1
|
Garcia MI, Dame K, Charwat V, Siemons BA, Finsberg H, Bhardwaj B, Yokosawa R, Goswami I, Bruckner D, Wall ST, Ford KA, Healy KE, Ribeiro AJS. Human induced pluripotent stem cell-derived cardiomyocytes and their use in a cardiac organ-on-a-chip to assay electrophysiology, calcium and contractility. Nat Protoc 2025:10.1038/s41596-025-01166-4. [PMID: 40195549 DOI: 10.1038/s41596-025-01166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
Cardiac organs-on-a-chip (OoCs) or microphysiological systems have the potential to predict cardiac effects of new drug candidates, including unanticipated cardiac outcomes, which are among the main causes for drug attrition. This protocol describes how to prepare and use a cardiac OoC containing cardiomyocytes differentiated from human induced pluripotent stem cells (hiPS cells). The use of cells derived from hiPS cells as reliable sources of human cells from diverse genetic backgrounds also holds great potential, especially when cultured in OoCs that are physiologically relevant culture platforms. To promote the broad adoption of hiPS cell-derived cardiac OoCs in the drug development field, there is a need to first ensure reproducibility in their preparation and use. This protocol aims to provide key information on how to reduce sources of variability during hiPS cell maintenance, differentiation, loading and maturation in OoCs. Variability in these procedures can lead to inconsistent purity after differentiation and variable function between batches of microtissues formed in OoCs. This protocol also focuses on describing the handling and functional assessment of cardiac microtissues using live-cell microscopy approaches to quantify parameters of cellular electrophysiology, calcium transients and contractility. The protocol consists of five stages: (1) thaw and maintain hiPS cells, (2) differentiate hiPS cell cardiomyocytes, (3) load differentiated cells into OoCs, (4) maintain and characterize loaded cells, and (5) evaluate and utilize cardiac OoCs. Execution of the entire protocol takes ~40 days. The required skills to carry out the protocol are experience with sterile techniques, mammalian cell culture and maintaining hiPS cells in a pluripotent state.
Collapse
Affiliation(s)
- M Iveth Garcia
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| | - Keri Dame
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Verena Charwat
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | - Brian A Siemons
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | - Henrik Finsberg
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Bhavya Bhardwaj
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ryosuke Yokosawa
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ishan Goswami
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | - Dylan Bruckner
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Samuel T Wall
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Kevin A Ford
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Kevin E Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, USA
| | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
2
|
Beqaj H, Sittenfeld L, Chang A, Miotto M, Dridi H, Willson G, Jorge CM, Li JA, Reiken S, Liu Y, Dai Z, Marks AR. Location of ryanodine receptor type 2 mutation predicts age of onset of sudden death in catecholaminergic polymorphic ventricular tachycardia - A systematic review and meta-analysis of case-based literature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.15.24304349. [PMID: 38559077 PMCID: PMC10980137 DOI: 10.1101/2024.03.15.24304349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare inherited arrhythmia caused by mutations in the ryanodine receptor type 2 (RyR2). Diagnosis of CPVT often occurs after a major cardiac event, thus posing a severe threat to the patient's health. Methods Publication databases, including PubMed, Scopus, and Embase, were searched for articles on patients with RyR2-CPVT mutations and their associated clinical presentation. Articles were reviewed by two independent reviewers and mutations were analyzed for demographic information, mutation distribution, and therapeutics. The human RyR2 cryo-EM structure was used to model CPVT mutations and predict the diagnosis and outcomes of CPVT patients. Findings We present a database of 1008 CPVT patients from 227 papers. Data analyses revealed that patients most often experienced exercise-induced syncope in their early teenage years but the diagnosis of CPVT took a decade. Mutations located near key regulatory sites in the channel were associated with earlier onset of CPVT symptoms including sudden cardiac death. Interpretation The present study provides a road map for predicting clinical outcomes based on the location of RyR2 mutations in CPVT patients. The study was partially limited by the inconsistency in the depth of information provided in each article, but nevertheless is an important contribution to the understanding of the clinical and molecular basis of CPVT and suggests the need for early diagnosis and creative approaches to disease management. Funding The work was supported by grant NIH R01HL145473, P01 HL164319 R25HL156002, T32 HL120826.
Collapse
|
3
|
Li P, Qin D, Chen T, Hou W, Song X, Yin S, Song M, Fernando WCHA, Chen X, Sun Y, Wang J. Dysregulated Rbfox2 produces aberrant splicing of Ca V1.2 calcium channel in diabetes-induced cardiac hypertrophy. Cardiovasc Diabetol 2023; 22:168. [PMID: 37415128 PMCID: PMC10324275 DOI: 10.1186/s12933-023-01894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND L-type Ca2+ channel CaV1.2 is essential for cardiomyocyte excitation, contraction and gene transcription in the heart, and abnormal functions of cardiac CaV1.2 channels are presented in diabetic cardiomyopathy. However, the underlying mechanisms are largely unclear. The functions of CaV1.2 channels are subtly modulated by splicing factor-mediated alternative splicing (AS), but whether and how CaV1.2 channels are alternatively spliced in diabetic heart remains unknown. METHODS Diabetic rat models were established by using high-fat diet in combination with low dose streptozotocin. Cardiac function and morphology were assessed by echocardiography and HE staining, respectively. Isolated neonatal rat ventricular myocytes (NRVMs) were used as a cell-based model. Cardiac CaV1.2 channel functions were measured by whole-cell patch clamp, and intracellular Ca2+ concentration was monitored by using Fluo-4 AM. RESULTS We find that diabetic rats develop diastolic dysfunction and cardiac hypertrophy accompanied by an increased CaV1.2 channel with alternative exon 9* (CaV1.2E9*), but unchanged that with alternative exon 8/8a or exon 33. The splicing factor Rbfox2 expression is also increased in diabetic heart, presumably because of dominate-negative (DN) isoform. Unexpectedly, high glucose cannot induce the aberrant expressions of CaV1.2 exon 9* and Rbfox2. But glycated serum (GS), the mimic of advanced glycation end-products (AGEs), upregulates CaV1.2E9* channels proportion and downregulates Rbfox2 expression in NRVMs. By whole-cell patch clamp, we find GS application hyperpolarizes the current-voltage curve and window currents of cardiac CaV1.2 channels. Moreover, GS treatment raises K+-triggered intracellular Ca2+ concentration ([Ca2+]i), enlarges cell surface area of NRVMs and induces hypertrophic genes transcription. Consistently, siRNA-mediated knockdown of Rbfox2 in NRVMs upregulates CaV1.2E9* channel, shifts CaV1.2 window currents to hyperpolarization, increases [Ca2+]i and induces cardiomyocyte hypertrophy. CONCLUSIONS AGEs, not glucose, dysregulates Rbfox2 which thereby increases CaV1.2E9* channels and hyperpolarizes channel window currents. These make the channels open at greater negative potentials and lead to increased [Ca2+]i in cardiomyocytes, and finally induce cardiomyocyte hypertrophy in diabetes. Our work elucidates the underlying mechanisms for CaV1.2 channel regulation in diabetic heart, and targeting Rbfox2 to reset the aberrantly spliced CaV1.2 channel might be a promising therapeutic approach in diabetes-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Pengpeng Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Dongxia Qin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Tiange Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wei Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xinyu Song
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shumin Yin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Miaomiao Song
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - W C Hewith A Fernando
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaojie Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yu Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Juejin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
4
|
Calcium Channels in the Heart: Disease States and Drugs. Cells 2022; 11:cells11060943. [PMID: 35326393 PMCID: PMC8945986 DOI: 10.3390/cells11060943] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
Calcium ions are the major signaling ions in the cells. They regulate muscle contraction, neurotransmitter secretion, cell growth and migration, and the activity of several proteins including enzymes and ion channels and transporters. They participate in various signal transduction pathways, thereby regulating major physiological functions. Calcium ion entry into the cells is regulated by specific calcium channels and transporters. There are mainly six types of calcium channels, of which only two are prominent in the heart. In cardiac tissues, the two types of calcium channels are the L type and the T type. L-type channels are found in all cardiac cells and T-type are expressed in Purkinje cells, pacemaker and atrial cells. Both these types of channels contribute to atrioventricular conduction as well as pacemaker activity. Given the crucial role of calcium channels in the cardiac conduction system, mutations and dysfunctions of these channels are known to cause several diseases and disorders. Drugs targeting calcium channels hence are used in a wide variety of cardiac disorders including but not limited to hypertension, angina, and arrhythmias. This review summarizes the type of cardiac calcium channels, their function, and disorders caused by their mutations and dysfunctions. Finally, this review also focuses on the types of calcium channel blockers and their use in a variety of cardiac disorders.
Collapse
|
5
|
Weissman D, Maack C. Redox signaling in heart failure and therapeutic implications. Free Radic Biol Med 2021; 171:345-364. [PMID: 34019933 DOI: 10.1016/j.freeradbiomed.2021.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/17/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Heart failure is a growing health burden worldwide characterized by alterations in excitation-contraction coupling, cardiac energetic deficit and oxidative stress. While current treatments are mostly limited to antagonization of neuroendocrine activation, more recent data suggest that also targeting metabolism may provide substantial prognostic benefit. However, although in a broad spectrum of preclinical models, oxidative stress plays a causal role for the development and progression of heart failure, no treatment that targets reactive oxygen species (ROS) directly has entered the clinical arena yet. In the heart, ROS derive from various sources, such as NADPH oxidases, xanthine oxidase, uncoupled nitric oxide synthase and mitochondria. While mitochondria are the primary source of ROS in the heart, communication between different ROS sources may be relevant for physiological signalling events as well as pathologically elevated ROS that deteriorate excitation-contraction coupling, induce hypertrophy and/or trigger cell death. Here, we review the sources of ROS in the heart, the modes of pathological activation of ROS formation as well as therapeutic approaches that may target ROS specifically in mitochondria.
Collapse
Affiliation(s)
- David Weissman
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany; Department of Internal Medicine 1, University Clinic Würzburg, Würzburg, Germany.
| |
Collapse
|
6
|
Val‐Blasco A, Gil‐Fernández M, Rueda A, Pereira L, Delgado C, Smani T, Ruiz Hurtado G, Fernández‐Velasco M. Ca 2+ mishandling in heart failure: Potential targets. Acta Physiol (Oxf) 2021; 232:e13691. [PMID: 34022101 DOI: 10.1111/apha.13691] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Ca2+ mishandling is a common feature in several cardiovascular diseases such as heart failure (HF). In many cases, impairment of key players in intracellular Ca2+ homeostasis has been identified as the underlying mechanism of cardiac dysfunction and cardiac arrhythmias associated with HF. In this review, we summarize primary novel findings related to Ca2+ mishandling in HF progression. HF research has increasingly focused on the identification of new targets and the contribution of their role in Ca2+ handling to the progression of the disease. Recent research studies have identified potential targets in three major emerging areas implicated in regulation of Ca2+ handling: the innate immune system, bone metabolism factors and post-translational modification of key proteins involved in regulation of Ca2+ handling. Here, we describe their possible contributions to the progression of HF.
