1
|
Song W, Teng L, Wang H, Pang R, Liang R, Zhu L. Exercise preconditioning increases circulating exosome miR-124 expression and alleviates apoptosis in rats with cerebral ischemia-reperfusion injury. Brain Res 2025; 1851:149457. [PMID: 39824375 DOI: 10.1016/j.brainres.2025.149457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
OBJECTIVES Exercise as a non-pharmacological intervention can exert beneficial effects directly through exosomes crossing the blood-brain barrier and reduce apoptosis after cerebral ischaemia/reperfusion injury (CI/RI). miRNA-124 (miR-124) is present in exosomes and plays an important role in regulating cerebral neurological activity; however, the mechanism of the relationship between exercise and the activity of exosomes and apoptosis after CI/RI remains unclear. Therefore, the present study investigated the effects of exercise preconditioning on CI/RI from the perspective of exosomal miR-124 and apoptosis. METHODS The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by blocking the middle cerebral artery, and a motorized running wheel was chosen as the method of exercise preconditioning for rats, the morphology, particle concentration and particle size distribution of the exosome samples were identified at the 6 h, 12 h, and 24 h time points. RT-PCR, western blotting, immunohistochemistry, TUNEL staining, TTC staining and mNSS scores were used to investigate the effects of exercise preconditioning on apoptosis in MCAO/R rats. RESULTS The results showed exercise reduced neurological dysfunction and infarct size, increased the content of plasma exocrine miR-124 at 24 h, which inhibited the expression of STAT3, increased the expression of the anti-apoptotic BCL-2, and decreased the expression of the pro-apoptotic BAX, thereby reducing apoptosis. CONCLUSIONS Our findings indicated that exercise preconditioning can enhance the anti-apoptotic capacity of tissues in the rat ischemic penumbra and reduce apoptosis after CI/RI via the exosomal miR-124, STAT3, BCL-2/BAX pathway.
Collapse
Affiliation(s)
- Wenjing Song
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lili Teng
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haoran Wang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ruifeng Pang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Luwen Zhu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
2
|
Varan E, Oguz EF, Neselioglu S, Erel Ö, Bektas H. The Effect of Acute Stroke Treatment on S100B, IMA, and Thiol-Disulfide Balance. Neurol India 2024; 72:1231-1236. [PMID: 39690997 DOI: 10.4103/ni.ni_511_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/14/2023] [Indexed: 12/19/2024]
Abstract
BACKGROUND A variety of processes, ranging from blood-brain barrier disruption to circulating biomarkers, contributes to reperfusion injury in acute stroke treatment. OBJECTIVE We aimed to investigate the effects of thrombolytic therapy and endovascular thrombectomy therapy on serum S100 calcium-binding protein B, ischemia-modified albumin and thiol-disulfide balance in patients who arrived within the first 6 h of acute ischemic stroke. MATERIAL AND METHODS The study considered 66 patients with the diagnosis of acute ischemic stroke who underwent thrombolytic therapy or EVT in the first 6 h, as well as 32 healthy volunteers. Venous blood samples were collected before tPA and EVT and 24 h after treatment. S100B, native thiol, disulfide, total thiol, and Ischemia-modified albumin (IMA) levels were measured. RESULTS The S100B, total thiol, and native thiol values of the patients in the tPA group before and after the treatment showed statistical significance (P < 0.001). S100B, total thiol, and native thiol values were shown to be lower. The disulfide and IMA values of the patients in the tPA group did not differ significantly (respectively, P = 0.302, P = 0.054). However, disulfide and IMA levels were found to increase after treatment compared to pretreatment. The patients in the EVT group showed a significant difference in terms of S100B values (P < 0.001) and IMA values (P = 0.024). CONCLUSIONS Determining how to protect the brain from free radical damage is important. More research should be carried out on treatments that prevent free radical damage in ischemia-reperfusion injury, as well as treatments for acute ischemic stroke.
Collapse
Affiliation(s)
- Edip Varan
- Ankara Yildirim Beyazit University, Department of Neurology, Turkey
| | - Esra F Oguz
- Ankara City Hospital, Department of Biochemistry, Turkey
| | - Salim Neselioglu
- Ankara Yildirim Beyazit University, Department of Biochemistry, Turkey
| | - Özcan Erel
- Ankara Yildirim Beyazit University, Department of Biochemistry, Turkey
| | - Hesna Bektas
- Ankara Yildirim Beyazit University, Department of Neurology, Turkey
| |
Collapse
|
3
|
Kumar Saini S, Singh D. Mitochondrial mechanisms in Cerebral Ischemia-Reperfusion Injury: Unravelling the intricacies. Mitochondrion 2024; 77:101883. [PMID: 38631511 DOI: 10.1016/j.mito.2024.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Cerebral ischemic stroke is a major contributor to physical impairments and premature death worldwide. The available reperfusion therapies for stroke in the form of mechanical thrombectomy and intravenous thrombolysis increase the risk of cerebral ischemia-reperfusion (I-R) injury due to sudden restoration of blood supply to the ischemic region. The injury is manifested by hemorrhagic transformation, worsening of neurological impairments, cerebral edema, and progression to infarction in surviving patients. A complex network of multiple pathological processes has been known to be involved in the pathogenesis of I-R injury. Primarily, 3 major contributors namely oxidative stress, neuroinflammation, and mitochondrial failure have been well studied in I-R injury. A transcription factor, Nrf2 (Nuclear factor erythroid 2-related factor 2) plays a crucial defensive role in resisting the deleterious effects of I-R injury and potentiating the cellular protective mechanisms. In this review, we delve into the critical function of mitochondria and Nrf2 in the context of cerebral I-R injury. We summarized how oxidative stress, neuroinflammation, and mitochondrial anomaly contribute to the pathophysiology of I-R injury and further elaborated the role of Nrf2 as a pivotal guardian of cellular integrity. The review further highlighted Nrf2 as a putative therapeutic target for mitochondrial dysfunction in cerebral I-R injury management.
Collapse
Affiliation(s)
- Shiv Kumar Saini
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Zhang D, Li D, Wang X, Sui Y, Ma F, Dai Y, Wang M, Qin W. Urine Proteomic Signatures of Mild Hypothermia Treatment in Cerebral Ischemia-Reperfusion Injury in Rats. Cell Mol Neurobiol 2024; 44:49. [PMID: 38836960 PMCID: PMC11153299 DOI: 10.1007/s10571-024-01483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Mild hypothermia (MH) is an effective measure to alleviate cerebral ischemia-reperfusion (I/R) injury. However, the underlying biological mechanisms remain unclear. This study set out to investigate dynamic changes in urinary proteome due to MH in rats with cerebral I/R injury and explore the neuroprotective mechanisms of MH. A Pulsinelli's four-vessel occlusion (4-VO) rat model was used to mimic global cerebral I/R injury. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to profile the urinary proteome of rats with/without MH (32 °C) treatment after I/R injury. Representative differentially expressed proteins (DEPs) associated with MH were validated by western blotting in hippocampus. A total of 597 urinary proteins were identified, among which 119 demonstrated significant changes associated with MH. Gene Ontology (GO) annotation of the DEPs revealed that MH significantly enriched in endopeptidase activity, inflammatory response, aging, response to oxidative stress and reactive oxygen species, blood coagulation, and cell adhesion. Notably, changes in 12 DEPs were significantly reversed by MH treatment. Among them, 8 differential urinary proteins were previously reported to be closely associated with brain disease, including NP, FZD1, B2M, EPCR, ATRN, MB, CA1and VPS4A. Two representative proteins (FZD1, B2M) were further validated by western blotting in the hippocampus and the results were shown to be consistent with urinary proteomic analysis. Overall, this study strengthens the idea that urinary proteome can sensitively reflect pathophysiological changes in the brain, and appears to be the first study to explore the neuroprotective effects of MH by urinary proteomic analysis. FZD1 and B2M may be involved in the most fundamental molecular biological mechanisms of MH neuroprotection.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Dapeng Li
- Department of Bone and Joint Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Xueting Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Yanyan Sui
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Fuguo Ma
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Yuting Dai
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Mingshan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China.
| | - Weiwei Qin
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China.
| |
Collapse
|
5
|
Cogut V, Goris M, Jansma A, van der Staaij M, Henning RH. Hippocampal neuroimmune response in mice undergoing serial daily torpor induced by calorie restriction. Front Neuroanat 2024; 18:1334206. [PMID: 38686173 PMCID: PMC11056553 DOI: 10.3389/fnana.2024.1334206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
Hibernating animals demonstrate a remarkable ability to withstand extreme physiological brain changes without triggering adverse neuroinflammatory responses. While hibernators may offer valuable insights into the neuroprotective mechanisms inherent to hibernation, studies using such species are constrained by the limited availability of molecular tools. Laboratory mice may serve as an alternative, entering states of hypometabolism and hypothermia similar to the torpor observed in hibernation when faced with energy shortage. Notably, prolonged calorie restriction (CR) induces serial daily torpor patterns in mice, comparable to species that utilize daily hibernation. Here, we examined the neuroinflammatory response in the hippocampus of male C57BL/6 mice undergoing serial daily torpor induced by a 30% CR for 4 weeks. During daily torpor episodes, CR mice exhibited transient increases in TNF-α mRNA expression, which normalized upon arousal. Concurrently, the CA1 region of the hippocampus showed persistent morphological changes in microglia, characterized by reduced cell branching, decreased cell complexity and altered shape. Importantly, these morphological changes were not accompanied by evident signs of astrogliosis or oxidative stress, typically associated with detrimental neuroinflammation. Collectively, the adaptive nature of the brain's inflammatory response to CR-induced torpor in mice parallels observations in hibernators, highlighting its value for studying the mechanisms of brain resilience during torpor. Such insights could pave the way for novel therapeutic interventions in stroke and neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- Valeria Cogut
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | | | | | | | | |
Collapse
|
6
|
Chen Y, Zhu L. Efficacy and Safety of Intensive Blood Pressure Lowering After Reperfusion Therapy in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 183:e909-e919. [PMID: 38224905 DOI: 10.1016/j.wneu.2024.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
OBJECTIVE The objective of this study is to comprehensively examine the available data on the efficacy and safety of intensive blood pressure lowering (IBPL) compared to standard blood pressure control (SBPC) in patients with acute ischemic stroke following reperfusion therapy. METHODS A comprehensive search was conducted using 4 databases, including PubMed, Cochrane, Embase, and Web of Science to collect relevant articles from inception to December 2023. The endpoints were the condition of the patient measured by the modified Rankin scale (mRS, range value from 0 [no symptoms] to 6 [death]) at 90 days, symptomatic intracranial hemorrhage, death within 90 days, recurrent ischemic stroke, and intracranial hemorrhage (ICH). RESULTS Seven eligible studies involving 4499 participants (2218 patients in IBPL group and 2281 patients in SBPC group) were included in the analysis. Both groups demonstrated similar baseline characteristics. Within the endovascular therapy (EVT) subgroup, the IBPL group exhibited worse mRS than in SBPC group. After EVT, different IBPL targets showed worse outcomes in the mRS for the SBP <140 mmHg and SBP <120 mmHg subgroups, with no difference between IBPL and SBPC groups in the SBP <130 mmHg subgroup. In the intravenous thrombolysis subgroup, although the IBPL group exhibited less ICH, the long-term functional outcomes were not improved significantly. CONCLUSIONS The IBPL group exhibited a less favorable functional outcome after EVT. Moreover, no worse functional outcomes were noticed in the SBP <130 mmHg subgroup after EVT. However, the functional outcome was similar after intravenous thrombolysis.
