3, LDH, ROS, and miR-24-3p expression, along with decreased Sp1 and PI3K expression. Treatment with either Sp1 or PI3K inhibitors exacerbated the Dox-induced cardiomyocyte damage, further elevating NT-proBNP, apoptosis, Caspase-3, LDH, ROS, and miR-24-3p expression levels. Notably, Sp1 inhibition reduced PI3K expression, and PI3K inhibition, in turn, suppressed Sp1 expression. Overexpression of miR-24-3p worsened Dox-induced cardiomyocyte damage, characterized by increased NT-proBNP, apoptosis, Caspase-3, LDH, and ROS expression, alongside reduced Sp1 and PI3K expression. In contrast, silencing miR-24-3p mitigated these detrimental effects and increased Sp1 and PI3K expression. Dual-luciferase assays confirmed that miR-24-3p directly targets Sp1. CONCLUSION Dox induces cardiomyocyte damage, impairs cardiac function, and promotes cardiomyocyte apoptosis and oxidative stress. Silencing miR-24-3p offers a protective effect by activating the Sp1/PI3K signaling pathway in heart failure.
Collapse
Affiliation(s)
- Yonghong Zheng
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Cardiology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Guojian Xiang
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Cardiology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Linwen Zeng
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Chao Yang
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Intensive Care Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Jun Ke
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Huizhen Yu
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Cardiology in South Branch, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China.
| | - Jiancheng Zhang
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Cardiology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China.
| |
Collapse
|
5
|
Borlak J, Ciribilli Y, Bisio A, Selvaraj S, Inga A, Oh JH, Spanel R. The Abl1 tyrosine kinase is a key player in doxorubicin-induced cardiomyopathy and its p53/p73 cell death mediated signaling differs in atrial and ventricular cardiomyocytes. J Transl Med 2024; 22:845. [PMID: 39285385 PMCID: PMC11403941 DOI: 10.1186/s12967-024-05623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Doxorubicin is an important anticancer drug, however, elicits dose-dependently cardiomyopathy. Given its mode of action, i.e. topoisomerase inhibition and DNA damage, we investigated genetic events associated with cardiomyopathy and searched for mechanism-based possibilities to alleviate cardiotoxicity. We treated rats at clinically relevant doses of doxorubicin. Histopathology and transmission electron microscopy (TEM) defined cardiac lesions, and transcriptomics unveiled cardiomyopathy-associated gene regulations. Genomic-footprints revealed critical components of Abl1-p53-signaling, and EMSA-assays evidenced Abl1 DNA-binding activity. Gene reporter assays confirmed Abl1 activity on p53-targets while immunohistochemistry/immunofluorescence microscopy demonstrated Abl1, p53&p73 signaling. RESULTS Doxorubicin treatment caused dose-dependently toxic cardiomyopathy, and TEM evidenced damaged mitochondria and myofibrillar disarray. Surviving cardiomyocytes repressed Parkin-1 and Bnip3-mediated mitophagy, stimulated dynamin-1-like dependent mitochondrial fission and induced anti-apoptotic Bag1 signaling. Thus, we observed induced mitochondrial biogenesis. Transcriptomics discovered heterogeneity in cellular responses with minimal overlap between treatments, and the data are highly suggestive for distinct cardiomyocyte (sub)populations which differed in their resilience and reparative capacity. Genome-wide footprints revealed Abl1 and p53 enriched binding sites in doxorubicin-regulated genes, and we confirmed Abl1 DNA-binding activity in EMSA-assays. Extraordinarily, Abl1 signaling differed in the heart with highly significant regulations of Abl1, p53 and p73 in atrial cardiomyocytes. Conversely, in ventricular cardiomyocytes, Abl1 solely-modulated p53-signaling that was BAX transcription-independent. Gene reporter assays established Abl1 cofactor activity for the p53-reporter PG13-luc, and ectopic Abl1 expression stimulated p53-mediated apoptosis. CONCLUSIONS The tyrosine kinase Abl1 is of critical importance in doxorubicin induced cardiomyopathy, and we propose its inhibition as means to diminish risk of cardiotoxicity.
Collapse
Affiliation(s)
- Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Yari Ciribilli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Saravanakumar Selvaraj
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alberto Inga
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
6
|
Ibrahim AA, Nsairat H, Al-Sulaibi M, El-Tanani M, Jaber AM, Lafi Z, Barakat R, Abuarqoub DA, Mahmoud IS, Obare SO, Aljabali AAA, Alkilany AM, Alshaer W. Doxorubicin conjugates: a practical approach for its cardiotoxicity alleviation. Expert Opin Drug Deliv 2024; 21:399-422. [PMID: 38623735 DOI: 10.1080/17425247.2024.2343882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Doxorubicin (DOX) emerges as a cornerstone in the arsenal of potent chemotherapeutic agents. Yet, the clinical deployment of DOX is tarnished by its proclivity to induce severe cardiotoxic effects, culminating in heart failure and other consequential morbidities. In response, a panoply of strategies has undergone rigorous exploration over recent decades, all aimed at attenuating DOX's cardiotoxic impact. The advent of encapsulating DOX within lipidic or polymeric nanocarriers has yielded a dual triumph, augmenting DOX's therapeutic efficacy while mitigating its deleterious side effects. AREAS COVERED Recent strides have spotlighted the emergence of DOX conjugates as particularly auspicious avenues for ameliorating DOX-induced cardiotoxicity. These conjugates entail the fusion of DOX through physical or chemical bonds with diminutive natural or synthetic moieties, polymers, biomolecules, and nanoparticles. This spectrum encompasses interventions that impinge upon DOX's cardiotoxic mechanism, modulate cellular uptake and localization, confer antioxidative properties, or refine cellular targeting. EXPERT OPINION The endorsement of DOX conjugates as a compelling stratagem to mitigate DOX-induced cardiotoxicity resounds from this exegesis, amplifying safety margins and the therapeutic profile of this venerated chemotherapeutic agent. Within this ambit, DOX conjugates stand as a beacon of promise in the perpetual pursuit of refining chemotherapy-induced cardiac compromise.
Collapse
Affiliation(s)
- Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mazen Al-Sulaibi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Rahmeh Barakat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Duaa Azmi Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Ismail Sami Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Sherine O Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | | | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
7
|
Tamargo J, Villacastín J, Caballero R, Delpón E. Drug-induced atrial fibrillation. A narrative review of a forgotten adverse effect. Pharmacol Res 2024; 200:107077. [PMID: 38244650 DOI: 10.1016/j.phrs.2024.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with an increased morbidity and mortality. There is clinical evidence that an increasing number of cardiovascular and non-cardiovascular drugs, mainly anticancer drugs, can induce AF either in patients with or without pre-existing cardiac disorders, but drug-induced AF (DIAF) has not received the attention that it might deserve. In many cases DIAF is asymptomatic and paroxysmal and patients recover sinus rhythm spontaneously, but sometimes, DIAF persists, and it is necessary to perform a cardioversion. Furthermore, DIAF is not mentioned in clinical guidelines on the treatment of AF. The risk of DIAF increases in elderly and in patients treated with polypharmacy and with risk factors and comorbidities that commonly coexist with AF. This is the case of cancer patients. Under these circumstances ascribing causality of DIAF to a given drug often represents a clinical challenge. We review the incidence, the pathophysiological mechanisms, risk factors, clinical relevance, and treatment of DIAF. Because of the limited information presently available, further research is needed to obtain a deeper insight into DIAF. Meanwhile, it is important that clinicians are aware of the problem that DIAF represents, recognize which drugs may cause DIAF, and consider the possibility that a drug may be responsible for a new-onset AF episode.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| | - Julián Villacastín
- Hospital Clínico San Carlos, CardioRed1, Universidad Complutense de Madrid, CIBERCV, 28040 Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain.
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
8
|
Vaziri Z, Saleki K, Aram C, Alijanizadeh P, Pourahmad R, Azadmehr A, Ziaei N. Empagliflozin treatment of cardiotoxicity: A comprehensive review of clinical, immunobiological, neuroimmune, and therapeutic implications. Biomed Pharmacother 2023; 168:115686. [PMID: 37839109 DOI: 10.1016/j.biopha.2023.115686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
Cancer and cardiovascular disorders are known as the two main leading causes of mortality worldwide. Cardiotoxicity is a critical and common adverse effect of cancer-related chemotherapy. Chemotherapy-induced cardiotoxicity has been associated with various cancer treatments, such as anthracyclines, immune checkpoint inhibitors, and kinase inhibitors. Different methods have been reported for the management of chemotherapy-induced cardiotoxicity. In this regard, sodium-glucose cotransporter-2 inhibitors (SGLT2i), a class of antidiabetic agents, have recently been applied to manage heart failure patients. Further, SGLT2i drugs such as EMPA exert protective cardiac and systemic effects. Moreover, it can reduce inflammation through the mediation of major inflammatory components, such as Nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasomes, Adenosine 5'-monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal kinase (JNK) pathways, Signal transducer and activator of transcription (STAT), and overall decreasing transcription of proinflammatory cytokines. The clinical outcome of EMPA administration is related to improving cardiovascular risk factors, including body weight, lipid profile, blood pressure, and arterial stiffness. Intriguingly, SGLT2 suppressors can regulate microglia-driven hyperinflammation affecting neurological and cardiovascular disorders. In this review, we discuss the protective effects of EMPA in chemotherapy-induced cardiotoxicity from molecular, immunological, and neuroimmunological aspects to preclinical and clinical outcomes.
Collapse
Affiliation(s)
- Zahra Vaziri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran; Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Azadmehr
- Immunology Department, Babol University of Medical Sciences, Babol, Iran
| | - Naghmeh Ziaei
- Clinical Research Development unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran; Department of Cardiology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
9
|
Elkatary RG, El Beltagy HM, Abdo VB, El Fatah DSA, El-Karef A, Ashour RH. Poly (ADP-ribose) polymerase pathway inhibitor (Olaparib) upregulates SERCA2a expression and attenuates doxorubicin-induced cardiomyopathy in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104261. [PMID: 37689219 DOI: 10.1016/j.etap.2023.104261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The cardiotoxicity induced by doxorubicin is dose-dependent. The present study tested the potential cardioprotective effect of Poly ADP Ribose Polymerase (PARP) pathway inhibitor "olaparib" in a mouse model of doxorubicin-induced cardiomyopathy (DOX-CM). Seventy-two male BALB/c mice were randomized into six equal groups; control, DOX-CM, dexrazoxane-treated, and three olaparib-treated groups (5, 10, and 50 mg/kg/day). Cardiomyopathy was assessed by heart weight/Tibial length (HW/TL) ratio, cardiac fibrosis, oxidative stress, and electron microscope. Myocardial expression of SERCA2a mRNA and cleaved PARP-1 protein were also assessed. Similar to dexrazoxane, olaparib (10 mg/kg/day) significantly ameliorated oxidative stress, and preserved cardiac structure. It also suppressed myocardial PARP-1 protein expression and boosted SERCA2a mRNA expression. Olaparib (5 or 50 mg/kg/day) failed to show comparable effects. The current study detected the cardioprotective effect of olaparib at a dosage of 10 mg/kg/day. Also, the present study discovered a new cardioprotective mechanism of dexrazoxane by targeting PARP-1 in the heart.
