1
|
Chrysant SG. Better blood pressure control with the nanoformulation of antihypertensive drugs. Expert Rev Cardiovasc Ther 2024:1-9. [PMID: 39635781 DOI: 10.1080/14779072.2024.2438813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Hypertension is very common and a major risk factor for cardiovascular disease, heart failure, chronic kidney disease, strokes, and death. However, at present only 14% of patients of developing countries have their blood pressure (BP) well controlled. The causes for the failure to control the BP are multiple and one of them could be the formulation of antihypertensive drugs. AREAS COVERED The recent development of nanotechnology by incorporating the drugs into nanoparticles is a new promising field of nanomedicine and preliminary studies have shown this nanoformulation to be more effective in the treatment of hypertension than the existing drug formulations. Another recent development is the nanoformulation of genes used for the treatment of hypertension and cardiovascular diseases. For current information, a Medline search was conducted between 2017 and 2024 and 36 pertinent papers were selected. EXPERT OPINION The nanoformulations of drugs help achieve better drug concentrations, improve drug stability, low solubility, short half life, oral bioavailability, narrow therapeutic index, and poor pharmacokinetic and pharmacodynamic profiles, and decrease the adverse effects of antihypertensive drugs. Also, the nanoformulation of genes for the treatment of hypertension has been shown in preliminary studies to be effective, but more research is needed.
Collapse
Affiliation(s)
- Steven G Chrysant
- Department of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
2
|
Lin Q, Wang DG, Zhang ZQ, Liu DP. Applications of Virus Vector-Mediated Gene Therapy in China. Hum Gene Ther 2019; 29:98-109. [PMID: 29284296 DOI: 10.1089/hum.2017.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the increased safety and efficiency of virus vectors, virus vector-mediated gene therapy is now widely used for various diseases, including monogenic diseases, complex disorders, and infectious diseases. Recent gene therapy trials have shown significant therapeutic benefits, and Chinese researchers have contributed significantly to this progress. This review highlights disease applications and strategies for virus vector-mediated gene therapy in preclinical studies and clinical trials in China.
Collapse
Affiliation(s)
- Qiong Lin
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deng-Gao Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhu-Qin Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
van der Horst IWJM, Reiss I, Tibboel D. Therapeutic targets in neonatal pulmonary hypertension: linking pathophysiology to clinical medicine. Expert Rev Respir Med 2014; 2:85-96. [DOI: 10.1586/17476348.2.1.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Wilson A, Zhou W, Champion HC, Alber S, Tang ZL, Kennel S, Watkins S, Huang L, Pitt B, Li S. Targeted delivery of oligodeoxynucleotides to mouse lung endothelial cells in vitro and in vivo. Mol Ther 2005; 12:510-8. [PMID: 15953766 DOI: 10.1016/j.ymthe.2005.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 03/25/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022] Open
Abstract
Pulmonary endothelium plays an important role in the maintenance of normal pulmonary physiology and its dysfunction is involved in a number of pulmonary diseases. Correction of endothelial dysfunction via antisense oligodeoxynucleotides (ODN) is dependent on the development of a delivery vehicle that can efficiently deliver the ODN to pulmonary endothelium with minimal toxicity. To this end, we have developed a novel lipidic vector that is highly efficient in targeted delivery of ODN to pulmonary endothelium. This is based on a method that utilizes an ionizable aminolipid (1,2-dioleoyl-3-dimethylammonium propane) and an ethanol-containing buffer system for encapsulating large quantities of polyanionic ODN in lipid vesicles. An endothelium-specific antibody (273-34A) is incorporated into the lipid vesicles via a distearoylphosphatidylethanolamine-poly(ethylene glycol) spacer. The 273-34A antibody efficiently mediated delivery of ODN to mouse lung endothelial cells in vitro and in vivo. Furthermore, systemic administration of this formulation is associated with minimal hematological toxicities and induces little acute change in systemic and pulmonary hemodynamics. These results provide a basis for lipid-mediated delivery of ODN for the treatment of pulmonary diseases. They also suggest the utility of this approach as a research tool to characterize the function of genes in the pulmonary endothelium.