Collapse
Affiliation(s)
- Yun Chen
- Neurology Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lijun Zhu
- Neurology Department, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
7
|
Gomez F, El-Ghanem M, Feldstein E, Jagdeo M, Koul P, Nuoman R, Gupta G, Gandhi CD, Amuluru K, Al-Mufti F. Cerebral Ischemic Reperfusion Injury: Preventative and Therapeutic Strategies. Cardiol Rev 2023; 31:287-292. [PMID: 36129330 DOI: 10.1097/crd.0000000000000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute ischemic stroke is a leading cause of morbidity and mortality in the United States. Treatment goals remain focused on restoring blood flow to compromised areas. However, a major concern arises after reperfusion occurs. Cerebral ischemic reperfusion injury is defined as damage to otherwise salvageable brain tissue occurring with the reestablishment of the vascular supply to that region. The pool of eligible patients for revascularization continues to grow, especially with the recently expanded endovascular therapeutic window. Neurointensivists should understand and manage complications of successful recanalization. In this review, we examine the pathophysiology, diagnosis, and potential management strategies in cerebral ischemic reperfusion injury.
Collapse
Affiliation(s)
- Francisco Gomez
- From the Department of Neurology, University of Missouri School of Medicine, Columbia, MO
| | - Mohammad El-Ghanem
- Department of Neuroendovascular Surgery, HCA Houston Healthcare, Houston, TX
| | - Eric Feldstein
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Matt Jagdeo
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Prateeka Koul
- Department of Neurology, Northshore-Long Island Jewish Medical Center, Manhasset, NY
| | - Rolla Nuoman
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Gaurav Gupta
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Chirag D Gandhi
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Krishna Amuluru
- Department of Neurological Surgery, University of Indiana, Indianapolis, IN
| | - Fawaz Al-Mufti
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| |
Collapse
|
8
|
Wang J, Sun X, Dai Y, Ma Y, Wang M, Li X, Qin W. Proteome profiling of hippocampus reveals the neuroprotective effect of mild hypothermia on global cerebral ischemia-reperfusion injury in rats. Sci Rep 2023; 13:14450. [PMID: 37660166 PMCID: PMC10475051 DOI: 10.1038/s41598-023-41766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023] Open
Abstract
Cerebral ischemia is one of the leading causes of disability and mortality worldwide. Blood reperfusion of ischemic cerebral tissue may cause cerebral ischemia-reperfusion (IR) injury. In this study, a rat model of global cerebral I/R injury was established via Pulsinelli's four-vessel occlusion (4-VO) method. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis were employed to examine the ipsilateral hippocampus proteome profiles of rats with/without MH (32 °C) treatment after IR injury. Totally 2 122 proteins were identified, among which 153 proteins were significantly changed associated with MH (n = 7 per group, fold change-1.5, p < 0.05). GO annotation of the differentially expressed proteins (DEPs) revealed that cellular oxidant detoxification, response to zinc ions, aging, oxygen transport, negative regulation of catalytic activity, response to hypoxia, regulation of protein phosphorylation, and cellular response to vascular endothelial growth factor stimulus were significantly enriched with MH treatment. The KEGG analysis indicated that metabolic pathways, thermogenesis, pathways of neurodegeneration, chemical carcinogenesis-reactive oxygen species, fluid shear stress and atherosclerosis, and protein processing in endoplasmic reticulum were significantly enriched with MH treatment. Importantly, changes in 16 DEPs were reversed by MH treatment. Among them, VCAM-1, S100A8, CaMKK2 and MKK7 were verified as potential markers associated with MH neuroprotection by Western blot analysis. This study is one of the first to investigate the neuroprotective effects of MH on the hippocampal proteome of experimental models of cerebral IR injury. These DEPs may be involved in the most fundamental molecular mechanisms of MH neuroprotection, and provide a scientific foundation for further promotion of reparative strategies in cerebral IR injury.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Xiaopeng Sun
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, China
| | - Yuting Dai
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Yuan Ma
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Mingshan Wang
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Weiwei Qin
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China.
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
9
|
Zhang T, Deng D, Huang S, Fu D, Wang T, Xu F, Ma L, Ding Y, Wang K, Wang Y, Zhao W, Chen X. A retrospect and outlook on the neuroprotective effects of anesthetics in the era of endovascular therapy. Front Neurosci 2023; 17:1140275. [PMID: 37056305 PMCID: PMC10086253 DOI: 10.3389/fnins.2023.1140275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Studies on the neuroprotective effects of anesthetics were carried out more than half a century ago. Subsequently, many cell and animal experiments attempted to verify the findings. However, in clinical trials, the neuroprotective effects of anesthetics were not observed. These contradictory results suggest a mismatch between basic research and clinical trials. The Stroke Therapy Academic Industry Roundtable X (STAIR) proposed that the emergence of endovascular thrombectomy (EVT) would provide a proper platform to verify the neuroprotective effects of anesthetics because the haemodynamics of patients undergoing EVT is very close to the ischaemia–reperfusion model in basic research. With the widespread use of EVT, it is necessary for us to re-examine the neuroprotective effects of anesthetics to guide the use of anesthetics during EVT because the choice of anesthesia is still based on team experience without definite guidelines. In this paper, we describe the research status of anesthesia in EVT and summarize the neuroprotective mechanisms of some anesthetics. Then, we focus on the contradictory results between clinical trials and basic research and discuss the causes. Finally, we provide an outlook on the neuroprotective effects of anesthetics in the era of endovascular therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiangdong Chen
- *Correspondence: Xiangdong Chen, ; orcid.org/0000-0003-3347-2947
| |
Collapse
|
10
|
Different Contacted Cell Types Contribute to Acquiring Different Properties in Brain Microglial Cells upon Intercellular Interaction. Int J Mol Sci 2023; 24:ijms24021774. [PMID: 36675286 PMCID: PMC9861207 DOI: 10.3390/ijms24021774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Microglial cells (MGs), originally derived from progenitor cells in a yolk sac during early development, are glial cells located in a physiological and pathological brain. Since the brain contains various cell types, MGs could frequently interact with different cells, such as astrocytes (ACs), pericytes (PCs), and endothelial cells (ECs). However, how microglial traits are regulated via cell-cell interactions by ACs, PCs, or ECs and how they are different depending on the contacted cell types is unclear. This study aimed to clarify these questions by coculturing MGs with ACs, PCs, or ECs using mouse brain-derived cells, and microglial phenotypic changes were investigated under culture conditions that enabled direct cell-cell contact. Our results showed that ACs or PCs dose-dependently increased the number of MG, while ECs decreased it. Microarray and gene ontology analysis showed that cell fate-related genes (e.g., cell cycle, proliferation, growth, death, and apoptosis) of MGs were altered after a cell-cell contact with ACs, PCs, and ECs. Notably, microarray analysis showed that several genes, such as gap junction protein alpha 1 (Gja1), were prominently upregulated in MGs after coincubation with ACs, PCs, or ECs, regardless of cell types. Similarly, immunohistochemistry showed that an increased Gja1 expression was observed in MGs after coincubation with ACs, PCs, or ECs. Immunofluorescent and fluorescence-activated cell sorting analysis also showed that calcein-AM was transferred into MGs after coincubation with ACs, PCs, or ECs, confirming that intercellular interactions occurred between these cells. However, while Gja1 inhibition reduced the number of MGs after coincubation with ACs and PCs, this was increased after coincubation with ECs; this indicates that ACs and PCs positively regulate microglial numbers via Gja1, while ECs decrease it. Results show that ACs, PCs, or ECs exert both common and specific cell type-dependent effects on MGs through intercellular interactions. These findings also suggest that brain microglial phenotypes are different depending on their surrounding cell types, such as ACs, PCs, or ECs.
Collapse
|
11
|
Shao Y, Chen X, Wang H, Shang Y, Xu J, Zhang J, Wang P, Geng Y. Large mismatch profile predicts rapidly progressing brain edema in acute anterior circulation large vessel occlusion patients undergoing endovascular thrombectomy. Front Neurol 2023; 13:982911. [PMID: 36686510 PMCID: PMC9846046 DOI: 10.3389/fneur.2022.982911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Background Brain edema is a severe complication in patients with large vessel occlusion (LVO) that can reduce the effectiveness of endovascular therapy (EVT). This study aimed to investigate the association of the perfusion profile at baseline computed tomography (CT) perfusion with rapidly progressing brain edema (RPBE) after EVT in patients with acute anterior LVO. Methods We retrospectively reviewed consecutive data collected from 149 patients with anterior LVO who underwent EVT at our center. Brain edema was measured by the swelling score (0-6 score), and RPBE was defined as the swelling score increased by more than 2 scores within 24 h after EVT. We investigated the effect of RPBE on poor outcomes [National Institute of Health Stroke Scale (NIHSS) score and modified Rankin scale (mRS) score at discharge, the occurrence of hemorrhagic transformation, and mortality rate in the hospital] using the Mann-Whitney U-test and chi-square test. A multivariate logistic regression model was used to assess the relationship between perfusion imaging parameters and RPBE occurrence. Results Overall, 39 patients (26.2%) experienced RPBE after EVT. At discharge, RPBE was associated with higher NIHSS scores (Z = 3.52, 95% CI 2.0-12.0, P < 0.001) and higher mRS scores (Z = 3.67, 95% CI 0.0-1.0, P < 0.001) including the more frequent occurrence of hemorrhagic transformation (χ2 = 22.17, 95% CI 0.29-0.59, P < 0.001) and higher mortality rates in hospital (χ2 = 9.54, 95% CI 0.06-0.36, P = 0.002). Univariate analysis showed that intravenous thrombolysis, baseline ischemic core volume, and baseline mismatch ratio correlated with RPBE (all P < 0.05). After dividing the mismatch ratio into quartiles and performing a chi-square test between quartiles, we found that the occurrence of RPBE in Q4 (mismatch ratio > 11.3) was significantly lower than that in Q1 (mismatch ratio ≤ 3.0) (P < 0.05). The result of multivariate logistic regression analysis showed that compared with baseline mismatch ratio <5.1, baseline mismatch ratio between 5.1 and 11.3 (OR:3.85, 95% CI 1.06-14.29, P = 0.040), and mismatch ratio >11.3 (OR:5.26, 95% CI 1.28-20.00, P = 0.021) were independent protective factors for RPBE. Conclusion In patients with anterior circulation LVO stroke undergoing successful EVT, a large mismatch ratio at baseline is a protective factor for RPBE, which is associated with poor outcomes.
Collapse
Affiliation(s)
- Yanqi Shao
- Department of Neurology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Chen
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiyuan Wang
- Department of Neurology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Yafei Shang
- Department of Neurology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Jie Xu
- Department of Neurology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinshi Zhang
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peng Wang
- Department of Neurology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yu Geng
- Department of Neurology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,*Correspondence: Yu Geng ✉
| |
Collapse
|
12
|
Jia J, Deng J, Jin H, Yang J, Nan D, Yu Z, Yu W, Shen Z, Lu Y, Liu R, Wang Z, Qu X, Qiu D, Yang Z, Huang Y. Effect of Dl-3-n-butylphthalide on mitochondrial Cox7c in models of cerebral ischemia/reperfusion injury. Front Pharmacol 2023; 14:1084564. [PMID: 36909178 PMCID: PMC9992206 DOI: 10.3389/fphar.2023.1084564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Several studies have demonstrated the protective effect of dl-3-n-Butylphthalide (NBP) against cerebral ischemia, which may be related to the attenuation of mitochondrial dysfunction. However, the specific mechanism and targets of NBP in cerebral ischemia/reperfusion remains unclear. In this study, we used a chemical proteomics approach to search for targets of NBP and identified cytochrome C oxidase 7c (Cox7c) as a key interacting target of NBP. Our findings indicated that NBP inhibits mitochondrial apoptosis and reactive oxygen species (ROS) release and increases ATP production through upregulation of Cox7c. Subsequently, mitochondrial respiratory capacity was improved and the HIF-1α/VEGF pathway was upregulated, which contributed to the maintenance of mitochondrial membrane potential and blood brain barrier integrity and promoting angiogenesis. Therefore, our findings provided a novel insight into the mechanisms underlying the neuroprotective effects of NBP, and also proposed for the first time that Cox7c exerts a critical role by protecting mitochondrial function.