Collapse
Affiliation(s)
- Rania Gamal Elkatary
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | | | - Vivian Boshra Abdo
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Dina Sabry Abd El Fatah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Egypt
| | - Amr El-Karef
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Horus University-Egypt, New Damietta, Egypt
| | - Rehab Hamdy Ashour
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
10
|
Wang Y, Wang Y, Zou Z, Yuan A, Xiao Z, Geng N, Qiao Z, Li W, Ying X, Lu X, Pu J. Hydrogen sulfide alleviates mitochondrial damage and ferroptosis by regulating OPA3-NFS1 axis in doxorubicin-induced cardiotoxicity. Cell Signal 2023; 107:110655. [PMID: 36924813 DOI: 10.1016/j.cellsig.2023.110655] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Ferroptosis is a major cause of cardiotoxicity induced by doxorubicin (DOX). Previous studies have shown that hydrogen sulfide (H2S) inhibits ferroptosis in cardiomyocytes and myoblasts, but the underlying mechanism has not been fully elucidated. In this study, we investigated the role of H2S in protecting against DOX-induced cardiotoxicity both in vivo and in vitro, and elucidated the potential mechanisms involved. We found that DOX downregulated the expression of glutathione peroxidase 4 (GPX4) and NFS1, and upregulated the expression of acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) expression level, resulting in increased lipid peroxidation and ferroptosis. Additionally, DOX inhibited MFN2 expression and increased DRP1 and FIS1 expression, leading to abnormal mitochondrial structure and function. In contrast, exogenous H2S inhibited DOX-induced ferroptosis by restoring GPX4 and NFS1 expression, and reducing lipid peroxidation in H9C2 cells. This effect was similar to that of the ferroptosis antagonist ferrostatin-1 (Fer-1) in protecting against DOX-induced cardiotoxicity. We further demonstrated that the protective effect of H2S was mediated by the key mitochondrial membrane protein optic atrophy 3 (OPA3), which was downregulated by DOX and restored by exogenous H2S. Overexpression of OPA3 alleviated DOX-induced mitochondrial dysfunction and ferroptosis both in vivo and in vitro. Mechanistically, NFS1 has an inhibitory effect on ferroptosis, and NFS1 deficiency increases the susceptibility of cardiomyocytes to ferroptosis. OPA3 is involved in the regulation of ferroptosis by interacting with NFS1. Post-translationally, DOX promoted OPA3 ubiquitination, while exogenous H2S antagonized OPA3 ubiquitination by promoting OPA3 s-sulfhydration. In summary, our findings suggested that H2S protects against DOX-induced cardiotoxicity by inhibiting ferroptosis via targeting the OPA3-NFS1 axis. This provides a potential therapeutic strategy for the treatment of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - Yuehong Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - Zhiguo Zou
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - Ancai Yuan
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - Zemeng Xiao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - Na Geng
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - ZhiQing Qiao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - Wenli Li
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - Xiaoying Ying
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China..
| | - Xiyuan Lu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China..
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| |
Collapse
|
11
|
Furcea DM, Agrigoroaie L, Mihai CT, Gardikiotis I, Dodi G, Stanciu GD, Solcan C, Beschea Chiriac SI, Guțu MM, Ștefănescu C. 18F-FDG PET/MRI Imaging in a Preclinical Rat Model of Cardiorenal Syndrome-An Exploratory Study. Int J Mol Sci 2022; 23:ijms232315409. [PMID: 36499736 PMCID: PMC9738874 DOI: 10.3390/ijms232315409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiorenal syndrome (CRS) denotes the bidirectional interaction of chronic kidney disease and heart failure with an adverse prognosis but with a limited understanding of its pathogenesis. This study correlates biochemical blood markers, histopathological and immunohistochemistry features, and 2-deoxy-2-fluoro-D-glucose positron emission tomography (18F-FDG PET) metabolic data in low-dose doxorubicin-induced heart failure, cardiorenal syndrome, and renocardiac syndrome induced on Wistar male rats. To our knowledge, this is the first study that investigates the underlying mechanisms for CRS progression in rats using 18F-FDG PET. Clinical, metabolic cage monitoring, biochemistry, histopathology, and immunohistochemistry combined with PET/MRI (magnetic resonance imaging) data acquisition at distinct points in the disease progression were employed for this study in order to elucidate the available evidence of organ crosstalk between the heart and kidneys. In our CRS model, we found that chronic treatment with low-dose doxorubicin followed by acute 5/6 nephrectomy incurred the highest mortality among the study groups, while the model for renocardiac syndrome resulted in moderate-to-high mortality. 18F-FDG PET imaging evidenced the doxorubicin cardiotoxicity with vascular alterations, normal kidney development damage, and impaired function. Given the fact that standard clinical markers were insensitive to early renal injury, we believe that the decreasing values of the 18F-FDG PET-derived renal marker across the groups and, compared with their age-matched controls, along with the uniform distribution seen in healthy developing rats, could have a potential diagnostic and prognostic yield in cardiorenal syndrome.
Collapse
Affiliation(s)
- Dan Mihai Furcea
- Department of Nuclear Medicine, Sf. Spiridon University Emergency Hospital, 700111 Iasi, Romania
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Laurențiu Agrigoroaie
- Department of Nuclear Medicine, Sf. Spiridon University Emergency Hospital, 700111 Iasi, Romania
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Cosmin-T. Mihai
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Gianina Dodi
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
- Correspondence:
| | - Gabriela D. Stanciu
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine, 700490 Iasi, Romania
| | - Sorin I. Beschea Chiriac
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine, 700490 Iasi, Romania
| | - Mihai Marius Guțu
- Department of Biophysics and Medical Physics—Nuclear Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Cipriana Ștefănescu
- Department of Biophysics and Medical Physics—Nuclear Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| |
Collapse
|
12
|
Li W, Li S, Cao Z, Sun Y, Qiu W, Jia M, Su M. Exploration of the amino acid metabolic signature in anthracycline-induced cardiotoxicity using an optimized targeted metabolomics approach based on UPLC-MS/MS. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1209-1224. [PMID: 35879430 DOI: 10.1007/s00210-022-02271-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/08/2022] [Indexed: 10/16/2022]
Abstract
Although anthracyclines improve the long-term survival rate of patients with cancer, severe and irreversible myocardial damage limits their clinical application. Amino acid (AA) metabolism in cardiomyocytes can be altered under pathological conditions. Therefore, exploring the AA metabolic signature in anthracycline-induced cardiotoxicity (AIC) is important for identifying novel mechanisms. We established mouse and cellular models of Adriamycin (ADR)-induced cardiac injury. We observed a decreased expression of troponins I (cTnI) after ADR treatment and ADR accelerated the degradation of cTnI, implying that AA metabolism could be altered in AIC. Using a targeted AA metabolomics approach based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), the AA metabolic signatures in the sera of AIC mice and supernatant samples of ADR-treated H9c2 cardiomyocytes were analyzed. The levels of 14 AA metabolites were altered in ADR-treated mice (p < 0.05). Via bioinformatics analysis, we identified nine differential AA metabolites in mice and five differential AA metabolites in ADR-treated H9c2 cardiomyocytes. Three AAs with increased levels (L-glutamate, L-serine, and L-tyrosine) overlapped in the two models, suggesting a possible mechanism of AA metabolic impairment during AIC. The metabolic pathways perturbed by AIC involved aminoacyl-tRNA biosynthesis and alanine, aspartate, and glutamate metabolism. Our data suggests that ADR perturbed AA metabolism in AIC models. Moreover, the targeted AA metabolomics approach based on UPLC-MS/MS can be a unique platform to provide new clues for the prevention and treatment of AIC.
Collapse
Affiliation(s)
- Wendi Li
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Shanshan Li
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Zhenju Cao
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Yi Sun
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Wei Qiu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China.
| | - Ming Su
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China.
| |
Collapse
|
13
|
Dadson K, Thavendiranathan P, Hauck L, Grothe D, Azam MA, Stanley-Hasnain S, Mahiny-Shahmohammady D, Si D, Bokhari M, Lai PF, Massé S, Nanthakumar K, Billia F. Statins Protect Against Early Stages of Doxorubicin-induced Cardiotoxicity Through the Regulation of Akt Signaling and SERCA2. CJC Open 2022; 4:1043-1052. [PMID: 36562012 PMCID: PMC9764135 DOI: 10.1016/j.cjco.2022.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/10/2022] [Indexed: 12/25/2022] Open
Abstract
Background Doxorubicin-induced cardiomyopathy (DICM) is one of the complications that can limit treatment for a significant number of cancer patients. In animal models, the administration of statins can prevent the development of DICM. Therefore, the use of statins with anthracyclines potentially could enable cancer patients to complete their chemotherapy without added cardiotoxicity. The precise mechanism mediating the cardioprotection is not well understood. The purpose of this study is to determine the molecular mechanism by which rosuvastatin confers cardioprotection in a mouse model of DICM. Methods Rosuvastatin was intraperitoneally administered into adult male mice at 100 μg/kg daily for 7 days, followed by a single intraperitoneal doxorubicin injection at 10 mg/kg. Animals continued to receive rosuvastatin daily for an additional 14 days. Cardiac function was assessed by echocardiography. Optical calcium mapping was performed on retrograde Langendorff perfused isolated hearts. Ventricular tissue samples were analyzed by immunofluorescence microscopy, Western blotting, and quantitative polymerase chain reaction. Results Exposure to doxorubicin resulted in significantly reduced fractional shortening (27.4% ± 1.11% vs 40% ± 5.8% in controls; P < 0.001) and re-expression of the fetal gene program. However, we found no evidence of maladaptive cardiac hypertrophy or adverse ventricular remodeling in mice exposed to this dose of doxorubicin. In contrast, rosuvastatin-doxorubicin-treated mice maintained their cardiac function (39% ± 1.26%; P < 0.001). Mechanistically, the effect of rosuvastatin was associated with activation of Akt and phosphorylation of phospholamban with preserved sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (SERCA2)-mediated Ca2+ reuptake. These effects occurred independently of perturbations in ryanodine receptor 2 function. Conclusions Rosuvastatin counteracts the cardiotoxic effects of doxorubicin by directly targeting sarcoplasmic calcium cycling.