Collapse
Affiliation(s)
- Annette Wilson
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
López-Hernández FJ, López-Novoa JM. The lord of the ring: mandatory role of the kidney in drug therapy of hypertension. Pharmacol Ther 2005; 111:53-80. [PMID: 16154201 DOI: 10.1016/j.pharmthera.2005.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/01/2005] [Indexed: 12/21/2022]
Abstract
Strong evidence supports the idea that total peripheral resistance (TPR) is increased in all forms of human and experimental hypertension. Although the etiological participation of TPR in the origin and long-term maintenance of hypertension has been extensively debated, it now seems clear that the renal, nonadaptive, infinite gain-working, pressure-sensitive natriuresis and diuresis is the main mechanism of blood pressure control in the long term. The tissue, cellular, biochemical, and genetic sensors and executors of this process have not been fully identified yet, but the role of the renal medulla has gained growing attention as the physiopathological scenario in which the key regulatory elements reside. Specifically, the functionality of the renomedullary vasculature seems to be highly responsible for blood pressure control. The vasculature of the renal medulla becomes a new and more specific target for the therapeutic intervention of hypertension. Recent data on the effect of baroreceptor-controlled renal sympathetic activity on the long-term regulation of blood pressure are integrated. The renomedullary effects of the main antihypertensive drugs are discussed, and new perspectives for the therapeutic intervention of hypertension are outlined. Comparison of the genetic program of the renal medulla before and after the development of hypertension in spontaneously hypertensive and experimentally induced animal models might provide a mechanism for identifying the key genes that become activated or suppressed in the development of high blood pressure. These genes, their encoded proteins, or other elements related to their signalling and genetic pathways might serve as new and more specific targets for the pharmacological treatment of abnormally elevated blood pressure. Besides, proteins specifically located to the luminal side of the renomedullary vascular endothelium may serve as potential targets for site-directed drug and gene therapy.
Collapse
Affiliation(s)
- Francisco J López-Hernández
- Unidad de Investigación, Hospital Universitario de Salamanca, Paseo de San Vicente, 58-182, 37007 Salamanca, Spain.
| | | |
Collapse
|
6
|
Wang T, Li H, Zhao C, Chen C, Li J, Chao J, Chao L, Xiao X, Wang DW. Recombinant adeno-associated virus-mediated kallikrein gene therapy reduces hypertension and attenuates its cardiovascular injuries. Gene Ther 2004; 11:1342-50. [PMID: 15175642 DOI: 10.1038/sj.gt.3302294] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene therapy of hypertension requires long-term expression of a therapeutic gene to achieve stable reduction of blood pressure. Human tissue kallikrein (HK) cleaves kininogen to produce a potent vasoactive peptide kinin, which plays an important role in the regulation of the cardiovascular and renal functions. In the present study, we have delivered human kallikrein cDNA with an rAAV vector to explore the potential therapeutic effects of kallikrein on hypertension and related secondary complications. A single tail vein injection of the rAAV-HK vector into the adult spontaneously hypertensive rats resulted in a significant reduction (12.0+/-2.55 mmHg, P<0.05, n=6, ANOVA) of the systolic blood pressure from 2 weeks after vector injection, when compared with the control rAAV-lacZ vector-injected rats. Weekly blood pressure monitoring showed stable hypertension-reduction effect throughout the course of the 20-week experiments. In addition, total urine microalbumin contents decreased as a result of rAAV-HK treatment. Histological analysis of various tissues showed remarkable amelioration of cardiovascular hypertrophy, renal injury and collagen depositions in the rAAV-treated group. Finally, persistent expression of the transgene product HK was confirmed by the enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction. We conclude that rAAV-mediated HK delivery rendered a long-term and stable reduction of hypertension and protected against renal injury, cardiac remodeling in the spontaneously hypertensive rat model. Further studies are warranted for the development of a gene therapy strategy for human hypertension.
