1
|
Wang L, Shi L, Hui ES, Liang Y, Tang WK. Fiber connectivity density in subcortical stroke patients with behavioral dysexecutive symptoms. Brain Res Bull 2025; 225:111315. [PMID: 40222623 DOI: 10.1016/j.brainresbull.2025.111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/08/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025]
Abstract
Subcortical stroke induces widespread connectivity changes between cortical and subcortical regions, which may underpin the ensuing behavioral dysexecutive symptoms. This study therefore investigated the cortical structural connectivity that were related to behavioral dysexecutive symptoms using fiber connectivity density (FiCD) mapping, an approach which combines white matter (WM) fiber tractography and cortex reconstruction. The relationships between cortical structural connectivity of significant clusters and its corresponding cortical thickness (CT), and clinical variables were also evaluated based on region-of-interest analysis. Sixty-four subcortical stroke patients with high-resolution T1-weighted imaging and diffusion tensor imaging were enrolled and the behavioral dysexecutive symptoms were assessed using the dysexecutive questionnaire. The FiCD of the left superior parietal gyrus was positively associated with cognitive executive processing (CTT1 time, r = 0.570, p = 0.047; CVFT total correct, r = 0.582, p = 0.047; CVFT total response, r = 0.605, p = 0.040). Similary, the FiCD of the right superior parietal gyrus was also positively associated with cognitive executive processing, (CTT1 time, r = 0.639, p = 0.034). Conversely, negative correlations were observed between the FiCD and CT of the right (r = -0.612 p = 0.045) superior parietal gyrus.
Collapse
Affiliation(s)
- Lisha Wang
- Department of Psychiatry, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China; The Second Clinical School of Medicine, Guangdong Medical University, Dongguan, Guangdong, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
| | - Edward S Hui
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong; Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong; CU Lab for AI in Radiology (CLAIR), The Chinese University of Hong Kong, Hong Kong
| | - Yan Liang
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wai-Kwong Tang
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Rajput P, Brookshier A, Kothari S, Eckstein L, Chang H, Liska S, Lamb J, Sances S, Lyden P. Differential Vulnerability and Response to Injury among Brain Cell Types Comprising the Neurovascular Unit. J Neurosci 2024; 44:e1093222024. [PMID: 38548341 PMCID: PMC11140689 DOI: 10.1523/jneurosci.1093-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 05/31/2024] Open
Abstract
The neurovascular unit (NVU) includes multiple different cell types, including neurons, astrocytes, endothelial cells, and pericytes, which respond to insults on very different time or dose scales. We defined differential vulnerability among these cell types, using response to two different insults: oxygen-glucose deprivation (OGD) and thrombin-mediated cytotoxicity. We found that neurons are most vulnerable, followed by endothelial cells and astrocytes. After temporary focal cerebral ischemia in male rats, we found significantly more injured neurons, compared with astrocytes in the ischemic area, consistent with differential vulnerability in vivo. We sought to illustrate different and shared mechanisms across all cell types during response to insult. We found that gene expression profiles in response to OGD differed among the cell types, with a paucity of gene responses shared by all types. All cell types activated genes relating to autophagy, apoptosis, and necroptosis, but the specific genes differed. Astrocytes and endothelial cells also activated pathways connected to DNA repair and antiapoptosis. Taken together, the data support the concept of differential vulnerability in the NVU and suggest that different elements of the unit will evolve from salvageable to irretrievable on different time scales while residing in the same brain region and receiving the same (ischemic) blood flow. Future work will focus on the mechanisms of these differences. These data suggest future stroke therapy development should target different elements of the NVU differently.
Collapse
Affiliation(s)
- Padmesh Rajput
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Allison Brookshier
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Shweta Kothari
- Chinook Therapeutics, Inc., Vancouver, British Columbia V5T 4T5, Canada
- Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Lillie Eckstein
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Heather Chang
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Sophie Liska
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Jessica Lamb
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Samuel Sances
- Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Patrick Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| |
Collapse
|
3
|
Anttila JE, Mattila OS, Liew HK, Mätlik K, Mervaala E, Lindholm P, Lindahl M, Lindsberg PJ, Tseng KY, Airavaara M. MANF protein expression is upregulated in immune cells in the ischemic human brain and systemic recombinant MANF delivery in rat ischemic stroke model demonstrates anti-inflammatory effects. Acta Neuropathol Commun 2024; 12:10. [PMID: 38229173 DOI: 10.1186/s40478-023-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) has cytoprotective effects on various injuries, including cerebral ischemia, and it can promote recovery even when delivered intracranially several days after ischemic stroke. In the uninjured rodent brain, MANF protein is expressed almost exclusively in neurons, but post-ischemic MANF expression has not been characterized. We aimed to investigate how endogenous cerebral MANF protein expression evolves in infarcted human brains and rodent ischemic stroke models. During infarct progression, the cerebral MANF expression pattern both in human and rat brains shifted drastically from neurons to expression in inflammatory cells. Intense MANF immunoreactivity took place in phagocytic microglia/macrophages in the ischemic territory, peaking at two weeks post-stroke in human and one-week post-stroke in rat ischemic cortex. Using double immunofluorescence and mice lacking MANF gene and protein from neuronal stem cells, neurons, astrocytes, and oligodendrocytes, we verified that MANF expression was induced in microglia/macrophage cells in the ischemic hemisphere. Embarking on the drastic expression transition towards inflammatory cells and the impact of blood-borne inflammation in stroke, we hypothesized that exogenously delivered MANF protein can modulate tissue recovery processes. In an attempt to enhance recovery, we designed a set of proof-of-concept studies using systemic delivery of recombinant MANF in a rat model of cortical ischemic stroke. Intranasal recombinant MANF treatment decreased infarct volume and reduced the severity of neurological deficits. Intravenous recombinant MANF treatment decreased the levels of pro-inflammatory cytokines and increased the levels of anti-inflammatory cytokine IL-10 in the infarcted cortex one-day post-stroke. In conclusion, MANF protein expression is induced in activated microglia/macrophage cells in infarcted human and rodent brains, and this could implicate MANF's involvement in the regulation of post-stroke inflammation in patients and experimental animals. Moreover, systemic delivery of recombinant MANF shows promising immunomodulatory effects and therapeutic potential in experimental ischemic stroke.
Collapse
Affiliation(s)
- Jenni E Anttila
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Olli S Mattila
- Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, University of Helsinki, 00290, Helsinki, Finland
| | - Hock-Kean Liew
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien County, Hualien, 970, Taiwan
| | - Kert Mätlik
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Perttu J Lindsberg
- Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, University of Helsinki, 00290, Helsinki, Finland
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114, Taiwan.
| | - Mikko Airavaara
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland.
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
4
|
Held NR, Bauer T, Reiter JT, Hoppe C, Keil VCW, Radbruch A, Helmstaedter C, Surges R, Rüber T. Globally altered microstructural properties and network topology in Rasmussen's encephalitis. Brain Commun 2023; 5:fcad290. [PMID: 37953836 PMCID: PMC10638105 DOI: 10.1093/braincomms/fcad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Rasmussen's encephalitis is an immune-mediated brain disorder characterised by progressive unilateral cerebral atrophy, neuroinflammation, drug-resistant seizures and cognitive decline. However, volumetric changes and epileptiform EEG activity were also observed in the contralateral hemisphere, raising questions about the aetiology of contralateral involvement. In this study, we aim to investigate alterations of white matter integrity, structural network topology and network efficiency in Rasmussen's encephalitis using diffusion-tensor imaging. Fourteen individuals with Rasmussen's encephalitis (11 female, median onset 6 years, range 4-22, median disease duration at MRI 5 years, range 0-42) and 20 healthy control subjects were included. All subjects underwent T1-weighted structural and diffusion-tensor imaging. Diffusion-tensor images were analysed using the fixel-based analysis framework included in the MRtrix3 toolbox. Fibre density and cross-section served as a quantitative measure for microstructural white matter integrity. T1-weighted structural images were processed using FreeSurfer, subcortical segmentations and cortical parcellations using the Desikan-Killiany atlas served as nodes in a structural network model, edge weights were determined based on streamline count between pairs of nodes and compared using network-based statistics. Global efficiency was used to quantify network integration on an intrahemispheric level. All metrics were compared cross-sectionally between individuals with Rasmussen's encephalitis and healthy control subjects using sex and age as regressors and within the Rasmussen's encephalitis group using linear regression including age at onset and disease duration as independent variables. Relative to healthy control subjects, individuals with Rasmussen's encephalitis showed significantly (family-wise-error-corrected P < 0.05) lower fibre density and cross-section as well as edge weights in intrahemispheric connections within the ipsilesional hemisphere and in interhemispheric connections. Lower edge weights were noted in the contralesional hemisphere and in interhemispheric connections, with the latter being mainly affected within the first 2 years after disease onset. With longer disease duration, fibre density and cross-section significantly (uncorrected P < 0.01) decreased in both hemispheres. In the contralesional corticospinal tract, fibre density and cross-section significantly (uncorrected P < 0.01) increased with disease duration. Intrahemispheric edge weights (uncorrected P < 0.01) and global efficiency significantly increased with disease duration in both hemispheres (ipsilesional r = 0.74, P = 0.001; contralesional r = 0.67, P = 0.012). Early disease onset was significantly (uncorrected P < 0.01) negatively correlated with lower fibre density and cross-section bilaterally. Our results show that the disease process of Rasmussen's encephalitis is not limited to the cortex of the lesioned hemisphere but should be regarded as a network disease affecting white matter across the entire brain and causing degenerative as well as compensatory changes on a network level.
Collapse
Affiliation(s)
- Nina R Held
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Tobias Bauer
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Johannes T Reiter
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christian Hoppe
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Vera C W Keil
- Department of Neuroradiology, University Hospital Bonn, 53127 Bonn, Germany
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam UMC, 1081 HV Amsterdam, Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, Netherlands
| | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Theodor Rüber
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
5
|
Kajtazi NI, Bafaquh M, Rizvi T, Sheikh SE, Ghamdi JA, Amoudi RA, Jabbar AA, Shammari KA, Saqqur M, Ghamdi SA, Khoja W, Demchuk A, Senani FA, Luft AR. Ipsilateral weakness caused by ipsilateral stroke: A case series. J Stroke Cerebrovasc Dis 2023; 32:107090. [PMID: 37105128 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION There are few reported cases of ipsilateral weakness following ischemic or hemorrhagic stroke. In these rare cases, ipsilateral weakness is typically the result of damage to uncrossed components of the corticospinal tract (CST) which were recruited in response to previous CST injury. PATIENTS AND METHODS We report a series of six cases of acute ipsilateral weakness or numbness following a hemorrhagic or ischemic stroke from three medical institutions in Saudi Arabia. RESULTS Three of these patients presented with right-sided weakness caused by an ipsilateral right hemispheric stroke, while two exhibited left-sided symptoms and one had only left-sided numbness. In all six cases, the ipsilateral corona radiata, internal capsule, basal ganglia, insula, and thalamus were involved. No concomitant opposite hemisphere or brainstem lesion in none of the patients was evident. Two patients had previous strokes affecting the brainstem and left corona radiata, respectively. Complete stroke workup to reveal the cause of stroke was carried out, however no functional MRI was performed. CONCLUSION Ischemic or hemorrhagic stroke may indeed result in ipsilateral weakness or numbness, though in very rare cases. We assume that the most likely mechanism of their ipsilateral weakness subsequent to the ipsilateral stroke was a functional reorganization favoring CST pathways within the ipsilateral hemisphere.