Collapse
Affiliation(s)
| | | | - Angélica Rueda
- Department of Biochemistry Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV‐IPN) México City Mexico
| | - Laetitia Pereira
- INSERM UMR‐S 1180 Laboratory of Ca Signaling and Cardiovascular Physiopathology University Paris‐Saclay Châtenay‐Malabry France
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols Madrid Spain
- Department of Metabolism and Cell Signalling Biomedical Research Institute "Alberto Sols" CSIC‐UAM Madrid Spain
| | - Tarik Smani
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
- Department of Medical Physiology and Biophysics University of Seville Seville Spain
- Group of Cardiovascular Pathophysiology Institute of Biomedicine of Seville University Hospital of Virgen del Rocío, University of Seville, CSIC Seville Spain
| | - Gema Ruiz Hurtado
- Cardiorenal Translational Laboratory Institute of Research i+12 University Hospital 12 de Octubre Madrid Spain
- CIBER‐CV University Hospita1 12 de Octubre Madrid Spain
| | - Maria Fernández‐Velasco
- La Paz University Hospital Health Research Institute IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
| |
Collapse
|
7
|
Federico M, Valverde CA, Mattiazzi A, Palomeque J. Unbalance Between Sarcoplasmic Reticulum Ca 2 + Uptake and Release: A First Step Toward Ca 2 + Triggered Arrhythmias and Cardiac Damage. Front Physiol 2020; 10:1630. [PMID: 32038301 PMCID: PMC6989610 DOI: 10.3389/fphys.2019.01630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
The present review focusses on the regulation and interplay of cardiac SR Ca2+ handling proteins involved in SR Ca2+ uptake and release, i.e., SERCa2/PLN and RyR2. Both RyR2 and SERCA2a/PLN are highly regulated by post-translational modifications and/or different partners' proteins. These control mechanisms guarantee a precise equilibrium between SR Ca2+ reuptake and release. The review then discusses how disruption of this balance alters SR Ca2+ handling and may constitute a first step toward cardiac damage and malignant arrhythmias. In the last part of the review, this concept is exemplified in different cardiac diseases, like prediabetic and diabetic cardiomyopathy, digitalis intoxication and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Marilén Federico
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina.,Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Buenos Aires, Argentina
| |
Collapse
|
8
|
Colman MA. Arrhythmia mechanisms and spontaneous calcium release: Bi-directional coupling between re-entrant and focal excitation. PLoS Comput Biol 2019; 15:e1007260. [PMID: 31393876 PMCID: PMC6687119 DOI: 10.1371/journal.pcbi.1007260] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Spontaneous sub-cellular calcium release events (SCRE) are conjectured to promote rapid arrhythmias associated with conditions such as heart failure and atrial fibrillation: they can underlie the emergence of spontaneous action potentials in single cells which can lead to arrhythmogenic triggers in tissue. The multi-scale mechanisms of the development of SCRE into arrhythmia triggers, and their dynamic interaction with the tissue substrate, remain elusive; rigorous and simultaneous study of dynamics from the nanometre to the centimetre scale is a major challenge. The aim of this study was to develop a computational approach to overcome this challenge and study potential bi-directional coupling between sub-cellular and tissue-scale arrhythmia phenomena. A framework comprising a hierarchy of computational models was developed, which includes detailed single-cell models describing spatio-temporal calcium dynamics in 3D, efficient non-spatial cell models, and both idealised and realistic tissue models. A phenomenological approach was implemented to reproduce SCRE morphology and variability in the efficient cell models, comprising the definition of analytical Spontaneous Release Functions (SRF) whose parameters may be randomly sampled from appropriate distributions in order to match either the 3D cell models or experimental data. Pro-arrhythmogenic pacing protocols were applied to initiate re-entry and promote calcium overload, leading to the emergence of SCRE. The SRF accurately reproduced the dynamics of SCRE and its dependence on environment variables under multiple different conditions. Sustained re-entrant excitation promoted calcium overload, and led to the emergence of focal excitations after termination. A purely functional mechanism of re-entry and focal activity localisation was demonstrated, related to the unexcited spiral wave core. In conclusion, a novel approach has been developed to dynamically model SCRE at the tissue scale, which facilitates novel, detailed multi-scale mechanistic analysis. It was revealed that complex re-entrant excitation patterns and SCRE may be bi-directionally coupled, promoting novel mechanisms of arrhythmia perpetuation.
Collapse
Affiliation(s)
- Michael A. Colman
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
Ke HY, Yang HY, Francis AJ, Collins TP, Surendran H, Alvarez-Laviada A, Firth JM, MacLeod KT. Changes in cellular Ca 2+ and Na + regulation during the progression towards heart failure in the guinea pig. J Physiol 2019; 598:1339-1359. [PMID: 30811606 PMCID: PMC7187457 DOI: 10.1113/jp277038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Abstract
Key points During compensated hypertrophy in vivo fractional shortening (FS) remains constant until heart failure (HF) develops, when FS decreases from 70% to 39%. Compensated hypertrophy is accompanied by an increase in INa,late and a decrease in Na+,K+‐ATPase current. These changes persist as HF develops. SR Ca2+ content increases during compensated hypertrophy then decreases in HF. In healthy cells, increases in SR Ca2+ content and Ca2+ transients can be achieved by the same amount of inhibition of the Na+,K+‐ATPase as measured in the diseased cells. SERCA function remains constant during compensated hypertrophy then decreases in HF, when there is also an increase in spark frequency and spark‐mediated Ca2+ leak. We suggest an increase in INa,late and a decrease in Na+,K+‐ATPase current and function alters the balance of Ca2+ flux mediated by the Na+/Ca2+ exchange that limits early contractile impairment.
Abstract We followed changes in cardiac myocyte Ca2+ and Na+ regulation from the formation of compensated hypertrophy (CH) until signs of heart failure (HF) are apparent using a trans‐aortic pressure overload (TAC) model. In this model, in vivo fractional shortening (FS) remained constant despite HW:BW ratio increasing by 39% (CH) until HF developed 150 days post‐TAC when FS decreased from 70% to 39%. Using live and fixed fluorescence imaging and electrophysiological techniques, we found an increase in INa,late from –0.34 to –0.59 A F−1 and a decrease in Na+,K+‐ATPase current from 1.09 A F−1 to 0.54 A F−1 during CH. These changes persisted as HF developed (INa,late increased to –0.82 A F−1 and Na+,K+‐ATPase current decreased to 0.51 A F−1). Sarcoplasmic reticulum (SR) Ca2+ content increased during CH then decreased in HF (from 32 to 15 μm l−1) potentially supporting the maintenance of FS in the whole heart and Ca2+ transients in single myocytes during the former stage. We showed using glycoside blockade in healthy myocytes that increases in SR Ca2+ content and Ca2+ transients can be driven by the same amount of inhibition of the Na+,K+‐ATPase as measured in the diseased cells. SERCA function remains constant in CH but decreases (τ for SERCA‐mediated Ca2+ removal changed from 6.3 to 3.0 s−1) in HF. In HF there was an increase in spark frequency and spark‐mediated Ca2+ leak. We suggest an increase in INa,late and a decrease in Na+,K+‐ATPase current and function alters the balance of Ca2+ flux mediated by the Na+/Ca2+ exchange that limits early contractile impairment. During compensated hypertrophy in vivo fractional shortening (FS) remains constant until heart failure (HF) develops, when FS decreases from 70% to 39%. Compensated hypertrophy is accompanied by an increase in INa,late and a decrease in Na+,K+‐ATPase current. These changes persist as HF develops. SR Ca2+ content increases during compensated hypertrophy then decreases in HF. In healthy cells, increases in SR Ca2+ content and Ca2+ transients can be achieved by the same amount of inhibition of the Na+,K+‐ATPase as measured in the diseased cells. SERCA function remains constant during compensated hypertrophy then decreases in HF, when there is also an increase in spark frequency and spark‐mediated Ca2+ leak. We suggest an increase in INa,late and a decrease in Na+,K+‐ATPase current and function alters the balance of Ca2+ flux mediated by the Na+/Ca2+ exchange that limits early contractile impairment.
Collapse
Affiliation(s)
- H-Y Ke
- Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (ROC)
| | - H-Y Yang
- Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (ROC)
| | - A J Francis
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - T P Collins
- The Wellcome Trust, Gibbs Building, 215 Euston Road, London, NW1 2BE, UK
| | - H Surendran
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - A Alvarez-Laviada
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - J M Firth
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - K T MacLeod
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
10
|
Galectin-1 attenuates cardiomyocyte hypertrophy through splice-variant specific modulation of CaV1.2 calcium channel. Biochim Biophys Acta Mol Basis Dis 2019; 1865:218-229. [DOI: 10.1016/j.bbadis.2018.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/17/2018] [Accepted: 08/14/2018] [Indexed: 11/22/2022]
|
11
|
Giamouridis D, Gao MH, Lai NC, Tan Z, Kim YC, Guo T, Miyanohara A, Blankesteijn WM, Biessen E, Hammond HK. Effects of Urocortin 2 Versus Urocortin 3 Gene Transfer on Left Ventricular Function and Glucose Disposal. JACC Basic Transl Sci 2018; 3:249-264. [PMID: 30062211 PMCID: PMC6059348 DOI: 10.1016/j.jacbts.2017.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022]
Abstract
UCn2 and UCn3 peptides have recently been infused to treat patients with heart failure (HF) but are limited by their short half-lives. A 1-time intravenous injection of virus vectors encoding UCn2 or UCn3 provided sustained increases in plasma concentrations of the peptides. This was associated with increases in both systolic and diastolic left ventricular (LV) function, mediated by increased LV SERCA2a expression and Ca2+ handling. UCn2, but not UCn3, gene transfer reduced fasting glucose and increased glucose disposal. These findings support UCn2 and UCn3 gene transfer as potential treatments for HF and indicate that UCn2 may be an optimal selection in patients with diabetes and HF.
Collapse
Key Words
- AAV, adeno-associated virus
- CO, cardiac output
- CRF, corticotropin-releasing factor
- CRHR, corticotropin-releasing hormone receptor
- CaMKII, Ca2+/calmodulin-dependent protein kinase II
- EDD, end-diastolic diameter
- EF, ejection fraction
- ESD, end-systolic diameter
- ESPVR, end-systolic pressure-volume relationship
- HF, heart failure
- IP, intraperitoneal
- IV, intravenous
- LV, left ventricle/ventricular
- PKA, protein kinase A
- RYR2, ryanodine receptor 2
- SERCA2a, sarco/endoplasmic reticulum Ca2+-ATPase
- Tau, time constant of left ventricular pressure decline
- UCn2, urocortin 2
- UCn3, urocortin 3
- VCFc, velocity of circumferential fiber shortening corrected for heart rate
- adeno-associated virus
- cAMP, 3′,5′-cyclic adenosine monophosphate
- contractile function
- diastolic function
- gc, genome copies
- gene therapy
- insulin sensitivity
Collapse
Affiliation(s)
- Dimosthenis Giamouridis
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California San Diego, San Diego, California
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht University, Maastricht, the Netherlands
| | - Mei Hua Gao
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California San Diego, San Diego, California
| | - N. Chin Lai
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California San Diego, San Diego, California
| | - Zhen Tan
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California San Diego, San Diego, California
| | - Young Chul Kim
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California San Diego, San Diego, California
| | - Tracy Guo
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California San Diego, San Diego, California
| | - Atsushi Miyanohara
- Department of Medicine, University of California San Diego, San Diego, California
| | - W. Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht University, Maastricht, the Netherlands
| | - Erik Biessen
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht University, Maastricht, the Netherlands
| | - H. Kirk Hammond
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California San Diego, San Diego, California
| |
Collapse
|
12
|
Muralidharan P, Cserne Szappanos H, Ingley E, Hool LC. The cardiac L-type calcium channel alpha subunit is a target for direct redox modification during oxidative stress-the role of cysteine residues in the alpha interacting domain. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:46-54. [PMID: 28306174 DOI: 10.1111/1440-1681.12750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/16/2017] [Accepted: 03/07/2017] [Indexed: 01/21/2023]
Abstract
Cardiovascular disease is the leading cause of death in the Western world. The incidence of cardiovascular disease is predicted to further rise with the increase in obesity and diabetes and with the aging population. Even though the survival rate from ischaemic heart disease has improved over the past 30 years, many patients progress to a chronic pathological condition, known as cardiac hypertrophy that is associated with an increase in morbidity and mortality. Reactive oxygen species (ROS) and calcium play an essential role in mediating cardiac hypertrophy. The L-type calcium channel is the main route for calcium influx into cardiac myocytes. There is now good evidence for a direct role for the L-type calcium channel in the development of cardiac hypertrophy. Cysteines on the channel are targets for redox modification and glutathionylation of the channel can modulate the function of the channel protein leading to the onset of pathology. The cysteine responsible for modification of L-type calcium channel function has now been identified. Detailed understanding of the role of cysteines as possible targets during oxidative stress may assist in designing therapy to prevent the development of hypertrophy and heart failure.