Collapse
Affiliation(s)
- T Wang
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Richard JC, Zhou Z, Ponde DE, Dence CS, Factor P, Reynolds PN, Luker GD, Sharma V, Ferkol T, Piwnica-Worms D, Schuster DP. Imaging pulmonary gene expression with positron emission tomography. Am J Respir Crit Care Med 2003; 167:1257-63. [PMID: 12505860 DOI: 10.1164/rccm.200210-1217oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We evaluated positron emission tomographic imaging of pulmonary transgene expression, using an enhanced mutant herpes simplex virus-1 thymidine kinase as the reporter gene, in the lungs of normal rats. Sixteen rats were studied 3 days after an intratracheal administration of 5 x 10(9) to 1 x 10(11) viral particles of a replication-incompetent adenovirus containing a fusion gene of the mutant kinase and green fluorescent protein. Three rats infected with adenovirus containing no insert (null vector) served as control subjects. Images were obtained 1 hour after an intravenous injection of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine, an imaging substrate for the viral kinase. After euthanasia, tissue radioactivity was determined in a gamma counter, and thymidine kinase activity and green fluorescent protein levels were measured in lung tissue samples. Imaging and gamma counting radioactivity measurements were strongly and linearly correlated (r2 = 0.96, p < 0.001). Imaging detected thymidine kinase expression above background (null vector) in 15 of 16 rats, even at low viral doses that produced little to no measurable green fluorescent protein expression. Lung 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine uptake (as assessed by imaging) correlated with in vitro assays of both kinase activity (r(2) = 0.48, p < 0.001) and fluorescent protein (r(2) = 0.46, p < 0.001). We conclude that positron emission tomographic imaging is a sensitive and quantitative method for detecting pulmonary reporter gene expression noninvasively.
Collapse
|
8
|
Abstract
Gene therapy is a promising strategy for cerebrovascular diseases. Several genes that encode vasoactive products have been transferred via cerebrospinal fluid for the prevention of vasospasm after subarachnoid hemorrhage. Transfer of neuroprotective genes, including targeting of proinflammatory mediators, is a current strategy of gene therapy for ischemic stroke. Stimulation of growth of collateral vessels, stabilization of atherosclerotic plaques, inhibition of thrombosis, and prevention of restenosis are important objectives of gene therapy for coronary and limb arteries, but application of these approaches to carotid and intracranial arteries has received little attention. Several fundamental advances, including development of safer vectors, are needed before gene therapy achieves an important role in the treatment of cerebrovascular disease and stroke.
Collapse
Affiliation(s)
- Kazunori Toyoda
- Department of Cerebrovascular Disease and Clinical Research Institute, National Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Yi Chu
- Departments of Internal Medicine and Pharmacology, and Cardiovascular Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, IA, U.S.A
| | - Donald D Heistad
- Veterans Affairs Medical Center, Iowa City, IA 52242, U.S.A
- Author for correspondence:
| |
Collapse
|
9
|
Abstract
The last decade has seen substantial advances in the development of gene therapy strategies and vector technology for the treatment of a diverse number of diseases, with a view to translating the successes observed in animal models into the clinic. Perhaps the overwhelming drive for the increase in vascular gene transfer studies is the current lack of successful long-term pharmacological treatments for complex cardiovascular diseases. The increase in cardiovascular disease to epidemic proportions has also led many to conclude that drug therapy may have reached a plateau in its efficacy and that gene therapy may represent a realistic solution to a long-term problem. Here, we discuss gene delivery approaches and target diseases.