Collapse
Affiliation(s)
- Naim I Kajtazi
- Department of Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia; Department of Neurology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| | - Mohammed Bafaquh
- Department of Neurosurgery, National Neurosciences Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Tanvir Rizvi
- Department of Medical Imaging, Neuroradiology, University of Virginia, United States
| | - Souda El Sheikh
- Department of Neurology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Juman Al Ghamdi
- Intervention Neuroradiology, Medical Imaging Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Razan Al Amoudi
- Intervention Neuroradiology, Medical Imaging Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Asma Al Jabbar
- Department of Neurology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Kareem Al Shammari
- Department of Neurology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Maher Saqqur
- Department of Neurology, University of Alberta, Canada
| | - Saeed Al Ghamdi
- Department of Neurology, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Waleed Khoja
- Department of Neurology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | | - Fahmi Al Senani
- Department of Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia; Intervention Neuroradiology, Medical Imaging Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Andreas R Luft
- Department of Neurology, Switzerland & Cereneo Center for Neurology and Rehabilitation, University of Zürich, Vitznau, Switzerland
| |
Collapse
|
6
|
Filippenkov IB, Remizova JA, Denisova AE, Stavchansky VV, Golovina KD, Gubsky LV, Limborska SA, Dergunova LV. Differential gene expression in the contralateral hemisphere of the rat brain after focal ischemia. Sci Rep 2023; 13:573. [PMID: 36631528 PMCID: PMC9834327 DOI: 10.1038/s41598-023-27663-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Ischemic stroke is one of the most severe polygenic brain diseases. Here, we performed further functional genetic analysis of the processes occurring in the contralateral hemisphere (CH) after ischemia-reperfusion injury in rat brain. Comparison of RNA sequencing data for subcortical samples from the ipsilateral hemisphere (IH) and CH after 90 min of transient middle cerebral artery occlusion (tMCAO) and corresponding sham-operated (SO) controls showed four groups of genes that were associated with ischemic processes in rat brain at 24 h after tMCAO. Among them, 2672 genes were differentially expressed genes (DEGs) for IH but non-DEGs for CH, 34 genes were DEGs for CH but non-DEGs for IH, and 114 genes had codirected changes in expression in both hemispheres. The remaining 16 genes exhibited opposite changes at the mRNA level in the two brain hemispheres after tMCAO. These findings suggest that the ischemic process caused by a focal ischemia induces complex bilateral reactions at the transcriptome level in the rat brain. We believe that specific genome responses in the CH and IH may provide a useful model for the study of the potential for brain repair after stroke.
Collapse
Affiliation(s)
- Ivan B. Filippenkov
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Julia A. Remizova
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Alina E. Denisova
- grid.78028.350000 0000 9559 0613Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia
| | - Vasily V. Stavchansky
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Ksenia D. Golovina
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Leonid V. Gubsky
- grid.78028.350000 0000 9559 0613Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia ,Federal Center for the Brain and Neurotechnologies, Federal Biomedical Agency, Ostrovitianov Str. 1, Building 10, 117997 Moscow, Russia
| | - Svetlana A. Limborska
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Lyudmila V. Dergunova
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
7
|
Sato Y, Schmitt O, Ip Z, Rabiller G, Omodaka S, Tominaga T, Yazdan-Shahmorad A, Liu J. Pathological changes of brain oscillations following ischemic stroke. J Cereb Blood Flow Metab 2022; 42:1753-1776. [PMID: 35754347 PMCID: PMC9536122 DOI: 10.1177/0271678x221105677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Brain oscillations recorded in the extracellular space are among the most important aspects of neurophysiology data reflecting the activity and function of neurons in a population or a network. The signal strength and patterns of brain oscillations can be powerful biomarkers used for disease detection and prediction of the recovery of function. Electrophysiological signals can also serve as an index for many cutting-edge technologies aiming to interface between the nervous system and neuroprosthetic devices and to monitor the efficacy of boosting neural activity. In this review, we provided an overview of the basic knowledge regarding local field potential, electro- or magneto- encephalography signals, and their biological relevance, followed by a summary of the findings reported in various clinical and experimental stroke studies. We reviewed evidence of stroke-induced changes in hippocampal oscillations and disruption of communication between brain networks as potential mechanisms underlying post-stroke cognitive dysfunction. We also discussed the promise of brain stimulation in promoting post stroke functional recovery via restoring neural activity and enhancing brain plasticity.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Oliver Schmitt
- Department of Anatomy, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Zachary Ip
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Gratianne Rabiller
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| | - Shunsuke Omodaka
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| |
Collapse
|
8
|
Filippenkov IB, Remizova JA, Denisova AE, Stavchansky VV, Golovina KD, Gubsky LV, Limborska SA, Dergunova LV. Comparative Use of Contralateral and Sham-Operated Controls Reveals Traces of a Bilateral Genetic Response in the Rat Brain after Focal Stroke. Int J Mol Sci 2022; 23:ijms23137308. [PMID: 35806305 PMCID: PMC9266805 DOI: 10.3390/ijms23137308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Ischemic stroke is a multifactorial disease with a complex etiology and global consequences. Model animals are widely used in stroke studies. Various controls, either brain samples from sham-operated (SO) animals or symmetrically located brain samples from the opposite (contralateral) hemisphere (CH), are often used to analyze the processes in the damaged (ipsilateral) hemisphere (IH) after focal stroke. However, previously, it was shown that focal ischemia can lead to metabolic and transcriptomic changes not only in the IH but also in the CH. Here, using a transient middle cerebral artery occlusion (tMCAO) model and genome-wide RNA sequencing, we identified 1941 overlapping differentially expressed genes (DEGs) with a cutoff value >1.5 and Padj < 0.05 that reflected the general transcriptome response of IH subcortical cells at 24 h after tMCAO using both SO and CH controls. Concomitantly, 861 genes were differentially expressed in IH vs. SO, whereas they were not vs. the CH control. Furthermore, they were associated with apoptosis, the cell cycle, and neurotransmitter responses. In turn, we identified 221 DEGs in IH vs. CH, which were non-DEGs vs. the SO control. Moreover, they were predominantly associated with immune-related response. We believe that both sets of non-overlapping genes recorded transcriptome changes in IH cells associated with transhemispheric differences after focal cerebral ischemia. Thus, the specific response of the CH transcriptome should be considered when using it as a control in studies of target brain regions in diseases that induce a global bilateral genetic response, such as stroke.
Collapse
Affiliation(s)
- Ivan B. Filippenkov
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (J.A.R.); (V.V.S.); (K.D.G.); (S.A.L.); (L.V.D.)
- Correspondence: ; Tel.: +7-499-196-1858
| | - Julia A. Remizova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (J.A.R.); (V.V.S.); (K.D.G.); (S.A.L.); (L.V.D.)
| | - Alina E. Denisova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia; (A.E.D.); (L.V.G.)
| | - Vasily V. Stavchansky
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (J.A.R.); (V.V.S.); (K.D.G.); (S.A.L.); (L.V.D.)
| | - Ksenia D. Golovina
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (J.A.R.); (V.V.S.); (K.D.G.); (S.A.L.); (L.V.D.)
| | - Leonid V. Gubsky
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia; (A.E.D.); (L.V.G.)
- Federal Center for the Brain and Neurotechnologies, Federal Biomedical Agency, Ostrovitianov Str. 1, Building 10, 117997 Moscow, Russia
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (J.A.R.); (V.V.S.); (K.D.G.); (S.A.L.); (L.V.D.)
| | - Lyudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (J.A.R.); (V.V.S.); (K.D.G.); (S.A.L.); (L.V.D.)
| |
Collapse
|
9
|
Liu J, Wang C, Cheng J, Miao P, Li Z. Dynamic Relationship Between Interhemispheric Functional Connectivity and Corticospinal Tract Changing Pattern After Subcortical Stroke. Front Aging Neurosci 2022; 14:870718. [PMID: 35601612 PMCID: PMC9120434 DOI: 10.3389/fnagi.2022.870718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background and PurposeIncreased interhemispheric resting-state functional connectivity (rsFC) between the bilateral primary motor cortex (M1) compensates for corticospinal tract (CST) impairment, which facilitates motor recovery in chronic subcortical stroke. However, there is a lack of data on the evolution patterns and correlations between M1–M1 rsFC and diffusion indices of CSTs with different origins after subcortical stroke and their relations with long-term motor outcomes.MethodsA total of 44 patients with subcortical stroke underwent longitudinal structural and functional magnetic resonance imaging (MRI) examinations and clinical assessments at four time points. Diffusion tensor imaging was used to extract fractional anisotropy (FA) values of the affected CSTs with different origins. Resting-state functional MRI was used to calculate the M1–M1 rsFC. Longitudinal patterns of functional and anatomic changes in connections were explored using a linear mixed-effects model. Dynamic relationships between M1–M1 rsFC and FA values of the affected specific CSTs and the impact of these variations on the long-term motor outcomes were analyzed in patients with subcortical stroke.ResultsStroke patients showed a significantly decreased FA in the affected specific CSTs and a gradually increasing M1–M1 rsFC from the acute to the chronic stage. The FA of the affected M1 fiber was negatively correlated with the M1–M1 rsFC from the subacute to the chronic stage, FA of the affected supplementary motor area fiber was negatively correlated with the M1–M1 rsFC in the subacute stage, and FA of the affected M1 fiber in the acute stage was correlated with the long-term motor recovery after subcortical stroke.ConclusionOur findings show that the FA of the affected M1 fiber in the acute stage had the most significant correlation with long-term motor recovery and may be used as an imaging biomarker for predicting motor outcomes after stroke. The compensatory role of the M1–M1 rsFC enhancement may start from the subacute stage in stroke patients with CST impairment.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Jingchun Liu
| | - Caihong Wang
- Department of MRI, Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Caihong Wang
| | - Jingliang Cheng
- Department of MRI, Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peifang Miao
- Department of MRI, Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Huang S, Shen Q, Watts LT, Long JA, O'Boyle M, Nguyen T, Muir E, Duong TQ. Resting-State Functional Magnetic Resonance Imaging of Interhemispheric Functional Connectivity in Experimental Traumatic Brain Injury. Neurotrauma Rep 2021; 2:526-540. [PMID: 34901946 PMCID: PMC8655818 DOI: 10.1089/neur.2021.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although resting-state functional magnetic resonance imaging (rsfMRI) has the potential to offer insights into changes in functional connectivity networks after traumatic brain injury (TBI), there are few studies that examine the effects of moderate TBI for monitoring functional recovery in experimental TBI, and thus the neural correlates of brain recovery from moderate TBI remain incompletely understood. Non-invasive rsfMRI was used to longitudinally investigate changes in interhemispheric functional connectivity (IFC) after a moderate TBI to the unilateral sensorimotor cortex in rats (n = 9) up to 14 days. Independent component analysis of the rsfMRI data was performed. Correlations of rsfMRI sensorimotor networks were made with changes in behavioral scores, lesion volume, and T2- and diffusion-weighted images across time. TBI animals showed less localized rsfMRI patterns in the sensorimotor network compared to sham (n = 6) and normal (n = 5) animals. rsfMRI clusters in the sensorimotor network showed less bilateral symmetry compared to sham and normal animals, indicative of IFC disruption. With time after injury, many of the rsfMRI patterns in the sensorimotor network showed more bilateral symmetry, indicative of IFC recovery. The disrupted IFC in the sensorimotor and subsequent partial recovery showed a positive correlation with changes in behavioral scores. Overall, rsfMRI detected widespread disruption and subsequent recovery of IFC within the sensorimotor networks post-TBI, which correlated with behavioral changes. Therefore, rsfMRI offers the means to probe functional brain reorganization and thus has the potential to serve as an imaging marker to longitudinally stage TBI and monitor for novel treatments.
Collapse
Affiliation(s)
- Shiliang Huang
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Qiang Shen
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA.,Department of Radiology, UT Health San Antonio, San Antonio, Texas, USA
| | - Lora Talley Watts
- Department of Clinical and Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, Texas, USA
| | - Justin A Long
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Michael O'Boyle
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Tony Nguyen
- Department of Radiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, New York, USA
| | - Eric Muir
- Department of Radiology, Stony Brook Medicine, Stony Brook, New York, USA
| | - Timothy Q Duong
- Department of Radiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, New York, USA
| |
Collapse
|
11
|
Longitudinal Changes of Sensorimotor Resting-State Functional Connectivity Differentiate between Patients with Thalamic Infarction and Pontine Infarction. Neural Plast 2021; 2021:7031178. [PMID: 34659397 PMCID: PMC8519702 DOI: 10.1155/2021/7031178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Accepted: 09/14/2021] [Indexed: 12/01/2022] Open
Abstract
Purpose. We investigated the disparate influence of lesion location on functional damage and reorganization of the sensorimotor brain network in patients with thalamic infarction and pontine infarction. Methods. Fourteen patients with unilateral infarction of the thalamus and 14 patients with unilateral infarction of the pons underwent longitudinal fMRI measurements and motor functional assessment five times during a 6-month period (<7 days, at 2 weeks, 1 month, 3 months, and 6 months after stroke onset). Twenty-five age- and sex-matched controls underwent MRI examination across five consecutive time points in 6 months. Functional images from patients with left hemisphere lesions were first flipped from the left to the right side. The voxel-wise connectivity analyses between the reference time course of each ROI (the contralateral dorsal lateral putamen (dl-putamen), pons, ventral anterior (VA), and ventral lateral (VL) nuclei of the thalamus) and the time course of each voxel in the sensorimotor area were performed for all five measurements. One-way ANOVA was used to identify between-group differences in functional connectivity (FC) at baseline stage (<7 days after stroke onset), with infarction volume included as a nuisance variable. The family-wise error (FWE) method was used to account for multiple comparison issues using SPM software. Post hoc repeated-measure ANOVA was applied to examine longitudinal FC reorganization. Results. At baseline stage, significant differences were detected between the contralateral VA and ipsilateral postcentral gyrus (cl_VA-ip_postcentral), contralateral VL and ipsilateral precentral gyrus (cl_VL-ip_precentral). Repeated measures ANOVA revealed that the FC change of cl_VA-ip_postcentral differ significantly among the three groups over time. The significant changes of FC between cl_VA and ip_postcentral at different time points in the thalamic infarction group showed that compared with 7 days after stroke onset, there was significantly increased FC of cl_VA-ip_postcentral at 1 month, 3 months, and 6 months after stroke onset. Conclusions. The different patterns of sensorimotor functional damage and reorganization in patients with pontine infarction and thalamic infarction may provide insights into the neural mechanisms underlying functional recovery after stroke.