Collapse
Affiliation(s)
- Padmapriya Muralidharan
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia
| | - Henrietta Cserne Szappanos
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia
| | - Evan Ingley
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Perth, WA, Australia.,School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Livia C Hool
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia.,Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| |
Collapse
|
13
|
Sankaranarayanan R, Kistamás K, Greensmith DJ, Venetucci LA, Eisner DA. Systolic [Ca 2+ ] i regulates diastolic levels in rat ventricular myocytes. J Physiol 2017; 595:5545-5555. [PMID: 28617952 PMCID: PMC5556151 DOI: 10.1113/jp274366] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/13/2017] [Indexed: 11/30/2022] Open
Abstract
KEY POINTS For the heart to function as a pump, intracellular calcium concentration ([Ca2+ ]i ) must increase during systole to activate contraction and then fall, during diastole, to allow the myofilaments to relax and the heart to refill with blood. The present study investigates the control of diastolic [Ca2+ ]i in rat ventricular myocytes. We show that diastolic [Ca2+ ]i is increased by manoeuvres that decrease sarcoplasmic reticulum function. This is accompanied by a decrease of systolic [Ca2+ ]i such that the time-averaged [Ca2+ ]i remains constant. We report that diastolic [Ca2+ ]i is controlled by the balance between Ca2+ entry and Ca2+ efflux during systole. The results of the present study identify a novel mechanism by which changes of the amplitude of the systolic Ca transient control diastolic [Ca2+ ]i . ABSTRACT The intracellular Ca concentration ([Ca2+ ]i ) must be sufficently low in diastole so that the ventricle is relaxed and can refill with blood. Interference with this will impair relaxation. The factors responsible for regulation of diastolic [Ca2+ ]i , in particular the relative roles of the sarcoplasmic reticulum (SR) and surface membrane, are unclear. We investigated the effects on diastolic [Ca2+ ]i that result from the changes of Ca cycling known to occur in heart failure. Experiments were performed using Fluo-3 in voltage clamped rat ventricular myocytes. Increasing stimulation frequency increased diastolic [Ca2+ ]i . This increase of [Ca2+ ]i was larger when SR function was impaired either by making the ryanodine receptor leaky (with caffeine or ryanodine) or by decreasing sarco/endoplasmic reticulum Ca-ATPase activity with thapsigargin. The increase of diastolic [Ca2+ ]i produced by interfering with the SR was accompanied by a decrease of the amplitude of the systolic Ca transient, such that there was no change of time-averaged [Ca2+ ]i . Time-averaged [Ca2+ ]i was increased by β-adrenergic stimulation with isoprenaline and increased in a saturating manner with increased stimulation frequency; average [Ca2+ ]i was a linear function of Ca entry per unit time. Diastolic and time-averaged [Ca2+ ]i were decreased by decreasing the L-type Ca current (with 50 μm cadmium chloride). We conclude that diastolic [Ca2+ ]i is controlled by the balance between Ca entry and efflux during systole. Furthermore, manoeuvres that decrease the amplitude of the Ca transient (without decreasing Ca influx) will therefore increase diastolic [Ca2+ ]i . This identifies a novel mechanism by which changes of the amplitude of the systolic Ca transient control diastolic [Ca2+ ]i .
Collapse
Affiliation(s)
- Rajiv Sankaranarayanan
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| | - Kornél Kistamás
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| | - David J. Greensmith
- Biomedical Research Centre, School of Environment and Life Sciences, Peel BuildingUniversity of SalfordSalfordUK
| | - Luigi A. Venetucci
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| | - David A. Eisner
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
14
|
The effect of PKA-mediated phosphorylation of ryanodine receptor on SR Ca 2+ leak in ventricular myocytes. J Mol Cell Cardiol 2017; 104:9-16. [PMID: 28131630 DOI: 10.1016/j.yjmcc.2017.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/22/2016] [Accepted: 01/24/2017] [Indexed: 01/08/2023]
Abstract
Functional impact of cardiac ryanodine receptor (type 2 RyR or RyR2) phosphorylation by protein kinase A (PKA) remains highly controversial. In this study, we characterized a functional link between PKA-mediated RyR2 phosphorylation level and sarcoplasmic reticulum (SR) Ca2+ release and leak in permeabilized rabbit ventricular myocytes. Changes in cytosolic [Ca2+] and intra-SR [Ca2+]SR were measured with Fluo-4 and Fluo-5N, respectively. Changes in RyR2 phosphorylation at two PKA sites, serine-2031 and -2809, were measured with phospho-specific antibodies. cAMP (10μM) increased Ca2+ spark frequency approximately two-fold. This effect was associated with an increase in SR Ca2+ load from 0.84 to 1.24mM. PKA inhibitory peptide (PKI; 10μM) abolished the cAMP-dependent increase of SR Ca2+ load and spark frequency. When SERCA was completely blocked by thapsigargin, cAMP did not affect RyR2-mediated Ca2+ leak. The lack of a cAMP effect on RyR2 function can be explained by almost maximal phosphorylation of RyR2 at serine-2809 after sarcolemma permeabilization. This high RyR2 phosphorylation level is likely the consequence of a balance shift between protein kinase and phosphatase activity after permeabilization. When RyR2 phosphorylation at serine-2809 was reduced to its "basal" level (i.e. RyR2 phosphorylation level in intact myocytes) using kinase inhibitor staurosporine, SR Ca2+ leak was significantly reduced. Surprisingly, further dephosphorylation of RyR2 with protein phosphatase 1 (PP1) markedly increased SR Ca2+ leak. At the same time, phosphorylation of RyR2 at serine 2031 did not significantly change under identical experimental conditions. These results suggest that RyR2 phosphorylation by PKA has a complex effect on SR Ca2+ leak in ventricular myocytes. At an intermediate level of RyR2 phosphorylation SR Ca2+ leak is minimal. However, complete dephosphorylation and maximal phosphorylation of RyR2 increases SR Ca2+ leak.
Collapse
|
15
|
Abstract
This is a brief review of properties of cardiovascular function that should be considered for interrogation in studies of toxicology and/or safety pharmacology for non-cardiologists and non-physiologists. Since concern over the rarely occurring, unusual, and drug-induced tachycardia, Torsade de pointes, is a leading cause for cessation of development of potential drugs and for removal of drugs from the market, therefore, the toxic manifestation of drugs will be emphasized. The putative origin of torsade de pointes, and the origin of the electrocardiogram and electrocardiographic features of ventricular arrhythmias will be discussed.
Collapse
Affiliation(s)
- Robert L Hamlin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
16
|
de Salvi Guimarães F, de Moraes WMAM, Bozi LHM, Souza PR, Antonio EL, Bocalini DS, Tucci PJF, Ribeiro DA, Brum PC, Medeiros A. Dexamethasone-induced cardiac deterioration is associated with both calcium handling abnormalities and calcineurin signaling pathway activation. Mol Cell Biochem 2016; 424:87-98. [DOI: 10.1007/s11010-016-2846-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/08/2016] [Indexed: 02/07/2023]
|
17
|
Limbu S, Hoang-Trong TM, Prosser BL, Lederer WJ, Jafri MS. Modeling Local X-ROS and Calcium Signaling in the Heart. Biophys J 2016; 109:2037-50. [PMID: 26588563 DOI: 10.1016/j.bpj.2015.09.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/20/2015] [Accepted: 09/23/2015] [Indexed: 01/08/2023] Open
Abstract
Stretching single ventricular cardiac myocytes has been shown experimentally to activate transmembrane nicotinamide adenine dinucleotide phosphate oxidase type 2 to produce reactive oxygen species (ROS) and increase the Ca2+ spark rate in a process called X-ROS signaling. The increase in Ca2+ spark rate is thought to be due to an increase in ryanodine receptor type 2 (RyR2) open probability by direct oxidation of the RyR2 protein complex. In this article, a computational model is used to examine the regulation of ROS and calcium homeostasis by local, subcellular X-ROS signaling and its role in cardiac excitation-contraction coupling. To this end, a four-state RyR2 model was developed that includes an X-ROS-dependent RyR2 mode switch. When activated, [Ca2+]i-sensitive RyR2 open probability increases, and the Ca2+ spark rate changes in a manner consistent with experimental observations. This, to our knowledge, new model is used to study the transient effects of diastolic stretching and subsequent ROS production on RyR2 open probability, Ca2+ sparks, and the myoplasmic calcium concentration ([Ca2+]i) during excitation-contraction coupling. The model yields several predictions: 1) [ROS] is produced locally near the RyR2 complex during X-ROS signaling and increases by an order of magnitude more than the global ROS signal during myocyte stretching; 2) X-ROS activation just before the action potential, corresponding to ventricular filling during diastole, increases the magnitude of the Ca2+ transient; 3) during prolonged stretching, the X-ROS-induced increase in Ca2+ spark rate is transient, so that long-sustained stretching does not significantly increase sarcoplasmic reticulum Ca2+ leak; and 4) when the chemical reducing capacity of the cell is decreased, activation of X-ROS signaling increases sarcoplasmic reticulum Ca2+ leak and contributes to global oxidative stress, thereby increases the possibility of arrhythmia. The model provides quantitative information not currently obtainable through experimental means and thus provides a framework for future X-ROS signaling experiments.
Collapse
Affiliation(s)
- Sarita Limbu
- Department of Molecular Neuroscience, School of Systems Biology and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia
| | - Tuan M Hoang-Trong
- Department of Molecular Neuroscience, School of Systems Biology and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology and Department of Physiology University of Maryland School of Medicine, Baltimore, Maryland
| | - M Saleet Jafri
- Department of Molecular Neuroscience, School of Systems Biology and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia; Center for Biomedical Engineering and Technology and Department of Physiology University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
18
|
Abstract
The aim of this review is to provide the reader with a synopsis of some of the emerging ideas and experimental findings in cardiac physiology and pathophysiology that were published in 2015. To provide context for the non-specialist, a brief summary of cardiac contraction and calcium (Ca) regulation in the heart in health and disease is provided. Thereafter, some recently published articles are introduced that indicate the current thinking on (1) the Ca regulatory pathways modulated by Ca/calmodulin-dependent protein kinase II, (2) the potential influences of nitrosylation by nitric oxide or S-nitrosated proteins, (3) newly observed effects of reactive oxygen species (ROS) on contraction and Ca regulation following myocardial infarction and a possible link with changes in mitochondrial Ca, and (4) the effects of some of these signaling pathways on late Na current and pro-arrhythmic afterdepolarizations as well as the effects of transverse tubule disturbances.