Collapse
Affiliation(s)
- Keith Dadson
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Paaladinesh Thavendiranathan
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ludger Hauck
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Daniela Grothe
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Mohammed Ali Azam
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Shanna Stanley-Hasnain
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | - Daoyuan Si
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Mahmoud Bokhari
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Patrick F.H. Lai
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Stéphane Massé
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Filio Billia
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,Corresponding author: Dr Filio Billia, Toronto General Hospital Research Institute, University Health Network, University of Toronto, 101 College St., Toronto, Ontario, M5G 1L7 Canada. Tel.: +1-416-340-4800 x6805; fax: +1-416-340-4012.
| |
Collapse
|
14
|
Qu PR, Jiang ZL, Song PP, Liu LC, Xiang M, Wang J. Saponins and their derivatives: Potential candidates to alleviate anthracycline-induced cardiotoxicity and multidrug resistance. Pharmacol Res 2022; 182:106352. [PMID: 35835369 DOI: 10.1016/j.phrs.2022.106352] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Anthracyclines (ANTs) continue to play an irreplaceable role in oncology treatment. However, the clinical application of ANTs has been limited. In the first place, ANTs can cause dose-dependent cardiotoxicity such as arrhythmia, cardiomyopathy, and congestive heart failure. In the second place, the development of multidrug resistance (MDR) leads to their chemotherapeutic failure. Oncology cardiologists are urgently searching for agents that can both protect the heart and reverse MDR without compromising the antitumor effects of ANTs. Based on in vivo and in vitro data, we found that natural compounds, including saponins, may be active agents for other both natural and chemical compounds in the inhibition of anthracycline-induced cardiotoxicity (AIC) and the reversal of MDR. In this review, we summarize the work of previous researchers, describe the mechanisms of AIC and MDR, and focus on revealing the pharmacological effects and potential molecular targets of saponins and their derivatives in the inhibition of AIC and the reversal of MDR, aiming to encourage future research and clinical trials.
Collapse
Affiliation(s)
- Pei-Rong Qu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Zhi-Lin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Ping-Ping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medicine Sciences, Beijing 100013, China
| | - Lan-Chun Liu
- Beijing University of traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
15
|
Fa H, Xiao D, Chang W, Ding L, Yang L, Wang Y, Wang M, Wang J. MicroRNA-194-5p Attenuates Doxorubicin-Induced Cardiomyocyte Apoptosis and Endoplasmic Reticulum Stress by Targeting P21-Activated Kinase 2. Front Cardiovasc Med 2022; 9:815916. [PMID: 35321102 PMCID: PMC8934884 DOI: 10.3389/fcvm.2022.815916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Objective Many studies have reported that microRNAs (miRs) are involved in the regulation of doxorubicin (DOX)-induced cardiotoxicity. MiR-194-5p has been reported significantly upregulated in patients with myocardial infarction; however, its role in myocardial diseases is still unclear. Various stimuluses can trigger the endoplasmic reticulum (ER) stress and it may activate the apoptosis signals eventually. This study aims to explore the regulatory role of miR-194-5p in DOX-induced ER stress and cardiomyocyte apoptosis. Methods H9c2 was treated with 2 μM DOX to induce apoptosis, which is to stimulate the DOX-induced cardiotoxicity model. The expression of miR-194-5p was detected by quantitative real-time PCR (qRT-PCR); the interaction between miR-194-5p and P21-activated kinase 2 (PAK2) was tested by dual luciferase reporter assay; terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and caspase-3/7 activity were used to assess apoptosis; trypan blue staining was applied to measure cell death; Western blotting was performed to detect protein expressions; and ER-related factors splicing X-box binding protein 1 (XBP1s) was detected by polyacrylamide gel electrophoresis and immunofluorescence to verify the activation of ER stress. Results MiR-194-5p was upregulated in cardiomyocytes and mouse heart tissue with DOX treatment, while the protein level of PAK2 was downregulated. PAK2 was predicted as the target of miR-194-5p; hence, dual luciferase reporter assay indicated that miR-194-5p directly interacted with PAK2 and inhibited its expression. TUNEL assay, caspase-3/7 activity test, and trypan blue stain results showed that either inhibition of miR-194-5p or overexpression of PAK2 reduced DOX-induced cardiomyocyte apoptosis. Silencing of miR-194-5p also improved DOX-induced cardiac dysfunction. In addition, DOX could induce ER stress in H9c2, which led to XBP1 and caspase-12 activation. The expression level of XBP1s with DOX treatment increased first then decreased. Overexpression of XBP1s suppressed DOX-induced caspase-3/7 activity elevation as well as the expression of cleaved caspase-12, which protected cardiomyocyte from apoptosis. Additionally, the activation of XBP1s was regulated by miR-194-5p and PAK2. Conclusion Our findings revealed that silencing miR-194-5p could alleviate DOX-induced cardiotoxicity via PAK2 and XBP1s in vitro and in vivo. Thus, the novel miR-194-5p/PAK2/XBP1s axis might be the potential prevention/treatment targets for cancer patients receiving DOX treatment.
Collapse
Affiliation(s)
- Hongge Fa
- School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Dandan Xiao
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Lin Ding
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lanting Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yu Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mengyu Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
- *Correspondence: Jianxun Wang,
| |
Collapse
|
16
|
Morciano G, Rimessi A, Patergnani S, Vitto VAM, Danese A, Kahsay A, Palumbo L, Bonora M, Wieckowski MR, Giorgi C, Pinton P. Calcium dysregulation in heart diseases: Targeting calcium channels to achieve a correct calcium homeostasis. Pharmacol Res 2022; 177:106119. [PMID: 35131483 DOI: 10.1016/j.phrs.2022.106119] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022]
Abstract
Intracellular calcium signaling is a universal language source shared by the most part of biological entities inside cells that, all together, give rise to physiological and functional anatomical units, the organ. Although preferentially recognized as signaling between cell life and death processes, in the heart it assumes additional relevance considered the importance of calcium cycling coupled to ATP consumption in excitation-contraction coupling. The concerted action of a plethora of exchangers, channels and pumps inward and outward calcium fluxes where needed, to convert energy and electric impulses in muscle contraction. All this without realizing it, thousands of times, every day. An improper function of those proteins (i.e., variation in expression, mutations onset, dysregulated channeling, differential protein-protein interactions) being part of this signaling network triggers a short circuit with severe acute and chronic pathological consequences reported as arrhythmias, cardiac remodeling, heart failure, reperfusion injury and cardiomyopathies. By acting with chemical, peptide-based and pharmacological modulators of these players, a correction of calcium homeostasis can be achieved accompanied by an amelioration of clinical symptoms. This review will focus on all those defects in calcium homeostasis which occur in the most common cardiac diseases, including myocardial infarction, arrhythmia, hypertrophy, heart failure and cardiomyopathies. This part will be introduced by the state of the art on the proteins involved in calcium homeostasis in cardiomyocytes and followed by the therapeutic treatments that to date, are able to target them and to revert the pathological phenotype.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| | - Alessandro Rimessi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica A M Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Alberto Danese
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Asrat Kahsay
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Laura Palumbo
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Bonora
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism. Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| |
Collapse
|
17
|
Forghani P, Rashid A, Sun F, Liu R, Li D, Lee MR, Hwang H, Maxwell JT, Mandawat A, Wu R, Salaita K, Xu C. Carfilzomib Treatment Causes Molecular and Functional Alterations of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J Am Heart Assoc 2021; 10:e022247. [PMID: 34873922 PMCID: PMC9075231 DOI: 10.1161/jaha.121.022247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Anticancer therapies have significantly improved patient outcomes; however, cardiac side effects from cancer therapies remain a significant challenge. Cardiotoxicity following treatment with proteasome inhibitors such as carfilzomib is known in clinical settings, but the underlying mechanisms have not been fully elucidated. Methods and Results Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a cell model for drug-induced cytotoxicity in combination with traction force microscopy, functional assessments, high-throughput imaging, and comprehensive omic analyses, we examined the molecular mechanisms involved in structural and functional alterations induced by carfilzomib in hiPSC-CMs. Following the treatment of hiPSC-CMs with carfilzomib at 0.01 to 10 µmol/L, we observed a concentration-dependent increase in carfilzomib-induced toxicity and corresponding morphological, structural, and functional changes. Carfilzomib treatment reduced mitochondrial membrane potential, ATP production, and mitochondrial oxidative respiration and increased mitochondrial oxidative stress. In addition, carfilzomib treatment affected contractility of hiPSC-CMs in 3-dimensional microtissues. At a single cell level, carfilzomib treatment impaired Ca2+ transients and reduced integrin-mediated traction forces as detected by piconewton tension sensors. Transcriptomic and proteomic analyses revealed that carfilzomib treatment downregulated the expression of genes involved in extracellular matrices, integrin complex, and cardiac contraction, and upregulated stress responsive proteins including heat shock proteins. Conclusions Carfilzomib treatment causes deleterious changes in cellular and functional characteristics of hiPSC-CMs. Insights into these changes could be gained from the changes in the expression of genes and proteins identified from our omic analyses.
Collapse
Affiliation(s)
- Parvin Forghani
- Division of Pediatric Cardiology Department of Pediatrics Emory University School of Medicine and Children's Healthcare of Atlanta Atlanta GA
| | - Aysha Rashid
- Biomolecular Chemistry Department of Chemistry Emory University Atlanta GA
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA
| | - Rui Liu
- Division of Pediatric Cardiology Department of Pediatrics Emory University School of Medicine and Children's Healthcare of Atlanta Atlanta GA
| | - Dong Li
- Division of Pediatric Cardiology Department of Pediatrics Emory University School of Medicine and Children's Healthcare of Atlanta Atlanta GA
| | - Megan R Lee
- Division of Pediatric Cardiology Department of Pediatrics Emory University School of Medicine and Children's Healthcare of Atlanta Atlanta GA
| | - Hyun Hwang
- Division of Pediatric Cardiology Department of Pediatrics Emory University School of Medicine and Children's Healthcare of Atlanta Atlanta GA
| | - Joshua T Maxwell
- Division of Pediatric Cardiology Department of Pediatrics Emory University School of Medicine and Children's Healthcare of Atlanta Atlanta GA
| | - Anant Mandawat
- Department of Medicine & Winship Cancer Institute Emory University School of Medicine Atlanta GA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA
| | - Khalid Salaita
- Biomolecular Chemistry Department of Chemistry Emory University Atlanta GA.,Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA
| | - Chunhui Xu
- Division of Pediatric Cardiology Department of Pediatrics Emory University School of Medicine and Children's Healthcare of Atlanta Atlanta GA.,Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA
| |
Collapse
|
18
|
Azam MA, Chakraborty P, Bokhari MM, Dadson K, Du B, Massé S, Si D, Niri A, Aggarwal AK, Lai PF, Riazi S, Billia F, Nanthakumar K. Cardioprotective effects of dantrolene in doxorubicin-induced cardiomyopathy in mice. Heart Rhythm O2 2021; 2:733-741. [PMID: 34988524 PMCID: PMC8710625 DOI: 10.1016/j.hroo.2021.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Doxorubicin (Dox) is a potent chemotherapeutic agent, but its usage is limited by dose-dependent cardiotoxicity. Intracellular calcium dysregulation has been reported to be involved in doxorubicin-induced cardiomyopathy (DICM). The cardioprotective role of RyR stabilizer dantrolene (Dan) on the calcium dynamics of DICM has not yet been explored. OBJECTIVE To evaluate the effects of dantrolene on intracellular calcium dysregulation and cardiac contractile function in a DICM model. METHODS Adult male C57BL/6 mice were randomized into 4 groups: (1) Control, (2) Dox Only, (3) Dan Only, and (4) Dan + Dox. Fractional shortening (FS) and left ventricular ejection fraction (LVEF) were assessed by echocardiography. In addition, mice were sacrificed 2 weeks after doxorubicin injection for optical mapping of the heart in a Langendorff setup. RESULTS Treatment with Dox was associated with a reduction in both FS and LVEF at 2 weeks (P < .0001) and 4 weeks (P < .006). Dox treatment was also associated with prolongation of calcium transient durations CaTD50 (P = .0005) and CaTD80 (P < .0001) and reduction of calcium amplitude alternans ratio (P < .0001). Concomitant treatment with Dan prevented the Dox-induced decline in FS and LVEF (P < .002 at both 2 and 4 weeks). Dan also prevented Dox-induced prolongation of CaTD50 and CaTD80 and improved the CaT alternans ratio (P < .0001). Finally, calcium transient rise time was increased in the doxorubicin-treated group, indicating RyR2 dyssynchrony, and dantrolene prevented this prolongation (P = .02). CONCLUSION Dantrolene prevents cardiac contractile dysfunction following doxorubicin treatment by mitigating dysregulation of calcium dynamics.