Collapse
|
12
|
Hertel A, Wenz H, Al-Zghloul M, Hausner L, FrÖlich L, Groden C, FÖrster A. Crossed Cerebellar Diaschisis in Alzheimer's Disease Detected by Arterial Spin-labelling Perfusion MRI. In Vivo 2021; 35:1177-1183. [PMID: 33622918 DOI: 10.21873/invivo.12366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Crossed cerebellar diaschisis (CCD) is a phenomenon with depressed metabolism and hypoperfusion in the cerebellum. Using arterial spin-labelling perfusion weighted magnetic resonance imaging (ASL PWI), we investigated the frequency of CCD in patients with Alzheimer's disease (AD) and differences between patients with and without CCD. PATIENTS AND METHODS In patients with AD who underwent a standardized magnetic resonance imaging including ASL PWI cerebral blood flow was evaluated in the cerebellum, and brain segmentation/volumetry was performed using mdbrain (mediaire GmbH, Berlin, Germany) and FSL FIRST (Functional Magnetic Resonance Imaging of the Brain Software Library). RESULTS In total, 65 patients were included, and 22 (33.8%) patients were assessed as being CCD-positive. Patients with CCD had a significantly smaller whole brain volume (862.8±49.9 vs. 893.7±62.7 ml, p=0.049) as well as white matter volume (352.9±28.0 vs. 374.3±30.7, p=0.008) in comparison to patients without CCD. CONCLUSION It was possible to detect CCD by ASL PWI in approximately one-third of patients with AD and was associated with smaller whole brain and white matter volume.
Collapse
Affiliation(s)
- Alexander Hertel
- Department of Neuroradiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Holger Wenz
- Department of Neuroradiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mansour Al-Zghloul
- Department of Neuroradiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Zentralinstitut für Seelische Gesundheit, University of Heidelberg, Mannheim, Germany
| | - Lutz FrÖlich
- Department of Geriatric Psychiatry, Zentralinstitut für Seelische Gesundheit, University of Heidelberg, Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alex FÖrster
- Department of Neuroradiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany;
| |
Collapse
|
13
|
Prolonged deficit of low gamma oscillations in the peri-infarct cortex of mice after stroke. Exp Neurol 2021; 341:113696. [PMID: 33727098 DOI: 10.1016/j.expneurol.2021.113696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Days and weeks after an ischemic stroke, the peri-infarct area adjacent to the necrotic tissue exhibits very intense synaptic reorganization aimed at regaining lost functions. In order to enhance functional recovery, it is important to understand the mechanisms supporting neural repair and neuroplasticity in the cortex surrounding the lesion. Brain oscillations of the local field potential (LFP) are rhythmic fluctuations of neuronal excitability that synchronize neuronal activity to organize information processing and plasticity. Although the oscillatory activity of the brain has been probed after stroke in both animals and humans using electroencephalography (EEG), the latter is ineffective to precisely map the oscillatory changes in the peri-infarct zone where synaptic plasticity potential is high. Here, we worked on the hypothesis that the brain oscillatory system is altered in the surviving peri-infarct cortex, which may slow down the functional repair and reduce the recovery. In order to document the relevance of this hypothesis, oscillatory power was measured at various distances from the necrotic core at 7 and 21 days after a permanent cortical ischemia induced in mice. Delta and theta oscillations remained at a normal power in the peri-infarct cortex, in contrast to low gamma oscillations that displayed a gradual decrease, when approaching the border of the lesion. A broadband increase of power was also observed in the homotopic contralateral sites. Thus, the proximal peri-infarct cortex could become a target of therapeutic interventions applied to correct the oscillatory regimen in order to boost post-stroke functional recovery.
Collapse
|
14
|
Disorders of vocal emotional expression and comprehension: The aprosodias. HANDBOOK OF CLINICAL NEUROLOGY 2021; 183:63-98. [PMID: 34389126 DOI: 10.1016/b978-0-12-822290-4.00005-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Sadowska M, Mehlhorn C, Średniawa W, Szewczyk ŁM, Szlachcic A, Urban P, Winiarski M, Jabłonka JA. Spreading Depressions and Periinfarct Spreading Depolarizations in the Context of Cortical Plasticity. Neuroscience 2020; 453:81-101. [PMID: 33227236 DOI: 10.1016/j.neuroscience.2020.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022]
Abstract
Studies of cortical function-recovery require a comparison between normal and post-stroke conditions that lead to changes in cortical metaplasticity. Focal cortical stroke impairs experience-dependent plasticity in the neighboring somatosensory cortex and usually evokes periinfarct depolarizations (PiDs) - spreading depression-like waves. Experimentally induced spreading depressions (SDs) affect gene expression and some of these changes persist for at least 30 days. In this study we compare the effects of non-stroke depolarizations that impair cortical experience-dependent plasticity to the effects of stroke, by inducing experience-dependent plasticity in rats with SDs or PiDs by a month of contralateral partial whiskers deprivation. We found that whiskers' deprivation after SDs resulted in normal cortical representation enlargement suggesting that SDs and PiDs depolarization have no influence on experience-dependent plasticity cortical map reorganization. PiDs and the MMP-9, -3, -2 or COX-2 proteins, which are assumed to influence metaplasticity in rats after stroke were compared between SDs induced by high osmolarity KCl solution and the PiDs that followed cortical photothrombotic stroke (PtS). We found that none of these factors directly caused cortical post-stroke metaplasticity changes. The only significant difference between stoke and induced SD was a greater imbalance in interhemispheric activity equilibrium after stroke. The interhemispheric interactions that were modified by stroke may therefore be promising targets for future studies of post-stroke experience-dependent plasticity and of recuperation studies.
Collapse
Affiliation(s)
- Maria Sadowska
- Laboratory of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Władysław Średniawa
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of PAS, Warsaw, Poland; Laboratory of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Łukasz M Szewczyk
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Aleksandra Szlachcic
- Laboratory of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paulina Urban
- Laboratory of Functional and Structural Genomics, Center of New Technologies, University of Warsaw, Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Maciej Winiarski
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Jan A Jabłonka
- Laboratory of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
16
|
Saft M, Gonzales-Portillo B, Park YJ, Cozene B, Sadanandan N, Cho J, Garbuzova-Davis S, Borlongan CV. Stem Cell Repair of the Microvascular Damage in Stroke. Cells 2020; 9:cells9092075. [PMID: 32932814 PMCID: PMC7563611 DOI: 10.3390/cells9092075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is a life-threatening disease that leads to mortality, with survivors subjected to long-term disability. Microvascular damage is implicated as a key pathological feature, as well as a therapeutic target for stroke. In this review, we present evidence detailing subacute diaschisis in a focal ischemic stroke rat model with a focus on blood–brain barrier (BBB) integrity and related pathogenic processes in contralateral brain areas. Additionally, we discuss BBB competence in chronic diaschisis in a similar rat stroke model, highlighting the pathological changes in contralateral brain areas that indicate progressive morphological brain disturbances overtime after stroke onset. With diaschisis closely approximating stroke onset and progression, it stands as a treatment of interest for stroke. Indeed, the use of stem cell transplantation for the repair of microvascular damage has been investigated, demonstrating that bone marrow stem cells intravenously transplanted into rats 48 h post-stroke survive and integrate into the microvasculature. Ultrastructural analysis of transplanted stroke brains reveals that microvessels display a near-normal morphology of endothelial cells and their mitochondria. Cell-based therapeutics represent a new mechanism in BBB and microvascular repair for stroke.
Collapse
Affiliation(s)
| | | | - You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
| | | | | | - Justin Cho
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
| | - Svitlana Garbuzova-Davis
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
- Correspondence: ; Tel.: +813-974-3988
| |
Collapse
|
17
|
Garcia JO, Battelli L, Plow E, Cattaneo Z, Vettel J, Grossman ED. Understanding diaschisis models of attention dysfunction with rTMS. Sci Rep 2020; 10:14890. [PMID: 32913263 PMCID: PMC7483730 DOI: 10.1038/s41598-020-71692-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/27/2020] [Indexed: 01/18/2023] Open
Abstract
Visual attentive tracking requires a balance of excitation and inhibition across large-scale frontoparietal cortical networks. Using methods borrowed from network science, we characterize the induced changes in network dynamics following low frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) as an inhibitory noninvasive brain stimulation protocol delivered over the intraparietal sulcus. When participants engaged in visual tracking, we observed a highly stable network configuration of six distinct communities, each with characteristic properties in node dynamics. Stimulation to parietal cortex had no significant impact on the dynamics of the parietal community, which already exhibited increased flexibility and promiscuity relative to the other communities. The impact of rTMS, however, was apparent distal from the stimulation site in lateral prefrontal cortex. rTMS temporarily induced stronger allegiance within and between nodal motifs (increased recruitment and integration) in dorsolateral and ventrolateral prefrontal cortex, which returned to baseline levels within 15 min. These findings illustrate the distributed nature by which inhibitory rTMS perturbs network communities and is preliminary evidence for downstream cortical interactions when using noninvasive brain stimulation for behavioral augmentations.
Collapse
Affiliation(s)
- Javier O Garcia
- US CCDC Army Research Laboratory, 459 Mulberry Pt Rd., Aberdeen Proving Ground, MD, 21005, USA. .,University of Pennsylvania, Philadelphia, PA, USA.
| | - Lorella Battelli
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Via Bettini 31, 38068, Rovereto, TN, Italy.,Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ela Plow
- Department of Biomedical Engineering and Department of Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, 20126, Milan, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Jean Vettel
- US CCDC Army Research Laboratory, 459 Mulberry Pt Rd., Aberdeen Proving Ground, MD, 21005, USA.,University of Pennsylvania, Philadelphia, PA, USA.,University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Emily D Grossman
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
18
|
von Bieberstein L, van Niftrik CHB, Sebök M, El Amki M, Piccirelli M, Stippich C, Regli L, Luft AR, Fierstra J, Wegener S. Crossed Cerebellar Diaschisis Indicates Hemodynamic Compromise in Ischemic Stroke Patients. Transl Stroke Res 2020; 12:39-48. [PMID: 32506367 PMCID: PMC7803723 DOI: 10.1007/s12975-020-00821-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 12/02/2022]
Abstract
Crossed cerebellar diaschisis (CCD) in internal carotid artery (ICA) stroke refers to attenuated blood flow and energy metabolism in the contralateral cerebellar hemisphere. CCD is associated with an interruption of cerebro-cerebellar tracts, but the precise mechanism is unknown. We hypothesized that in patients with ICA occlusions, CCD might indicate severe hemodynamic impairment in addition to tissue damage. Duplex sonography and clinical data from stroke patients with unilateral ICAO who underwent blood oxygen-level-dependent MRI cerebrovascular reserve (BOLD-CVR) assessment were analysed. The presence of CCD (either CCD+ or CCD−) was inferred from BOLD-CVR. We considered regions with negative BOLD-CVR signal as areas suffering from hemodynamic steal. Twenty-five patients were included (11 CCD+ and 14 CCD−). Stroke deficits on admission and at 3 months were more severe in the CCD+ group. While infarct volumes were similar, CCD+ patients had markedly larger BOLD steal volumes than CCD− patients (median [IQR] 122.2 [111] vs. 11.6 [50.6] ml; p < 0.001). Furthermore, duplex revealed higher peak-systolic flow velocities in the intracranial collateral pathways. Strikingly, posterior cerebral artery (PCA)-P2 velocities strongly correlated with the National Institute of Health Stroke Scale on admission and BOLD-CVR steal volume. In patients with strokes due to ICAO, the presence of CCD indicated hemodynamic impairment with larger BOLD-defined steal volume and higher flow in the ACA/PCA collateral system. Our data support the concept of a vascular component of CCD as an indicator of hemodynamic failure in patients with ICAO.