Collapse
Affiliation(s)
- Jingjing Jia
- Department of Neurology, Peking University First Hospital, Beijing, China.,National Center for Children's Health, Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jie Yang
- Leewe Biopharmaceutical Co., Ltd, Xianlin University, Nanjing, China
| | - Ding Nan
- Department of Neurology, Peking University First Hospital, Beijing, China.,Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zemou Yu
- Department of Neurology, Peking University First Hospital, Beijing, China.,National Center for Children's Health, Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Weiwei Yu
- Department of Neurology, Peking University First Hospital, Beijing, China.,Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhiyuan Shen
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yuxuan Lu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ran Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Du L, Wang X, Chen S, Guo X. The AIM2 inflammasome: A novel biomarker and target in cardiovascular disease. Pharmacol Res 2022; 186:106533. [PMID: 36332811 DOI: 10.1016/j.phrs.2022.106533] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Absent in melanoma 2 (AIM2) is a cytoplasmic sensor that recognises the double-strand DNA. AIM2 inflammasome is a protein platform in the cell that initiates innate immune responses by cleaving pro-caspase-1 and converting IL-1β and IL-18 to their mature forms. Additionally, AIM2 inflammasome promotes pyroptosis by converting Gasdermin-D (GSDMD) to GSDMD-N fragments. An increasing number of studies have indicated the important and decisive roles of the AIM2 inflammasome, IL-1β, and pyroptosis in cardiovascular diseases, such as coronary atherosclerosis, myocardial infarction, ischaemia/reperfusion injury, heart failure, aortic aneurysm and ischaemic stroke. Here, we review the molecular mechanism of the activation and effect of the AIM2 inflammasome in cardiovascular disease, revealing new insights into pathogenic factors that may be targeted to treat cardiovascular disease and related dysfunctions.
Collapse
Affiliation(s)
- Luping Du
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Siyuan Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
14
|
Morris-Blanco KC, Chokkalla AK, Kim T, Bhatula S, Bertogliat MJ, Gaillard AB, Vemuganti R. High-Dose Vitamin C Prevents Secondary Brain Damage After Stroke via Epigenetic Reprogramming of Neuroprotective Genes. Transl Stroke Res 2022; 13:1017-1036. [PMID: 35306630 PMCID: PMC9485293 DOI: 10.1007/s12975-022-01007-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/27/2022] [Accepted: 03/14/2022] [Indexed: 12/27/2022]
Abstract
Vitamin C has recently been identified as an epigenetic regulator by activating ten-eleven translocases (TETs), enzymes involved in generating DNA hydroxymethylcytosine (5hmC). Currently, we investigated whether high-dose vitamin C promotes neuroprotection through epigenetic modulation of 5hmC, if there are sex-specific differences in outcome, and the therapeutic potential of vitamin C in stroke-related comorbidities in adult mice. Post-stroke treatment with ascorbate (reduced form), but not dehydroascorbate (oxidized form), increased TET3 activity and 5hmC levels and reduced infarct following focal ischemia. Hydroxymethylation DNA immunoprecipitation sequencing showed that ascorbate increased 5hmC across the genome and specifically in promoters of several stroke pathophysiology-related genes, particularly anti-inflammatory genes. Ascorbate also decreased markers of oxidative stress, mitochondrial fragmentation, and apoptosis in cortical peri-infarct neurons and promoted motor and cognitive functional recovery in both sexes via TET3. Furthermore, post-stroke ascorbate treatment reduced infarct volume and improved motor function recovery in aged, hypertensive and diabetic male and female mice. Delayed ascorbate treatment at 6 h of reperfusion was still effective at reducing infarct volume and motor impairments in adult mice. Collectively, this study shows that post-stroke treatment with high-dose ascorbate protects the brain through epigenetic reprogramming and may function as a robust therapeutic against stroke injury.
Collapse
Affiliation(s)
- Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail code CSC-8660, 600 Highland Ave, Madison, WI, 53792, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail code CSC-8660, 600 Highland Ave, Madison, WI, 53792, USA
- Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail code CSC-8660, 600 Highland Ave, Madison, WI, 53792, USA
| | - Saivenkateshkomal Bhatula
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail code CSC-8660, 600 Highland Ave, Madison, WI, 53792, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail code CSC-8660, 600 Highland Ave, Madison, WI, 53792, USA
| | - Alexis B Gaillard
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail code CSC-8660, 600 Highland Ave, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail code CSC-8660, 600 Highland Ave, Madison, WI, 53792, USA.
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
- Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
15
|
Dreier JP, Winkler MKL, Major S, Horst V, Lublinsky S, Kola V, Lemale CL, Kang EJ, Maslarova A, Salur I, Lückl J, Platz J, Jorks D, Oliveira-Ferreira AI, Schoknecht K, Reiffurth C, Milakara D, Wiesenthal D, Hecht N, Dengler NF, Liotta A, Wolf S, Kowoll CM, Schulte AP, Santos E, Güresir E, Unterberg AW, Sarrafzadeh A, Sakowitz OW, Vatter H, Reiner M, Brinker G, Dohmen C, Shelef I, Bohner G, Scheel M, Vajkoczy P, Hartings JA, Friedman A, Martus P, Woitzik J. Spreading depolarizations in ischaemia after subarachnoid haemorrhage, a diagnostic phase III study. Brain 2022; 145:1264-1284. [PMID: 35411920 DOI: 10.1093/brain/awab457] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/18/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023] Open
Abstract
Focal brain damage after aneurysmal subarachnoid haemorrhage predominantly results from intracerebral haemorrhage, and early and delayed cerebral ischaemia. The prospective, observational, multicentre, cohort, diagnostic phase III trial, DISCHARGE-1, primarily investigated whether the peak total spreading depolarization-induced depression duration of a recording day during delayed neuromonitoring (delayed depression duration) indicates delayed ipsilateral infarction. Consecutive patients (n = 205) who required neurosurgery were enrolled in six university hospitals from September 2009 to April 2018. Subdural electrodes for electrocorticography were implanted. Participants were excluded on the basis of exclusion criteria, technical problems in data quality, missing neuroimages or patient withdrawal (n = 25). Evaluators were blinded to other measures. Longitudinal MRI, and CT studies if clinically indicated, revealed that 162/180 patients developed focal brain damage during the first 2 weeks. During 4.5 years of cumulative recording, 6777 spreading depolarizations occurred in 161/180 patients and 238 electrographic seizures in 14/180. Ten patients died early; 90/170 developed delayed infarction ipsilateral to the electrodes. Primary objective was to investigate whether a 60-min delayed depression duration cut-off in a 24-h window predicts delayed infarction with >0.60 sensitivity and >0.80 specificity, and to estimate a new cut-off. The 60-min cut-off was too short. Sensitivity was sufficient [= 0.76 (95% confidence interval: 0.65-0.84), P = 0.0014] but specificity was 0.59 (0.47-0.70), i.e. <0.80 (P < 0.0001). Nevertheless, the area under the receiver operating characteristic (AUROC) curve of delayed depression duration was 0.76 (0.69-0.83, P < 0.0001) for delayed infarction and 0.88 (0.81-0.94, P < 0.0001) for delayed ischaemia (reversible delayed neurological deficit or infarction). In secondary analysis, a new 180-min cut-off indicated delayed infarction with a targeted 0.62 sensitivity and 0.83 specificity. In awake patients, the AUROC curve of delayed depression duration was 0.84 (0.70-0.97, P = 0.001) and the prespecified 60-min cut-off showed 0.71 sensitivity and 0.82 specificity for reversible neurological deficits. In multivariate analysis, delayed depression duration (β = 0.474, P < 0.001), delayed median Glasgow Coma Score (β = -0.201, P = 0.005) and peak transcranial Doppler (β = 0.169, P = 0.016) explained 35% of variance in delayed infarction. Another key finding was that spreading depolarization-variables were included in every multiple regression model of early, delayed and total brain damage, patient outcome and death, strongly suggesting that they are an independent biomarker of progressive brain injury. While the 60-min cut-off of cumulative depression in a 24-h window indicated reversible delayed neurological deficit, only a 180-min cut-off indicated new infarction with >0.60 sensitivity and >0.80 specificity. Although spontaneous resolution of the neurological deficit is still possible, we recommend initiating rescue treatment at the 60-min rather than the 180-min cut-off if progression of injury to infarction is to be prevented.
Collapse
Affiliation(s)
- Jens P Dreier
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Centre for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Centre for Neurosciences Berlin, Berlin, Germany
| | - Maren K L Winkler
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Robert Koch-Institute, Berlin, Germany
| | - Sebastian Major
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Viktor Horst
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Svetlana Lublinsky
- Department of Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel.,Department of Physiology & Cell Biology, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel
| | - Vasilis Kola
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eun-Jeung Kang
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Maslarova
- Department of Neurosurgery, University Hospital and Friedrich-Wilhelms-University Bonn, Bonn, Germany.,Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Irmak Salur
- Department of Neurosurgery, University Hospital and Friedrich-Wilhelms-University Bonn, Bonn, Germany.,Department of Neurosurgery, KRH Klinikum Nordstadt, Hannover, Germany
| | - Janos Lückl
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.,Department of Neurology, University of Szeged, Szeged, Hungary
| | - Johannes Platz
- Department of Neurosurgery, Herz-Neuro-Zentrum Bodensee, Kreuzlingen, Switzerland
| | - Devi Jorks
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Centre for Computational Neuroscience Berlin, Berlin, Germany.,Clienia Schlössli AG, Privatklinik für Psychiatrie und Psychotherapie, Oetwil am See, Switzerland
| | - Ana I Oliveira-Ferreira
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuro-Electronics Research Flanders, Leuven, Belgium.,VIB-KU, Leuven, Belgium.,Interuniversity Microelectronics Centre, Leuven, Belgium.,Laboratory of Neural Circuits, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Karl Schoknecht
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Carl Ludwig Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Clemens Reiffurth
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Denny Milakara
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Research Campus STIMULATE, Otto-von-Guericke-University, Magdeburg, Germany
| | - Dirk Wiesenthal
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Univention GmbH, Bremen, Germany
| | - Nils Hecht
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nora F Dengler
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Agustin Liotta
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Anaesthesiology and Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Wolf
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christina M Kowoll
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - André P Schulte
- Department of Spinal Surgery, Krankenhaus der Augustinerinnen, Cologne, Germany
| | - Edgar Santos
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital and Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Asita Sarrafzadeh
- Division of Neurosurgery, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Medical Centre, Geneva, Switzerland
| | - Oliver W Sakowitz
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital and Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Michael Reiner
- Medical Advisory Service of the Statutory Health Insurance of North Rhine, Germany
| | - Gerrit Brinker
- Department of Neurosurgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Dohmen
- Department for Neurology and Neurological Intensive Care Medicine, LVR-Klinik Bonn, Bonn, Germany
| | - Ilan Shelef
- Department of Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel.,Department of Physiology & Cell Biology, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel.,Institute of Radiology, Soroka University Medical Centre, Beer-Sheva, Israel
| | - Georg Bohner
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Vajkoczy
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alon Friedman
- Department of Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel.,Department of Physiology & Cell Biology, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel.,Department of Medical Neuroscience and Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Johannes Woitzik
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
16
|
Bath PM, Song L, Silva GS, Mistry E, Petersen N, Tsivgoulis G, Mazighi M, Bang OY, Sandset EC. Blood Pressure Management for Ischemic Stroke in the First 24 Hours. Stroke 2022; 53:1074-1084. [PMID: 35291822 DOI: 10.1161/strokeaha.121.036143] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High blood pressure (BP) is common after ischemic stroke and associated with a poor functional outcome and increased mortality. The conundrum then arises on whether to lower BP to improve outcome or whether this will worsen cerebral perfusion due to aberrant cerebral autoregulation. A number of large trials of BP lowering have failed to change outcome whether treatment was started prehospital in the community or hospital. Hence, nuances on how to manage high BP are likely, including whether different interventions are needed for different causes, the type and timing of the drug, how quickly BP is lowered, and the collateral effects of the drug, including on cerebral perfusion and platelets. Specific scenarios are also important, including when to lower BP before, during, and after intravenous thrombolysis and endovascular therapy/thrombectomy, when it may be necessary to raise BP, and when antihypertensive drugs taken before stroke should be restarted. This narrative review addresses these and other questions. Although further large trials are ongoing, it is increasingly likely that there is no simple answer. Different subgroups of patients may need to have their BP lowered (eg, before or after thrombolysis), left alone, or elevated.