Collapse
Affiliation(s)
- Mohammed Ali Azam
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Praloy Chakraborty
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Mahmoud M. Bokhari
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Keith Dadson
- Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Beibei Du
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Daoyuan Si
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Ahmed Niri
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Arjun K. Aggarwal
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Patrick F.H. Lai
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Filio Billia
- Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
19
|
Chao YK, Liau I. One-dimensional scanning multiphoton imaging reveals prolonged calcium transient and sarcomere contraction in a zebrafish model of doxorubicin cardiotoxicity. BIOMEDICAL OPTICS EXPRESS 2021; 12:7162-7172. [PMID: 34858707 PMCID: PMC8606141 DOI: 10.1364/boe.438836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent known to induce cardiotoxicity. Here we applied one-dimensional scanning multiphoton imaging to investigate the derangement of cardiac dynamics induced by DOX on a zebrafish model. DOX changed the cell morphology and significantly prolonged calcium transient and sarcomere contraction, leading to an arrhythmia-like contractile disorder. The restoration phase of calcium transient dominated the overall prolongation, indicating that DOX perturbed primarily the protein functions responsible for recycling cytosolic calcium ions. This novel finding supplements the existing mechanism of DOX cardiotoxicity. We anticipate that this approach should help mechanistic studies of drug-induced cardiotoxicity or heart diseases.
Collapse
Affiliation(s)
- Yu Kai Chao
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ian Liau
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
20
|
Exercise, but Not Metformin Prevents Loss of Muscle Function Due to Doxorubicin in Mice Using an In Situ Method. Int J Mol Sci 2021; 22:ijms22179163. [PMID: 34502073 PMCID: PMC8430759 DOI: 10.3390/ijms22179163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Though effective in treating various types of cancer, the chemotherapeutic doxorubicin (DOX) is associated with skeletal muscle wasting and fatigue. The purpose of this study was to assess muscle function in situ following DOX administration in mice. Furthermore, pre-treatments with exercise (EX) or metformin (MET) were used in an attempt to preserve muscle function following DOX. Mice were assigned to the following groups: control, DOX, DOX + EX, or DOX + MET, and were given a single injection of DOX (15 mg/kg) or saline 3 days prior to sacrifice. Preceding the DOX injection, DOX + EX mice performed 60 min/day of running for 5 days, while DOX + MET mice received 5 daily oral doses of 500 mg/kg MET. Gastrocnemius–plantaris–soleus complex function was assessed in situ via direct stimulation of the sciatic nerve. DOX treatment increased time to half-relaxation following contractions, indicating impaired recovery (p < 0.05). Interestingly, EX prevented any increase in half-relaxation time, while MET did not. An impaired relaxation rate was associated with a reduction in SERCA1 protein content (p = 0.07) and AMPK phosphorylation (p < 0.05). There were no differences between groups in force production or mitochondrial respiration. These results suggest that EX, but not MET may be an effective strategy for the prevention of muscle fatigue following DOX administration in mice.
Collapse
|
21
|
Mohammed S, Shamseddine AA, Newcomb B, Chavez RS, Panzner TD, Lee AH, Canals D, Okeoma CM, Clarke CJ, Hannun YA. Sublethal doxorubicin promotes migration and invasion of breast cancer cells: role of Src Family non-receptor tyrosine kinases. Breast Cancer Res 2021; 23:76. [PMID: 34315513 PMCID: PMC8317414 DOI: 10.1186/s13058-021-01452-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Doxorubicin (Dox) is a widely used chemotherapy, but its effectiveness is limited by dose-dependent side effects. Although lower Dox doses reduce this risk, studies have reported higher recurrence of local disease with no improvement in survival rate in patients receiving low doses of Dox. To effectively mitigate this, a better understanding of the adverse effects of suboptimal Dox doses is needed. METHODS Effects of sublethal dose of Dox on phenotypic changes were assessed with light and confocal microscopy. Migratory and invasive behavior were assessed by wound healing and transwell migration assays. MTT and LDH release assays were used to analyze cell growth and cytotoxicity. Flow cytometry was employed to detect cell surface markers of cancer stem cell population. Expression and activity of matrix metalloproteinases were probed with qRT-PCR and zymogen assay. To identify pathways affected by sublethal dose of Dox, exploratory RNAseq was performed and results were verified by qRT-PCR in multiple cell lines (MCF7, ZR75-1 and U-2OS). Regulation of Src Family kinases (SFK) by key players in DNA damage response was assessed by siRNA knockdown along with western blot and qRT-PCR. Dasatinib and siRNA for Fyn and Yes was employed to inhibit SFKs and verify their role in increased migration and invasion in MCF7 cells treated with sublethal doses of Dox. RESULTS The results show that sublethal Dox treatment leads to increased migration and invasion in otherwise non-invasive MCF7 breast cancer cells. Mechanistically, these effects were independent of the epithelial mesenchymal transition, were not due to increased cancer stem cell population, and were not observed with other chemotherapies. Instead, sublethal Dox induces expression of multiple SFK-including Fyn, Yes, and Src-partly in a p53 and ATR-dependent manner. These effects were validated in multiple cell lines. Functionally, inhibiting SFKs with Dasatinib and specific downregulation of Fyn suppressed Dox-induced migration and invasion of MCF7 cells. CONCLUSIONS Overall, this study demonstrates that sublethal doses of Dox activate a pro-invasive, pro-migration program in cancer cells. Furthermore, by identifying SFKs as key mediators of these effects, our results define a potential therapeutic strategy to mitigate local invasion through co-treatment with Dasatinib.
Collapse
Affiliation(s)
- Samia Mohammed
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794- 8430, USA
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Achraf A Shamseddine
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Benjamin Newcomb
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Ronald S Chavez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794- 8430, USA
| | - Tyler D Panzner
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA
| | - Allen H Lee
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA
| | - Daniel Canals
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Chioma M Okeoma
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA
| | - Christopher J Clarke
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA.
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA.
| | - Yusuf A Hannun
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794- 8430, USA.
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA.
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA.
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA.
- The Northport Veterans Affairs Hospital, Northport, NY, 11768, USA.
| |
Collapse
|
22
|
Arora G, Ghosh S, Chatterjee S. Understanding doxorubicin associated calcium remodeling during triple-negative breast cancer treatment: an in silico study. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:208-226. [PMID: 36046147 PMCID: PMC9400755 DOI: 10.37349/etat.2021.00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
Aim: Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer with high heterogeneity, rapid progression, and paucity of treatment options. The most effective chemotherapeutic drug used to treat TNBC is doxorubicin (Doxo) which is an anthracycline antibiotic. However, Doxo treatment alters cytosolic calcium dynamics leading to drug-resistance condition. The aim of this study is to capture the alterations in the activity of various calcium channels and pumps during Doxo treatment and their consequences on cytosolic calcium dynamics that ultimately result in drug resistance. Methods: In the present study, a mathematical model is proposed to capture the complex dynamical landscape of intracellular calcium during Doxo treatment. This study provides an insight into Doxo remodeling of calcium dynamics and associated drug-resistance effect. The model was first analyzed analytically and then explored through numerical simulation using techniques like global sensitivity analysis, parameter recalibration, etc. Results: The model is used to predict the potential combination therapy for Doxo that can overcome Doxo associated drug resistance. The results show targeting the dysregulated Ca2+ channels and pumps might provide efficient chemotherapy in TNBC. It was also observed that the indispensability of calcium influx rate is paramount in the Doxo drug resistance. Finally, three drugs were identified from existing literature that could be used as a combination therapy along with Doxo. Conclusions: The investigation highlights the importance of integrating the calcium signaling of various calcium regulating compounds for their effective anti-tumor effects deliverance along with chemotherapeutic agents. The results from this study might provide a new direction to the experimental biologists to explore different combination therapies with Doxo to enhance its anti-tumor effect.
Collapse
Affiliation(s)
- Garhima Arora
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Sumana Ghosh
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| |
Collapse
|
23
|
Keung W, Cheung YF. Human Pluripotent Stem Cells for Modeling of Anticancer Therapy-Induced Cardiotoxicity and Cardioprotective Drug Discovery. Front Pharmacol 2021; 12:650039. [PMID: 33953683 PMCID: PMC8090862 DOI: 10.3389/fphar.2021.650039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Anticancer chemotherapies have been shown to produce severe side effects, with cardiotoxicity from anthracycline being the most notable. Identifying risk factors for anticancer therapy-induced cardiotoxicity in cancer patients as well as understanding its underlying mechanism is essential to improving clinical outcomes of chemotherapy treatment regimens. Moreover, cardioprotective agents against anticancer therapy-induced cardiotoxicity are scarce. Human induced pluripotent stem cell technology offers an attractive platform for validation of potential single nucleotide polymorphism with increased risk for cardiotoxicity. Successful validation of risk factors and mechanism of cardiotoxicity would aid the development of such platform for novel drug discovery and facilitate the practice of personalized medicine.
Collapse
Affiliation(s)
- Wendy Keung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yiu-Fai Cheung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
24
|
Protective effect of nanocurcumin against neurotoxicity induced by doxorubicin in rat's brain. Neurotoxicology 2021; 85:1-9. [PMID: 33882267 DOI: 10.1016/j.neuro.2021.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023]
Abstract
Cognitive impairment is one of the serious side effects that cancer-treated patients suffer from after treatment by doxorubicin (DOX). Investigating the mechanisms underlying this impairment is crucial for its treatment or prevention. The current study investigates the cortical and hippocampal neurochemical changes induced by an acute dose of DOX (20 mg/kg, i.p.) and evaluates the neuroprotective effect of nanocurcumin (NC) (50 mg/kg, p.o.) against these changes. Animals were randomly divided into four groups, control, rats treated with either NC or DOX, and the fourth group treated with NC prior to DOX. Cortical dopamine level has significantly increased (71.88 %) after DOX injection. This was associated with a significant rise in the levels of lipid peroxidation (183.99 %, 201.4 %) and nitric oxide (36.54 %, 55 %) and a significant reduction in reduced glutathione (13 %, 21.44 %) in the cortex and hippocampus, respectively. In addition, DOX inhibited the cortical and hippocampal activities of acetylcholinesterase (94.82 %, 62.75 %) and monoamine oxidase (64.40 %, 68.84 %), respectively. Protection with NC mitigates the changes induced in the oxidative stress parameters by DOX. However, the effect on the activities of AchE and MAO was insignificant. This was reflected in the level of dopamine that showed non-significant changes in comparison to control and DOX-treated rats. The present findings indicate that oxidative stress, inhibition in AchE, MAO, and the subsequent elevation in dopamine could have a crucial role in mediating the chemo-brain adverse effects induced by DOX. In addition, protection with NC mitigated some of these adverse effects thus rendering DOX more tolerable.