Collapse
Affiliation(s)
- Lita von Bieberstein
- Dept. of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | | | - Martina Sebök
- Dept. of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Mohamad El Amki
- Dept. of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Marco Piccirelli
- Dept. of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zürich, Switzerland
| | - Christoph Stippich
- Dept. of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zürich, Switzerland
| | - Luca Regli
- Dept. of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Andreas R Luft
- Dept. of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - Jorn Fierstra
- Dept. of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Susanne Wegener
- Dept. of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
| |
Collapse
|
19
|
Meyer M, Juenemann M, Braun T, Schirotzek I, Tanislav C, Engelhard K, Schramm P. Impaired Cerebrovascular Autoregulation in Large Vessel Occlusive Stroke after Successful Mechanical Thrombectomy: A Prospective Cohort Study. J Stroke Cerebrovasc Dis 2020; 29:104596. [PMID: 31902644 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104596] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Successful thrombectomy improves morbidity and mortality after stroke. The present prospective, observational cohort study investigated a potential correlation between the successful restoration of tissue perfusion by mechanical thrombectomy and intact cerebrovascular autoregulation (CA). OBJECTIVE Status of CA in patients with large vessel occlusive stroke after thrombectomy. METHODS After thrombectomy CA was measured using transcranial Doppler ultrasound. For this purpose a moving correlation index (Mxa) based on spontaneous arterial blood pressure fluctuations and corresponding cerebral blood flow velocity changes was calculated. CA impairment was defined by Mxa values more than .3. RESULTS Twenty patients with an acute occlusion of the middle cerebral artery or distal internal carotid artery were included. A successful recanalization of the occluded vessel via interventional thrombectomy was achieved in 10 of these patients (successful recanalization group), while in 10 patients mechanical recanalization failed or could not be applied (no recanalization group). Mean Mxa at stroke side was .58 ± .21 Table 2a in patients with successful intervention. At the unaffected hemisphere Mxa was .50 ± .20 Table 2a in successful recanalization group and .45 ± .24 Table 2b in no recanalization group without statistically significant differences. Based on the previously defined Mxa cut off more than .3, CA impairment was observable in all successful recanalized patients and in 8 of 10 patients with unsuccessful interventional treatment. CONCLUSIONS These results suggest that brain perfusion may be affected due to impaired CA even after successful mechanical thrombectomy. Therefore, a tight blood pressure management is of great importance in post-thrombectomy stroke treatment to avoid cerebral hypo- and hyperperfusion.
Collapse
Affiliation(s)
- Marco Meyer
- Department of Geriatrics, Jung-Stilling Hospital Siegen, Siegen, Germany.
| | - Martin Juenemann
- Department of Neurology, University hospital Giessen and Marburg location Giessen, Giessen, Germany
| | - Tobias Braun
- Department of Neurology, University hospital Giessen and Marburg location Giessen, Giessen, Germany
| | - Ingo Schirotzek
- Department of Neurology, University hospital Giessen and Marburg location Giessen, Giessen, Germany
| | - Christian Tanislav
- Department of Geriatrics, Jung-Stilling Hospital Siegen, Siegen, Germany
| | - Kristin Engelhard
- Department of Anesthesiology, Johannes Gutenberg-University, University medical hospital Mainz, Mainz, Germany
| | - Patrick Schramm
- Department of Anesthesiology, Johannes Gutenberg-University, University medical hospital Mainz, Mainz, Germany
| |
Collapse
|
20
|
Demyanenko SV, Dzreyan VA, Neginskaya MA, Uzdensky AB. Expression of Histone Deacetylases HDAC1 and HDAC2 and Their Role in Apoptosis in the Penumbra Induced by Photothrombotic Stroke. Mol Neurobiol 2019; 57:226-238. [PMID: 31493239 DOI: 10.1007/s12035-019-01772-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
In ischemic stroke, vascular occlusion rapidly induces tissue infarct. Over the ensuing hours, damage spreads to adjacent tissue and forms transition zone (penumbra), which is potentially salvageable. Epigenetic regulation of chromatin structure controls gene expression and protein synthesis. We studied the expression of histone deacetylases HDAC1 and HDAC2 in the penumbra at 4 or 24 h after photothrombotic stroke (PTS) in the rat brain cortex. PTS increased the expression of HDAC1 and HDAC2 in penumbra and caused the redistribution of HDAC1 but not HDAC2 from the neuronal nuclei to cytoplasm. In astrocytes, HDAC1 expression and localization did not change. In neurons, HDAC2 localized exclusively in nuclei, but in astrocytes, it was also observed in processes. PTS induced neuronal apoptosis in the penumbra. TUNEL-stained apoptotic neurons co-localized with HDAC2 but not HDAC1. These data suggest that HDAC2 may represent the potential target for anti-stroke therapy and its selective inhibition may be a promising strategy for the protection of the penumbra tissue after ischemic stroke.
Collapse
Affiliation(s)
- S V Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, Russia, 344090
| | - V A Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, Russia, 344090
| | - M A Neginskaya
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, Russia, 344090
| | - A B Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, Russia, 344090.
| |
Collapse
|
21
|
Lu Q, Huang G, Chen L, Li W, Liang Z. Structural and functional reorganization following unilateral internal capsule infarction contribute to neurological function recovery. Neuroradiology 2019; 61:1181-1190. [PMID: 31399852 DOI: 10.1007/s00234-019-02278-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/31/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE To investigate proliferative reorganization in the bilateral corticospinal tract (CST) and functional reorganization in the sensorimotor network (SMN) after internal capsule stroke, and to examine the significance of this reorganization. METHODS We recruited 17 patients with first-onset acute stroke (16 male, 1 female, mean age 52 ± 10 years) and 17 age- and sex-matched healthy controls. We excluded patients aged < 18 or > 65 years and those with lesions outside the unilateral internal capsule. All subjects underwent diffusion tensor imaging and resting-state functional MRI on days 7, 30, and 90 from symptom onset. We measured fractional anisotropy (FA) in the CST, interhemispheric functional connectivity (FC) within the SMN, and pre-MRI clinical scores, including the National Institutes of Health Stroke Scale (NIHSS), Barthel Index (BI), and Fugl-Meyer (FM). Correlations among the changes in FA, FC, and clinical scores were analyzed. RESULTS From day 7 to 90 after stroke, FA in the bilateral CST increased (ipsilesional side, Pinternal capsule = 0.009, Pcentrum semiovale = 0.001; contralesional side, Pinternal capsule = 0.006, Pcentrum semiovale = 0.017), as did FC (P < 0.05); NIHSS scores decreased (P < 0.05), while FM and BI progressively increased (P < 0.05). Increased FA in bilateral CST was negatively correlated with decreased NIHSS scores. Increased FA in only the ipsilesional side was positively correlated with increased FM. Increased FC was positively correlated only with increased BI. CONCLUSION Proliferative reorganization in the CST and functional reorganization in the SMN support and promote neurological functional recovery after internal capsule infarction.
Collapse
Affiliation(s)
- Qiuhong Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, China
| | - Gelun Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, China
| | - Li Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, China
| | - Wenmei Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, China
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, China.
| |
Collapse
|
22
|
Bayrak Ş, Khalil AA, Villringer K, Fiebach JB, Villringer A, Margulies DS, Ovadia-Caro S. The impact of ischemic stroke on connectivity gradients. Neuroimage Clin 2019; 24:101947. [PMID: 31376644 PMCID: PMC6676042 DOI: 10.1016/j.nicl.2019.101947] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 11/19/2022]
Abstract
The functional organization of the brain can be represented as a low-dimensional space that reflects its macroscale hierarchy. The dimensions of this space, described as connectivity gradients, capture the similarity of areas' connections along a continuous space. Studying how pathological perturbations with known effects on functional connectivity affect these connectivity gradients provides support for their biological relevance. Previous work has shown that localized lesions cause widespread functional connectivity alterations in structurally intact areas, affecting a network of interconnected regions. By using acute stroke as a model of the effects of focal lesions on the connectome, we apply the connectivity gradient framework to depict how functional reorganization occurs throughout the brain, unrestricted by traditional definitions of functional network boundaries. We define a three-dimensional connectivity space template based on functional connectivity data from healthy controls. By projecting lesion locations into this space, we demonstrate that ischemic strokes result in dimension-specific alterations in functional connectivity over the first week after symptom onset. Specifically, changes in functional connectivity were captured along connectivity Gradients 1 and 3. The degree of functional connectivity change was associated with the distance from the lesion along these connectivity gradients (a measure of functional similarity) regardless of the anatomical distance from the lesion. Together, these results provide support for the biological validity of connectivity gradients and suggest a novel framework to characterize connectivity alterations after stroke.
Collapse
Affiliation(s)
- Şeyma Bayrak
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Ahmed A Khalil
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kersten Villringer
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen B Fiebach
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany; Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique (CNRS) UMR 7225, Frontlab, Institut du Cerveau et de la Moelle épinière, Paris, France.
| | - Smadar Ovadia-Caro
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Neurology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Contralateral Brain Atrophy in Conservatively Treated Primary Intracerebral Hemorrhage. World Neurosurg 2019; 128:e391-e396. [PMID: 31029818 DOI: 10.1016/j.wneu.2019.04.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND In patients with intracerebral hemorrhage (ICH), brain volume loss can occur in the hemisphere ipsilateral to the hematoma. However, contralateral hemispheric volume change after ICH is not well known. The present study aimed to investigate contralateral brain volume changes in patients with ICH who had not undergone surgery. METHODS Of the 2213 patients with ICH admitted to our hospital between January 2010 and December 2017, 46 patients without surgical intervention were included in the present study. We measured contralateral hemispheric brain volume in the axial images of brain computed tomography at the time of ICH onset and after 12 months. We analyzed the relationship between various factors and volume changes in the contralateral hemisphere. RESULTS The mean change percentage between the initial and follow-up contralateral parenchyma volume was 96.84%. The average volume decreased by 3.16% (P = 0.001). Univariate and multivariate logistic regression models revealed no significant factors associated with contralateral brain volume loss. Kruskal-Wallis test and Mann-Whitney U test showed no statistical significance (P = 0.824, P = 0.122) between ICH volume groups. CONCLUSIONS Contralateral parenchymal volumes were significantly decreased at follow-up brain computed tomography scanning; these changes may provide important clinical information on the remote effect of focal lesion and symptoms in the course of ICH treatment. However, further investigation is required to determine the mechanisms underlying these volume changes.
Collapse
|
24
|
Lowrey CR, Bourke TC, Bagg SD, Dukelow SP, Scott SH. A postural unloading task to assess fast corrective responses in the upper limb following stroke. J Neuroeng Rehabil 2019; 16:16. [PMID: 30691482 PMCID: PMC6350318 DOI: 10.1186/s12984-019-0483-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023] Open
Abstract
Background Robotic technologies to measure human behavior are emerging as a new approach to assess brain function. Recently, we developed a robot-based postural Load Task to assess corrective responses to mechanical disturbances to the arm and found impairments in many participants with stroke compared to a healthy cohort (Bourke et al, J NeuroEngineering Rehabil 12: 7, 2015). However, a striking feature was the large range and skewed distribution of healthy performance. This likely reflects the use of different strategies across the healthy control sample, making it difficult to identify impairments. Here, we developed an intuitive “Unload Task”. We hypothesized this task would reduce healthy performance variability and improve the detection of impairment following stroke. Methods Performance on the Load and Unload Task in the KINARM exoskeleton robot was directly compared for healthy control (n = 107) and stroke (n = 31) participants. The goal was to keep a cursor representing the hand inside a virtual target and return “quickly and accurately” if the robot applied (or removed) an unexpected load to the arm (0.5–1.5 Nm). Several kinematic parameters quantified performance. Impairment was defined as performance outside the 95% of controls (corrected for age, sex and handedness). Task Scores were calculated using standardized parameter scores reflecting overall task performance. Results The distribution of healthy control performance was smaller and less skewed for the Unload Task compared to the Load Task. Fewer task outliers (outside 99.9 percentile for controls) were removed from the Unload Task (3.7%) compared to the Load Task (7.4%) when developing normative models of performance. Critically, more participants with stroke failed the Unload Task based on Task Score with their affected arm (68%) compared to the Load Task (23%). More impairments were found at the parameter level for the Unload (median = 52%) compared to Load Task (median = 29%). Conclusions The Unload Task provides an improved approach to assess fast corrective responses of the arm. We found that corrective responses are impaired in persons living with stroke, often equally in both arms. Impairments in generating rapid motor corrections may place individuals at greater risk of falls when they move and interact in the environment.