Collapse
Affiliation(s)
- Philip M Bath
- Stroke Trials Unit, Mental Health and Clinical Neuroscience, University of Nottingham, United Kingdom (P.M.B.)
- Stroke, Nottingham University Hospitals NHS Trust, United Kingdom (P.M.B.)
| | - Lili Song
- The George Institute China at Peking University Health Science Center, Beijing (L.S.)
- Faculty of Medicine, George Institute for Global Health, University of New South Wales, Sydney, Australia (L.S.)
| | - Gisele S Silva
- Neurology, Federal University of São Paulo (UNIFESP) and Hospital Israelita Albert Einstein, Brazil (G.S.S.)
| | - Eva Mistry
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH (E.M.)
| | - Nils Petersen
- Department of Neurology, Divisions of Vascular Neurology and Neurocritical Care, Yale School of Medicine, New Haven (N.P.)
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Greece (G.T.)
| | - Mikael Mazighi
- Department of Neurology, Lariboisiere Hospital, and Interventional Neuroradiology, Fondation Rothschild Hospital, University of Paris, INSERM 1148, FHU Neurovasc, France (M.M.)
| | - Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (O.Y.B.)
| | - Else Charlotte Sandset
- Stroke Unit, Department of Neurology, Oslo University Hospital, Norway (E.C.S.)
- The Norwegian Air Ambulance Foundation, Oslo (E.C.S.)
| |
Collapse
|
17
|
Huang X, Xu J, Yang K, Xu Y, Yuan L, Cai Q, Xu X, Yang Q, Zhou Z, Zhu S, Liu X. Blood Pressure After Endovascular Thrombectomy and Malignant Cerebral Edema in Large Vessel Occlusion Stroke. Front Neurol 2021; 12:707275. [PMID: 34744962 PMCID: PMC8564062 DOI: 10.3389/fneur.2021.707275] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Elevated blood pressure (BP) can cause blood–brain barrier disruption and facilitates brain edema formation. We aimed to investigate the association of BP level after thrombectomy with the development of malignant cerebral edema (MCE) in patients treated with endovascular thrombectomy (EVT). Methods: Consecutive patients who underwent EVT for an anterior circulation ischemic stroke were enrolled from three comprehensive stroke centers. BP was measured hourly during the first 24 h after thrombectomy. MCE was defined as swelling causing a midline shift on the follow-up imaging within 5 days after EVT. Associations of various BP parameters, including mean BP, maximum BP (BPmax), and BP variability (BPV), with the development of MCE were analyzed. Results: Of the 498 patients (mean age 66.9 ± 11.7 years, male 58.2%), 97 (19.5%) patients developed MCE. Elevated mean systolic BP (SBP) (OR, 1.035; 95% CI, 1.006–1.065; P = 0.017) was associated with a higher likelihood of MCE. The best SBPmax threshold that predicted the development of MCE was 165 mmHg. Additionally, increases in BPV, as evaluated by SBP standard deviation (OR, 1.061; 95% CI, 1.003–1.123; P = 0.039), were associated with higher likelihood of MCE. Interpretation: Elevated mean SBP and BPV were associated with a higher likelihood of MCE. Having a SBPmax > 165 mm Hg was the best threshold to discriminate the development of MCE. These results suggest that continuous BP monitoring after EVT could be used as a non-invasive predictor for clinical deterioration due to MCE. Randomized clinical studies are warranted to address BP goal after thrombectomy.
Collapse
Affiliation(s)
- Xianjun Huang
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Junfeng Xu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Ke Yang
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Youqing Xu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Lili Yuan
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qiankun Cai
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiangjun Xu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qian Yang
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zhiming Zhou
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Shuanggen Zhu
- Department of Neurology, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China.,Department of Neurology, People's Hospital of Longhua, Shenzhen, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Division of Life Sciences and Medicine, Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| |
Collapse
|
18
|
Ng FC, Churilov L, Yassi N, Kleinig TJ, Thijs V, Wu TY, Shah D, Dewey HM, Sharma G, Desmond PM, Yan B, Parsons MW, Donnan GA, Davis SM, Mitchell PJ, Campbell BC. Association between pre-treatment perfusion profile and cerebral edema after reperfusion therapies in ischemic stroke. J Cereb Blood Flow Metab 2021; 41:2887-2896. [PMID: 33993795 PMCID: PMC8756469 DOI: 10.1177/0271678x211017696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relationship between reperfusion and edema is unclear, with experimental and clinical data yielding conflicting results. We investigated whether the extent of salvageable and irreversibly-injured tissue at baseline influenced the effect of therapeutic reperfusion on cerebral edema. In a pooled analysis of 415 patients with anterior circulation large vessel occlusion from the Tenecteplase-versus-Alteplase-before-Endovascular-Therapy-for-Ischemic-Stroke (EXTEND-IA TNK) part 1 and 2 trials, associations between core and mismatch volume on pre-treatment CT-Perfusion with cerebral edema at 24-hours, and their interactions with reperfusion were tested. Core volume was associated with increased edema (p < 0.001) with no significant interaction with reperfusion (p = 0.82). In comparison, a significant interaction between reperfusion and mismatch volume (p = 0.03) was observed: Mismatch volume was associated with increased edema in the absence of reperfusion (p = 0.009) but not with reperfusion (p = 0.27). When mismatch volume was dichotomized at the median (102 ml), reperfusion was associated with reduced edema in patients with large mismatch volume (p < 0.001) but not with smaller mismatch volume (p = 0.35). The effect of reperfusion on edema may be variable and dependent on the physiological state of the cerebral tissue. In patients with small to moderate ischemic core volume, the benefit of reperfusion in reducing edema is related to penumbral salvage.
Collapse
Affiliation(s)
- Felix C Ng
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia.,Department of Neurology, Austin Hospital, Austin Health, Heidelberg, Australia
| | - Leonid Churilov
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia.,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia.,Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
| | - Nawaf Yassi
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Timothy J Kleinig
- Department of Neurology, Royal Adelaide Hospital, Adelaide, Australia
| | - Vincent Thijs
- Department of Neurology, Austin Hospital, Austin Health, Heidelberg, Australia.,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Teddy Y Wu
- Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| | - Darshan Shah
- Department of Neurology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Helen M Dewey
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia.,Eastern Health and Eastern Health Clinical School, Department of Neurosciences, Monash University, Clayton, Australia
| | - Gagan Sharma
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Patricia M Desmond
- Department of Radiology, the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Bernard Yan
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia.,Department of Radiology, the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Mark W Parsons
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Geoffrey A Donnan
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Stephen M Davis
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Peter J Mitchell
- Department of Radiology, the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Bruce Cv Campbell
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia.,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
19
|
Ng FC, Yassi N, Sharma G, Brown SB, Goyal M, Majoie CBLM, Jovin TG, Hill MD, Muir KW, Saver JL, Guillemin F, Demchuk AM, Menon BK, San Roman L, Liebeskind DS, White P, Dippel DWJ, Davalos A, Bracard S, Mitchell PJ, Wald MJ, Davis SM, Sheth KN, Kimberly WT, Campbell BCV. Cerebral Edema in Patients With Large Hemispheric Infarct Undergoing Reperfusion Treatment: A HERMES Meta-Analysis. Stroke 2021; 52:3450-3458. [PMID: 34384229 DOI: 10.1161/strokeaha.120.033246] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Whether reperfusion into infarcted tissue exacerbates cerebral edema has treatment implications in patients presenting with extensive irreversible injury. We investigated the effects of endovascular thrombectomy and reperfusion on cerebral edema in patients presenting with radiological evidence of large hemispheric infarction at baseline. METHODS In a systematic review and individual patient-level meta-analysis of 7 randomized controlled trials comparing thrombectomy versus medical therapy in anterior circulation ischemic stroke published between January 1, 2010, and May 31, 2017 (Highly Effective Reperfusion Using Multiple Endovascular Devices collaboration), we analyzed the association between thrombectomy and reperfusion with maximal midline shift (MLS) on follow-up imaging as a measure of the space-occupying effect of cerebral edema in patients with large hemispheric infarction on pretreatment imaging, defined as diffusion-magnetic resonance imaging or computed tomography (CT)-perfusion ischemic core 80 to 300 mL or noncontrast CT-Alberta Stroke Program Early CT Score ≤5. Risk of bias was assessed using the Cochrane tool. RESULTS Among 1764 patients, 177 presented with large hemispheric infarction. Thrombectomy and reperfusion were associated with functional improvement (thrombectomy common odds ratio =2.30 [95% CI, 1.32-4.00]; reperfusion common odds ratio =4.73 [95% CI, 1.66-13.52]) but not MLS (thrombectomy β=-0.27 [95% CI, -1.52 to 0.98]; reperfusion β=-0.78 [95% CI, -3.07 to 1.50]) when adjusting for age, National Institutes of Health Stroke Score, glucose, and time-to-follow-up imaging. In an exploratory analysis of patients presenting with core volume >130 mL or CT-Alberta Stroke Program Early CT Score ≤3 (n=76), thrombectomy was associated with greater MLS after adjusting for age and National Institutes of Health Stroke Score (β=2.76 [95% CI, 0.33-5.20]) but not functional improvement (odds ratio, 1.71 [95% CI, 0.24-12.08]). CONCLUSIONS In patients presenting with large hemispheric infarction, thrombectomy and reperfusion were not associated with MLS, except in the subgroup with very large core volume (>130 mL) in whom thrombectomy was associated with increased MLS due to space-occupying ischemic edema. Mitigating cerebral edema-mediated secondary injury in patients with very large infarcts may further improve outcomes after reperfusion therapies.
Collapse
Affiliation(s)
- Felix C Ng
- Department of Medicine and Neurology, Melbourne Brain Centre (F.C.N., N.Y., G.S., S.M.D., B.C.V.C.), Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
- Department of Neurology, Austin Health, Heidelberg, Australia (F.C.N.)
| | - Nawaf Yassi
- Department of Medicine and Neurology, Melbourne Brain Centre (F.C.N., N.Y., G.S., S.M.D., B.C.V.C.), Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research. Parkville, Australia (N.Y.)
| | - Gagan Sharma
- Department of Medicine and Neurology, Melbourne Brain Centre (F.C.N., N.Y., G.S., S.M.D., B.C.V.C.), Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | | | - Mayank Goyal
- Department of Radiology (M.G.), University of Calgary, Foothills Hospital, AB, Canada
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location AMC, the Netherlands (C.B.L.M.M.)
| | - Tudor G Jovin
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ (T.G.J.)
| | - Michael D Hill
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine (M.D.H., A.M.D., B.K.M.), University of Calgary, Foothills Hospital, AB, Canada
| | - Keith W Muir
- Institute of Neuroscience and Psychology, University of Glasgow, Queen Elizabeth University Hospital, United Kingdom (K.W.M.)