Collapse
Affiliation(s)
- Ken T MacLeod
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
19
|
Shaikh S, Troncoso R, Criollo A, Bravo-Sagua R, García L, Morselli E, Cifuentes M, Quest AFG, Hill JA, Lavandero S. Regulation of cardiomyocyte autophagy by calcium. Am J Physiol Endocrinol Metab 2016; 310:E587-E596. [PMID: 26884385 PMCID: PMC4835942 DOI: 10.1152/ajpendo.00374.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/10/2016] [Indexed: 11/22/2022]
Abstract
Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy.
Collapse
Affiliation(s)
- Soni Shaikh
- Advanced Center for Chronic Disease and Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Advanced Center for Chronic Disease and Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Disease and Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Disease and Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena García
- Advanced Center for Chronic Disease and Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
| | - Eugenia Morselli
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Cifuentes
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Disease and Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; and
| | - Joseph A Hill
- Departments of Internal Medicine (Cardiology Division) and
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sergio Lavandero
- Advanced Center for Chronic Disease and Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile;
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; and
- Departments of Internal Medicine (Cardiology Division) and
| |
Collapse
|
20
|
Functional Impact of Ryanodine Receptor Oxidation on Intracellular Calcium Regulation in the Heart. Rev Physiol Biochem Pharmacol 2016; 171:39-62. [PMID: 27251471 DOI: 10.1007/112_2016_2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 ryanodine receptor (RyR2) serves as the major intracellular Ca2+ release channel that drives heart contraction. RyR2 is activated by cytosolic Ca2+ via the process of Ca2+-induced Ca2+ release (CICR). To ensure stability of Ca2+ dynamics, the self-reinforcing CICR must be tightly controlled. Defects in this control cause sarcoplasmic reticulum (SR) Ca2+ mishandling, which manifests in a variety of cardiac pathologies that include myocardial infarction and heart failure. These pathologies are also associated with oxidative stress. Given that RyR2 contains a large number of cysteine residues, it is no surprise that RyR2 plays a key role in the cellular response to oxidative stress. RyR's many cysteine residues pose an experimental limitation in defining a specific target or mechanism of action for oxidative stress. As a result, the current understanding of redox-mediated RyR2 dysfunction remains incomplete. Several oxidative modifications, including S-glutathionylation and S-nitrosylation, have been suggested playing an important role in the regulation of RyR2 activity. Moreover, oxidative stress can increase RyR2 activity by forming disulfide bonds between two neighboring subunits (intersubunit cross-linking). Since intersubunit interactions within the RyR2 homotetramer complex dictate the channel gating, such posttranslational modification of RyR2 would have a significant impact on RyR2 function and Ca2+ regulation. This review summarizes recent findings on oxidative modifications of RyR2 and discusses contributions of these RyR2 modifications to SR Ca2+ mishandling during cardiac pathologies.
Collapse
|
21
|
Hoang-Trong TM, Ullah A, Jafri MS. Calcium Sparks in the Heart: Dynamics and Regulation. ACTA ACUST UNITED AC 2015; 6:203-214. [PMID: 27212876 DOI: 10.2147/rrb.s61495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Calcium (Ca2+) plays a central role in the contraction of the heart. It is the bi-directional link between electrical excitation of the heart and contraction. Electrical excitation initiates Ca2+influx across the sarcolemma and T-tubular membrane that triggered calcium release from the sarcoplasmic reticulum. Ca2+sparks are the elementary events of calcium release from the sarcoplasmic reticulum. Therefore, understanding the dynamics of Ca2+sparks is essential for understanding the function of the heart. To this end, numerous experimental and computational studies have focused on this topic, exploring the mechanisms of calcium spark initiation, termination, and regulation and what role these play in normal and patho-physiology. The proper understanding of Ca2+ spark regulation and dynamics serves as the foundation for our insights into a multitude of pathological conditions may develop that can be the result of structural and/or functional changes at the cellular or subcellular level. Computational modeling of Ca2+ spark dynamics has proven to be a useful tool to understand Ca2+ spark dynamics. This review addresses our current understanding of Ca2+ sparks and how synchronized SR Ca2+ release, in which Ca2+ sparks is a major pathway, is linked to the different cardiac diseases, especially arrhythmias.
Collapse
Affiliation(s)
- Tuan M Hoang-Trong
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030
| | - Aman Ullah
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030
| | - M Saleet Jafri
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030; Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 20201
| |
Collapse
|
22
|
Ye LF, Zheng YR, Wang LH. Effects of Shenmai injection and its bioactive components following ischemia/reperfusion in cardiomyocytes. Exp Ther Med 2015; 10:1348-1354. [PMID: 26622490 PMCID: PMC4578100 DOI: 10.3892/etm.2015.2662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/24/2015] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to determine whether the myocardial protective function of Shenmai injection (SM) during ischemia/reperfusion (I/R) is attributable to its regulation of intracellular calcium (Ca2+) and phospholamban (PLB) levels. Cultured neonatal Sprague Dawley rat cardiomyocytes were used to compare the effects of normoxia, total saponins of Panax ginseng (TSPG), ginsenoside Rg1 (Rg1) and SM treatments in rat myocardial cells following I/R. For each of these treatment groups, the mRNA and protein levels of PLB and the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) were evaluated, in addition to the cytoplasmic Ca2+ concentration [Ca2+]i and the rate of apoptosis. The results indicated that I/R markedly decreased phosphorylated PLB and SERCA expression and that SM was able to mitigate this effect, while TPSG and Rg1 were not. Furthermore, SM appeared to prevent aberrant apoptosis and restore the depleted [Ca2+]i resulting from I/R. The protective efficacy of SM against heart disease following I/R may, therefore, be due in part to its effect on intracellular Ca2+ homeostasis. SM may exert its protective effects by relieving PLB inhibition, and the pharmacodynamic actions of SM appear to be significantly more effective than those of its bioreactive components, TPSG and Rgl.
Collapse
Affiliation(s)
- Li-Fang Ye
- Department of Cardiology, First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ya-Ru Zheng
- Department of Cardiology, First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Li-Hong Wang
- Department of Cardiology, People's Hospital of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
23
|
Oxidation of ryanodine receptor (RyR) and calmodulin enhance Ca release and pathologically alter, RyR structure and calmodulin affinity. J Mol Cell Cardiol 2015; 85:240-8. [PMID: 26092277 DOI: 10.1016/j.yjmcc.2015.06.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/12/2015] [Accepted: 06/12/2015] [Indexed: 11/21/2022]
Abstract
Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in heart failure (HF) and arrhythmias. Altered RyR2 domain-domain interaction (domain unzipping) and calmodulin (CaM) binding affinity are allosterically coupled indices of RyR2 conformation. In HF RyR2 exhibits reduced CaM binding, increased domain unzipping and greater SR Ca leak, and dantrolene can reverse these changes. However, effects of oxidative stress on RyR2 conformation and leak in myocytes are poorly understood. We used fluorescent CaM, FKBP12.6, and domain-peptide biosensor (F-DPc10) to measure, directly in cardiac myocytes, (1) RyR2 activation by hydrogen peroxide (H2O2)-induced oxidation, (2) RyR2 conformation change caused by oxidation, (3) CaM-RyR2 and FK506-binding protein (FKBP12.6)-RyR2 interaction upon oxidation, and (4) whether dantrolene affects 1-3. H2O2 was used to mimic oxidative stress. H2O2 significantly increased the frequency of Ca(2+) sparks and spontaneous Ca(2+) waves, and dantrolene almost completely blocked these effects. H2O2 pretreatment significantly reduced CaM-RyR2 binding, but had no effect on FKBP12.6-RyR2 binding. Dantrolene restored CaM-RyR2 binding but had no effect on intracellular and RyR2 oxidation levels. H2O2 also accelerated F-DPc10-RyR2 association while dantrolene slowed it. Thus, H2O2 causes conformational changes (sensed by CaM and DPc10 binding) associated with Ca leak, and dantrolene reverses these RyR2 effects. In conclusion, in cardiomyocytes, H2O2 treatment markedly reduces the CaM-RyR2 affinity, has no effect on FKBP12.6-RyR2 affinity, and causes domain unzipping. Dantrolene can correct domain unzipping, restore CaM-RyR2 affinity, and quiet pathological RyR2 channel gating. F-DPc10 and CaM are useful biosensors of a pathophysiological RyR2 state.
Collapse
|
24
|
Ju YK, Lee BH, Trajanovska S, Hao G, Allen DG, Lei M, Cannell MB. The involvement of TRPC3 channels in sinoatrial arrhythmias. Front Physiol 2015; 6:86. [PMID: 25859221 PMCID: PMC4373262 DOI: 10.3389/fphys.2015.00086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/04/2015] [Indexed: 01/08/2023] Open
Abstract
Atrial fibrillation (AF) is a significant contributor to cardiovascular morbidity and mortality. The currently available treatments are limited and AF continues to be a major clinical challenge. Clinical studies have shown that AF is frequently associated with dysfunction in the sino-atrial node (SAN). The association between AF and SAN dysfunction is probably related to the communication between the SAN and the surrounding atrial cells that form the SAN-atrial pacemaker complex and/or pathological processes that affect both the SAN and atrial simultaneously. Recent evidence suggests that Ca2+ entry through TRPC3 (Transient Receptor Potential Canonical-3) channels may underlie several pathophysiological conditions -including cardiac arrhythmias. However, it is still not known if atrial and sinoatrial node cells are also involved. In this article we will first briefly review TRPC3 and IP3R signaling that relate to store/receptor-operated Ca2+ entry (SOCE/ROCE) mechanisms and cardiac arrhythmias. We will then present some of our recent research progress in this field. Our experiments results suggest that pacing-induced AF in angiotensin II (Ang II) treated mice are significantly reduced in mice lacking the TRPC3 gene (TRPC3−/− mice) compared to wild type controls. We also show that pacemaker cells express TRPC3 and several other molecular components related to SOCE/ROCE signaling, including STIM1 and IP3R. Activation of G-protein coupled receptors (GPCRs) signaling that is able to modulate SOCE/ROCE and Ang II induced Ca2+ homeostasis changes in sinoatrial complex being linked to TRPC3. The results provide new evidence that TRPC3 may play a role in sinoatrial and atrial arrhythmias that are caused by GPCRs activation.
Collapse
Affiliation(s)
- Yue-Kun Ju
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Bon Hyang Lee
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Sofie Trajanovska
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Gouliang Hao
- Department of Pharmacology, University of Oxford Oxford, UK
| | - David G Allen
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Ming Lei
- Department of Pharmacology, University of Oxford Oxford, UK
| | - Mark B Cannell
- Department of Physiology and Pharmacology, University of Bristol Bristol, UK
| |
Collapse
|
25
|
Locatelli J, de Assis LVM, Isoldi MC. Calcium handling proteins: structure, function, and modulation by exercise. Heart Fail Rev 2014; 19:207-25. [PMID: 23436107 DOI: 10.1007/s10741-013-9373-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart failure is a serious public health issue with a growing prevalence, and it is related with the aging of the population. Hypertension is identified as the main precursor of left ventricular hypertrophy and therefore can lead to diastolic dysfunction and heart failure. Scientific studies have confirmed the beneficial effects of the physical exercise by reducing the blood pressure and improving the functional status of the heart in hypertension. Several proteins are involved in the mobilization of calcium during the coupling excitation-contraction process in the heart among those are sarcoplasmic reticulum Ca(2+)-ATPase, phospholamban, calsequestrin, sodium-calcium exchanger, L-type calcium's channel, and ryanodine receptors. Our goal is to address the beneficial effects of exercise on the calcium handling proteins in a heart with hypertension.