Collapse
Affiliation(s)
- Catherine R Lowrey
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen's University, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.
| | - Teige C Bourke
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen's University, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.,Present Address: Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Stephen D Bagg
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, ON, Canada.,School of Medicine, Queen's University, Kingston, ON, Canada
| | - Sean P Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Stephen H Scott
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen's University, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
25
|
Szaflarski JP, Griffis J, Vannest J, Allendorfer JB, Nenert R, Amara AW, Sung V, Walker HC, Martin AN, Mark VW, Zhou X. A feasibility study of combined intermittent theta burst stimulation and modified constraint-induced aphasia therapy in chronic post-stroke aphasia. Restor Neurol Neurosci 2018; 36:503-518. [DOI: 10.3233/rnn-180812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jerzy P. Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joseph Griffis
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
- Currently at Washington University in St. Louis, St. Louis, MO, USA
| | - Jennifer Vannest
- Cincinnati Children’s Hospital Medical Center, Division of Neurology and Pediatric Neuroimaging Research Consortium, Cincinnati, OH, USA
| | - Jane B. Allendorfer
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rodolphe Nenert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amy W. Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor Sung
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harrison C. Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amber N. Martin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor W. Mark
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaohua Zhou
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
26
|
Nijboer TCW, Winters C, Kollen BJ, Kwakkel G. Impact of clinical severity of stroke on the severity and recovery of visuospatial neglect. PLoS One 2018; 13:e0198755. [PMID: 29966012 PMCID: PMC6028087 DOI: 10.1371/journal.pone.0198755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/24/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND PURPOSE There is growing evidence that visuospatial neglect (VSN) is associated with lower functional performance in other modalities and is not restricted to the lesioned hemisphere alone, and may also affect the non-lesioned hemisphere in severe first-ever strokes. We aimed to investigate the longitudinal association between the severity of VSN, as reflected by the extent of ipsilesional and contralesional spatial attention deficit, and clinical severity of stroke. METHODS This is a secondary data analysis with merged data from two prospective cohort studies. Resulting in 90 patients and 8 longitudinal measurements at 1, 2, 3, 4, 5, 8, 12, and 26 weeks post-stroke onset. A letter cancellation test (LCT) was used as the primary outcome measure to demonstrate presence and severity of VSN. The clinical severity of stroke was classified using the Bamford Classification. RESULTS No significant association between clinical severity and the number of ipsilesional, as well as contralesional, omissions on the LCT was observed. Recovery of VSN at the contralesional hemiplegic, as well as ipsilesional non-hemiplegic side, was only dependent on 'time' as a reflection of spontaneous neurobiological recovery post-stroke. The recovery of the ipsilesional extension of VSN was significantly slower for the total anterior circulation infarct (TACI) group compared to the non-TACI group. CONCLUSIONS Larger strokes have a significant negative impact on recovery of visual attention at the non-hemiplegic side. No clinical determinants that regulate spontaneous time-dependent recovery of VSN were found. While early 'stroke severity' has been regarded as a strong predictor of functional outcome at a group level, other prognostic factors (demographic, stroke related) need to be determined. CLINICAL TRIAL REGISTRATION EXPLICIT-stroke Trial: http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1424 Stroke Intensity Trial: http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1665.
Collapse
Affiliation(s)
- Tanja C. W. Nijboer
- Utrecht University, Experimental Psychology, Utrecht, the Netherlands
- University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, the Netherlands
- Center of Excellence for Rehabilitation Medicine, University Medical Center Utrecht and de Hoogstraat Rehabilitation Center, Utrecht, the Netherlands
- * E-mail:
| | - Caroline Winters
- Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Amsterdam Neuroscience Campus, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Boudewijn J. Kollen
- Department of General Practice, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Amsterdam Neuroscience Campus, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Neurorehabilitation, Centre of Rehabilitation and Rheumatology READE, Amsterdam, The Netherlands
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
27
|
Zhao LR, Willing A. Enhancing endogenous capacity to repair a stroke-damaged brain: An evolving field for stroke research. Prog Neurobiol 2018; 163-164:5-26. [PMID: 29476785 PMCID: PMC6075953 DOI: 10.1016/j.pneurobio.2018.01.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/11/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
Stroke represents a severe medical condition that causes stroke survivors to suffer from long-term and even lifelong disability. Over the past several decades, a vast majority of stroke research targets neuroprotection in the acute phase, while little work has been done to enhance stroke recovery at the later stage. Through reviewing current understanding of brain plasticity, stroke pathology, and emerging preclinical and clinical restorative approaches, this review aims to provide new insights to advance the research field for stroke recovery. Lifelong brain plasticity offers the long-lasting possibility to repair a stroke-damaged brain. Stroke impairs the structural and functional integrity of entire brain networks; the restorative approaches containing multi-components have great potential to maximize stroke recovery by rebuilding and normalizing the stroke-disrupted entire brain networks and brain functioning. The restorative window for stroke recovery is much longer than previously thought. The optimal time for brain repair appears to be at later stage of stroke rather than the earlier stage. It is expected that these new insights will advance our understanding of stroke recovery and assist in developing the next generation of restorative approaches for enhancing brain repair after stroke.
Collapse
Affiliation(s)
- Li-Ru Zhao
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Alison Willing
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
28
|
Kunz WG, Sommer WH, Höhne C, Fabritius MP, Schuler F, Dorn F, Othman AE, Meinel FG, von Baumgarten L, Reiser MF, Ertl-Wagner B, Thierfelder KM. Crossed cerebellar diaschisis in acute ischemic stroke: Impact on morphologic and functional outcome. J Cereb Blood Flow Metab 2017; 37:3615-3624. [PMID: 28084869 PMCID: PMC5669343 DOI: 10.1177/0271678x16686594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Crossed cerebellar diaschisis (CCD) is the phenomenon of hypoperfusion and hypometabolism of the contralateral cerebellar hemisphere caused by dysfunction of the related supratentorial region. Our aim was to analyze its influence on morphologic and functional outcome in acute ischemic stroke. Subjects with stroke caused by a large vessel occlusion of the anterior circulation were selected from an initial cohort of 1644 consecutive patients who underwent multiparametric CT including whole-brain CT perfusion. Two experienced readers evaluated the posterior fossa in terms of CCD absence (CCD-) or presence (CCD+). A total of 156 patients formed the study cohort with 102 patients (65.4%) categorized as CCD- and 54 (34.6%) as CCD+. In linear and logistic regression analyses, no significant association between CCD and final infarction volume (β = -0.440, p = 0.972), discharge mRS ≤ 2 (OR = 1.897, p = 0.320), or 90-day mRS ≤ 2 (OR = 0.531, p = 0.492) was detected. CCD+ patients had larger supratentorial cerebral blood flow deficits (median: 164 ml vs. 115 ml; p = 0.001) compared to CCD-patients. Regarding complications, CCD was associated with a higher rate of parenchymal hematomas (OR = 4.793, p = 0.035). In conclusion, CCD is frequently encountered in acute ischemic stroke caused by large vessel occlusion of the anterior circulation. CCD was associated with the occurrence of parenchymal hematoma in the ipsilateral cerebral infarction but did not prove to significantly influence patient outcome.
Collapse
Affiliation(s)
- Wolfgang G Kunz
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Wieland H Sommer
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Christopher Höhne
- 2 Department of Neurology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Matthias P Fabritius
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Felix Schuler
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Franziska Dorn
- 3 Department of Neuroradiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Ahmed E Othman
- 4 Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen, Germany
| | - Felix G Meinel
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Louisa von Baumgarten
- 2 Department of Neurology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Maximilian F Reiser
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Birgit Ertl-Wagner
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Kolja M Thierfelder
- 1 Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| |
Collapse
|
29
|
Inatomi Y, Nakajima M, Yonehara T, Ando Y. Ipsilateral hemiparesis in ischemic stroke patients. Acta Neurol Scand 2017; 136:31-40. [PMID: 27666559 DOI: 10.1111/ane.12690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate clinical characteristics of ipsilateral hemiparesis in ischemic stroke patients. MATERIALS AND METHODS Patients with acute ischemic stroke were prospectively examined. Ipsilateral hemiparesis was defined as hemiparesis ipsilateral to recent stroke lesions. Patients with ipsilateral hemiparesis were examined with functional neuroimaging studies including transcranial magnetic stimulation (TMS) and functional MRI. RESULTS Of 8360 patients, ipsilateral hemiparesis was detected in 14 patients (0.17%, mean age 71±6 years, eight men). Lesions responsible for the recent strokes were located in the frontal cortex in three patients, corona radiata in seven, internal capsule in one, and pons in three. These lesions were located along the typical route of the corticospinal tract in all but one patient. Thirteen patients also had a past history of stroke contralateral to the recent lesions; 12 of these had motor deficits contralateral to past stroke lesions. During TMS, ipsilateral magnetic evoked potentials were evoked in two of seven patients and contralateral potentials were evoked in all seven. Functional MRI activated cerebral hemispheres ipsilaterally in eight of nine patients and contralaterally in all nine. CONCLUSIONS Most patients with ipsilateral hemiparesis had a past history of stroke contralateral to the recent one, resulting in motor deficits contralateral to the earlier lesions. Moreover, functional neuroimaging findings indicated an active crossed corticospinal tract in all of the examined patients. Both findings suggest the contribution of the uncrossed corticospinal tract contralateral to stroke lesions as a post-stroke compensatory motor system.
Collapse
Affiliation(s)
- Y. Inatomi
- Department of Neurology; Saiseikai Kumamoto Hospital; Kumamoto Japan
| | - M. Nakajima
- Department of Neurology; Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - T. Yonehara
- Department of Neurology; Saiseikai Kumamoto Hospital; Kumamoto Japan
| | - Y. Ando
- Department of Neurology; Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| |
Collapse
|
30
|
Carone D, Licenik R, Suri S, Griffanti L, Filippini N, Kennedy J. Impact of automated ICA-based denoising of fMRI data in acute stroke patients. Neuroimage Clin 2017; 16:23-31. [PMID: 28736698 PMCID: PMC5508492 DOI: 10.1016/j.nicl.2017.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/15/2017] [Accepted: 06/29/2017] [Indexed: 12/18/2022]
Abstract
Different strategies have been developed using Independent Component Analysis (ICA) to automatically de-noise fMRI data, either focusing on removing only certain components (e.g. motion-ICA-AROMA, Pruim et al., 2015a) or using more complex classifiers to remove multiple types of noise components (e.g. FIX, Salimi-Khorshidi et al., 2014 Griffanti et al., 2014). However, denoising data obtained in an acute setting might prove challenging: the presence of multiple noise sources may not allow focused strategies to clean the data enough and the heterogeneity in the data may be so great to critically undermine complex approaches. The purpose of this study was to explore what automated ICA based approach would better cope with these limitations when cleaning fMRI data obtained from acute stroke patients. The performance of a focused classifier (ICA-AROMA) and a complex classifier (FIX) approaches were compared using data obtained from twenty consecutive acute lacunar stroke patients using metrics determining RSN identification, RSN reproducibility, changes in the BOLD variance, differences in the estimation of functional connectivity and loss of temporal degrees of freedom. The use of generic-trained FIX resulted in misclassification of components and significant loss of signal (< 80%), and was not explored further. Both ICA-AROMA and patient-trained FIX based denoising approaches resulted in significantly improved RSN reproducibility (p < 0.001), localized reduction in BOLD variance consistent with noise removal, and significant changes in functional connectivity (p < 0.001). Patient-trained FIX resulted in higher RSN identifiability (p < 0.001) and wider changes both in the BOLD variance and in functional connectivity compared to ICA-AROMA. The success of ICA-AROMA suggests that by focusing on selected components the full automation can deliver meaningful data for analysis even in population with multiple sources of noise. However, the time invested to train FIX with appropriate patient data proved valuable, particularly in improving the signal-to-noise ratio.