Collapse
|
25
|
Fa HG, Chang WG, Zhang XJ, Xiao DD, Wang JX. Noncoding RNAs in doxorubicin-induced cardiotoxicity and their potential as biomarkers and therapeutic targets. Acta Pharmacol Sin 2021; 42:499-507. [PMID: 32694762 PMCID: PMC8114921 DOI: 10.1038/s41401-020-0471-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Anthracyclines, such as doxorubicin (DOX), are well known for their high efficacy in treating multiple cancers, but their clinical usage is limited due to their potential to induce fatal cardiotoxicity. Such detrimental effects significantly impact the overall physical condition or even induce the morbidity and mortality of cancer survivors. Therefore, it is extremely important to understand the mechanisms of DOX-induced cardiotoxicity to develop methods for the early detection of cytotoxicity and therapeutic applications. Studies have shown that many molecular events are involved in DOX-induced cardiotoxicity. However, the precise mechanisms are still not completely understood. Recently, noncoding RNAs (ncRNAs) have been extensively studied in a diverse range of regulatory roles in cellular physiological and pathological processes. With respect to their roles in DOX-induced cardiotoxicity, microRNAs (miRNAs) are the most widely studied, and studies have focused on the regulatory roles of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), which have been shown to have significant functions in the cardiovascular system. Recent discoveries on the roles of ncRNAs in DOX-induced cardiotoxicity have prompted extensive interest in exploring candidate ncRNAs for utilization as potential therapeutic targets and/or diagnostic biomarkers. This review presents the frontier studies on the roles of ncRNAs in DOX-induced cardiotoxicity, addresses the possibility and prospects of using ncRNAs as diagnostic biomarkers or therapeutic targets, and discusses the possible reasons for related discrepancies and limitations of their use.
Collapse
|
26
|
Ibrahim DA, Almutawakel MA, Al-Badani R. Cardioprotective effect of Malva verticillata against doxorubicin -induced toxicity in rats. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00265-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
M. verticillata (Malvaceae) is a medicinal plant used in the treatment of wounds, boils, and liver injuries. The plant leaf extracts possess anti-inflammatory and antioxidant activities. Doxorubicin (DOX) is a potent chemotherapeutic agent used in the treatment of various cancers, but its clinical use is limited by acute and chronic cardiotoxicity. This study aims to evaluate the possible cardioprotective role of Malva verticillata against doxorubicin-induced cardiotoxicity.
Method
Thirty-six male albino rats were divided into six groups, (n = 6): G1: normal control (was given 1 ml/kg of NaCl, 0.9%, twice a week IP), G2: cardiotoxic group (was given 1 mg/kg of DOX twice a week IP). G3 and G4 were given 250 mg/kg and 500 mg/kg of M. verticillata, respectively, while G5 and G6: were given 250, 500 mg/kg of M. verticillata PO and 1 mg/kg IP of DOX. for 6 weeks. Total body weight was taken weekly and Heart: body weight ratio was calculated. Blood samples were collected for determination of serum lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and Troponin, the hearts were removed and processed for histopathological examination.
Results
M. verticillata showed a significant dose-dependent reduction in the cardiac enzyme levels, LDH, CPK activities, and Troponin levels. The histopathological studies in rat hearts also supported those findings.
Conclusion
The present study suggests that M. verticillata may have a novel and worthwhile cardioprotective effect against DOX-induced cardiotoxicity.
Collapse
|
27
|
Samra YA, Amin MN, Said E. Cardio-protective impact of gabapentin against doxorubicin-induced myocardial toxicity in rats; emphasis on modulation of inflammatory-apoptotic signaling. Int Immunopharmacol 2021; 90:107125. [PMID: 33199237 DOI: 10.1016/j.intimp.2020.107125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Cardiotoxicity is one of the most commonly encountered adverse effects observed alongside the therapeutic use of doxorubicin (DOX), thus curbing its therapeutic utility. METHODS The current study was conducted to evaluate the cardioprotective effect of gabapentin (Gaba), a Ca + 2 channel blocker with emerging pharmacological merits, against DOX-induced cardiotoxicity. Gaba was orally administered at two dose levels (10 and 30 mg/kg) for 21 days parallel to DOX injection. RESULTS DOX induced significant functional, biochemical, and histopathological injury to the myocardium. Gaba treatment revealed a cardioprotective effect as manifested in the significant restoration of electrocardiogram parameters, including the heart rate, ST segment elevation, QRS and T wave amplitudes, and QT and PR intervals. The biomarkers of myocardial injury, namely serum creatine kinase, aspartate aminotransferase, and lactate dehydrogenase activities, significantly declined as well as the concomitant improvement of the myocardial oxidative status. Mechanistically, Gaba treatment significantly reduced the myocardial contents of c-Jun N-terminal kinase (JNK), the major modulator of inflammatory/apoptotic signaling. However, the myocardial contents of the apoptotic biomarkers caspase-8 and TRAIL also significantly declined. In isolated cardiomyocytes, Gaba treatment maintained the morphological characteristics of the cardiomyocytes and preserved their spontaneous beating characteristics. Nevertheless, the protein expression of caspase-8, JNK 1/2, and CD95L significantly declined with Gaba treatment. CONCLUSION Gaba confers cardioprotective effects against DOX-induced myocardial injury and cardiotoxicity by modulating the inflammatory/apoptotic signaling pathway.
Collapse
Affiliation(s)
- Yara A Samra
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura University, 35516 Mansoura, Egypt
| | - Mohamed N Amin
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura University, 35516 Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
28
|
Abstract
Vitamin C (Vit C) is an ideal antioxidant as it is easily available, water soluble, very potent, least toxic, regenerates other antioxidants particularly Vit E, and acts as a cofactor for different enzymes. It has received much attention due to its ability in limiting reactive oxygen species, oxidative stress, and nitrosative stress, as well as it helps to maintain some of the normal metabolic functions of the cell. However, over 140 clinical trials using Vit C in different pathological conditions such as myocardial infarction, gastritis, diabetes, hypertension, stroke, and cancer have yielded inconsistent results. Such a divergence calls for new strategies to establish practical significance of Vit C in heart failure or even in its prevention. For a better understanding of Vit C functioning, it is important to revisit its transport across the cell membrane and subcellular interactions. In this review, we have highlighted some historical details of Vit C and its transporters in the heart with a particular focus on heart failure in cancer chemotherapy.
Collapse
|
29
|
Upadhyay S, Gupta KB, Mantha AK, Dhiman M. A short review: Doxorubicin and its effect on cardiac proteins. J Cell Biochem 2020; 122:153-165. [PMID: 32924182 DOI: 10.1002/jcb.29840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
Doxorubicin (DOX) is a boon for cancer-suffering patients. However, the undesirable effect on health on vital organs, especially the heart, is a limiting factor, resulting in an increased number of patients with cardiac dysfunction. The present review focuses on the contractile machinery and associated factors, which get affected due to DOX toxicity in chemo-patients for which they are kept under life-long investigation for cardiac function. DOX-induced oxidative stress disrupts the integrity of cardiac contractile muscle proteins that alter the rhythmic mechanism and oxygen consumption rate of the heart. DOX is an oxidant and it is further discussed that oxidative stress prompts the damage of contractile components and associated factors, which include Ca2+ load through Ca2+ ATPase, SERCA, ryanodine receptor-2, phospholamban, and calsequestrin, which ultimately results in left ventricular ejection and dilation. Based on data and evidence, the associated proteins can be considered as clinical markers to develop medications for patients. Even with the advancement of various diagnosing tools and modified drugs to mitigate DOX-induced cardiotoxicity, the risk could not be surmounted with survivors of cancer.
Collapse
Affiliation(s)
- Shishir Upadhyay
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Kunj Bihari Gupta
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
30
|
Sala V, Della Sala A, Hirsch E, Ghigo A. Signaling Pathways Underlying Anthracycline Cardiotoxicity. Antioxid Redox Signal 2020; 32:1098-1114. [PMID: 31989842 DOI: 10.1089/ars.2020.8019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: The cardiac side effects of hematological treatments are a major issue of the growing population of cancer survivors, often affecting patient survival even more than the tumor for which the treatment was initially prescribed. Among the most cardiotoxic drugs are anthracyclines (ANTs), highly potent antitumor agents, which still represent a mainstay in the treatment of hematological and solid tumors. Unfortunately, diagnosis, prevention, and treatment of cardiotoxicity are still unmet clinical needs, which call for a better understanding of the molecular mechanism behind the pathology. Recent Advances: This review article will discuss recent findings on the pathomechanisms underlying the cardiotoxicity of ANTs, spanning from DNA and mitochondrial damage to calcium homeostasis, autophagy, and apoptosis. Special emphasis will be given to the role of reactive oxygen species and their interplay with major signaling pathways. Critical Issues: Although new promising therapeutic targets and new drugs have started to be identified, their efficacy has been mainly proven in preclinical studies and requires clinical validation. Future Directions: Future studies are awaited to confirm the relevance of recently uncovered targets, as well as to identify new druggable pathways, in more clinically relevant models, including, for example, human induced pluripotent stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
31
|
Shati AA, Dallak M. Acylated Ghrelin Protects the Hearts of Rats from Doxorubicin-Induced Fas/FasL Apoptosis by Stimulating SERCA2a Mediated by Activation of PKA and Akt. Cardiovasc Toxicol 2020; 19:529-547. [PMID: 31093930 DOI: 10.1007/s12012-019-09527-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study investigated if the cardioprotective effect of acylated ghrelin (AG) against doxorubicin (DOX)-induced cardiac toxicity in rats involves inhibition of Fas/FasL-mediated cell death. It also investigated if such an effect is mediated by restoring Ca+2 homeostasis from the aspect of stimulation of SERCA2a receptors. Adult male Wistar rats were divided into 4 groups (20 rats/each) as control, control + AG, DOX, and DOX + AG. AG was co-administered to all rats consecutively for 35 days. In addition, isolated cardiomyocytes were cultured and treated with AG in the presence or absence of DOX with or without pre-incubation with [D-Lys3]-GHRP-6 (a AG receptor antagonist), VIII (]an Akt inhibitor), or KT-5720 (a PKA inhibitor). AG increased LVSP, dp/dtmax, and dp/dtmin in both control and DOX-treated animals and improved cardiac ultrastructural changes in DOX-treated rats. It also inhibited ROS in control rats and lowered LVEDP, intracellular levels of ROS and Ca2+, and activity of calcineurin in LVs of DOX-treated rats. Concomitantly, it inhibited LV NFAT-4 nuclear translocation and downregulated their protein levels of Fas and FasL. Mechanistically, in control or DOX-treated hearts or cells, AG upregulated the levels of SERCA2a and increased the activities of PKA and Akt, leading to increase phosphorylation of phospholamban at Ser16 and Thr17. All these effects were abolished by D-Lys3-GHRP-6, VIII, or KT-5720 and were independent of food intake or GH/IGF-1. In conclusion, AG cardioprotection against DOX involves inhibition of extrinsic cell death and restoring normal Ca+2 homeostasis.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.
| | - M Dallak
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
32
|
The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5732956. [PMID: 32509147 PMCID: PMC7244977 DOI: 10.1155/2020/5732956] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/11/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive chemical species containing oxygen, controlled by both enzymatic and nonenzymatic antioxidant defense systems. In the heart, ROS play an important role in cell homeostasis, by modulating cell proliferation, differentiation, and excitation-contraction coupling. Oxidative stress occurs when ROS production exceeds the buffering capacity of the antioxidant defense systems, leading to cellular and molecular abnormalities, ultimately resulting in cardiac dysfunction. In this review, we will discuss the physiological sources of ROS in the heart, the mechanisms of oxidative stress-related myocardial injury, and the implications of experimental studies and clinical trials with antioxidant therapies in cardiovascular diseases.