Collapse
Affiliation(s)
- Jamille Locatelli
- Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Prêto, Brazil
| | | | | |
Collapse
|
26
|
Rodriguez JS, Velez Rueda JO, Salas M, Becerra R, Di Carlo MN, Said M, Vittone L, Rinaldi G, Portiansky EL, Mundiña-Weilenmann C, Palomeque J, Mattiazzi A. Increased Na⁺/Ca²⁺ exchanger expression/activity constitutes a point of inflection in the progression to heart failure of hypertensive rats. PLoS One 2014; 9:e96400. [PMID: 24781001 PMCID: PMC4004550 DOI: 10.1371/journal.pone.0096400] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED Spontaneously hypertensive rat (SHR) constitutes a genetic model widely used to study the natural evolution of hypertensive heart disease. Ca²⁺-handling alterations are known to occur in SHR. However, the putative modifications of Ca²⁺-handling proteins during the progression to heart failure (HF) are not well established. Moreover, the role of apoptosis in SHR is controversial. We investigated intracellular Ca²⁺, Ca²⁺-handling proteins and apoptosis in SHR vs. control Wistar rats (W) from 3 to 15 months (mo). Changes associated with the transition to HF (i.e. lung edema and decrease in midwall fractional shortening), occurred at 15 mo in 38% of SHR (SHRF). In SHRF, twitch and caffeine-induced Ca²⁺ transients, significantly decreased relative to 6/9 mo and 15 mo without HF signs. This decrease occurred in association with a decrease in the time constant of caffeine-Ca²⁺ transient decay and an increase in Na⁺/Ca²⁺ exchanger (NCX) abundance (p<0.05) with no changes in SERCA2a expression/activity. An increased Ca²⁺-calmodulin-kinase II activity, associated with an enhancement of apoptosis (TUNEL and Bax/Bcl2) was observed in SHR relative to W from 3 to 15 mo. CONCLUSIONS 1. Apoptosis is an early and persistent event that may contribute to hypertrophic remodeling but would not participate in the contractile impairment of SHRF. 2. The increase in NCX expression/activity, associated with an increase in Ca²⁺ efflux from the cell, constitutes a primary alteration of Ca²⁺-handling proteins in the evolution to HF. 3. No changes in SERCA2a expression/activity are observed when HF signs become evident.
Collapse
Affiliation(s)
- Jesica S. Rodriguez
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - J. Omar Velez Rueda
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Margarita Salas
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Romina Becerra
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariano N. Di Carlo
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Matilde Said
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Leticia Vittone
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gustavo Rinaldi
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Enrique L. Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cecilia Mundiña-Weilenmann
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail: (CM-W); (JP)
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail: (CM-W); (JP)
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
27
|
Zima AV, Bovo E, Mazurek SR, Rochira JA, Li W, Terentyev D. Ca handling during excitation-contraction coupling in heart failure. Pflugers Arch 2014; 466:1129-37. [PMID: 24515294 DOI: 10.1007/s00424-014-1469-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 12/22/2022]
Abstract
In the heart, coupling between excitation of the surface membrane and activation of contractile apparatus is mediated by Ca released from the sarcoplasmic reticulum (SR). Several components of Ca machinery are perfectly arranged within the SR network and the T-tubular system to generate a regular Ca cycling and thereby rhythmic beating activity of the heart. Among these components, ryanodine receptor (RyR) and SR Ca ATPase (SERCA) complexes play a particularly important role and their dysfunction largely underlies abnormal Ca homeostasis in diseased hearts such as in heart failure. The abnormalities in Ca regulation occur at practically all main steps of Ca cycling in the failing heart, including activation and termination of SR Ca release, diastolic SR Ca leak, and SR Ca uptake. The contributions of these different mechanisms to depressed contractile function and enhanced arrhythmogenesis may vary in different HF models. This brief review will therefore focus on modifications in RyR and SERCA structure that occur in the failing heart and how these molecular modifications affect SR Ca regulation and excitation-contraction coupling.
Collapse
Affiliation(s)
- Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL, 60153, USA,
| | | | | | | | | | | |
Collapse
|
28
|
Lehmann LH, Worst BC, Stanmore DA, Backs J. Histone deacetylase signaling in cardioprotection. Cell Mol Life Sci 2013; 71:1673-90. [PMID: 24310814 PMCID: PMC3983897 DOI: 10.1007/s00018-013-1516-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/23/2013] [Accepted: 11/07/2013] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease (CVD) represents a major challenge for health care systems, both in terms of the high mortality associated with it and the huge economic burden of its treatment. Although CVD represents a diverse range of disorders, they share common compensatory changes in the heart at the structural, cellular, and molecular level that, in the long term, can become maladaptive and lead to heart failure. Treatment of adverse cardiac remodeling is therefore an important step in preventing this fatal progression. Although previous efforts have been primarily focused on inhibition of deleterious signaling cascades, the stimulation of endogenous cardioprotective mechanisms offers a potent therapeutic tool. In this review, we discuss class I and class II histone deacetylases, a subset of chromatin-modifying enzymes known to have critical roles in the regulation of cardiac remodeling. In particular, we discuss their molecular modes of action and go on to consider how their inhibition or the stimulation of their intrinsic cardioprotective properties may provide a potential therapeutic route for the clinical treatment of CVD.
Collapse
Affiliation(s)
- Lorenz H. Lehmann
- Research Unit Cardiac Epigenetics, Internal Medicine III, Heidelberg University and DZHK (German Center for Cardiovascular Research), partner site Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Barbara C. Worst
- Research Unit Cardiac Epigenetics, Internal Medicine III, Heidelberg University and DZHK (German Center for Cardiovascular Research), partner site Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - David A. Stanmore
- Research Unit Cardiac Epigenetics, Internal Medicine III, Heidelberg University and DZHK (German Center for Cardiovascular Research), partner site Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Johannes Backs
- Research Unit Cardiac Epigenetics, Internal Medicine III, Heidelberg University and DZHK (German Center for Cardiovascular Research), partner site Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
An Inotropic Action Caused by Muscarinic Receptor Subtype 3 in Canine Cardiac Purkinje Fibers. ISRN PHARMACOLOGY 2013; 2013:207671. [PMID: 24260719 PMCID: PMC3821913 DOI: 10.1155/2013/207671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/28/2013] [Indexed: 11/18/2022]
Abstract
Objective. The objective of this study was to investigate the inotropic mechanisms and the related muscarinic receptor subtype of acetylcholine (ACh) in canine cardiac Purkinje fibers. Materials and Methods. Isolated Purkinje fiber bundles were used for the measurement of contraction. The receptor subtype was determined using PCR and real-time PCR methods. Results. ACh evoked a biphasic response with a transient negative inotropic effect followed by a positive inotropic effect in a concentration-dependent manner. The biphasic inotropic actions of ACh were inhibited by the pretreatment with atropine. Caffeine inhibited the positive inotropic effect of ACh. ACh increased inositol-1,4,5-trisphosphate content in the Purkinje fibers, which was abolished by atropine. Muscarinic subtypes 2 (M2) and 3 (M3) mRNAs were detected in the canine Purkinje fibers albeit the amount of M3 mRNA was smaller than M2 mRNA. M1 mRNA was not detected. Conclusion. These results suggest that the positive inotropic action of ACh may be mediated by the activation of IP3 receptors through the stimulation of M3 receptors in the canine cardiac Purkinje fibers.
Collapse
|
30
|
Tuncay E, Okatan EN, Vassort G, Turan B. ß-blocker timolol prevents arrhythmogenic Ca²⁺ release and normalizes Ca²⁺ and Zn²⁺ dyshomeostasis in hyperglycemic rat heart. PLoS One 2013; 8:e71014. [PMID: 23923043 PMCID: PMC3726605 DOI: 10.1371/journal.pone.0071014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023] Open
Abstract
Defective cardiac mechanical activity in diabetes results from alterations in intracellular Ca(2+) handling, in part, due to increased oxidative stress. Beta-blockers demonstrate marked beneficial effects in heart dysfunction with scavenging free radicals and/or acting as an antioxidant. The aim of this study was to address how β-blocker timolol-treatment of diabetic rats exerts cardioprotection. Timolol-treatment (12-week), one-week following diabetes induction, prevented diabetes-induced depressed left ventricular basal contractile activity, prolonged cellular electrical activity, and attenuated the increase in isolated-cardiomyocyte size without hyperglycemic effect. Both in vivo and in vitro timolol-treatment of diabetic cardiomyocytes prevented the altered kinetic parameters of Ca(2+) transients and reduced Ca(2+) loading of sarcoplasmic reticulum (SR), basal intracellular free Ca(2+) and Zn(2+) ([Ca(2+)]i and [Zn(2+)]i), and spatio-temporal properties of the Ca(2+) sparks, significantly. Timolol also antagonized hyperphosphorylation of cardiac ryanodine receptor (RyR2), and significantly restored depleted protein levels of both RyR2 and calstabin2. Western blot analysis demonstrated that timolol-treatment also significantly normalized depressed levels of some [Ca(2+)]i-handling regulators, such as Na(+)/Ca(2+) exchanger (NCX) and phospho-phospholamban (pPLN) to PLN ratio. Incubation of diabetic cardiomyocytes with 4-mM glutathione exerted similar beneficial effects on RyR2-macromolecular complex and basal levels of both [Ca(2+)]i and [Zn(2+)]i, increased intracellular Zn(2+) hyperphosphorylated RyR2 in a concentration-dependent manner. Timolol also led to a balanced oxidant/antioxidant level in both heart and circulation and prevented altered cellular redox state of the heart. We thus report, for the first time, that the preventing effect of timolol, directly targeting heart, seems to be associated with a normalization of macromolecular complex of RyR2 and some Ca(2+) handling regulators, and prevention of Ca(2+) leak, and thereby normalization of both [Ca(2+)]i and [Zn(2+)]i homeostasis in diabetic rat heart, at least in part by controlling the cellular redox status of hyperglycemic cardiomyocytes.