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine (J.L.S.), University of California, Los Angeles
- Stanford Stroke Center, Stanford University, CA (J.L.S.)
| | - Francis Guillemin
- Clinical Investigation Centre-Clinical Epidemiology INSERM 1433, University of Lorraine, University Hospital of Nancy, France (F.G.)
| | - Andrew M Demchuk
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine (M.D.H., A.M.D., B.K.M.), University of Calgary, Foothills Hospital, AB, Canada
| | - Bijoy K Menon
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine (M.D.H., A.M.D., B.K.M.), University of Calgary, Foothills Hospital, AB, Canada
| | - Luis San Roman
- Department of Radiology, Hospital Clínic, Barcelona, Spain (L.S.R.)
| | - David S Liebeskind
- Neurovascular Imaging Research Core, Department of Neurology (D.S.L.), University of California, Los Angeles
| | - Philip White
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom (P.W.)
| | - Diederik W J Dippel
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands (D.W.J.D.)
| | - Antoni Davalos
- Department of Neuroscience, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain (A.D.)
| | - Serge Bracard
- Department of Diagnostic and Interventional Neuroradiology, INSERM U 947, University of Lorraine and University Hospital of Nancy, France (S.B.)
| | - Peter J Mitchell
- Department of Radiology (P.J.M.), Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | | | - Stephen M Davis
- Department of Medicine and Neurology, Melbourne Brain Centre (F.C.N., N.Y., G.S., S.M.D., B.C.V.C.), Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Kevin N Sheth
- Department of Neurology, Yale-New Haven Hospital, CT (K.N.S.)
| | - W Taylor Kimberly
- Centre for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston (W.T.K.)
| | - Bruce C V Campbell
- Department of Medicine and Neurology, Melbourne Brain Centre (F.C.N., N.Y., G.S., S.M.D., B.C.V.C.), Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| |
Collapse
|
20
|
Sarkaki A, Rashidi M, Ranjbaran M, Asareh Zadegan Dezfuli A, Shabaninejad Z, Behzad E, Adelipour M. Therapeutic Effects of Resveratrol on Ischemia-Reperfusion Injury in the Nervous System. Neurochem Res 2021; 46:3085-3102. [PMID: 34365594 DOI: 10.1007/s11064-021-03412-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023]
Abstract
Resveratrol is a phenol compound produced by some plants in response to pathogens, infection, or physical injury. It is well-known that resveratrol has antioxidant and protective roles in damages potentially caused by cancer or other serious disorders. Thus, it is considered as a candidate agent for the prevention and treatment of human diseases. Evidence has confirmed other bioactive impacts of resveratrol, including cardioprotective, anti-tumorigenic, anti-inflammatory, phytoestrogenic, and neuroprotective effects. Ischemia-reperfusion (IR) can result in various disorders, comprising myocardial infarction, stroke, and peripheral vascular disease, which may continue to induce debilitating conditions and even mortality. In virtue of chronic ischemia or hypoxia, cells switch to anaerobic metabolism, giving rise to some dysfunctions in mitochondria. As the result of lactate accumulation, adenosine triphosphate levels and pH decline in cells. This condition leads cells to apoptosis, necrosis, and autophagy. However, restoring oxygen level upon reperfusion after ischemia by producing reactive oxygen species is an outcome of mitochondrial dysfunction. Considering the neuroprotective effect of resveratrol and neuronal injury that comes from IR, we focused on the mechanism(s) involved in IR injury in the nervous system and also on the functions of resveratrol in the protection, inhibition, and treatment of this injury.
Collapse
Affiliation(s)
- Alireza Sarkaki
- Department of Physiology, School of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Ranjbaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aram Asareh Zadegan Dezfuli
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ebrahim Behzad
- Neurology Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Adelipour
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
21
|
Hamblin MH, Lee JP. Neural Stem Cells for Early Ischemic Stroke. Int J Mol Sci 2021; 22:ijms22147703. [PMID: 34299322 PMCID: PMC8306669 DOI: 10.3390/ijms22147703] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical treatments for ischemic stroke are limited. Neural stem cell (NSC) transplantation can be a promising therapy. Clinically, ischemia and subsequent reperfusion lead to extensive neurovascular injury that involves inflammation, disruption of the blood-brain barrier, and brain cell death. NSCs exhibit multiple potentially therapeutic actions against neurovascular injury. Currently, tissue plasminogen activator (tPA) is the only FDA-approved clot-dissolving agent. While tPA’s thrombolytic role within the vasculature is beneficial, tPA’s non-thrombolytic deleterious effects aggravates neurovascular injury, restricting the treatment time window (time-sensitive) and tPA eligibility. Thus, new strategies are needed to mitigate tPA’s detrimental effects and quickly mediate vascular repair after stroke. Up to date, clinical trials focus on the impact of stem cell therapy on neuro-restoration by delivering cells during the chronic stroke stage. Also, NSCs secrete factors that stimulate endogenous repair mechanisms for early-stage ischemic stroke. This review will present an integrated view of the preclinical perspectives of NSC transplantation as a promising treatment for neurovascular injury, with an emphasis on early-stage ischemic stroke. Further, this will highlight the impact of early sub-acute NSC delivery on improving short-term and long-term stroke outcomes.
Collapse
Affiliation(s)
- Milton H. Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (M.H.H.); (J.-P.L.)
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (M.H.H.); (J.-P.L.)
| |
Collapse
|
22
|
Effect of cinnamon on antioxidant content and ZO-1 gene expression in brain following middle cerebral artery occlusion in rats receiving high-fat diet. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.27.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Xu SY, Bian HJ, Shu S, Xia SN, Gu Y, Zhang MJ, Xu Y, Cao X. AIM2 deletion enhances blood-brain barrier integrity in experimental ischemic stroke. CNS Neurosci Ther 2021; 27:1224-1237. [PMID: 34156153 PMCID: PMC8446221 DOI: 10.1111/cns.13699] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Aims Ischemic stroke is a life‐threatening disease with limited therapeutic strategies. Blood‐brain barrier (BBB) disruption is a critical pathological process that contributes to poor outcomes in ischemic stroke. We previously showed that the microglial inhibition of the inflammasome sensor absent in melanoma 2 (AIM2) suppressed the inflammatory response and protected against ischemic stroke. However, whether AIM2 is involved in BBB disruption during cerebral ischemia is unknown. Methods Middle cerebral artery occlusion (MCAO) and oxygen‐glucose deprivation/reoxygenation (OGD/R) were used to mimic cerebral ischemia in mice and brain microvascular endothelial cells (HBMECs), respectively. The infarct volume, neurological deficits, and BBB permeability were measured in mice after MCAO. Transendothelial electrical resistance (TEER) and neutrophil adhesion to the HBMEC monolayer were assessed after OGD/R treatment. Western blot and immunofluorescence analyses were conducted to evaluate the expression of related proteins. Results AIM2 was shown to be expressed in brain endothelial cells and upregulated after ischemic stroke in the mouse brain. AIM2 deletion reduced the infarct volume, improved neurological and motor functions, and decreased BBB disruption. In vitro, OGD/R significantly increased the protein levels of AIM2 and ICAM‐1 and decreased those of the tight junction (TJ) proteins ZO‐1 and occludin. AIM2 knockdown effectively protected BBB integrity by promoting the expression of TJ proteins and decreasing ICAM‐1 expression and neutrophil adhesion. Mechanistically, AIM2 knockdown reversed the OGD/R‐induced increases in ICAM‐1 expression and STAT3 phosphorylation in brain endothelial cells. Furthermore, treatment with the p‐STAT3 inhibitor AG490 mitigated the effect of AIM2 on BBB breakdown. Conclusion Our findings indicated that inhibiting AIM2 preserved the BBB integrity after ischemic stroke, at least partially by modulating STAT3 activation and that AIM2 may be a promising therapeutic target for cerebral ischemic stroke.
Collapse
Affiliation(s)
- Si-Yi Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Hui-Jie Bian
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Sheng-Nan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Mei-Juan Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| |
Collapse
|
24
|
Davis C, Savitz SI, Satani N. Mesenchymal Stem Cell Derived Extracellular Vesicles for Repairing the Neurovascular Unit after Ischemic Stroke. Cells 2021; 10:cells10040767. [PMID: 33807314 PMCID: PMC8065444 DOI: 10.3390/cells10040767] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a debilitating disease and one of the leading causes of long-term disability. During the early phase after ischemic stroke, the blood-brain barrier (BBB) exhibits increased permeability and disruption, leading to an influx of immune cells and inflammatory molecules that exacerbate the damage to the brain tissue. Mesenchymal stem cells have been investigated as a promising therapy to improve the recovery after ischemic stroke. The therapeutic effects imparted by MSCs are mostly paracrine. Recently, the role of extracellular vesicles released by these MSCs have been studied as possible carriers of information to the brain. This review focuses on the potential of MSC derived EVs to repair the components of the neurovascular unit (NVU) controlling the BBB, in order to promote overall recovery from stroke. Here, we review the techniques for increasing the effectiveness of MSC-based therapeutics, such as improved homing capabilities, bioengineering protein expression, modified culture conditions, and customizing the contents of EVs. Combining multiple techniques targeting NVU repair may provide the basis for improved future stroke treatment paradigms.
Collapse
|
25
|
Huang D, Zhou J, Li W, Zhang L, Wang X, Liu Q. Casticin protected against neuronal injury and inhibited the TLR4/NF-κB pathway after middle cerebral artery occlusion in rats. Pharmacol Res Perspect 2021; 9:e00752. [PMID: 33704926 PMCID: PMC7948701 DOI: 10.1002/prp2.752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/18/2022] Open
Abstract
Although stroke is a major human neurological disease, there is a paucity of effective neuroprotectants that can improve its treatment. Casticin is a natural monomer drug with many biological effects such as anti-inflammatory and anti-tumor actions. However, it is not clear whether it has a neuroprotective effect in ischemic stroke. In this study, the neuroprotective effect of casticin in a rat middle cerebral artery occlusion (MCAO) model was investigated. Results showed that casticin reduced the volume of the cerebral infarction, mNSS scores, swimming distance, time to find the submerged platform, and serum concentrations of TNF-α, TGF-β, IL-6 in MCAO rats. Moreover, casticin also decreased the expression of TLR4, NF-κB p65, and NF-κB p50 proteins and reversed the reduced expression of IκB protein in the brain tissue of MCAO rats. The in vitro study revealed that casticin decreased apoptosis of OGD/R-PC12 cells, reduced the expression of TLR4, NF-κB p65, and NF-κB p50, while increased IκB protein expression. In conclusion, casticin improved the neurological functions of MCAO rats via inhibiting the TLR4/NF-κB pathway and might have the potential to be developed into a neuroprotective agent for stroke patients.