Collapse
Affiliation(s)
- Kate L. Dishart
- BHF Blood Pressure Group, Department of Medicine and Therapeutics,
University of Glasgow, Western Infirmary, Glasgow G11 6NT, UK
| | - Lorraine M. Work
- BHF Blood Pressure Group, Department of Medicine and Therapeutics,
University of Glasgow, Western Infirmary, Glasgow G11 6NT, UK
| | - Laura Denby
- BHF Blood Pressure Group, Department of Medicine and Therapeutics,
University of Glasgow, Western Infirmary, Glasgow G11 6NT, UK
| | - Andrew H. Baker
- BHF Blood Pressure Group, Department of Medicine and Therapeutics,
University of Glasgow, Western Infirmary, Glasgow G11 6NT, UK
| |
Collapse
|
10
|
Yuan X, Ma Z, Zhou W, Niidome T, Alber S, Huang L, Watkins S, Li S. Lipid-mediated delivery of peptide nucleic acids to pulmonary endothelium. Biochem Biophys Res Commun 2003; 302:6-11. [PMID: 12593839 DOI: 10.1016/s0006-291x(03)00058-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide nucleic acid (PNA) is a DNA/RNA mimic in which the phosphodiester (PO) linkage is replaced with a peptide bond. It has a number of unique properties compared to currently used oligonucleotides including higher affinity towards RNA or DNA target, resistance to nucleases or proteases, and minimal non-specific interactions with proteins. Clinical applications of PNA, however, are limited by its inefficient intracellular delivery. In this study, we have shown that delivery of PNA to pulmonary endothelium in intact mice can be greatly improved via hybridization with a short PO oligonucleotide that serves as a carrier to form complexes with cationic liposomes. We have also shown for the first time that unlike a CpG DNA oligo that is highly proinflammatory, a CG-containing PNA is inert in triggering TNF-alpha response in cultured macrophages and in mice. Thus delivery of PNA to pulmonary endothelium may prove to be a therapeutically useful for the treatment of pulmonary vascular diseases.
Collapse
Affiliation(s)
- Xing Yuan
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 639 Salk Hall, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND Developmental dyslexia is a neurodevelopmental learning disability characterised by unexpectedly poor reading and unknown aetiology. One hypothesis proposes excessive platelet activating factor, a potent vasodilator, as a contributor, implying that there should be a negative association between dyslexia and high blood pressure (HBP). Since both conditions have a partial genetic basis, this association may be apparent at the familial level. AIMS To test this prediction in dyslexic and non-dyslexic children. METHODS Individuals and families with (HBP+) and without (HBP-) a family history of HBP were compared. RESULTS Proportionately fewer dyslexics (49/112) than controls (11/12) were HBP+. Families with multiple, all dyslexic children were less likely to be HBP+ (7/16) than those with a non-dyslexic child (11/11). Within families, mean child scores on reading were higher in the HBP+ group (mean 44.3, SE 0.95) than in the HBP- group (mean 40.3, SE 0.87). CONCLUSION HBP+ family history is associated with better performance on reading. The prediction of a negative association between dyslexic status and familial high blood pressure is therefore confirmed.
Collapse
Affiliation(s)
- K Taylor
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK.
| | | |
Collapse
|
12
|
Jornot L, Morris MA, Petersen H, Moix I, Rochat T. N-acetylcysteine augments adenovirus-mediated gene expression in human endothelial cells by enhancing transgene transcription and virus entry. J Gene Med 2002; 4:54-65. [PMID: 11828388 DOI: 10.1002/jgm.232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND It has previously been shown that oxidants reduce the efficiency of adenoviral transduction in human umbilical vein endothelial cells (HUVECs). In this study, the effect of the antioxidant N-acetylcysteine (NAC) in adenovirus-mediated gene transfer has been investigated. METHODS HUVECs were pretreated or not with NAC, and infected with E1E3-deleted adenovirus (Ad) containing the LacZ gene expressed from the RSV-LTR promoter/enhancer in the presence and absence of NAC. Transgene expression was assessed at the protein level (histochemical staining, measurement of beta-Gal activity, and western blot), mRNA level (real-time RT-PCR) and gene level (nuclear run on) 24 h and 48 h after infection. Adenoviral DNA was quantitated by real-time PCR, and cell surface expression of Coxsackie/adenovirus receptors (CAR) was determined by FACS analysis. RESULTS Pretreatment of cells with NAC prior to Ad infection enhanced beta-Gal activity by two-fold due to an increase in viral DNA, which was related to increased CAR expression. When NAC was present only during the post-infection period, a five-fold increase in beta-Gal activity and LacZ gene transcriptional activity was observed. When NAC was present during both the pretreatment and the post-infection period, beta-Gal activity was further enhanced, by 15-fold. Augmentation of beta-Gal activity was paralleled by an increase in beta-Gal protein and mRNA levels. NAC did not affect the half-life of LacZ mRNA. CONCLUSION Pretreatment with NAC prior to Ad infection enhances virus entry, while treatment with NAC post-infection increases transgene transcription. This strategy permits the use of lower adenoviral loads and thus might be helpful for gene therapy of vascular diseases.