Collapse
Affiliation(s)
- Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Esma N. Okatan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Guy Vassort
- INSERM U-1046, CHU Arnaud de Villeneuve, Montpellier, France
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
- * E-mail:
| |
Collapse
|
31
|
Mechanisms of Ca²+ handling in zebrafish ventricular myocytes. Pflugers Arch 2013; 465:1775-84. [PMID: 23821298 DOI: 10.1007/s00424-013-1312-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 12/17/2022]
Abstract
The zebrafish serves as a promising transgenic animal model that can be used to study cardiac Ca(2+) regulation. However, mechanisms of sarcoplasmic reticulum (SR) Ca(2+) handling in the zebrafish heart have not been systematically explored. We found that in zebrafish ventricular myocytes, the action potential-induced Ca(2+) transient is mainly (80 %) mediated by Ca(2+) influx via L-type Ca(2+) channels (LTCC) and only 20 % by Ca(2+) released from the SR. This small contribution of the SR to the Ca(2+) transient was not the result of depleted SR Ca(2+) load. We found that the ryanodine receptor (RyR) expression level in zebrafish myocytes was ∼72 % lower compared to rabbit myocytes. In permeabilized myocytes, increasing cytosolic [Ca(2+)] from 100 to 350 nM did not trigger SR Ca(2+) release. However, an application of a low dose of caffeine activated Ca(2+) sparks. These results show that the zebrafish cardiac RyR has low sensitivity to the mechanism of Ca(2+)-induced Ca(2+) release. Activation of protein kinase A by forskolin increased phosphorylation of the RyR in zebrafish myocardium. In half of the studied cells, an increased Ca(2+) transient by forskolin was entirely mediated by augmentation of LTCC current. In the remaining myocytes, the forskolin action was associated with an increase of both LTCC and SR Ca(2+) release. These results indicate that the mechanism of excitation-contraction coupling in zebrafish myocytes differs from the mammalian one mainly because of the small contribution of SR Ca(2+) release to the Ca(2+) transient. This difference is due to a low sensitivity of RyRs to cytosolic [Ca(2+)].
Collapse
|
32
|
Ottolia M, Torres N, Bridge JHB, Philipson KD, Goldhaber JI. Na/Ca exchange and contraction of the heart. J Mol Cell Cardiol 2013; 61:28-33. [PMID: 23770352 DOI: 10.1016/j.yjmcc.2013.06.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 12/19/2022]
Abstract
Sodium-calcium exchange (NCX) is the major calcium (Ca) efflux mechanism of ventricular cardiomyocytes. Consequently the exchanger plays a critical role in the regulation of cellular Ca content and hence contractility. Reductions in Ca efflux by the exchanger, such as those produced by elevated intracellular sodium (Na) in response to cardiac glycosides, raise sarcoplasmic reticulum (SR) Ca stores. The result is an increased Ca transient and cardiac contractility. Enhanced Ca efflux activity by the exchanger, for example during heart failure, may reduce diadic cleft Ca and excitation-contraction (EC) coupling gain. This aggravates the impaired contractility associated with SR Ca ATPase dysfunction and reduced SR Ca load in failing heart muscle. Recent data from our laboratories indicate that NCX can also impact the efficiency of EC coupling and contractility independent of SR Ca load through diadic cleft priming with Ca during the upstroke of the action potential. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Michela Ottolia
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
33
|
Novel aspects of ROS signalling in heart failure. Basic Res Cardiol 2013; 108:359. [PMID: 23740217 DOI: 10.1007/s00395-013-0359-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/03/2013] [Accepted: 05/05/2013] [Indexed: 12/20/2022]
Abstract
Heart failure and many of the conditions that predispose to heart failure are associated with oxidative stress. This is considered to be important in the pathophysiology of the condition but clinical trials of antioxidant approaches to prevent cardiovascular morbidity and mortality have been unsuccessful. Part of the reason for this may be the failure to appreciate the complexity of the effects of reactive oxygen species. At one extreme, excessive oxidative stress damages membranes, proteins and DNA but lower levels of reactive oxygen species may exert much more subtle and specific regulatory effects (termed redox signalling), even on physiological signalling pathways. In this article, we review our current understanding of the roles of such redox signalling pathways in the pathophysiology of heart failure, including effects on cardiomyocyte hypertrophy signalling, excitation-contraction coupling, arrhythmia, cell viability and energetics. Reactive oxygen species generated by NADPH oxidase proteins appear to be especially important in redox signalling. The delineation of specific redox-sensitive pathways and mechanisms that contribute to different components of the failing heart phenotype may facilitate the development of newer targeted therapies as opposed to the failed general antioxidant approaches of the past.
Collapse
|
34
|
Paavola J, Schliffke S, Rossetti S, Kuo IYT, Yuan S, Sun Z, Harris PC, Torres VE, Ehrlich BE. Polycystin-2 mutations lead to impaired calcium cycling in the heart and predispose to dilated cardiomyopathy. J Mol Cell Cardiol 2013; 58:199-208. [PMID: 23376035 PMCID: PMC3636149 DOI: 10.1016/j.yjmcc.2013.01.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/04/2013] [Accepted: 01/17/2013] [Indexed: 12/31/2022]
Abstract
Mutations in PKD1 and PKD2, the genes encoding the proteins polycystin-1 (PC1) and polycystin-2 (PC2), cause autosomal dominant polycystic kidney disease (ADPKD). Although the leading cause of mortality in ADPKD is cardiovascular disease, the relationship between these conditions remains poorly understood. PC2 is an intracellular calcium channel expressed in renal epithelial cells and in cardiomyocytes, and is thus hypothesized to modulate intracellular calcium signaling and affect cardiac function. Our first aim was to study cardiac function in a zebrafish model lacking PC2 (pkd2 mutants). Next, we aimed to explore the relevance of this zebrafish model to human ADPKD by examining the Mayo Clinic's ADPKD database for an association between ADPKD and idiopathic dilated cardiomyopathy (IDCM). Pkd2 mutant zebrafish showed low cardiac output and atrioventricular block. Isolated pkd2 mutant hearts displayed impaired intracellular calcium cycling and calcium alternans. These results indicate heart failure in the pkd2 mutants. In human ADPKD patients, we found IDCM to coexist frequently with ADPKD. This association was strongest in patients with PKD2 mutations. Our results demonstrate that PC2 modulates intracellular calcium cycling, contributing to the development of heart failure. In human subjects we found an association between ADPKD and IDCM and suggest that PKD mutations contribute to the development of heart failure.
Collapse
Affiliation(s)
- Jere Paavola
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Department of Anatomy II: Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Simon Schliffke
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Department of Anatomy II: Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sandro Rossetti
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Ivana Y.-T. Kuo
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Shiaulou Yuan
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Zhaoxia Sun
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Peter C. Harris
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Vicente E. Torres
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Barbara E. Ehrlich
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
35
|
Goldhaber JI, Philipson KD. Cardiac sodium-calcium exchange and efficient excitation-contraction coupling: implications for heart disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:355-64. [PMID: 23224894 DOI: 10.1007/978-1-4614-4756-6_30] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide, with ischemic heart disease alone accounting for >12% of all deaths, more than HIV/AIDS, tuberculosis, lung, and breast cancer combined. Heart disease has been the leading cause of death in the United States for the past 85 years and is a major cause of disability and health-care expenditures. The cardiac conditions most likely to result in death include heart failure and arrhythmias, both a consequence of ischemic coronary disease and myocardial infarction, though chronic hypertension and valvular diseases are also important causes of heart failure. Sodium-calcium exchange (NCX) is the dominant calcium (Ca2+) efflux mechanism in cardiac cells. Using ventricular-specific NCX knockout mice, we have found that NCX is also an essential regulator of cardiac contractility independent of sarcoplasmic reticulum Ca2+ load. During the upstroke of the action potential, sodium (Na+) ions enter the diadic cleft space between the sarcolemma and the sarcoplasmic reticulum. The rise in cleft Na+, in conjunction with depolarization, causes NCX to transiently reverse. Ca2+ entry by this mechanism then "primes" the diadic cleft so that subsequent Ca2+ entry through Ca2+ channels can more efficiently trigger Ca2+ release from the sarcoplasmic reticulum. In NCX knockout mice, this mechanism is inoperative (Na+ current has no effect on the Ca2+ transient), and excitation-contraction coupling relies upon the elevated diadic cleft Ca2+ that arises from the slow extrusion of cytoplasmic Ca2+ by the ATP-dependent sarcolemmal Ca2+ pump. Thus, our data support the conclusion that NCX is an important regulator of cardiac contractility. These findings suggest that manipulation of NCX may be beneficial in the treatment of heart failure.
Collapse
|
36
|
Cooley N, Ouyang K, McMullen JR, Kiriazis H, Sheikh F, Wu W, Mu Y, Du XJ, Chen J, Woodcock EA. No contribution of IP3-R(2) to disease phenotype in models of dilated cardiomyopathy or pressure overload hypertrophy. Circ Heart Fail 2012; 6:318-25. [PMID: 23258573 DOI: 10.1161/circheartfailure.112.972158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We investigated the contribution of inositol(1,4,5)-trisphosphate (Ins(1,4,5)P3 [IP3]) receptors (IP3-R) to disease progression in mouse models of dilated cardiomyopathy (DCM) and pressure overload hypertrophy. Mice expressing mammalian sterile 20-like kinase and dominant-negative phosphatidylinositol-3-kinase in heart (Mst1×dn-PI3K-2Tg; DCM-2Tg) develop severe DCM and conduction block, associated with increased expression of type 2 IP3-R (IP3-R(2)) and heightened generation of Ins(1,4,5)P3. Similar increases in Ins(1,4,5)P3 and IP3-R(2) are caused by transverse aortic constriction. METHODS AND RESULTS To evaluate the contribution of IP3-R(2) to disease progression, the DCM-2Tg mice were further crossed with mice in which the type 2 IP3-R (IP3-R(2)-/-) had been deleted (DCM-2Tg×IP3-R(2)-/-) and transverse aortic constriction was performed on IP3-R(2)-/- mice. Hearts from DCM-2Tg mice and DCM-2Tg×IP3-R(2)-/- were similar in terms of chamber dilatation, atrial enlargement, and ventricular wall thinning. Electrophysiological changes were also similar in the DCM-2Tg mice, with and without IP3-R(2). Deletion of IP3-R(2) did not alter the progression of heart failure, because DCM-2Tg mice with and without IP3-R(2) had similarly reduced contractility, increased lung congestion, and atrial thrombus, and both strains died between 10 and 12 weeks of age. Loss of IP3-R(2) did not alter the progression of hypertrophy after transverse aortic constriction. CONCLUSIONS We conclude that IP3-R(2) do not contribute to the progression of DCM or pressure overload hypertrophy, despite increased expression and heightened generation of the ligand, Ins(1,4,5)P3.
Collapse
Affiliation(s)
- Nicola Cooley
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wong A, Grubb DR, Cooley N, Luo J, Woodcock EA. Regulation of autophagy in cardiomyocytes by Ins(1,4,5)P(3) and IP(3)-receptors. J Mol Cell Cardiol 2012; 54:19-24. [PMID: 23137780 DOI: 10.1016/j.yjmcc.2012.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/19/2012] [Accepted: 10/24/2012] [Indexed: 12/11/2022]
Abstract
Autophagy is a process that removes damaged proteins and organelles and is of particular importance in terminally differentiated cells such as cardiomyocytes, where it has primarily a protective role. We investigated the involvement of inositol(1,4,5)trisphosphate (Ins(1,4,5)P(3)) and its receptors in autophagic responses in neonatal rat ventricular myocytes (NRVM). Treatment with the IP(3)-receptor (IP(3)-R) antagonist 2-aminoethoxydiphenyl borate (2-APB) at 5 or 20 μmol/L resulted in an increase in autophagosome content, defined as puncta labeled by antibody to microtubule associated light chain 3 (LC3). 2-APB also increased autophagic flux, indicated by heightened LC3II accumulation, which was further enhanced by bafilomycin (10nmol/L). Expression of Ins(1,4,5)P(3) 5-phosphatase (IP(3)-5-Pase) to deplete Ins(1,4,5)P(3) also increased LC3-labeled puncta and LC3II content, suggesting that Ins(1,4,5)P(3) inhibits autophagy. The IP(3)-R can act as an inhibitory scaffold sequestering the autophagic effector, beclin-1 to its ligand binding domain (LBD). Expression of GFP-IP(3)-R-LBD inhibited autophagic signaling and furthermore, beclin-1 co-immunoprecipitated with the IP(3)-R-LBD. A mutant GFP-IP(3)-R-LBD with reduced ability to bind Ins(1,4,5)P(3) bound beclin-1 and inhibited autophagy similarly to the wild type sequence. These data provide evidence that Ins(1,4,5)P(3) and IP(3)-R act as inhibitors of autophagic responses in cardiomyocytes. By suppressing autophagy, IP(3)-R may contribute to cardiac pathology.