Collapse
Affiliation(s)
- Dan Huang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiafan Zhou
- Department of Neurology, Qionghai People's Hospital, Qionghai, China
| | - Wenning Li
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Li Zhang
- Department of Pharmacology, Hainan Medical University, Haikou, China
| | - Xiaomeng Wang
- Department of Pharmacology, Hainan Medical University, Haikou, China
| | - Qiang Liu
- Department of Pharmacology, Hainan Medical University, Haikou, China
| |
Collapse
|
26
|
Wu K, Xiong Z, Ding Y. Management of Elevated Blood Pressure After Stroke Thrombectomy for Anterior Circulation. Risk Manag Healthc Policy 2021; 14:405-413. [PMID: 33568958 PMCID: PMC7868952 DOI: 10.2147/rmhp.s285316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Thrombectomy is superior to intravenous thrombolysis for patients with large vessel occlusion in acute ischemic stroke, but nearly half of the patients still experience poor functional outcomes. Elevated blood pressure (BP) is widely observed in acute ischemic stroke, and BP may be one of the modifiable parameters that can potentially influence the outcomes; however, only observational studies exist to support current guidelines, and the recommended range for BP after thrombectomy is too wide to meet the clinical requirement. Randomized controlled trials are therefore needed to better understand the relationship between BP and outcomes after thrombectomy. In this review, we introduce the current management of BP after thrombectomy and several aspects of postthrombectomy BP management that should be resolved in future clinical trials.
Collapse
Affiliation(s)
- Kexin Wu
- Postgraduate School, Dalian Medical University, Dalian, People's Republic of China.,Department of Neurosurgery, Taizhou People's Hospital, Taizhou, People's Republic of China
| | - Zhencheng Xiong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, People's Republic of China.,Peking University Third Hospital, Beijing, People's Republic of China
| | - Yasuo Ding
- Postgraduate School, Dalian Medical University, Dalian, People's Republic of China.,Department of Neurosurgery, Taizhou People's Hospital, Taizhou, People's Republic of China
| |
Collapse
|
27
|
Yawoot N, Govitrapong P, Tocharus C, Tocharus J. Ischemic stroke, obesity, and the anti-inflammatory role of melatonin. Biofactors 2021; 47:41-58. [PMID: 33135223 DOI: 10.1002/biof.1690] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Obesity is a predominant risk factor in ischemic stroke and is commonly comorbid with it. Pathologies following these conditions are associated with systemic and local inflammation. Moreover, there is increasing evidence that the susceptibility for ischemic brain damage increases substantially in experimental models of ischemic stroke with concomitant obesity. Herein, we explore the proinflammatory events that occur during ischemic stroke and obesity, and we discuss the influence of obesity on the inflammatory response and cerebral damage outcomes in experimental models of brain ischemia. In addition, because melatonin is a neurohormone widely reported to exhibit protective effects in various diseases, this study also demonstrates the anti-inflammatory role and possible mechanistic actions of melatonin in both epidemic diseases. A summary of research findings suggests that melatonin administration has great potential to exert an anti-inflammatory role and provide protection against obesity and ischemic stroke conditions. However, the efficacy of this hormonal treatment on ischemic stroke with concomitant obesity, when more serious inflammation is generated, is still lacking.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Jiraporn Tocharus
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
28
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
29
|
Ma R, Xie Q, Li Y, Chen Z, Ren M, Chen H, Li H, Li J, Wang J. Animal models of cerebral ischemia: A review. Biomed Pharmacother 2020; 131:110686. [PMID: 32937247 DOI: 10.1016/j.biopha.2020.110686] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/09/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Stroke seriously threatens human health because of its characteristics of high morbidity, disability, recurrence, and mortality, thus representing a heavy financial and mental burden to affected families and society. Many preclinical effective drugs end in clinical-translation failure. Animal models are an important approach for studying diseases and drug effects, and play a central role in biomedical research. Some details about animal models of cerebral ischemia have not been published, such as left-/right-sided lesions or permanent cerebral ischemia/cerebral ischemia-reperfusion. In this review, ischemia in the left- and right-hemisphere in patients with clinical stroke and preclinical studies were compared for the first time, as were the mechanisms of permanent cerebral ischemia and cerebral ischemia-reperfusion in different phases of the disease. The results showed that stroke in the left hemisphere was more common in clinical patients, and that most patients with stroke failed to achieve successful recanalization. Significant differences were detected between permanent cerebral ischemia and cerebral ischemia-reperfusion models in the early, subacute, and recovery phases. Therefore, it is recommended that, with the exception of the determined experimental purpose or drug mechanism, left-sided permanent cerebral ischemia animal models should be prioritized, as they would be more in line with the clinical scenario and would promote clinical translation. In addition, other details regarding the preoperative management, surgical procedures, and postoperative care of these animals are provided, to help establish a precise, effective, and reproducible model of cerebral ischemia model and establish a reference for researchers in this field.
Collapse
Affiliation(s)
- Rong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yong Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhuoping Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mihong Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hai Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongyan Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinxiu Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
30
|
Saft M, Gonzales-Portillo B, Park YJ, Cozene B, Sadanandan N, Cho J, Garbuzova-Davis S, Borlongan CV. Stem Cell Repair of the Microvascular Damage in Stroke. Cells 2020; 9:cells9092075. [PMID: 32932814 PMCID: PMC7563611 DOI: 10.3390/cells9092075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is a life-threatening disease that leads to mortality, with survivors subjected to long-term disability. Microvascular damage is implicated as a key pathological feature, as well as a therapeutic target for stroke. In this review, we present evidence detailing subacute diaschisis in a focal ischemic stroke rat model with a focus on blood–brain barrier (BBB) integrity and related pathogenic processes in contralateral brain areas. Additionally, we discuss BBB competence in chronic diaschisis in a similar rat stroke model, highlighting the pathological changes in contralateral brain areas that indicate progressive morphological brain disturbances overtime after stroke onset. With diaschisis closely approximating stroke onset and progression, it stands as a treatment of interest for stroke. Indeed, the use of stem cell transplantation for the repair of microvascular damage has been investigated, demonstrating that bone marrow stem cells intravenously transplanted into rats 48 h post-stroke survive and integrate into the microvasculature. Ultrastructural analysis of transplanted stroke brains reveals that microvessels display a near-normal morphology of endothelial cells and their mitochondria. Cell-based therapeutics represent a new mechanism in BBB and microvascular repair for stroke.
Collapse
Affiliation(s)
| | | | - You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
| | | | | | - Justin Cho
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
| | - Svitlana Garbuzova-Davis
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
- Correspondence: ; Tel.: +813-974-3988
| |
Collapse
|
31
|
Fei YX, Zhu JP, Zhao B, Yin QY, Fang WR, Li YM. XQ-1H regulates Wnt/GSK3β/β-catenin pathway and ameliorates the integrity of blood brain barrier in mice with acute ischemic stroke. Brain Res Bull 2020; 164:269-288. [PMID: 32916221 DOI: 10.1016/j.brainresbull.2020.08.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/30/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023]
Abstract
10-O-(N, N-dimethylaminoethyl) ginkgolide B methanesulfonate (XQ-1H), a novel analog of ginkgolide B, has been preliminarily recognized to show bioactivities against ischemia-induced injury. However, the underlying mechanism still remains to be fully elucidated. The aim of this study was to investigate the effect of XQ-1H against cerebral ischemia/reperfusion injury (CIRI) from the perspective of blood brain barrier (BBB) protection, and explore whether the underlying mechanism is associated with Wnt/GSK3β/β-catenin signaling pathway activation. The therapeutic effects of XQ-1H were evaluated in mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and in immortalized mouse cerebral endothelial cells (bEnd.3) challenged by oxygen and glucose deprivation/reoxygenation (OGD/R). Results showed that treatment with XQ-1H improved neurological behavior, reduced brain infarction volume, diminished edema, and attenuated the disruption of BBB in vivo. In vitro, XQ-1H increased cell viability and maintained the barrier function of bEnd.3 monolayer after OGD/R. Moreover, the protection of XQ-1H was accompanied with activation of Wnt/GSK3β/β-catenin pathway and upregulation of tight junction proteins. Notably, the protection of XQ-1H was abolished by Wnt/GSK3β/β-catenin inhibitor XAV939 or β-catenin siRNA, indicating XQ-1H exerted protection in a Wnt/GSK3β/β-catenin dependent profile. In summary, XQ-1H attenuated brain injury and maintained BBB integrity after CIRI, and the possible underlying mechanism may be related to the activation of Wnt/GSK3β/β-catenin pathway and upregulation of tight junction proteins.
Collapse
Affiliation(s)
- Yu-Xiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jian-Ping Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qi-Yang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
32
|
Nakagomi T, Tanaka Y, Nakagomi N, Matsuyama T, Yoshimura S. How Long Are Reperfusion Therapies Beneficial for Patients after Stroke Onset? Lessons from Lethal Ischemia Following Early Reperfusion in a Mouse Model of Stroke. Int J Mol Sci 2020; 21:ijms21176360. [PMID: 32887241 PMCID: PMC7504064 DOI: 10.3390/ijms21176360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke caused by cerebral artery occlusion induces neurological deficits because of cell damage or death in the central nervous system. Given the recent therapeutic advances in reperfusion therapies, some patients can now recover from an ischemic stroke with no sequelae. Currently, reperfusion therapies focus on rescuing neural lineage cells that survive in spite of decreases in cerebral blood flow. However, vascular lineage cells are known to be more resistant to ischemia/hypoxia than neural lineage cells. This indicates that ischemic areas of the brain experience neural cell death but without vascular cell death. Emerging evidence suggests that if a vascular cell-mediated healing system is present within ischemic areas following reperfusion, the therapeutic time window can be extended for patients with stroke. In this review, we present our comments on this subject based upon recent findings from lethal ischemia following reperfusion in a mouse model of stroke.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Correspondence: ; Tel.: +81-798-45-6821; Fax: +81-798-45-6823
| | - Yasue Tanaka
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Shinichi Yoshimura
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| |
Collapse
|
33
|
Morgan CA, Mesquita M, Ashioti M, Beech JS, Williams SCR, Irving E, Cash D. Late changes in blood-brain barrier permeability in a rat tMCAO model of stroke detected by gadolinium-enhanced MRI. Neurol Res 2020; 42:844-852. [PMID: 32600164 DOI: 10.1080/01616412.2020.1786637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES After cerebral ischaemia the blood-brain barrier (BBB) may be compromised and this has been observed in both clinical and preclinical studies. The timing of BBB disruption after ischaemia has long been considered to be biphasic, however some groups contest this view. Therefore, the purpose of this study was to characterize the BBB permeability timecourse in a rat model at both acute and chronic time points. METHODS Unilateral transient middle cerebral artery occlusion (tMCAO) was performed in 15 male Sprague Dawley rats. Change in T1-weighted MR signal before and after an injection of gadolinium-based contrast agent was calculated voxelwise to derive a BBB permeability index (BBBPI) at both early (6 h, 12 h, and 24 h) and late (7 and 14 days) time points. RESULTS As expected, BBBPI in the non-lesioned ROI was not significantly different from pre-occlusion baseline at any time point. However, BBBPI in the ipsilateral (lesioned) ROI was statistically different to baseline at day 7 (p < 0.001) and day 14 (p < 0.01) post-tMCAO. There was a small, but not-significant increase in BBBPI in the earlier phase (at 6 hours). DISCUSSION Our results indicate a significant late opening of the BBB. This is important as the majority of previous studies have only characterised an early acute BBB permeability in ischemia. However, the later period of increased permeability may indicate an optimal time for drug delivery across the BBB, when it is especially suited to drugs targeting delayed processes.