Collapse
Affiliation(s)
- L Jornot
- Respiratory Division, Geneva University Hospitals, 1211 Geneva 14, Switzerland.
| | | | | | | | | |
Collapse
|
13
|
Francis SC, Raizada MK, Mangi AA, Melo LG, Dzau VJ, Vale PR, Isner JM, Losordo DW, Chao J, Katovich MJ, Berecek KH. Genetic targeting for cardiovascular therapeutics: are we near the summit or just beginning the climb? Physiol Genomics 2001; 7:79-94. [PMID: 11773594 DOI: 10.1152/physiolgenomics.00073.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article is based on an Experimental Biology symposium held in April 2001 and presents the current status of gene therapy for cardiovascular diseases in experimental studies and clinical trials. Evidence for the use of gene therapy to limit neointimal hyperplasia and confer myocardial protection was presented, and it was found that augmenting local nitric oxide (NO) production using gene transfer (GT) of NO synthase or interruption of cell cycle progression through a genetic transfer of cell cycle regulatory genes limited vascular smooth muscle hyperplasia in animal models and infra-inguinal bypass patients. The results of application of vascular endothelial growth factor (VEGF) GT strategies for therapeutic angiogenesis in critical limb and myocardial ischemia in pilot clinical trials was reviewed. In addition, experimental evidence was presented that genetic manipulation of peptide systems (i.e., the renin-angiotensin II system and the kallikrein-kinin system) was effective in the treatment of systemic cardiovascular diseases such as hypertension, heart failure, and renal failure. Although, as of yet, there are no well controlled human trials proving the clinical benefits of gene therapy for cardiovascular diseases, the data presented here in animal models and in human subjects show that genetic targeting is a promising and encouraging modality, not only for the treatment and long-term control of cardiovascular diseases, but for their prevention as well.
Collapse
Affiliation(s)
- S C Francis
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida Brain Institute, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sellers KW, Katovich MJ, Gelband CH, Raizada MK. Gene therapy to control hypertension: current studies and future perspectives. Am J Med Sci 2001; 322:1-6. [PMID: 11465240 DOI: 10.1097/00000441-200107000-00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypertension is a complex pathophysiological state that leads to serious complications, including heart failure, coronary artery disease, and abnormal renal function. While traditional therapies can be effective in controlling the effects of hypertension, they offer no long-term cure and often lead to patient noncompliance, thereby diminishing their effectiveness. These reasons, coupled with the recent developments in gene transfer and somatic cell gene delivery, led researchers to explore alternative options that can produce long-term control of hypertension. Gene therapy offers the potential to yield lasting antihypertensive effects by influencing the genes associated with hypertension. In this review, we will discuss the merits of sense versus antisense strategies in controlling hypertension. We also discuss the advantages and disadvantages of both viral and nonviral vector types for the systemic delivery of genes for hypertension research. Results of our research group on the retrovirus-mediated delivery of the angiotensin type I receptor-antisense on the prevention of hypertension and related cardiovascular pathophysiology will be summarized. Finally, we discuss the future of this gene therapy approach in the reversal and long-term control of hypertension.
Collapse
Affiliation(s)
- K W Sellers
- Department of Physiology, College of Medicine, University of Florida, Gainesville 32610, USA
| | | | | | | |
Collapse
|
15
|
|