Collapse
Affiliation(s)
- Albert Wong
- Molecular Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
| | | | | | | | | |
Collapse
|
38
|
White MY, Edwards AVG, Cordwell SJ, Van Eyk JE. Mitochondria: A mirror into cellular dysfunction in heart disease. Proteomics Clin Appl 2012; 2:845-61. [PMID: 21136884 DOI: 10.1002/prca.200780135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiovascular (CV) disease is the single most significant cause of morbidity and mortality worldwide. The emerging global impact of CV disease means that the goals of early diagnosis and a wider range of treatment options are now increasingly pertinent. As such, there is a greater need to understand the molecular mechanisms involved and potential targets for intervention. Mitochondrial function is important for physiological maintenance of the cell, and when this function is altered, the cell can begin to suffer. Given the broad range and significant impacts of the cellular processes regulated by the mitochondria, it becomes important to understand the roles of the proteins associated with this organelle. Proteomic investigations of the mitochondria are hampered by the intrinsic properties of the organelle, including hydrophobic mitochondrial membranes; high proportion of basic proteins (pI greater than 8.0); and the relative dynamic range issues of the mitochondria. For these reasons, many proteomic studies investigate the mitochondria as a discrete subproteome. Once this has been achieved, the alterations that result in functional changes with CV disease can be observed. Those alterations that lead to changes in mitochondrial function, signaling and morphology, which have significant implications for the cardiomyocyte in the development of CV disease, are discussed.
Collapse
Affiliation(s)
- Melanie Y White
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales, Australia; Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
39
|
Inositol 1,4,5-trisphosphate receptors and pacemaker rhythms. J Mol Cell Cardiol 2012; 53:375-81. [PMID: 22713798 DOI: 10.1016/j.yjmcc.2012.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/08/2012] [Indexed: 11/21/2022]
Abstract
Intracellular Ca(2+) plays an important role in the control of the heart rate through the interaction between Ca(2+) release by ryanodine receptors in the sarcoplasmic reticulum (SR) and the extrusion of Ca(2+) by the sodium-calcium exchanger which generates an inward current. A second type of SR Ca(2+) release channel, the inositol 1,4,5-trisphosphate receptor (IP(3)R), can release Ca(2+) from SR stores in many cell types, including cardiac myocytes. However, it is still uncertain whether IP(3)Rs play any functional role in regulating the heart rate. Accumulated evidence shows that IP(3) and IP(3)R are involved in rhythm control in non-cardiac pacemaker tissues and in the embryonic heart. In this review we focus on intracellular Ca(2+) oscillations generated by Ca(2+) release from IP(3)R that initiates membrane depolarization and provides a common mechanism producing spontaneous activity in a range of cells with pacemaker function. Emerging new evidence also suggests that IP(3)/IP(3)Rs play a functional role in normal and diseased hearts and in cardiac rhythm control. Several membrane currents, including a store-operated Ca(2+) current, might be activated by Ca(2+) release from IP(3)Rs. IP(3)/IP(3)R may thus add another dimension to the complex regulation of heart rate.
Collapse
|
40
|
Wu HD, Xu M, Li RC, Guo L, Lai YS, Xu SM, Li SF, Lü QL, Li LL, Zhang HB, Zhang YY, Zhang CM, Wang SQ. Ultrastructural remodelling of Ca(2+) signalling apparatus in failing heart cells. Cardiovasc Res 2012; 95:430-8. [PMID: 22707157 DOI: 10.1093/cvr/cvs195] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS The contraction of a heart cell is controlled by Ca(2+)-induced Ca(2+) release between L-type Ca(2+) channels (LCCs) in the cell membrane/T-tubules (TTs) and ryanodine receptors (RyRs) in the junctional sarcoplasmic reticulum (SR). During heart failure, LCC-RyR signalling becomes defective. The purpose of the present study was to reveal the ultrastructural mechanism underlying the defective LCC-RyR signalling and contractility. METHODS AND RESULTS In rat models of heart failure produced by transverse aortic constriction surgery, stereological analysis of transmission electron microscopic images showed that the volume density and the surface area of junctional SRs and those of SR-coupled TTs were both decreased in failing heart cells. The TT-SR junctions were displaced or missing from the Z-line areas. Moreover, the spatial span of individual TT-SR junctions was markedly reduced in failing heart cells. Numerical simulation and junctophilin-2 knockdown experiments demonstrated that the decrease in junction size (and thereby the constitutive LCC and RyR numbers) led to a scattered delay of Ca(2+) release activation. CONCLUSIONS The shrinking and eventual absence of TT-SR junctions are important mechanisms underlying the desynchronized and inhomogeneous Ca(2+) release and the decreased contractile strength in heart failure. Maintaining the nanoscopic integrity of TT-SR junctions thus represents a therapeutic strategy against heart failure and related cardiomyopathies.
Collapse
Affiliation(s)
- Hao-Di Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Key Laboratory of Cell Proliferation and Differentiation, Key Laboratory of Molecular Cardiovascular Sciences, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Third Hospital, and College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Galfré E, Pitt SJ, Venturi E, Sitsapesan M, Zaccai NR, Tsaneva-Atanasova K, O'Neill S, Sitsapesan R. FKBP12 activates the cardiac ryanodine receptor Ca2+-release channel and is antagonised by FKBP12.6. PLoS One 2012; 7:e31956. [PMID: 22363773 PMCID: PMC3283708 DOI: 10.1371/journal.pone.0031956] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/16/2012] [Indexed: 11/18/2022] Open
Abstract
Changes in FKBP12.6 binding to cardiac ryanodine receptors (RyR2) are implicated in mediating disturbances in Ca(2+)-homeostasis in heart failure but there is controversy over the functional effects of FKBP12.6 on RyR2 channel gating. We have therefore investigated the effects of FKBP12.6 and another structurally similar molecule, FKBP12, which is far more abundant in heart, on the gating of single sheep RyR2 channels incorporated into planar phospholipid bilayers and on spontaneous waves of Ca(2+)-induced Ca(2+)-release in rat isolated permeabilised cardiac cells. We demonstrate that FKBP12 is a high affinity activator of RyR2, sensitising the channel to cytosolic Ca(2+), whereas FKBP12.6 has very low efficacy, but can antagonise the effects of FKBP12. Mathematical modelling of the data shows the importance of the relative concentrations of FKBP12 and FKBP12.6 in determining RyR2 activity. Consistent with the single-channel results, physiological concentrations of FKBP12 (3 µM) increased Ca(2+)-wave frequency and decreased the SR Ca(2+)-content in cardiac cells. FKBP12.6, itself, had no effect on wave frequency but antagonised the effects of FKBP12.We provide a biophysical analysis of the mechanisms by which FK-binding proteins can regulate RyR2 single-channel gating. Our data indicate that FKBP12, in addition to FKBP12.6, may be important in regulating RyR2 function in the heart. In heart failure, it is possible that an alteration in the dual regulation of RyR2 by FKBP12 and FKBP12.6 may occur. This could contribute towards a higher RyR2 open probability, 'leaky' RyR2 channels and Ca(2+)-dependent arrhythmias.
Collapse
Affiliation(s)
- Elena Galfré
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Samantha J. Pitt
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Elisa Venturi
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Mano Sitsapesan
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Nathan R. Zaccai
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | | | - Stephen O'Neill
- Cardiovascular Research Group, Core Technology Facility, University of Manchester, Manchester, United Kingdom
| | - Rebecca Sitsapesan
- School of Physiology & Pharmacology, Centre for Nanoscience and Quantum Information, and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
42
|
Zhang H, Makarewich CA, Kubo H, Wang W, Duran JM, Li Y, Berretta RM, Koch WJ, Chen X, Gao E, Valdivia HH, Houser SR. Hyperphosphorylation of the cardiac ryanodine receptor at serine 2808 is not involved in cardiac dysfunction after myocardial infarction. Circ Res 2012; 110:831-40. [PMID: 22302785 DOI: 10.1161/circresaha.111.255158] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RATIONALE Abnormal behavior of the cardiac ryanodine receptor (RyR2) has been linked to cardiac arrhythmias and heart failure (HF) after myocardial infarction (MI). It has been proposed that protein kinase A (PKA) hyperphosphorylation of the RyR2 at a single residue, Ser-2808, is a critical mediator of RyR dysfunction, depressed cardiac performance, and HF after MI. OBJECTIVE We used a mouse model (RyRS2808A) in which PKA hyperphosphorylation of the RyR2 at Ser-2808 is prevented to determine whether loss of PKA phosphorylation at this site averts post MI cardiac pump dysfunction. METHODS AND RESULTS MI was induced in wild-type (WT) and S2808A mice. Myocyte and cardiac function were compared in WT and S2808A animals before and after MI. The effects of the PKA activator Isoproterenol (Iso) on L-type Ca(2+) current (I(CaL)), contractions, and [Ca(2+)](I) transients were also measured. Both WT and S2808A mice had depressed pump function after MI, and there were no differences between groups. MI size was also identical in both groups. L type Ca(2+) current, contractions, Ca(2+) transients, and SR Ca(2+) load were also not significantly different in WT versus S2808A myocytes either before or after MI. Iso effects on Ca(2+) current, contraction, Ca(2+) transients, and SR Ca(2+) load were identical in WT and S2808A myocytes before and after MI at both low and high concentrations. CONCLUSIONS These results strongly support the idea that PKA phosphorylation of RyR-S2808 is irrelevant to the development of cardiac dysfunction after MI, at least in the mice used in this study.
Collapse
Affiliation(s)
- Hongyu Zhang
- Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Phosphoinositides (PIs), a family of phosphorylated derivatives of the membrane lipid phosphatidylinositol, are established regulators of multiple cellular functions. An increasing amount of evidence has highlighted potential links between PI-mediated signaling pathways and the etiology of many human diseases, including cardiovascular pathologies. This chapter will provide a detailed overview of the peculiar functions of the major cardiovascular PIs in the pathogenesis of atherosclerosis, heart failure, and arrhythmias.