Collapse
Affiliation(s)
- Catherine A Morgan
- School of Psychology and Centre for Brain Research, The University of Auckland , Auckland, New Zealand.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| | - Michel Mesquita
- School of Psychology and Centre for Brain Research, The University of Auckland , Auckland, New Zealand
| | - Maria Ashioti
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster , London, UK
| | - John S Beech
- School of Psychology and Centre for Brain Research, The University of Auckland , Auckland, New Zealand
| | - Steve C R Williams
- School of Psychology and Centre for Brain Research, The University of Auckland , Auckland, New Zealand
| | - Elaine Irving
- Value Evidence & Outcomes, GlaxoSmithKline R&D Ltd , Stevenage, UK
| | - Diana Cash
- School of Psychology and Centre for Brain Research, The University of Auckland , Auckland, New Zealand
| |
Collapse
|
34
|
Tanaka Y, Nakagomi N, Doe N, Nakano-Doi A, Sawano T, Takagi T, Matsuyama T, Yoshimura S, Nakagomi T. Early Reperfusion Following Ischemic Stroke Provides Beneficial Effects, Even After Lethal Ischemia with Mature Neural Cell Death. Cells 2020; 9:cells9061374. [PMID: 32492968 PMCID: PMC7349270 DOI: 10.3390/cells9061374] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is a critical disease caused by cerebral artery occlusion in the central nervous system (CNS). Recent therapeutic advances, such as neuroendovascular intervention and thrombolytic therapy, have allowed recanalization of occluded brain arteries in an increasing number of stroke patients. Although previous studies have focused on rescuing neural cells that still survive despite decreased blood flow, expanding the therapeutic time window may allow more patients to undergo reperfusion in the near future, even after lethal ischemia, which is characterized by death of mature neural cells, such as neurons and glia. However, it remains unclear whether early reperfusion following lethal ischemia results in positive outcomes. The present study used two ischemic mouse models—90-min transient middle cerebral artery occlusion (t-MCAO) paired with reperfusion to induce lethal ischemia and permanent middle cerebral artery occlusion (p-MCAO)—to investigate the effect of early reperfusion up to 8 w following MCAO. Although early reperfusion following 90-min t-MCAO did not rescue mature neural cells, it preserved the vascular cells within the ischemic areas at 1 d following 90-min t-MCAO compared to that following p-MCAO. In addition, early reperfusion facilitated the healing processes, including not only vascular but also neural repair, during acute and chronic periods and improved recovery. Furthermore, compared with p-MCAO, early reperfusion after t-MCAO prevented behavioral symptoms of neurological deficits without increasing negative complications, including hemorrhagic transformation and mortality. These results indicate that early reperfusion provides beneficial effects presumably via cytoprotective and regenerative mechanisms in the CNS, suggesting that it may be useful for stroke patients that experienced lethal ischemia.
Collapse
Affiliation(s)
- Yasue Tanaka
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan; (Y.T.); (T.T.)
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
| | - Nobutaka Doe
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan;
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan;
| | - Toshinori Takagi
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan; (Y.T.); (T.T.)
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan; (Y.T.); (T.T.)
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Correspondence: (S.Y.); (T.N.); Tel.: +81-798-45-6455 (S.Y.); +81-798-45-6821 (T.N.)
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Correspondence: (S.Y.); (T.N.); Tel.: +81-798-45-6455 (S.Y.); +81-798-45-6821 (T.N.)
| |
Collapse
|
35
|
Wang N, Yang W, Li L, Tian M. MEF2D upregulation protects neurons from oxygen-glucose deprivation/re-oxygenation-induced injury by enhancing Nrf2 activation. Brain Res 2020; 1741:146878. [PMID: 32407713 DOI: 10.1016/j.brainres.2020.146878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Accumulating evidence suggests that myocyte enhancer factor 2D (MEF2D) is a pro-survival factor for neurons. However, whether MEF2D is involved in protecting neurons from cerebral ischemia/reperfusion injury remains unknown. The current study was designed to investigate the exact role and mechanism of MEF2D in regulating oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced neuronal injury, an in vitro model used to study cerebral ischemia/reperfusion injury. MEF2D expression was significantly induced in neurons in response to OGD/R injury. Functional analysis demonstrated that MEF2D upregulation significantly rescued the decreased viability of OGD/R-injured neurons and suppressed OGD/R-induced apoptosis and reactive oxygen species (ROS) production. By contrast, MEF2D knockdown increased the sensitivity of neurons to OGD/R-induced injury. Moreover, MEF2D overexpression increased the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and enhanced the activation of Nrf2 antioxidant signaling. However, Nrf2 knockdown partially blocked the MEF2D-mediated neuroprotective effect in OGD/R-exposed neurons. Overall, these results reveal that MEF2D overexpression attenuates OGD/R-induced injury by enhancing Nrf2-mediated antioxidant signaling. These findings suggest that MEF2D may serve as a neuroprotective target with a potential application for treatment of cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Nan Wang
- Department of Anesthesiology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - Weiwei Yang
- Department of Anesthesiology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - Lan Li
- Department of Anesthesiology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - Ming Tian
- Department of Anesthesiology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
36
|
Liu Y, Min JW, Feng S, Subedi K, Qiao F, Mammenga E, Callegari E, Wang H. Therapeutic Role of a Cysteine Precursor, OTC, in Ischemic Stroke Is Mediated by Improved Proteostasis in Mice. Transl Stroke Res 2020; 11:147-160. [PMID: 31049841 PMCID: PMC6824933 DOI: 10.1007/s12975-019-00707-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 01/15/2023]
Abstract
Oxidative stress aggravates brain injury following ischemia/reperfusion (I/R). We previously showed that ubiquilin-1 (Ubqln1), a ubiquitin-like protein, improves proteostasis and protects brains against oxidative stress and I/R-induced brain injury. Here, we demonstrate that a small molecule compound, L-2-oxothiazolidine-4-carboxylic acid (OTC) that functions as a precursor of cysteine, upregulated Ubqln1 and protected cells against oxygen-glucose deprivation-induced cell death in neuronal cultures. Further, the administration of OTC either at 1 h prior to ischemia or 3 h after the reperfusion significantly reduced brain infarct injury and improved behavioral outcomes in a stroke model. Administration of OTC also increased glutathione (GSH) level and decreased superoxide production, oxidized protein, and neuroinflammation levels in the penumbral cortex after I/R in the stroke mice. Furthermore, I/R reduced both Ubqln1 and the glutathione S-transferase protein levels, whereas OTC treatment restored both protein levels, which was associated with reduced ubiquitin-conjugated protein level. Interestingly, in the Ubqln1 knockout (KO) mice, OTC treatment showed reduced neuroprotection and increased ubiquitin-conjugated protein level when compared to the similarly treated non-KO mice following I/R, suggesting that OTC-medicated neuroprotection is, at least partially, Ubqln1-dependent. Thus, OTC is a potential therapeutic agent for stroke and possibly for other neurological disorders and its neuroprotection involves enhanced proteostasis.
Collapse
Affiliation(s)
- Yanying Liu
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Jia-Wei Min
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, MSE R334, 6431 Fannin St, Houston, TX, 77030, USA
| | - Shelley Feng
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Kalpana Subedi
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Fangfang Qiao
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Emily Mammenga
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
37
|
Martinelli C, Pucci C, Battaglini M, Marino A, Ciofani G. Antioxidants and Nanotechnology: Promises and Limits of Potentially Disruptive Approaches in the Treatment of Central Nervous System Diseases. Adv Healthc Mater 2020; 9:e1901589. [PMID: 31854132 DOI: 10.1002/adhm.201901589] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Many central nervous system (CNS) diseases are still incurable and only symptomatic treatments are available. Oxidative stress is suggested to be a common hallmark, being able to cause and exacerbate the neuronal cell dysfunctions at the basis of these pathologies, such as mitochondrial impairments, accumulation of misfolded proteins, cell membrane damages, and apoptosis induction. Several antioxidant compounds are tested as potential countermeasures for CNS disorders, but their efficacy is often hindered by the loss of antioxidant properties due to enzymatic degradation, low bioavailability, poor water solubility, and insufficient blood-brain barrier crossing efficiency. To overcome the limitations of antioxidant molecules, exploitation of nanostructures, either for their delivery or with inherent antioxidant properties, is proposed. In this review, after a brief discussion concerning the role of the blood-brain barrier in the CNS and the involvement of oxidative stress in some neurodegenerative diseases, the most interesting research concerning the use of nano-antioxidants is introduced and discussed, focusing on the synthesis procedures, functionalization strategies, in vitro and in vivo tests, and on recent clinical trials.
Collapse
Affiliation(s)
- Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
- Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| |
Collapse
|
38
|
Dhanesha N, Chorawala MR, Jain M, Bhalla A, Thedens D, Nayak M, Doddapattar P, Chauhan AK. Fn-EDA (Fibronectin Containing Extra Domain A) in the Plasma, but Not Endothelial Cells, Exacerbates Stroke Outcome by Promoting Thrombo-Inflammation. Stroke 2020; 50:1201-1209. [PMID: 30909835 DOI: 10.1161/strokeaha.118.023697] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Cellular Fn-EDA (fibronectin containing extra domain A) is expressed in activated endothelial cells and elevated in circulation in patients with cardiovascular diseases. Although global deficiency of Fn-EDA in mice improves stroke outcome, the specific contribution of plasma versus endothelium Fn-EDA in stroke outcome is currently unknown. We investigated the role of plasma versus endothelial Fn-EDA in stroke exacerbation in the comorbid condition of hyperlipidemia. Methods- We generated novel plasma Fn-EDA-/- ( Fn-EDA fl/fl Alb Cre) and endothelial Fn-EDA-/- ( Fn-EDA fl/fl Tie2 Cre) strains on hyperlipidemic apolipoprotein E-deficient ( ApoE-/-) background. By following the Stroke Therapy Academic Industry Roundtable guidelines, we evaluated stroke outcome in male and female mice. Susceptibility to ischemia/reperfusion injury was evaluated in 2 different models of stroke: intraluminal monofilament and embolic model on days 1, 3, and 7. Quantitative assessment of stroke outcome was evaluated by measuring infarct volume (by magnetic resonance imaging), cerebral blood flow (by laser speckle imaging), neurological and sensory-motor outcome, and postischemic thrombo-inflammation (platelet thrombi, fibrin, neutrophil, phospho-NFκB [nuclear factor κB], TNFα [tumor necrosis factor α], and IL1β [interleukin 1β]). Results- Stroke outcome was comparable in ApoE-/- Fn-EDA fl/fl Tie2 Cre and control ApoE-/- Fn-EDA fl/fl mice suggesting endothelial Fn-EDA does not contribute to stroke. ApoE-/- Fn-EDA fl/fl Alb Cre mice exhibited significantly smaller infarcts and improved neurological and sensory-motor outcome at days 1, 3, and 7 in monofilament and embolic models of stroke. Improved stroke outcome was concomitant with enhanced survival, and decreased postischemic thrombo-inflammatory response ( P<0.05 versus ApoE-/- Fn-EDA fl/fl). No sex-based differences were observed. Laser speckle imaging revealed significantly improved regional cerebral blood flow at 1 hour in ApoE-/- Fn-EDA fl/fl Alb Cre mice suggesting plasma Fn-EDA promotes postischemic secondary thrombosis. Coinfusion of anti-Fn-EDA antibody with r-tPA (recombinant tissue-type plasminogen activator) in ApoE-/- mice, 1 hour after embolization, improved stroke outcome with enhanced survival, and improved neurological outcome ( P<0.05 versus r-tPA). Conclusions- Genetic evidence suggests that plasma Fn-EDA exacerbates stroke outcome by promoting postischemic thrombo-inflammation. Interventions targeting plasma Fn-EDA may reduce brain damage after reperfusion.