Collapse
|
33
|
Mookerjee‐Basu J, Hooper R, Gross S, Schultz B, Go CK, Samakai E, Ladner J, Nicolas E, Tian Y, Zhou B, Zaidi MR, Tourtellotte W, He S, Zhang Y, Kappes DJ, Soboloff J. Suppression of Ca 2+ signals by EGR4 controls Th1 differentiation and anti-cancer immunity in vivo. EMBO Rep 2020; 21:e48904. [PMID: 32212315 PMCID: PMC7202224 DOI: 10.15252/embr.201948904] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
While the zinc finger transcription factors EGR1, EGR2, and EGR3 are recognized as critical for T-cell function, the role of EGR4 remains unstudied. Here, we show that EGR4 is rapidly upregulated upon TCR engagement, serving as a critical "brake" on T-cell activation. Hence, TCR engagement of EGR4-/- T cells leads to enhanced Ca2+ responses, driving sustained NFAT activation and hyperproliferation. This causes profound increases in IFNγ production under resting and diverse polarizing conditions that could be reversed by pharmacological attenuation of Ca2+ entry. Finally, an in vivo melanoma lung colonization assay reveals enhanced anti-tumor immunity in EGR4-/- mice, attributable to Th1 bias, Treg loss, and increased CTL generation in the tumor microenvironment. Overall, these observations reveal for the first time that EGR4 is a key regulator of T-cell differentiation and function.
Collapse
Affiliation(s)
| | - Robert Hooper
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Scott Gross
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Christina K Go
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Elsie Samakai
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | | | | | - Yuanyuan Tian
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of ImmunologyTemple University School of MedicinePhiladelphiaPAUSA
| | - Bo Zhou
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Warren Tourtellotte
- Department of Pathology and Laboratory MedicineCedars Sinai Medical CenterWest HollywoodCAUSA
| | - Shan He
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of ImmunologyTemple University School of MedicinePhiladelphiaPAUSA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of ImmunologyTemple University School of MedicinePhiladelphiaPAUSA
| | | | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
34
|
Abstract
Anthracycline-based chemotherapy can result in the development of a cumulative and progressively developing cardiomyopathy. Doxorubicin is one of the most highly prescribed anthracyclines in the United States due to its broad spectrum of therapeutic efficacy. Interference with different mitochondrial processes is chief among the molecular and cellular determinants of doxorubicin cardiotoxicity, contributing to the development of cardiomyopathy. The present review provides the basis for the involvement of mitochondrial toxicity in the different functional hallmarks of anthracycline toxicity. Our objective is to understand the molecular determinants of a progressive deterioration of functional integrity of mitochondria that establishes a historic record of past drug treatments (mitochondrial memory) and renders the cancer patient susceptible to subsequent regimens of drug therapy. We focus on the involvement of doxorubicin-induced mitochondrial oxidative stress, disruption of mitochondrial oxidative phosphorylation, and permeability transition, contributing to altered metabolic and redox circuits in cardiac cells, ultimately culminating in disturbances of autophagy/mitophagy fluxes and increased apoptosis. We also suggest some possible pharmacological and nonpharmacological interventions that can reduce mitochondrial damage. Understanding the key role of mitochondria in doxorubicin-induced cardiomyopathy is essential to reduce the barriers that so dramatically limit the clinical success of this essential anticancer chemotherapy.
Collapse
Affiliation(s)
- Kendall B Wallace
- From the Department of Biomedical Sciences, University of Minnesota Medical School, Duluth (K.B.W.)
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal (V.A.S., P.J.O.)
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal (V.A.S., P.J.O.)
| |
Collapse
|
35
|
Zhang W, Yang Y, Dong Z, Shi Z, Zhang JT. Single-nucleotide polymorphisms in a short basic motif in the ABC transporter ABCG2 disable its trafficking out of endoplasmic reticulum and reduce cell resistance to anticancer drugs. J Biol Chem 2019; 294:20222-20232. [PMID: 31719146 DOI: 10.1074/jbc.ra119.008347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
ATP-binding cassette (ABC) subfamily G member 2 (ABCG2) belongs to the ABC transporter superfamily and has been implicated in multidrug resistance of cancers. Although the structure and function of ABCG2 have been extensively studied, little is known about its biogenesis and the regulation thereof. In this study, using mutagenesis and several biochemical analyses, we show that the positive charges in the vicinity of the RKR motif downstream of the ABC signature drive trafficking of nascent ABCG2 out of the endoplasmic reticulum (ER) onto plasma membranes. Substitutions of and naturally occurring single-nucleotide polymorphisms within these positively charged residues disabled the trafficking of ABCG2 out of the ER. A representative ABCG2 variant in which the RKR motif had been altered underwent increased ER stress-associated degradation. We also found that unlike WT ABCG2, genetic ABCG2 RKR variants have disrupted normal maturation and do not reduce accumulation of the anticancer drug mitoxantrone and no longer confer resistance to the drug. We conclude that the positive charges downstream of the ABC signature motif critically regulate ABCG2 trafficking and maturation. We propose that single-nucleotide polymorphisms of these residues reduce ABCG2 expression via ER stress-associated degradation pathway and may contribute to reduced cancer drug resistance, improving the success of cancer chemotherapy.
Collapse
Affiliation(s)
- Wenji Zhang
- Department of Pharmacology and Toxicology and Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yang Yang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zizheng Dong
- Department of Pharmacology and Toxicology and Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jian-Ting Zhang
- Department of Pharmacology and Toxicology and Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202 .,Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614
| |
Collapse
|
36
|
Al-malky HS, Al Harthi SE, Osman AMM. Major obstacles to doxorubicin therapy: Cardiotoxicity and drug resistance. J Oncol Pharm Pract 2019; 26:434-444. [DOI: 10.1177/1078155219877931] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BackgroundDoxorubicin is one of the most commonly prescribed and time-tested anticancer drugs. Although being considered as a first line drug in different types of cancers, the two main obstacles to doxorubicin therapy are drug-induced cardiotoxicity and drug resistance.MethodThe study utilizes systemic reviews on publications of previous studies obtained from scholarly journal databases including PubMed, Medline, Ebsco Host, Google Scholar, and Cochrane. The study utilizes secondary information obtained from health organizations using filters and keywords to sustain information relevancy. The study utilizes information retrieved from studies captured in the peer-reviewed journals on “doxorubicin-induced cardiotoxicity” and “doxorubicin resistance.”Discussion and resultsThe exact mechanisms of cardiotoxicity are not known; various hypotheses are studied. Doxorubicin can lead to free radical generation in various ways. The commonly proposed underlying mechanisms promoting doxorubicin resistance are the expression of multidrug resistance proteins as well as other causes.ConclusionIn this review, we have described the major obstacles to doxorubicin therapy, doxorubicin-induced cardiotoxicity as well as the mechanisms of cancer drug resistance and in following the treatment failures.
Collapse
Affiliation(s)
- Hamdan S Al-malky
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameer E Al Harthi
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdel-Moneim M Osman
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
37
|
Abstract
Although highly effective, doxorubicin (DOX) use is limited by a dose-dependent cardiotoxicity. The purpose of this study was to determine whether resistance training (RT) would protect against DOX-induced cardiac dysfunction and determine whether any observed functional preservation is a result of reduced lipid peroxidation or a preservation of the cardiac myosin heavy chain (MHC) isoform distribution. Rats were resistance-trained or remained sedentary for 12 weeks, then treated with 12.5 mg/kg DOX or 0.9% saline. Five days after DOX exposure, cardiac function, lipid peroxidation, and MHC isoform expression were quantified. RT preserved cardiac function and attenuated the α-to β-MHC shift that occurs with DOX treatment. No significant differences in lipid peroxidation were observed between sedentary and RT animals treated with DOX. These data suggest that resistance-type exercise can provide protection against DOX-induced cardiac dysfunction, which may be a result of a preservation of the cardiac MHC isoform distribution.
Collapse
|
38
|
Wier CG, Crum AE, Reynolds AB, Iyer CC, Chugh D, Palettas MS, Heilman PL, Kline DM, Arnold WD, Kolb SJ. Muscle contractility dysfunction precedes loss of motor unit connectivity in SOD1(G93A) mice. Muscle Nerve 2018; 59:254-262. [PMID: 30370671 DOI: 10.1002/mus.26365] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/17/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Electrophysiological measurements are used in longitudinal clinical studies to provide insight into the progression of amyotrophic lateral sclerosis (ALS) and the relationship between muscle weakness and motor unit (MU) degeneration. Here, we used a similar longitudinal approach in the Cu/Zn superoxide dismutase (SOD1[G93A]) mouse model of ALS. METHODS In vivo muscle contractility and MU connectivity assays were assessed longitudinally in SOD1(G93A) and wild type mice from postnatal days 35 to 119. RESULTS In SOD1(G93A) males, muscle contractility was reduced by day 35 and preceded MU loss. Muscle contractility and motor unit reduction were delayed in SOD1(G93A) females compared with males, but, just as with males, muscle contractility reduction preceded MU loss. DISCUSSION The longitudinal contractility and connectivity paradigm employed here provides additional insight into the SOD1(G93A) mouse model and suggests that loss of muscle contractility is an early finding that may precede loss of MUs and motor neuron death. Muscle Nerve 59:254-262, 2019.