Collapse
Affiliation(s)
- D. Carone
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Laboratory of Experimental Stroke Research, Department of Surgery and Translational Medicine, University of Milano Bicocca, Milan Center of Neuroscience, Monza, Italy
| | - R. Licenik
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Social Medicine and Public Health, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
| | - S. Suri
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - L. Griffanti
- Oxford Centre of Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - N. Filippini
- Nuffield Department of Clinical Neurosciences, West Wing level 6, JR hospital, Oxford, United Kingdom
| | - J. Kennedy
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Nijboer TCW, Buma FE, Winters C, Vansteensel MJ, Kwakkel G, Ramsey NF, Raemaekers M. No changes in functional connectivity during motor recovery beyond 5 weeks after stroke; A longitudinal resting-state fMRI study. PLoS One 2017; 12:e0178017. [PMID: 28594850 PMCID: PMC5464555 DOI: 10.1371/journal.pone.0178017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/25/2017] [Indexed: 11/19/2022] Open
Abstract
Spontaneous motor recovery after stroke appears to be associated with structural and functional changes in the motor network. The aim of the current study was to explore time-dependent changes in resting-state (rs) functional connectivity in motor-impaired stroke patients, using rs-functional MRI at 5 weeks and 26 weeks post-stroke onset. For this aim, 13 stroke patients from the EXPLICIT-stroke Trial and age and gender-matched healthy control subjects were included. Patients' synergistic motor control of the paretic upper-limb was assessed with the upper extremity section of the Fugl-Meyer Assessment (FMA-UE) within 2 weeks, and at 5 and 26 weeks post-stroke onset. Results showed that the ipsilesional rs-functional connectivity between motor areas was lower compared to the contralesional rs-functional connectivity, but this difference did not change significantly over time. No relations were observed between changes in rs-functional connectivity and upper-limb motor recovery, despite changes in upper-limb function as measured with the FMA-UE. Last, overall rs-functional connectivity was comparable for patients and healthy control subjects. To conclude, the current findings did not provide evidence that in moderately impaired stroke patients the lower rs-functional connectivity of the ipsilesional hemisphere changed over time.
Collapse
Affiliation(s)
- Tanja C. W. Nijboer
- Utrecht University, Department of Experimental Psychology, Helmholtz Institute, Utrecht, The Netherlands
- Center of Excellence for Rehabilitation Medicine, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| | - Floor E. Buma
- Center of Excellence for Rehabilitation Medicine, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Amsterdam Rehabilitation Research Center, Reade, Amsterdam, The Netherlands
| | - Caroline Winters
- Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | | | - Gert Kwakkel
- Amsterdam Rehabilitation Research Center, Reade, Amsterdam, The Netherlands
- Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, United States of America
| | - Nick F. Ramsey
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mathijs Raemaekers
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
32
|
Kim JH, Kim YS, Kim SH, Kim SD, Park JY, Kim TS, Joo SP. Contralateral Hemispheric Brain Atrophy After Primary Intracerebral Hemorrhage. World Neurosurg 2017; 102:56-64. [DOI: 10.1016/j.wneu.2017.02.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/18/2022]
|
33
|
Le Prieult F, Thal SC, Engelhard K, Imbrosci B, Mittmann T. Acute Cortical Transhemispheric Diaschisis after Unilateral Traumatic Brain Injury. J Neurotrauma 2017; 34:1097-1110. [DOI: 10.1089/neu.2016.4575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Florie Le Prieult
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Serge C. Thal
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Kristin Engelhard
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Barbara Imbrosci
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Mainz, Germany
- Current affiliation for B.I.: Neurowissenschaftliches Forschungszentrum, University Medical Center of Charité Berlin, Campus Charité Mitte, Berlin, Germany
| | - Thomas Mittmann
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
34
|
Winters C, van Wegen EEH, Daffertshofer A, Kwakkel G. Generalizability of the Maximum Proportional Recovery Rule to Visuospatial Neglect Early Poststroke. Neurorehabil Neural Repair 2016; 31:334-342. [PMID: 27913798 DOI: 10.1177/1545968316680492] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Proportional recovery of upper-extremity motor function and aphasia after stroke may suggest common mechanisms for spontaneous neurobiological recovery. This study aimed to investigate if the proportional recovery rule also applies to visuospatial neglect (VSN) in right-hemispheric first-ever ischemic stroke patients and explored the possible common underlying mechanisms. METHODS Patients with upper-limb paresis and VSN were included. Recovery defined as the change in Letter Cancellation Test (LCT) score at ~8 days and 6 months poststroke. Potential recovery defined as LCTmax-LCTinitial = 20 - LCTinitial. Hierarchical clustering separated fitters and nonfitters of the prediction rule. A cutoff value on LCTmax-LCTinitial was determined. The change in LCT and Fugl-Meyer Assessment Upper Extremity was expressed as a percentage of the total possible score to investigate the communality of proportional recovery. RESULTS Out of 90 patients, 80 displayed proportional recovery of VSN (ie, "fitters," 0.97; 95% CI = 0.82-1.12). All patients who did not follow the prediction rule for VSN (ie, "nonfitters") had ≥15 missing O's at baseline and failed to show proportional recovery of the upper limb. CONCLUSIONS This study shows that the proportional recovery rule also applies to patients with VSN poststroke. Patients who fail to show proportional recovery of VSN are the same patients who fail to show proportional recovery of the upper limb. These findings support the idea of common intrahemispheric mechanisms underlying spontaneous neurobiological recovery in the first months poststroke. Future studies should investigate the prognostic clinical and neurobiological markers of these subgroups.
Collapse
Affiliation(s)
- Caroline Winters
- 1 Department of Rehabilitation Medicine, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands.,2 Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin E H van Wegen
- 1 Department of Rehabilitation Medicine, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands.,2 Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Andreas Daffertshofer
- 3 Department of Human Movement Sciences, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Gert Kwakkel
- 1 Department of Rehabilitation Medicine, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands.,2 Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,4 Amsterdam Rehabilitation Research Center, Reade, Amsterdam, The Netherlands.,5 Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA
| |
Collapse
|
35
|
Robson H, Specht K, Beaumont H, Parkes LM, Sage K, Lambon Ralph MA, Zahn R. Arterial spin labelling shows functional depression of non-lesion tissue in chronic Wernicke's aphasia. Cortex 2016; 92:249-260. [PMID: 28525836 PMCID: PMC5480775 DOI: 10.1016/j.cortex.2016.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/15/2016] [Accepted: 11/02/2016] [Indexed: 11/23/2022]
Abstract
Behavioural impairment post-stroke is a consequence of structural damage and altered functional network dynamics. Hypoperfusion of intact neural tissue is frequently observed in acute stroke, indicating reduced functional capacity of regions outside the lesion. However, cerebral blood flow (CBF) is rarely investigated in chronic stroke. This study investigated CBF in individuals with chronic Wernicke's aphasia (WA) and examined the relationship between lesion, CBF and neuropsychological impairment. Arterial spin labelling CBF imaging and structural MRIs were collected in 12 individuals with chronic WA and 13 age-matched control participants. Joint independent component analysis (jICA) investigated the relationship between structural lesion and hypoperfusion. Partial correlations explored the relationship between lesion, hypoperfusion and language measures. Joint ICA revealed significant differences between the control and WA groups reflecting a large area of structural lesion in the left posterior hemisphere and an associated area of hypoperfusion extending into grey matter surrounding the lesion. Small regions of remote cortical hypoperfusion were observed, ipsilateral and contralateral to the lesion. Significant correlations were observed between the neuropsychological measures (naming, repetition, reading and semantic association) and the jICA component of interest in the WA group. Additional ROI analyses found a relationship between perfusion surrounding the core lesion and the same neuropsychological measures. This study found that core language impairments in chronic WA are associated with a combination of structural lesion and abnormal perfusion in non-lesioned tissue. This indicates that post-stroke impairments are due to a wider disruption of neural function than observable on structural T1w MRI.
Collapse
Affiliation(s)
- Holly Robson
- Department of Psychology and Clinical Language Sciences, University of Reading, UK.
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Norway; Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | | | - Laura M Parkes
- Centre for Imaging Science, Institute of Population Health, University of Manchester, UK
| | - Karen Sage
- Centre for Health and Social Care Research, Sheffield Hallam University, Sheffield, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit, School Psychological Sciences, University of Manchester, UK
| | - Roland Zahn
- Department of Psychological Medicine, Kings College London, UK
| |
Collapse
|
36
|
Kim BR, Moon WJ, Kim H, Jung E, Lee J. Association of Dysphagia With Supratentorial Lesions in Patients With Middle Cerebral Artery Stroke. Ann Rehabil Med 2016; 40:637-46. [PMID: 27606270 PMCID: PMC5012975 DOI: 10.5535/arm.2016.40.4.637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/16/2015] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE To determine the supratentorial area associated with poststroke dysphagia, we assessed the diffusion tensor images (DTI) in subacute stroke patients with supratentorial lesions. METHODS We included 31 patients with a first episode of infarction in the middle cerebral artery territory. Each subject underwent brain DTI as well as a videofluoroscopic swallowing study (VFSS) and patients divided were into the dysphagia and non-dysphagia groups. Clinical dysphagia scale (CDS) scores were compared between the two groups. The corticospinal tract volume (TV), fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were calculated for 11 regions of interest in the supratentorial area-primary motor cortex, primary somatosensory cortex, supplementary motor cortex, anterior cingulate cortex, orbitofrontal cortex, parieto-occipital cortex, insular cortex, posterior limb of the internal capsule, thalamus, and basal ganglia (putamen and caudate nucleus). DTI parameters were compared between the two groups. RESULTS Among the 31 subjects, 17 were diagnosed with dysphagia by VFSS. Mean TVs were similar across the two groups. Significant inter-group differences were observed in two DTI values: the FA value in the contra-lesional primary motor cortex and the ADC value in the bilateral posterior limbs of the internal capsule (all p<0.05). CONCLUSION The FA value in the primary motor cortex on the contra-lesional side and the ADC value in the bilateral PLIC can be associated with dysphagia in middle cerebral artery stroke.
Collapse
Affiliation(s)
- Bo-Ram Kim
- Department of Rehabilitation Medicine, Konkuk University School of Medicine & Konkuk University Medical Center, Seoul, Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University School of Medicine & Konkuk University Medical Center, Seoul, Korea
| | - Hyuntae Kim
- Department of Rehabilitation Medicine, Konkuk University School of Medicine & Konkuk University Medical Center, Seoul, Korea
| | - Eunhwa Jung
- Department of Rehabilitation Medicine, Konkuk University School of Medicine & Konkuk University Medical Center, Seoul, Korea
| | - Jongmin Lee
- Department of Rehabilitation Medicine, Konkuk University School of Medicine & Konkuk University Medical Center, Seoul, Korea
| |
Collapse
|
37
|
Garbuzova-Davis S, Haller E, Tajiri N, Thomson A, Barretta J, Williams SN, Haim ED, Qin H, Frisina-Deyo A, Abraham JV, Sanberg PR, Van Loveren H, Borlongan CV. Blood-Spinal Cord Barrier Alterations in Subacute and Chronic Stages of a Rat Model of Focal Cerebral Ischemia. J Neuropathol Exp Neurol 2016; 75:673-88. [PMID: 27283328 DOI: 10.1093/jnen/nlw040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously demonstrated blood-brain barrier impairment in remote contralateral brain areas in rats at 7 and 30 days after transient middle cerebral artery occlusion (tMCAO), indicating ischemic diaschisis. Here, we focused on effects of subacute and chronic focal cerebral ischemia on the blood-spinal cord barrier (BSCB). We observed BSCB damage on both sides of the cervical spinal cord in rats at 7 and 30 days post-tMCAO. Major BSCB ultrastructural changes in spinal cord gray and white matter included vacuolated endothelial cells containing autophagosomes, pericyte degeneration with enlarged mitochondria, astrocyte end-feet degeneration and perivascular edema; damaged motor neurons, swollen axons with unraveled myelin in ascending and descending tracts and astrogliosis were also observed. Evans Blue dye extravasation was maximal at 7 days. There was immunofluorescence evidence of reduction of microvascular expression of tight junction occludin, upregulation of Beclin-1 and LC3B immunoreactivities at 7 days and a reduction of the latter at 30 days post-ischemia. These novel pathological alterations on the cervical spinal cord microvasculature in rats after tMCAO suggest pervasive and long-lasting BSCB damage after focal cerebral ischemia, and that spinal cord ischemic diaschisis should be considered in the pathophysiology and therapeutic approaches in patients with ischemic cerebral infarction.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS).