Collapse
Affiliation(s)
- Alessandra Ghigo
- Department of Genetics, Biology and Biochemistry, University of Torino, Molecular Biotechnology Center, Italy
| | | | | |
Collapse
|
44
|
Wen H, Kang S, Song Y, Song Y, Yang HJ, Kim MH, Park S. Characterization of the binding sites for the interactions between FKBP12 and intracellular calcium release channels. Arch Biochem Biophys 2012; 517:37-42. [DOI: 10.1016/j.abb.2011.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/02/2011] [Accepted: 11/02/2011] [Indexed: 11/30/2022]
|
45
|
Wang Y, Ji Y, Xing Y, Li X, Gao X. Astragalosides rescue both cardiac function and sarcoplasmic reticulum Ca²⁺ transport in rats with chronic heart failure. Phytother Res 2011; 26:231-8. [PMID: 21656599 DOI: 10.1002/ptr.3492] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/10/2022]
Abstract
The study investigated the beneficial effects of astragalosides (AS) on cardiac performance in rats with chronic heart failure. Chronic heart failure was produced by left anterior descending coronary artery ligation, and the therapeutic efficacy of astragalosides at 10, 20 and 40 mg/kg was evaluated. Five weeks after the operation, cardiac function was deficient and sarcoplasmic reticulum Ca²⁺-ATPase (SERCA) activity was significantly reduced. Moreover, SERCA mRNA decreased, while expression of the SERCA down-regulator phospholamban (PLB) was significantly increased. Phosphorylated phospholamban (P-PLB), the form that does not inhibit SERCA, was also reduced by chronic heart failure. Treatment with AS improved left ventricle function and cardiac structure, reversed the depression of SERCA activity, and increased P-PLB. These results suggest that the cardioprotective effect of AS may be due to the increase in P-PLB protein, which disinhibits SERCA activity. Rescue of sarcoplasmic reticulum Ca²⁺ cycling by astragalosides could normalize excitation-contraction coupling and improve overall cardiac function.
Collapse
Affiliation(s)
- Yi Wang
- TCM Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | | | | | | | | |
Collapse
|
46
|
Mohl MC, Iismaa SE, Xiao XH, Friedrich O, Wagner S, Nikolova-Krstevski V, Wu J, Yu ZY, Feneley M, Fatkin D, Allen DG, Graham RM. Regulation of murine cardiac contractility by activation of α1A-adrenergic receptor-operated Ca2+ entry. Cardiovasc Res 2011; 91:310-9. [DOI: 10.1093/cvr/cvr081] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Miura M, Hirose M, Endoh H, Wakayama Y, Sugai Y, Nakano M, Fukuda K, Shindoh C, Shirato K, Shimokawa H. Acceleration of Ca2+ waves in monocrotaline-induced right ventricular hypertrophy in the rat. Circ J 2011; 75:1343-9. [PMID: 21467666 DOI: 10.1253/circj.cj-10-1050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Triggered arrhythmias arise from delayed afterdepolarizations (DADs), with Ca(2+) waves playing an important role in their formation. In ventricular hypertrophy, however, it remains unclear how Ca(2+) waves change their propagation features and affect arrhythmogenesis. We addressed this important issue in a rat model of hypertrophy. METHODS AND RESULTS Rats were given a subcutaneous injection of 60 mg/kg monocrotaline (MCT-rats) or solvent (Ctr-rats). After 4 weeks, MCT-rats showed high right ventricular (RV) pressure and RV hypertrophy. Trabeculae were dissected from 36 right ventricles. The force was measured using a silicon strain gauge and regional intracellular Ca(2+) ([Ca(2+)](i)) was determined using microinjected fura-2. Reproducible Ca(2+) waves were induced by stimulus trains (2 Hz, 7.5s). MCT-rats showed a higher diastolic [Ca(2+)](i) and faster and larger Ca(2+) waves (P<0.01). The velocity and amplitude of Ca(2+) waves were correlated with the diastolic [Ca(2+)](i) both in the Ctr- and MCT-rats. The velocity of Ca(2+) waves in the MCT-rats was larger at the given amplitude of Ca(2+) waves than that in the Ctr-rats (P < 0.01). The amplitude of DADs was correlated with the velocity and amplitude of Ca(2+) waves in the Ctr- and MCT-rats. CONCLUSIONS The results suggest that an increase in diastolic [Ca(2+)](i) and an increase in Ca(2+) sensitivity of the sarcoplasmic reticulum Ca(2+) release channel accelerate Ca(2+) waves in ventricular hypertrophy, thereby causing arrhythmogenesis.
Collapse
Affiliation(s)
- Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Itzhaki I, Rapoport S, Huber I, Mizrahi I, Zwi-Dantsis L, Arbel G, Schiller J, Gepstein L. Calcium handling in human induced pluripotent stem cell derived cardiomyocytes. PLoS One 2011; 6:e18037. [PMID: 21483779 PMCID: PMC3069979 DOI: 10.1371/journal.pone.0018037] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 02/23/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The ability to establish human induced pluripotent stem cells (hiPSCs) by reprogramming of adult fibroblasts and to coax their differentiation into cardiomyocytes opens unique opportunities for cardiovascular regenerative and personalized medicine. In the current study, we investigated the Ca(2+)-handling properties of hiPSCs derived-cardiomyocytes (hiPSC-CMs). METHODOLOGY/PRINCIPAL FINDINGS RT-PCR and immunocytochemistry experiments identified the expression of key Ca(2+)-handling proteins. Detailed laser confocal Ca(2+) imaging demonstrated spontaneous whole-cell [Ca(2+)](i) transients. These transients required Ca(2+) influx via L-type Ca(2+) channels, as demonstrated by their elimination in the absence of extracellular Ca(2+) or by administration of the L-type Ca(2+) channel blocker nifedipine. The presence of a functional ryanodine receptor (RyR)-mediated sarcoplasmic reticulum (SR) Ca(2+) store, contributing to [Ca(2+)](i) transients, was established by application of caffeine (triggering a rapid increase in cytosolic Ca(2+)) and ryanodine (decreasing [Ca(2+)](i)). Similarly, the importance of Ca(2+) reuptake into the SR via the SR Ca(2+) ATPase (SERCA) pump was demonstrated by the inhibiting effect of its blocker (thapsigargin), which led to [Ca(2+)](i) transients elimination. Finally, the presence of an IP3-releasable Ca(2+) pool in hiPSC-CMs and its contribution to whole-cell [Ca(2+)](i) transients was demonstrated by the inhibitory effects induced by the IP3-receptor blocker 2-Aminoethoxydiphenyl borate (2-APB) and the phospholipase C inhibitor U73122. CONCLUSIONS/SIGNIFICANCE Our study establishes the presence of a functional, SERCA-sequestering, RyR-mediated SR Ca(2+) store in hiPSC-CMs. Furthermore, it demonstrates the dependency of whole-cell [Ca(2+)](i) transients in hiPSC-CMs on both sarcolemmal Ca(2+) entry via L-type Ca(2+) channels and intracellular store Ca(2+) release.
Collapse
MESH Headings
- Animals
- Biological Transport
- Calcium/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Cell Differentiation
- Cell Line
- Gene Expression Regulation
- Humans
- Induced Pluripotent Stem Cells/cytology
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Intracellular Space/metabolism
- Mice
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcolemma/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
Collapse
Affiliation(s)
- Ilanit Itzhaki
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sophia Rapoport
- Department of Biophysics Physiology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Irit Huber
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Itzhak Mizrahi
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Limor Zwi-Dantsis
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gil Arbel
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jackie Schiller
- Department of Biophysics Physiology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lior Gepstein
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
49
|
Janczewski AM, Lakatta EG. Modulation of sarcoplasmic reticulum Ca(2+) cycling in systolic and diastolic heart failure associated with aging. Heart Fail Rev 2010; 15:431-45. [PMID: 20419345 PMCID: PMC2945822 DOI: 10.1007/s10741-010-9167-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hypertension, atherosclerosis, and resultant chronic heart failure (HF) reach epidemic proportions among older persons, and the clinical manifestations and the prognoses of these worsen with increasing age. Thus, age per se is the major risk factor for cardiovascular disease. Changes in cardiac cell phenotype that occur with normal aging, as well as in HF associated with aging, include deficits in ss-adrenergic receptor (ss-AR) signaling, increased generation of reactive oxygen species (ROS), and altered excitation-contraction (EC) coupling that involves prolongation of the action potential (AP), intracellular Ca(2+) (Ca(i)(2+)) transient and contraction, and blunted force- and relaxation-frequency responses. Evidence suggests that altered sarcoplasmic reticulum (SR) Ca(2+) uptake, storage, and release play central role in these changes, which also involve sarcolemmal L-type Ca(2+) channel (LCC), Na(+)-Ca(2+) exchanger (NCX), and K(+) channels. We review the age-associated changes in the expression and function of Ca(2+) transporting proteins, and functional consequences of these changes at the cardiac myocyte and organ levels. We also review sexual dimorphism and self-renewal of the heart in the context of cardiac aging and HF.
Collapse
MESH Headings
- Adaptation, Physiological
- Age Factors
- Aged
- Aged, 80 and over
- Aging
- Disease Progression
- Female
- Heart Failure, Diastolic/enzymology
- Heart Failure, Diastolic/epidemiology
- Heart Failure, Diastolic/physiopathology
- Heart Failure, Systolic/enzymology
- Heart Failure, Systolic/epidemiology
- Heart Failure, Systolic/physiopathology
- Humans
- Male
- Muscle Cells/pathology
- Prognosis
- Receptors, Adrenergic, beta/biosynthesis
- Risk Factors
- Sarcoplasmic Reticulum/enzymology
- Sarcoplasmic Reticulum/pathology
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Sex Factors
- Signal Transduction
- Stress, Physiological
- United States/epidemiology
Collapse
Affiliation(s)
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, Intramural Research Program, 5600 Nathan Shock Dr, Baltimore, MD 21224-6825
| |
Collapse
|
50
|
Seidler T, Teucher N, Hellenkamp K, Unsöld B, Grebe C, Kramps P, Schotola H, Wagner S, Schöndube FA, Hasenfuss G, Maier LS. Limitations of FKBP12.6-directed treatment strategies for maladaptive cardiac remodeling and heart failure. J Mol Cell Cardiol 2010; 50:33-42. [PMID: 20797399 DOI: 10.1016/j.yjmcc.2010.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 11/29/2022]
Abstract
Sarcoplasmic reticulum (SR) calcium (Ca) leak can be reduced by enhancing FKBP12.6 binding to SR Ca release channels (RyR2) and expression of a "sticky" FKBP12.6(D37S) mutant may correct reduced binding stoichiometry in RyR2 from failing hearts. Both calcium/calmodulin-dependent protein kinase IIδc (CaMKIIδc) and protein kinase A (PKA) are activated in heart failure and promote SR Ca leak at RyR2. It is possible that FKBP12.6 dissociation from RyR2 may promote remodeling and that interventions to reassociate FKBP12.6 with RyR2 reflect a future therapeutic strategy. We created transgenic (TG) mice expressing FKBP12.6(D37S) and tested their capacity to improve intracellular Ca handling and pathological remodeling in vivo. FKBP12.6(D37S) TG mice were cross-bred with CaMKIIδc TG mice, which are known to exhibit pronounced RyR2 dysfunction and heart failure. We observed a significant improvement of post-rest Ca transients and a higher SR Ca content in FKBP12.6(D37S) TG mice. In double-TG mice, a marked reduction of SR Ca spark frequency indicated reduced SR Ca leak but neither SR Ca transient amplitude, SR Ca content nor morphological or functional parameters improved in vivo. Likewise, FKBP12.6(D37S) TG mice subjected to increased afterload after aortic banding exhibited higher SR Ca load but did not exhibit any improvement in hypertrophic growth or functional decline. Enhancement of FKBP12.6-RyR2 binding markedly reduced RyR2 Ca leak in CaMKIIδc-induced heart failure and in pressure overload. Our data suggest that activation of CaMKIIδc and pressure overload confer significant resistance towards approaches aiming at FKBP12.6-RyR2 reconstitution in heart failure and maladaptive remodeling, although RyR2 Ca leak can be reduced.
Collapse
Affiliation(s)
- Tim Seidler
- Department of Cardiology and Pneumology, Heart Center, University of Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|