Collapse
Affiliation(s)
- Christopher G Wier
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Alexander E Crum
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Anthony B Reynolds
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Chitra C Iyer
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Deepti Chugh
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Marilly S Palettas
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Patrick L Heilman
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - David M Kline
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - W David Arnold
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA.,Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Stephen J Kolb
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA
| |
Collapse
|
39
|
EGR-mediated control of STIM expression and function. Cell Calcium 2018; 77:58-67. [PMID: 30553973 DOI: 10.1016/j.ceca.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022]
Abstract
Ca2+ is a ubiquitous, dynamic and pluripotent second messenger with highly context-dependent roles in complex cellular processes such as differentiation, proliferation, and cell death. These Ca2+ signals are generated by Ca2+-permeable channels located on the plasma membrane (PM) and endoplasmic reticulum (ER) and shaped by PM- and ER-localized pumps and transporters. Differences in the expression of these Ca2+ homeostasis proteins contribute to cell and context-dependent differences in the spatiotemporal organization of Ca2+ signals and, ultimately, cell fate. This review focuses on the Early Growth Response (EGR) family of zinc finger transcription factors and their role in the transcriptional regulation of Stromal Interaction Molecule (STIM1), a critical regulator of Ca2+ entry in both excitable and non-excitable cells.
Collapse
|
40
|
Dorsch LM, Schuldt M, Knežević D, Wiersma M, Kuster DWD, van der Velden J, Brundel BJJM. Untying the knot: protein quality control in inherited cardiomyopathies. Pflugers Arch 2018; 471:795-806. [PMID: 30109411 PMCID: PMC6475634 DOI: 10.1007/s00424-018-2194-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022]
Abstract
Mutations in genes encoding sarcomeric proteins are the most important causes of inherited cardiomyopathies, which are a major cause of mortality and morbidity worldwide. Although genetic screening procedures for early disease detection have been improved significantly, treatment to prevent or delay mutation-induced cardiac disease onset is lacking. Recent findings indicate that loss of protein quality control (PQC) is a central factor in the disease pathology leading to derailment of cellular protein homeostasis. Loss of PQC includes impairment of heat shock proteins, the ubiquitin-proteasome system, and autophagy. This may result in accumulation of misfolded and aggregation-prone mutant proteins, loss of sarcomeric and cytoskeletal proteins, and, ultimately, loss of cardiac function. PQC derailment can be a direct effect of the mutation-induced activation, a compensatory mechanism due to mutation-induced cellular dysfunction or a consequence of the simultaneous occurrence of the mutation and a secondary hit. In this review, we discuss recent mechanistic findings on the role of proteostasis derailment in inherited cardiomyopathies, with special focus on sarcomeric gene mutations and possible therapeutic applications.
Collapse
Affiliation(s)
- Larissa M Dorsch
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | - Maike Schuldt
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | - Dora Knežević
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Marit Wiersma
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Bianca J J M Brundel
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Alexandre J, Moslehi JJ, Bersell KR, Funck-Brentano C, Roden DM, Salem JE. Anticancer drug-induced cardiac rhythm disorders: Current knowledge and basic underlying mechanisms. Pharmacol Ther 2018; 189:89-103. [PMID: 29698683 DOI: 10.1016/j.pharmthera.2018.04.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significant advances in cancer treatment have resulted in decreased cancer related mortality for many malignancies with some cancer types now considered chronic diseases. Despite these improvements, there is increasing recognition that many cancer patients or cancer survivors can develop cardiovascular diseases, either due to the cancer itself or as a result of anticancer therapy. Much attention has focused on heart failure; however, other cardiotoxicities, notably cardiac rhythm disorders, can occur without underlying cardiomyopathy. Supraventricular tachycardias occur in cancer patients treated with cytotoxic chemotherapy (anthracyclines, gemcitabine, cisplatin and alkylating-agents) or kinase-inhibitors (KIs) such as ibrutinib. Ventricular arrhythmias, with a subset of them being torsades-de-pointes (TdP) favored by QTc prolongation have been reported: this may be the result of direct hERG-channel inhibition or a more recently-described mechanism of phosphoinositide-3-kinase inhibition. The major anticancer drugs responsible for QTc prolongation in this context are KIs, arsenic trioxide, anthracyclines, histone deacetylase inhibitors, and selective estrogen receptor modulators. Anticancer drug-induced cardiac rhythm disorders remain an underappreciated complication even by experienced clinicians. Moreover, the causal relationship of a particular anticancer drug with cardiac arrhythmia occurrence remains challenging due in part to patient comorbidities and complex treatment regimens. For example, any cancer patient may also be diagnosed with common diseases such as hypertension, diabetes or heart failure which increase an individual's arrhythmia susceptibility. Further, anticancer drugs are generally usually used in combination, increasing the challenge around establishing causation. Thus, arrhythmias appear to be an underappreciated adverse effect of anticancer agents and the incidence, significance and underlying mechanisms are now being investigated.
Collapse
Affiliation(s)
- Joachim Alexandre
- CHU Caen, PICARO Cardio-oncology Program, Department of Pharmacology, F-14033 Caen, France; Normandie Univ, UNICAEN, CHU Caen, EA 4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, 14000 Caen, France
| | - Javid J Moslehi
- Vanderbilt University Medical Center, Cardio-oncology Program, Department of Medicine, Nashville, Tennessee, USA
| | - Kevin R Bersell
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christian Funck-Brentano
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013 Paris, France
| | - Dan M Roden
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joe-Elie Salem
- Vanderbilt University Medical Center, Cardio-oncology Program, Department of Medicine, Nashville, Tennessee, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA; Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013 Paris, France.
| |
Collapse
|
42
|
Yu J, Wang C, Kong Q, Wu X, Lu JJ, Chen X. Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:125-139. [PMID: 29496165 DOI: 10.1016/j.phymed.2018.01.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 12/26/2017] [Accepted: 01/14/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND As an anthracycline antibiotic, doxorubicin (DOX) is one of the most potent and widely used chemotherapeutic agents for various types of solid tumors. Unfortunately, clinical application of this drug results in severe side effects of cardiotoxicity. PURPOSE We aim to review the research focused on elimination or reduction of DOX cardiotoxicity without affecting its anticancer efficacy by natural products. METHODS This study is based on pertinent papers that were retrieved by a selective search using relevant keywords in PubMed and ScienceDirect. The literature mainly focusing on natural products and herb extracts with therapeutic efficacies against experimental models both in vitro and in vivo was identified. RESULTS Current evidence revealed that multiple molecules and signaling pathways, such as oxidative stress, iron metabolism, and inflammation, are associated with DOX-induced cardiotoxicity. Based on these knowledge, various strategies were proposed, and thousands of compounds were screened. A number of natural products and herb extracts demonstrated potency in limiting DOX cardiotoxicity toward cultured cells and experimental animal models. CONCLUSIONS Though a panel of natural products and herb extracts demonstrate protective effects on DOX-induced cardiotoxicity in cells and animal models, their therapeutic potentials for clinical needs further investigation.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Changxi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Qi Kong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, PR China
| | - Xiaxia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China.
| |
Collapse
|
43
|
Bishop S, Liu SJ. Cardioprotective action of the aqueous extract of Terminalia arjuna bark against toxicity induced by doxorubicin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:210-216. [PMID: 29157817 DOI: 10.1016/j.phymed.2017.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/03/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The aqueous extract of Terminalia arjuna (TA) bark (TAAqE) has been shown to have a direct inotropic effect on ventricular myocytes. Active constituents of TAAqE contain various flavonoids and proanthocyanidins, some of which are known to have antioxidant activities. Whether TAAqE affords a cardioprotective action against oxidative stress (OS) remains unclear. PURPOSE Increased OS is one of the major mechanisms underlying cardiotoxicity induced by doxorubicin (DOX), a commonly-used anticancer agent. The aim of the present study was to investigate potential cardioprotective effect of TAAqE against DOX-induced OS and cardiac dysfunction. METHODS OS and cytotoxicity were induced by 1 µM DOX for 24 h in H9c2 cells, a cardiac tissue-derived cell line, and left ventricular (LV) dysfunction was induced by intrapleural injection of DOX (accumulative 20 mg/kg body weight) to mice. Cellular oxidative levels and morphology were assessed using microscopy and oxidative-sensitive fluorescent dyes with and without co-treatment with TAAqE. LV function was monitored weekly with echocardiography. RESULTS TAAqE reduced OS and preserved mitochondria and cell growth of H9c2 cells against DOX treatment. TAAqE (in drinking water) attenuated the decreased LV function and altered myocardial structure caused by DOX treatment. CONCLUSION TAAqE exerts a protective action against cardiotoxicity caused by DOX in part via suppression of OS. Thus, TAAqE is a promising cardiotonic in adjuvant cancer chemotherapy.
Collapse
Affiliation(s)
- Sarah Bishop
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shi J Liu
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
44
|
O'Shea KM, Ananthakrishnan R, Li Q, Quadri N, Thiagarajan D, Sreejit G, Wang L, Zirpoli H, Aranda JF, Alberts AS, Schmidt AM, Ramasamy R. The Formin, DIAPH1, is a Key Modulator of Myocardial Ischemia/Reperfusion Injury. EBioMedicine 2017; 26:165-174. [PMID: 29239839 PMCID: PMC5832565 DOI: 10.1016/j.ebiom.2017.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 01/13/2023] Open
Abstract
The biochemical, ionic, and signaling changes that occur within cardiomyocytes subjected to ischemia are exacerbated by reperfusion; however, the precise mechanisms mediating myocardial ischemia/reperfusion (I/R) injury have not been fully elucidated. The receptor for advanced glycation end-products (RAGE) regulates the cellular response to cardiac tissue damage in I/R, an effect potentially mediated by the binding of the RAGE cytoplasmic domain to the diaphanous-related formin, DIAPH1. The aim of this study was to investigate the role of DIAPH1 in the physiological response to experimental myocardial I/R in mice. After subjecting wild-type mice to experimental I/R, myocardial DIAPH1 expression was increased, an effect that was echoed following hypoxia/reoxygenation (H/R) in H9C2 and AC16 cells. Further, compared to wild-type mice, genetic deletion of Diaph1 reduced infarct size and improved contractile function after I/R. Silencing Diaph1 in H9C2 cells subjected to H/R downregulated actin polymerization and serum response factor-regulated gene expression. Importantly, these changes led to increased expression of sarcoplasmic reticulum Ca2+ ATPase and reduced expression of the sodium calcium exchanger. This work demonstrates that DIAPH1 is required for the myocardial response to I/R, and that targeting DIAPH1 may represent an adjunctive approach for myocardial salvage after acute infarction.