| | - Edward Haller
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Naoki Tajiri
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Avery Thomson
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Jennifer Barretta
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Stephanie N Williams
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Eithan D Haim
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Hua Qin
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Aric Frisina-Deyo
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Jerry V Abraham
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Paul R Sanberg
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Harry Van Loveren
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| | - Cesario V Borlongan
- From the Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, NT, AT, JB, SNW, EDH, HQ, AF-D, JVA, PRS, CVB); Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS, HVL, CVB); Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D); Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida (SG-D, PRS); Department of Integrative Biology, University of South Florida, Tampa, Florida (EH); Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida (PRS)
| |
Collapse
|
38
|
Liu H, Tian T, Qin W, Li K, Yu C. Contrasting Evolutionary Patterns of Functional Connectivity in Sensorimotor and Cognitive Regions after Stroke. Front Behav Neurosci 2016; 10:72. [PMID: 27147993 PMCID: PMC4826870 DOI: 10.3389/fnbeh.2016.00072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/29/2016] [Indexed: 01/18/2023] Open
Abstract
The human brain is a highly connected and integrated system. Local stroke lesions can evoke reorganization in multiple functional networks. However, the temporally-evolving patterns in different functional networks after stroke remain unclear. Here, we aimed to investigate the dynamic evolutionary patterns of functional connectivity density (FCD) and strength (FCS) of the brain after subcortical stroke involving in the motor pathways. Eight male patients with left subcortical infarctions were longitudinally examined at five time points within a year. Voxel-wise FCD analysis was used to identify brain regions with significant dynamic changes. The temporally-evolving patterns in FCD and FCS in these regions were analyzed by a mixed-effects model. Associations between these measures and clinical variables were also explored in stroke patients. Voxel-wise analysis revealed dynamic FCD changes only in the sensorimotor and cognitive regions after stroke. FCD and FCS in the sensorimotor regions decreased initially, as compared to controls, remaining at lower levels for months, and finally returned to normal levels. In contrast, FCD and FCS in the cognitive regions increased initially, remaining at higher levels for months, and finally returned to normal levels. Most of these measures were correlated with patients’ motor scores. These findings suggest a network-specific dynamic functional reorganization after stroke. Besides the sensorimotor regions, the spared cognitive regions may also play an important role in stroke recovery.
Collapse
Affiliation(s)
- Huaigui Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital Tianjin, China
| | - Tian Tian
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General HospitalTianjin, China; Department of Radiology, Xuanwu Hospital of Capital Medical UniversityBeijing, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital of Capital Medical University Beijing, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General HospitalTianjin, China; Department of Radiology, Xuanwu Hospital of Capital Medical UniversityBeijing, China
| |
Collapse
|
39
|
Frontoparietal white matter integrity predicts haptic performance in chronic stroke. NEUROIMAGE-CLINICAL 2015; 10:129-39. [PMID: 26759788 PMCID: PMC4683424 DOI: 10.1016/j.nicl.2015.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/06/2015] [Accepted: 11/11/2015] [Indexed: 11/21/2022]
Abstract
Frontoparietal white matter supports information transfer between brain areas involved in complex haptic tasks such as somatosensory discrimination. The purpose of this study was to gain an understanding of the relationship between microstructural integrity of frontoparietal network white matter and haptic performance in persons with chronic stroke and to compare frontoparietal network integrity in participants with stroke and age matched control participants. Nineteen individuals with stroke and 16 controls participated. Haptic performance was quantified using the Hand Active Sensation Test (HASTe), an 18-item match-to-sample test of weight and texture discrimination. Three tesla MRI was used to obtain diffusion-weighted and high-resolution anatomical images of the whole brain. Probabilistic tractography was used to define 10 frontoparietal tracts total; Four intrahemispheric tracts measured bilaterally 1) thalamus to primary somatosensory cortex (T–S1), 2) thalamus to primary motor cortex (T–M1), 3) primary to secondary somatosensory cortex (S1 to SII) and 4) primary somatosensory cortex to middle frontal gyrus (S1 to MFG) and, 2 interhemispheric tracts; S1–S1 and precuneus interhemispheric. A control tract outside the network, the cuneus interhemispheric tract, was also examined. The diffusion metrics fractional anisotropy (FA), mean diffusivity (MD), axial (AD) and radial diffusivity (RD) were quantified for each tract. Diminished FA and elevated MD values are associated with poorer white matter integrity in chronic stroke. Nine of 10 tracts quantified in the frontoparietal network had diminished structural integrity poststroke compared to the controls. The precuneus interhemispheric tract was not significantly different between groups. Principle component analysis across all frontoparietal white matter tract MD values indicated a single factor explained 47% and 57% of the variance in tract mean diffusivity in stroke and control groups respectively. Age strongly correlated with the shared variance across tracts in the control, but not in the poststroke participants. A moderate to good relationship was found between ipsilesional T–M1 MD and affected hand HASTe score (r = − 0.62, p = 0.006) and less affected hand HASTe score (r = − 0.53, p = 0.022). Regression analysis revealed approximately 90% of the variance in affected hand HASTe score was predicted by the white matter integrity in the frontoparietal network (as indexed by MD) in poststroke participants while 87% of the variance in HASTe score was predicted in control participants. This study demonstrates the importance of frontoparietal white matter in mediating haptic performance and specifically identifies that T–M1 and precuneus interhemispheric tracts may be appropriate targets for piloting rehabilitation interventions, such as noninvasive brain stimulation, when the goal is to improve poststroke haptic performance. Poststroke participants had a wide range of haptic performance, the majority were impaired. A good relationship was found between ipsilesional Thal–M1 integrity and poststroke haptics. Around 90% of haptic performance was predicted by frontoparietal white matter integrity. Precuneus interhemispheric tract integrity was a strong predictor of haptic performance. Diminished integrity across the frontoparietal network suggests a general stroke-related factor.
Collapse
|
40
|
Rabiller G, He JW, Nishijima Y, Wong A, Liu J. Perturbation of Brain Oscillations after Ischemic Stroke: A Potential Biomarker for Post-Stroke Function and Therapy. Int J Mol Sci 2015; 16:25605-40. [PMID: 26516838 PMCID: PMC4632818 DOI: 10.3390/ijms161025605] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 01/08/2023] Open
Abstract
Brain waves resonate from the generators of electrical current and propagate across brain regions with oscillation frequencies ranging from 0.05 to 500 Hz. The commonly observed oscillatory waves recorded by an electroencephalogram (EEG) in normal adult humans can be grouped into five main categories according to the frequency and amplitude, namely δ (1-4 Hz, 20-200 μV), θ (4-8 Hz, 10 μV), α (8-12 Hz, 20-200 μV), β (12-30 Hz, 5-10 μV), and γ (30-80 Hz, low amplitude). Emerging evidence from experimental and human studies suggests that groups of function and behavior seem to be specifically associated with the presence of each oscillation band, although the complex relationship between oscillation frequency and function, as well as the interaction between brain oscillations, are far from clear. Changes of brain oscillation patterns have long been implicated in the diseases of the central nervous system including ischemic stroke, in which the reduction of cerebral blood flow as well as the progression of tissue damage have direct spatiotemporal effects on the power of several oscillatory bands and their interactions. This review summarizes the current knowledge in behavior and function associated with each brain oscillation, and also in the specific changes in brain electrical activities that correspond to the molecular events and functional alterations observed after experimental and human stroke. We provide the basis of the generations of brain oscillations and potential cellular and molecular mechanisms underlying stroke-induced perturbation. We will also discuss the implications of using brain oscillation patterns as biomarkers for the prediction of stroke outcome and therapeutic efficacy.
Collapse
Affiliation(s)
- Gratianne Rabiller
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux 33000, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux 33000, France.
| | - Ji-Wei He
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
| | - Yasuo Nishijima
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
- Department of Neurosurgery, Tohoku University Graduate School of Medicine 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Aaron Wong
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
- Rice University, 6100 Main St, Houston, TX 77005, USA.
| | - Jialing Liu
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
| |
Collapse
|
41
|
Garbuzova-Davis S, Haller E, Williams SN, Haim ED, Tajiri N, Hernandez-Ontiveros DG, Frisina-Deyo A, Boffeli SM, Sanberg PR, Borlongan CV. Compromised blood-brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage. J Comp Neurol 2015; 522:3120-37. [PMID: 24610730 DOI: 10.1002/cne.23582] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/28/2014] [Accepted: 03/05/2014] [Indexed: 12/14/2022]
Abstract
Stroke is a life-threatening disease leading to long-term disability in stroke survivors. Cerebral functional insufficiency in chronic stroke might be due to pathological changes in brain areas remote from the initial ischemic lesion, i.e., diaschisis. Previously, we showed that the damaged blood-brain barrier (BBB) was involved in subacute diaschisis. The present study investigated BBB competence in chronic diaschisis by using a transient middle cerebral artery occlusion (tMCAO) rat model. Our results demonstrated significant BBB damage mostly in the ipsilateral striatum and motor cortex in rats at 30 days after tMCAO. The BBB alterations were also determined in the contralateral hemisphere via ultrastructural and immunohistochemical analyses. Major BBB pathological changes in contralateral remote striatum and motor cortex areas included 1) vacuolated endothelial cells containing large autophagosomes, 2) degenerated pericytes displaying mitochondria with cristae disruption, 3) degenerated astrocytes and perivascular edema, 4) Evans blue extravasation, and 5) appearance of parenchymal astrogliosis. Discrete analyses of striatal and motor cortex areas revealed significantly higher autophagosome accumulation in capillaries of ventral striatum and astrogliosis in dorsal striatum in both cerebral hemispheres. These widespread microvascular alterations in ipsilateral and contralateral brain hemispheres suggest persistent and/or continued BBB damage in chronic ischemia. The pathological changes in remote brain areas likely indicate chronic ischemic diaschisis, which should be considered in the development of treatment strategies for stroke.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612; Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612; Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612; Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pielecka-Fortuna J, Kalogeraki E, Greifzu F, Löwel S. A Small Motor Cortex Lesion Abolished Ocular Dominance Plasticity in the Adult Mouse Primary Visual Cortex and Impaired Experience-Dependent Visual Improvements. PLoS One 2015; 10:e0137961. [PMID: 26368569 PMCID: PMC4569386 DOI: 10.1371/journal.pone.0137961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/24/2015] [Indexed: 12/01/2022] Open
Abstract
It was previously shown that a small lesion in the primary somatosensory cortex (S1) prevented both cortical plasticity and sensory learning in the adult mouse visual system: While 3-month-old control mice continued to show ocular dominance (OD) plasticity in their primary visual cortex (V1) after monocular deprivation (MD), age-matched mice with a small photothrombotically induced (PT) stroke lesion in S1, positioned at least 1 mm anterior to the anterior border of V1, no longer expressed OD-plasticity. In addition, in the S1-lesioned mice, neither the experience-dependent increase of the spatial frequency threshold (“visual acuity”) nor of the contrast threshold (“contrast sensitivity”) of the optomotor reflex through the open eye was present. To assess whether these plasticity impairments can also occur if a lesion is placed more distant from V1, we tested the effect of a PT-lesion in the secondary motor cortex (M2). We observed that mice with a small M2-lesion restricted to the superficial cortical layers no longer expressed an OD-shift towards the open eye after 7 days of MD in V1 of the lesioned hemisphere. Consistent with previous findings about the consequences of an S1-lesion, OD-plasticity in V1 of the nonlesioned hemisphere of the M2-lesioned mice was still present. In addition, the experience-dependent improvements of both visual acuity and contrast sensitivity of the open eye were severely reduced. In contrast, sham-lesioned mice displayed both an OD-shift and improvements of visual capabilities of their open eye. To summarize, our data indicate that even a very small lesion restricted to the superficial cortical layers and more than 3mm anterior to the anterior border of V1 compromised V1-plasticity and impaired learning-induced visual improvements in adult mice. Thus both plasticity phenomena cannot only depend on modality-specific and local nerve cell networks but are clearly influenced by long-range interactions even from distant brain regions.
Collapse
Affiliation(s)
- Justyna Pielecka-Fortuna
- Department of Systems Neuroscience, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie and Bernstein Fokus Neurotechnologie, Georg-August-Universität Göttingen, Göttingen, Germany
- * E-mail:
| | - Evgenia Kalogeraki
- Department of Systems Neuroscience, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie and Bernstein Fokus Neurotechnologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Franziska Greifzu
- Department of Systems Neuroscience, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie and Bernstein Fokus Neurotechnologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Siegrid Löwel
- Department of Systems Neuroscience, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie and Bernstein Fokus Neurotechnologie, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
43
|
Functional preservation of hippocampal CA1 by low-dose GYKI-52466 preconditioning in a rat model of hypoxic-ischemic brain injury. Brain Res 2015; 1613:100-9. [DOI: 10.1016/j.brainres.2015.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/02/2015] [Indexed: 11/19/2022]
|
44
|
Yassi N, Malpas CB, Campbell BC, Moffat B, Steward C, Parsons MW, Desmond PM, Donnan GA, Davis SM, Bivard A. Contralesional Thalamic Surface Atrophy and Functional Disconnection 3 Months after Ischemic Stroke. Cerebrovasc Dis 2015; 39:232-41. [DOI: 10.1159/000381105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Background: Remote structural and functional changes have been previously described after stroke and may have an impact on clinical outcome. We aimed to use multimodal MRI to investigate contralesional subcortical structural and functional changes 3 months after anterior circulation ischemic stroke. Methods: Fifteen patients with acute ischemic stroke had multimodal MRI imaging (including high resolution structural T1-MPRAGE and resting state fMRI) within 1 week of onset and at 1 and 3 months. Seven healthy controls of similar age group were also imaged at a single time point. Contralesional subcortical structural volume was assessed using an automated segmentation algorithm in FMRIB's Integrated Registration and Segmentation Tool (FIRST). Functional connectivity changes were assessed using the intrinsic connectivity contrast (ICC), which was calculated using the functional connectivity toolbox for correlated and anticorrelated networks (Conn). Results: Contralesional thalamic volume in the stroke patients was significantly reduced at 3 months compared to baseline (median change -2.1%, interquartile range [IQR] -3.4-0.4, p = 0.047), with the predominant areas demonstrating atrophy geometrically appearing to be the superior and inferior surface. The difference in volume between the contralesional thalamus at baseline (mean 6.41 ml, standard deviation [SD] 0.6 ml) and the mean volume of the 2 thalami in controls (mean 7.22 ml, SD 1.1 ml) was not statistically significant. The degree of longitudinal thalamic atrophy in patients was correlated with baseline stroke severity with more severe strokes being associated with a greater degree of atrophy (Spearman's rho -0.54, p = 0.037). There was no significant difference between baseline contralesional thalamic ICC in patients and control thalamic ICC. However, in patients, there was a significant linear reduction in the mean ICC of the contralesional thalamus over the imaging time points (p = 0.041), indicating reduced connectivity to the remainder of the brain. Conclusions: These findings highlight the importance of remote brain areas, such as the contralesional thalamus, in stroke recovery. Similar methods have the potential to be used in the prediction of stroke outcome or as imaging biomarkers of stroke recovery.
Collapse
|
45
|
Bourke TC, Coderre AM, Bagg SD, Dukelow SP, Norman KE, Scott SH. Impaired corrective responses to postural perturbations of the arm in individuals with subacute stroke. J Neuroeng Rehabil 2015; 12:7. [PMID: 25605126 PMCID: PMC4320520 DOI: 10.1186/1743-0003-12-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/13/2015] [Indexed: 11/10/2022] Open
Abstract
Background Stroke is known to alter muscle stretch responses following a perturbation, but little is known about the behavioural consequences of these altered feedback responses. Characterizing impairments in people with stroke in their interactions with the external environment may lead to better long term outcomes. This information can inform therapists about rehabilitation targets and help subjects with stroke avoid injury when moving in the world. Methods In this study, we developed a postural perturbation task to quantity upper limb function of subjects with subacute stroke (n = 38) and non-disabled controls (n = 74) to make rapid corrective responses with the arm. Subjects were instructed to maintain their hand at a target before and after a mechanical load was applied to the limb. Visual feedback of the hand was removed for half of the trials at perturbation onset. A number of parameters quantified subject performance, and impairment in performance was defined as outside the 95th percentile performance of control subjects. Results Individual subjects with stroke showed increased postural instability (44%), delayed motor responses (79%), delayed returns towards the spatial target (79%), and greater endpoint errors (74%). Several subjects also showed impairments in the temporal coordination of the elbow and shoulder joints when responding to the perturbation (47%). Interestingly, impairments in task parameters were often found for both arms of individual subjects with stroke (up to 58% for return time). Visual feedback did not improve performance on task parameters except for decreasing endpoint error for all subjects. Significant correlations between task performance and clinical measures were dependent on the arm assessed. Conclusions This study used a simple postural perturbation task to highlight that subjects with stroke commonly have difficulties responding to mechanical disturbances that may have important implications for their ability to perform daily activities.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
46
|
Longitudinal changes in resting-state brain activity in a capsular infarct model. J Cereb Blood Flow Metab 2015; 35:11-9. [PMID: 25352047 PMCID: PMC4814054 DOI: 10.1038/jcbfm.2014.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/31/2022]
Abstract
Strokes attributable to subcortical infarcts have been increasing recently in elderly patients. To gain insight how this lesion influences the motor outcome and responds to rehabilitative training, we used circumscribed photothrombotic capsular infarct models on 36 Sprague-Dawley rats (24 experimental and 12 sham-operated). We used 2-deoxy-2-[(18)F]-fluoro-D-glucose-micro positron emission tomography (FDG-microPET) to assess longitudinal changes in resting-state brain activity (rs-BA) and daily single-pellet reaching task (SPRT) trainings to evaluate motor recovery. Longitudinal FDG-microPET results showed that capsular infarct resulted in a persistent decrease in rs-BA in bilateral sensory and auditory cortices, and ipsilesional motor cortex, thalamus, and inferior colliculus (P<0.0025, false discovery rate (FDR) q<0.05). The decreased rs-BA is compatible with diaschisis and contributes to manifest the malfunctions of lesion-specific functional connectivity. In contrast, capsular infarct resulted in increase of rs-BA in the ipsilesional internal capsule, and contralesional red nucleus and ventral hippocampus in recovery group (P<0.0025, FDR q<0.05), implying that remaining subcortical structures have an important role in conducting the recovery process in capsular infarct. The SPRT training facilitated motor recovery only in rats with an incomplete destruction of the posterior limb of the internal capsule (PLIC) (Pearson's correlation, P<0.05). Alternative therapeutic interventions are required to enhance the potential for recovery in capsular infarct with complete destruction of PLIC.
Collapse
|
47
|
Interplay between intra- and interhemispheric remodeling of neural networks as a substrate of functional recovery after stroke: Adaptive versus maladaptive reorganization. Neuroscience 2014; 283:178-201. [DOI: 10.1016/j.neuroscience.2014.06.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022]
|
48
|
Butz M, Steenbuck ID, van Ooyen A. Homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke. Front Neuroanat 2014; 8:115. [PMID: 25360087 PMCID: PMC4199279 DOI: 10.3389/fnana.2014.00115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/24/2014] [Indexed: 01/12/2023] Open
Abstract
After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity—a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognitive decline and increasing functional disability. However, the principles governing changes in network topology are poorly understood. Here, we investigated whether homeostatic structural plasticity can account for changes in network topology after deafferentation and brain lesions. Homeostatic structural plasticity postulates that neurons aim to maintain a desired level of electrical activity by deleting synapses when neuronal activity is too high and by providing new synaptic contacts when activity is too low. Using our Model of Structural Plasticity, we explored how local changes in connectivity induced by a focal loss of input affected global network topology. In accordance with experimental and clinical data, we found that after partial deafferentation, the network as a whole became more random, although it maintained its small-world topology, while deafferentated neurons increased their betweenness centrality as they rewired and returned to the homeostatic range of activity. Furthermore, deafferentated neurons increased their global but decreased their local efficiency and got longer tailed degree distributions, indicating the emergence of hub neurons. Together, our results suggest that homeostatic structural plasticity may be an important driving force for lesion-induced network reorganization and that the increase in betweenness centrality of deafferentated areas may hold as a biomarker for brain repair.
Collapse
Affiliation(s)
- Markus Butz
- Simulation Lab Neuroscience - Bernstein Facility for Simulation and Database Technology, Institute for Advanced Simulation, Jülich Aachen Research Alliance, Forschungszentrum Jülich Jülich, Germany
| | - Ines D Steenbuck
- Student of the Medical Faculty, University of Freiburg Freiburg, Germany
| | - Arjen van Ooyen
- Department of Integrative Neurophysiology, VU University Amsterdam Amsterdam, Netherlands
| |
Collapse
|
49
|
Salinet ASM, Panerai RB, Robinson TG. The longitudinal evolution of cerebral blood flow regulation after acute ischaemic stroke. Cerebrovasc Dis Extra 2014; 4:186-97. [PMID: 25298773 PMCID: PMC4176407 DOI: 10.1159/000366017] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/20/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Acute stroke is known to impair cerebral blood flow (CBF) regulation, but the longitudinal changes of these effects have been poorly reported. The main CBF regulatory mechanisms [cerebral autoregulation (CA) and neurovascular coupling (NVC)] were assessed over 3 months after acute ischaemic stroke. METHODS Recordings of CBF velocity (CBFv), blood pressure (BP), and end-tidal CO2 were performed during 5 min baseline and 1 min passive movement of the elbow. Stroke patients were assessed <72 h of stroke onset, and at 2 weeks, 1 and 3 months after stroke. RESULTS Fifteen acute stroke subjects underwent all 4 sessions and were compared to 22 control subjects. Baseline recordings revealed a significantly lower CBFv in the affected hemisphere within 72 h after stroke compared to controls (p = 0.02) and a reduction in CA index most marked at 2 weeks (p = 0.009). CBFv rise in response to passive arm movement was decreased bilaterally after stroke, particularly in the affected hemisphere (p < 0.01). Both alterations in CA and NVC returned to control levels during recovery. CONCLUSION The major novel finding of this study was that both CA and NVC regulatory mechanisms deteriorated initially following stroke onset, but returned to control levels during the recovery period. These findings are relevant to guide the timing of interventions to manipulate BP and potentially for the impact of intensive rehabilitation strategies that may precipitate acute physiological perturbations but require further exploration in a larger population that better reflects the heterogeneity of stroke. Further, they will also enable the potential influence of stroke subtype to be investigated.
Collapse
Affiliation(s)
- Angela S M Salinet
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ; National Institutes for Health Research, Biomedical Research Unit in Cardiovascular Sciences, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ; National Institutes for Health Research, Biomedical Research Unit in Cardiovascular Sciences, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| |
Collapse
|
50
|
Abstract
After a century of false hopes, recent studies have placed the concept of diaschisis at the centre of the understanding of brain function. Originally, the term 'diaschisis' was coined by von Monakow in 1914 to describe the neurophysiological changes that occur distant to a focal brain lesion. In the following decades, this concept triggered widespread clinical interest in an attempt to describe symptoms and signs that the lesion could not fully explain. However, the first imaging studies, in the late 1970s, only partially confirmed the clinical significance of diaschisis. Focal cortical areas of diaschisis (i.e. focal diaschisis) contributed to the clinical deficits after subcortical but only rarely after cortical lesions. For this reason, the concept of diaschisis progressively disappeared from the mainstream of research in clinical neurosciences. Recent evidence has unexpectedly revitalized the notion. The development of new imaging techniques allows a better understanding of the complexity of brain organization. It is now possible to reliably investigate a new type of diaschisis defined as the changes of structural and functional connectivity between brain areas distant to the lesion (i.e. connectional diaschisis). As opposed to focal diaschisis, connectional diaschisis, focusing on determined networks, seems to relate more consistently to the clinical findings. This is particularly true after stroke in the motor and attentional networks. Furthermore, normalization of remote connectivity changes in these networks relates to a better recovery. In the future, to investigate the clinical role of diaschisis, a systematic approach has to be considered. First, emerging imaging and electrophysiological techniques should be used to precisely map and selectively model brain lesions in human and animals studies. Second, the concept of diaschisis must be applied to determine the impact of a focal lesion on new representations of the complexity of brain organization. As an example, the evaluation of remote changes in the structure of the connectome has so far mainly been tested by modelization of focal brain lesions. These changes could now be assessed in patients suffering from focal brain lesions (i.e. connectomal diaschisis). Finally, and of major significance, focal and non-focal neurophysiological changes distant to the lesion should be the target of therapeutic strategies. Neuromodulation using transcranial magnetic stimulation is one of the most promising techniques. It is when this last step will be successful that the concept of diaschisis will gain all the clinical respectability that could not be obtained in decades of research.
Collapse
Affiliation(s)
- Emmanuel Carrera
- 1 Department of Clinical Neurosciences, University Hospital, Geneva, Switzerland2 Department of Psychiatry, Madison, Wisconsin, USA
| | | |
Collapse
|