Collapse
Affiliation(s)
- Karen M O'Shea
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Radha Ananthakrishnan
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Qing Li
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Nosirudeen Quadri
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Devi Thiagarajan
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Gopalkrishna Sreejit
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Lingjie Wang
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Hylde Zirpoli
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Juan Francisco Aranda
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Arthur S Alberts
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
45
|
Wang H, Wang H, Liang EY, Zhou LX, Dong ZL, Liang P, Weng QF, Yang M. Thrombopoietin protects H9C2 cells from excessive autophagy and apoptosis in doxorubicin-induced cardiotoxicity. Oncol Lett 2017; 15:839-848. [PMID: 29403560 PMCID: PMC5780751 DOI: 10.3892/ol.2017.7410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/12/2017] [Indexed: 01/10/2023] Open
Abstract
Cardiac toxicity has been the major concern when using doxorubicin (DOX) in cancer therapy. Thrombopoietin (TPO) protects cardiac cells from DOX-induced cell damage; however, its molecular mechanism remains exclusive. The anti-autophagic and anti-apoptotic effects of TPO upon DOX treatment were studied in the cardiac H9C2 cell line, with bafilomycin A1 treatment as a positive control for autophagy inhibition. Cell viability was measured by Cell Counting Kit-8 assay in different treatment groups. The mRNA and/or protein levels of apoptotic markers and autophagy-associated factors were detected. The mean number of microtubule-associated protein 1A/1B-light chain 3 (LC3) puncta per cell was quantified to indicate autophagosomes and autolysosomes, of which the ones co-stained with lysosomal-associated membrane protein 1 were considered as autolysosomes. DOX treatment (5 µg/ml, 24 h) significantly impaired H9C2 cell viability compared with the control, while TPO pretreatment (10 ng/ml, 36 h) improved cell viability upon DOX treatment. DOX exposure markedly increased LC3 puncta in H9C2 cells, and TPO pretreatment reduced the number of autophagosomes, but showed no significant inhibitory effect on autolysosome formation. The autophagy inhibition by TPO upon DOX treatment was confirmed according to protein quantification of LC3-II and nucleoporin 62. TPO also suppressed autophagy-promoting protein Beclin-1, and elevated the anti-autophagic factors GATA-binding protein-4 and B cell lymphoma-2. Furthermore, TPO reduced DOX-induced apoptosis in H9C2 cells, as reflected by the amount changes of caspase-3. Taken together, these results revealed that TPO has a protective role in H9C2 cells from DOX-induced autophagy as well as apoptosis, and indicated that TPO may act as a cardioprotective drug in DOX-treated patients.
Collapse
Affiliation(s)
- Han Wang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hua Wang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - En-Yu Liang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li-Xia Zhou
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhan-Ling Dong
- Department of Physiology, Hainan Medical College, Haikou, Hainan 571199, P.R. China
| | - Ping Liang
- Department of Physiology, Hainan Medical College, Haikou, Hainan 571199, P.R. China
| | - Qi-Fang Weng
- Department of Physiology, Hainan Medical College, Haikou, Hainan 571199, P.R. China
| | - Mo Yang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
46
|
Cappetta D, Esposito G, Coppini R, Piegari E, Russo R, Ciuffreda LP, Rivellino A, Santini L, Rafaniello C, Scavone C, Rossi F, Berrino L, Urbanek K, De Angelis A. Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction. Br J Pharmacol 2017; 174:3696-3712. [PMID: 28320043 DOI: 10.1111/bph.13791] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Doxorubicin is a highly effective anticancer drug, but its clinical application is hampered by cardiotoxicity. Asymptomatic diastolic dysfunction can be the earliest manifestation of doxorubicin cardiotoxicity. Therefore, a search for therapeutic intervention that can interfere with early manifestations and possibly prevent later development of cardiotoxicity is warranted. Increased doxorubicin-dependent ROS may explain, in part, Ca2+ and Na+ overload that contributes to diastolic dysfunction and development of heart failure. Therefore, we tested whether the administration of ranolazine, a selective blocker of late Na+ current, immediately after completing doxorubicin therapy, could affect diastolic dysfunction and interfere with the progression of functional decline. EXPERIMENTAL APPROACH Fischer 344 rats received a cumulative dose of doxorubicin of 15 mg·kg-1 over a period of 2 weeks. After the assessment of diastolic dysfunction, the animals were treated with ranolazine (80 mg·kg-1 , daily) for the following 4 weeks. KEY RESULTS While diastolic and systolic function progressively deteriorated in doxorubicin-treated animals, treatment with ranolazine relieved diastolic dysfunction and prevented worsening of systolic function, decreasing mortality. Ranolazine lowered myocardial NADPH oxidase 2 expression and oxidative/nitrative stress. Expression of the Na+ /Ca2+ exchanger 1 and Nav 1.5 channels was reduced and of the sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase 2 protein was increased. In addition, ranolazine lowered doxorubicin-induced hyper-phosphorylation and oxidation of Ca2+ /calmodulin-dependent protein kinase II, and decreased myocardial fibrosis. CONCLUSIONS AND IMPLICATIONS Ranolazine, by the increased Na+ influx, induced by doxorubicin, altered cardiac Ca2+ and Na+ handling and attenuated diastolic dysfunction induced by doxorubicin, thus preventing the progression of cardiomyopathy. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Grazia Esposito
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Raffaele Coppini
- Department of Neuroscience, Drug Research and Child's Health (NeuroFarBa), Division of Pharmacology, University of Florence, Florence, Italy
| | - Elena Piegari
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa Russo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Loreta Pia Ciuffreda
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Rivellino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lorenzo Santini
- Department of Neuroscience, Drug Research and Child's Health (NeuroFarBa), Division of Pharmacology, University of Florence, Florence, Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
47
|
Fu HY, Mukai M, Awata N, Sakata Y, Hori M, Minamino T. Protein Quality Control Dysfunction in Cardiovascular Complications Induced by Anti-Cancer Drugs. Cardiovasc Drugs Ther 2017; 31:109-117. [PMID: 28120277 DOI: 10.1007/s10557-016-6709-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular complications, including heart failure, hypertension, ischemic syndromes and venous thromboembolism, have been identified in patients treated with anti-cancer drugs. Oxidative stress, mitochondrial dysfunction and DNA synthesis inhibition are considered to be responsible for the cardiotoxicity induced by these agents. Protein quality control (PQC) has 3 major components, including the endoplasmic reticulum (ER), the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, and participates in protein folding and degradation to maintain protein homeostasis. We have demonstrated that PQC dysfunction is a new causal mechanism for the development of cardiac hypertrophy and failure. Increasing evidence shows that anti-cancer drugs, such as tyrosine kinase inhibitors, proteasome inhibitors, anthracyclines and autophagy inhibitors, cause PQC dysfunction. Here, we provide an overview of the potential role of PQC dysfunction in the development of cardiovascular complications induced by anti-cancer drugs.
Collapse
Affiliation(s)
- Hai Ying Fu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Mikio Mukai
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Nobuhisa Awata
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masatsugu Hori
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Mikicho, Kita-gun, Kagawa Prefecture, 761-0793, Japan.
| |
Collapse
|
48
|
De Francesco EM, Rocca C, Scavello F, Amelio D, Pasqua T, Rigiracciolo DC, Scarpelli A, Avino S, Cirillo F, Amodio N, Cerra MC, Maggiolini M, Angelone T. Protective Role of GPER Agonist G-1 on Cardiotoxicity Induced by Doxorubicin. J Cell Physiol 2017; 232:1640-1649. [DOI: 10.1002/jcp.25585] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/06/2016] [Indexed: 01/26/2023]
Affiliation(s)
| | - Carmine Rocca
- Department of Biology, Ecology, and E.S.; University of Calabria; Rende (CS) Italy
| | - Francesco Scavello
- Department of Biology, Ecology, and E.S.; University of Calabria; Rende (CS) Italy
| | - Daniela Amelio
- Department of Biology, Ecology, and E.S.; University of Calabria; Rende (CS) Italy
| | - Teresa Pasqua
- Department of Biology, Ecology, and E.S.; University of Calabria; Rende (CS) Italy
| | - Damiano C. Rigiracciolo
- Department of Pharmacy; Health and Nutritional Sciences; University of Calabria; Rende (CS) Italy
| | - Andrea Scarpelli
- Department of Pharmacy; Health and Nutritional Sciences; University of Calabria; Rende (CS) Italy
| | - Silvia Avino
- Department of Pharmacy; Health and Nutritional Sciences; University of Calabria; Rende (CS) Italy
| | - Francesca Cirillo
- Department of Pharmacy; Health and Nutritional Sciences; University of Calabria; Rende (CS) Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine; University of Catanzaro Magna Graecia; Catanzaro Italy
| | - Maria C. Cerra
- Department of Biology, Ecology, and E.S.; University of Calabria; Rende (CS) Italy
- National Institute of Cardiovascular Research; Bologna Italy
| | - Marcello Maggiolini
- Department of Pharmacy; Health and Nutritional Sciences; University of Calabria; Rende (CS) Italy
| | - Tommaso Angelone
- Department of Biology, Ecology, and E.S.; University of Calabria; Rende (CS) Italy
- National Institute of Cardiovascular Research; Bologna Italy
| |
Collapse
|
49
|
Thiagarajan D, Vedantham S, Ananthakrishnan R, Schmidt AM, Ramasamy R. Mechanisms of transcription factor acetylation and consequences in hearts. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:2221-2231. [PMID: 27543804 PMCID: PMC5159280 DOI: 10.1016/j.bbadis.2016.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/12/2016] [Accepted: 08/14/2016] [Indexed: 01/06/2023]
Abstract
Acetylation of proteins as a post-translational modification is gaining rapid acceptance as a cellular control mechanism on par with other protein modification mechanisms such as phosphorylation and ubiquitination. Through genetic manipulations and evolving proteomic technologies, identification and consequences of transcription factor acetylation is beginning to emerge. In this review, we summarize the field and discuss newly unfolding mechanisms and consequences of transcription factor acetylation in normal and stressed hearts. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Devi Thiagarajan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | | | - Radha Ananthakrishnan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States.
| |
Collapse
|
50
|
Elshazly SM, Mahmoud AA, Barakat W. Pentoxifylline abrogates cardiotoxicity induced by the administration of a single high dose or multiple low doses of doxorubicin in rats. Can J Physiol Pharmacol 2016; 94:1170-1177. [DOI: 10.1139/cjpp-2016-0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Doxorubicin (DOX) possesses a broad-spectrum antineoplastic activity; however, its clinical application is impeded by cardiotoxicity. This study aimed to investigate the protective effect of pentoxifylline (PXF), which possesses antioxidant and anti-inflammatory properties against cardiotoxicity induced by a single high dose (15 mg/kg, i.p.) or multiple low doses (2.5 mg/kg, i.p., three times per week for 2 weeks) of DOX. At the end of the experimental period, the serum creatine kinase (CK)-MB and lactate dehydrogenase (LDH) activities were measured. The hearts were then removed for evaluating TNF-α, NO, malondialdehyde (MDA), and reduced glutathione (GSH) levels, superoxide dismutase (SOD) and catalase (CAT) activities, and the expression of iNOS, NF-κB, Fas ligand (FasL), and caspase-3. The administration of DOX in both dose regimens caused increases in serum CK-MB and LDH activities, in cardiac TNF-α, NO and MDA levels, as well as in the cardiac expression of iNOS, NF-κB, FasL and caspase-3, whereas it significantly reduced the cardiac GSH level, as well as SOD and CAT activities (P < 0.05). Prophylactic treatment of rats with PXF diminished DOX-induced alterations in theses parameters. Our results warrant the clinical use of PXF as an adjuvant therapy to abrogate cardiotoxicity of DOX and extend its clinical applications.
Collapse
Affiliation(s)
- Shimaa M. Elshazly
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Amr A.A. Mahmoud
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Waleed Barakat
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Pharmacology, Faculty of Pharmacy, Tabuk University, Tabuk 71491, Kingdom of Saudi Arabia
| |
Collapse
|