Collapse
Affiliation(s)
- Nirav Dhanesha
- From the Division of Hematology/Oncology, Department of Internal Medicine (N.D., M.R.C., M.J., A.B., M.N., P.D., A.K.C.), University of Iowa, Iowa City
| | - Mehul R Chorawala
- From the Division of Hematology/Oncology, Department of Internal Medicine (N.D., M.R.C., M.J., A.B., M.N., P.D., A.K.C.), University of Iowa, Iowa City
| | - Manish Jain
- From the Division of Hematology/Oncology, Department of Internal Medicine (N.D., M.R.C., M.J., A.B., M.N., P.D., A.K.C.), University of Iowa, Iowa City
| | - Abhinav Bhalla
- From the Division of Hematology/Oncology, Department of Internal Medicine (N.D., M.R.C., M.J., A.B., M.N., P.D., A.K.C.), University of Iowa, Iowa City
| | - Daniel Thedens
- Department of Radiology (D.T.), University of Iowa, Iowa City
| | - Manasa Nayak
- From the Division of Hematology/Oncology, Department of Internal Medicine (N.D., M.R.C., M.J., A.B., M.N., P.D., A.K.C.), University of Iowa, Iowa City
| | - Prakash Doddapattar
- From the Division of Hematology/Oncology, Department of Internal Medicine (N.D., M.R.C., M.J., A.B., M.N., P.D., A.K.C.), University of Iowa, Iowa City
| | - Anil K Chauhan
- From the Division of Hematology/Oncology, Department of Internal Medicine (N.D., M.R.C., M.J., A.B., M.N., P.D., A.K.C.), University of Iowa, Iowa City
| |
Collapse
|
39
|
Meyer M, Juenemann M, Braun T, Schirotzek I, Tanislav C, Engelhard K, Schramm P. Impaired Cerebrovascular Autoregulation in Large Vessel Occlusive Stroke after Successful Mechanical Thrombectomy: A Prospective Cohort Study. J Stroke Cerebrovasc Dis 2020; 29:104596. [PMID: 31902644 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104596] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Successful thrombectomy improves morbidity and mortality after stroke. The present prospective, observational cohort study investigated a potential correlation between the successful restoration of tissue perfusion by mechanical thrombectomy and intact cerebrovascular autoregulation (CA). OBJECTIVE Status of CA in patients with large vessel occlusive stroke after thrombectomy. METHODS After thrombectomy CA was measured using transcranial Doppler ultrasound. For this purpose a moving correlation index (Mxa) based on spontaneous arterial blood pressure fluctuations and corresponding cerebral blood flow velocity changes was calculated. CA impairment was defined by Mxa values more than .3. RESULTS Twenty patients with an acute occlusion of the middle cerebral artery or distal internal carotid artery were included. A successful recanalization of the occluded vessel via interventional thrombectomy was achieved in 10 of these patients (successful recanalization group), while in 10 patients mechanical recanalization failed or could not be applied (no recanalization group). Mean Mxa at stroke side was .58 ± .21 Table 2a in patients with successful intervention. At the unaffected hemisphere Mxa was .50 ± .20 Table 2a in successful recanalization group and .45 ± .24 Table 2b in no recanalization group without statistically significant differences. Based on the previously defined Mxa cut off more than .3, CA impairment was observable in all successful recanalized patients and in 8 of 10 patients with unsuccessful interventional treatment. CONCLUSIONS These results suggest that brain perfusion may be affected due to impaired CA even after successful mechanical thrombectomy. Therefore, a tight blood pressure management is of great importance in post-thrombectomy stroke treatment to avoid cerebral hypo- and hyperperfusion.
Collapse
Affiliation(s)
- Marco Meyer
- Department of Geriatrics, Jung-Stilling Hospital Siegen, Siegen, Germany.
| | - Martin Juenemann
- Department of Neurology, University hospital Giessen and Marburg location Giessen, Giessen, Germany
| | - Tobias Braun
- Department of Neurology, University hospital Giessen and Marburg location Giessen, Giessen, Germany
| | - Ingo Schirotzek
- Department of Neurology, University hospital Giessen and Marburg location Giessen, Giessen, Germany
| | - Christian Tanislav
- Department of Geriatrics, Jung-Stilling Hospital Siegen, Siegen, Germany
| | - Kristin Engelhard
- Department of Anesthesiology, Johannes Gutenberg-University, University medical hospital Mainz, Mainz, Germany
| | - Patrick Schramm
- Department of Anesthesiology, Johannes Gutenberg-University, University medical hospital Mainz, Mainz, Germany
| |
Collapse
|
40
|
Guo P, Jin Z, Wu H, Li X, Ke J, Zhang Z, Zhao Q. Effects of irisin on the dysfunction of blood-brain barrier in rats after focal cerebral ischemia/reperfusion. Brain Behav 2019; 9:e01425. [PMID: 31566928 PMCID: PMC6790318 DOI: 10.1002/brb3.1425] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate whether irisin could protect against blood-brain barrier (BBB) dysfunction following focal cerebral ischemia/reperfusion in rats. METHODS AND MATERIALS Seventy-two adult male Sprague Dawley rats weighing 280-320 g were randomly divided into three groups: sham operation group (S), focal cerebral ischemia/reperfusion group (FC), and irisin group (IR). Focal cerebral ischemia was induced by improved thread occlusion of right middle cerebral artery (MCAO) for 2 hr followed by reperfusion for 24 hr in rats. After 24 hr of reperfusion, the neurological evaluation was performed by the method of Longa's score. The histopathological changes were observed by HE staining. The brain water content was determined by detecting the wet weight and dry weight. The BBB permeability was assessed by fluorescence spectrophotometer and fluorescence microscopy for Evans blue (EB) extravasation. The activity and expression of matrix metalloproteinase-9 (MMP-9) in different groups were detected by immunohistochemical staining, Western blot, and gel gelatin zymography. RESULTS After MCAO, the neurological deficit scores, the infarct volume, the brain water content, and the EB content were higher in the FC group than those in the S group (p < .05). While after irisin treatment, these indicators mentioned above were lower than those in the IR group (p < .05). Moreover, the protein expression of MMP-9 in the cortex increased significantly after MCAO, while irisin treatment could decrease the protein expression of MMP-9 in the cortex (p < .05). CONCLUSION Our data suggest that irisin can attenuate brain damage both morphologically and functionally and protect BBB from disruption after focal cerebral ischemia/reperfusion, which is highly associated with the inhibition of the expression and activity of MMP-9 in the brain tissue.
Collapse
Affiliation(s)
- Peipei Guo
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Jin
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huisheng Wu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianjuan Ke
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, China
| |
Collapse
|
41
|
Cavarsan CF, Gorassini MA, Quinlan KA. Animal models of developmental motor disorders: parallels to human motor dysfunction in cerebral palsy. J Neurophysiol 2019; 122:1238-1253. [PMID: 31411933 PMCID: PMC6766736 DOI: 10.1152/jn.00233.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Cerebral palsy (CP) is the most common motor disability in children. Much of the previous research on CP has focused on reducing the severity of brain injuries, whereas very few researchers have investigated the cause and amelioration of motor symptoms. This research focus has had an impact on the choice of animal models. Many of the commonly used animal models do not display a prominent CP-like motor phenotype. In general, rodent models show anatomically severe injuries in the central nervous system (CNS) in response to insults associated with CP, including hypoxia, ischemia, and neuroinflammation. Unfortunately, most rodent models do not display a prominent motor phenotype that includes the hallmarks of spasticity (muscle stiffness and hyperreflexia) and weakness. To study motor dysfunction related to developmental injuries, a larger animal model is needed, such as rabbit, pig, or nonhuman primate. In this work, we describe and compare various animal models of CP and their potential for translation to the human condition.
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Monica A Gorassini
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Katharina A Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
42
|
Poddar R, Rajagopal S, Winter L, Allan AM, Paul S. A peptide mimetic of tyrosine phosphatase STEP as a potential therapeutic agent for treatment of cerebral ischemic stroke. J Cereb Blood Flow Metab 2019; 39:1069-1084. [PMID: 29215306 PMCID: PMC6547188 DOI: 10.1177/0271678x17747193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extensive research over the last two decades has advanced our understanding of the pathophysiology of ischemic stroke. However, current pharmacologic therapies are still limited to rapid reperfusion using thrombolytic agents, and neuroprotective approaches that can reduce the consequences of ischemic and reperfusion injury, are still not available. To bridge this gap, we have evaluated the long-term efficacy and therapeutic time window of a novel peptide-based neuroprotectant TAT-STEP, derived from the brain-enriched and neuron-specific tyrosine phosphatase STEP. Using a rat model of transient middle cerebral artery occlusion (90 min), we show that a single intravenous administration of the peptide at the onset of reperfusion (early) or 6 h after the onset of the insult (delayed) reduces mortality rate. In the surviving rats, MRI scans of the brain at days 1, 14 and 28 after the insult show significant reduction in infarct size and improvement of structural integrity within the infarcted area following peptide treatment, regardless of the time of administration. Behavioral assessments show significant improvement in normal gait, motor coordination, sensory motor function and spatial memory following early or delayed peptide treatment. The study establishes for the first time the therapeutic potential of a tyrosine phosphatase in ischemic brain injury.
Collapse
Affiliation(s)
- Ranjana Poddar
- 1 Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | - Lucas Winter
- 1 Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Andrea M Allan
- 2 Department of Neurosciences, 1 University of New Mexico, Albuquerque, NM, USA
| | - Surojit Paul
- 1 Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,2 Department of Neurosciences, 1 University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
43
|
Wu SP, Li D, Wang N, Hou JC, Zhao L. YiQi Tongluo Granule against Cerebral Ischemia/Reperfusion Injury in Rats by Freezing GluN2B and CaMK II through NMDAR/ERK1/2 Signaling. Chem Pharm Bull (Tokyo) 2019; 67:244-252. [DOI: 10.1248/cpb.c18-00806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Si-peng Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Dan Li
- Jing-Jin-Ji Joint Innovation Pharmaceutical (Beijing) Co., Ltd
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Jin-cai Hou
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Li Zhao
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| |
Collapse
|
44
|
Krueger M, Mages B, Hobusch C, Michalski D. Endothelial edema precedes blood-brain barrier breakdown in early time points after experimental focal cerebral ischemia. Acta Neuropathol Commun 2019; 7:17. [PMID: 30744693 PMCID: PMC6369548 DOI: 10.1186/s40478-019-0671-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/30/2019] [Indexed: 01/02/2023] Open
Abstract
In the setting of stroke, ischemia-related blood-brain barrier (BBB) dysfunction aggravates the cerebral edema, which critically impacts on the clinical outcome. Further, an impaired vascular integrity is associated with the risk of intracranial bleeding, especially after therapeutic recanalization. Therefore, the present study was aimed to investigate early vascular alterations from 30 min to 4 h after experimental middle cerebral artery occlusion (MCAO) in mice. Here, an extravasation of the permeability marker FITC-albumin was detectable in animals 2 and 4 h after MCAO. Thereby, BBB breakdown correlated with alterations of the endothelial surface, indicated by a discontinuous isolectin-B4 staining, while tight junction strands remained detectable using electron and immunofluorescence microscopy. Noteworthy, already 30 min after MCAO, up to 60% of the ischemia-affected vessels showed an endothelial edema, paralleled by edematous astrocytic endfeet, clearly preceding FITC-albumin extravasation. With increasing ischemic periods, scores of vascular damage significantly increased with up to 60% of the striatal vessels showing loss of endothelial integrity. Remarkably, comparison of permanent and transient ischemia did not provide significant differences 4 h after ischemia induction. As these degenerations also involved penumbral areas of potentially salvageable tissue, adjuvant approaches of endothelial protection may help to reduce the vasogenic edema after ischemic stroke.
Collapse
|
45
|
Bavarsad K, Barreto GE, Hadjzadeh MAR, Sahebkar A. Protective Effects of Curcumin Against Ischemia-Reperfusion Injury in the Nervous System. Mol Neurobiol 2019; 56:1391-1404. [PMID: 29948942 DOI: 10.1007/s12035-018-1169-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/31/2018] [Indexed: 01/28/2023]
Abstract
Ischemia-reperfusion injury (I/R injury) is a common feature of ischemic stroke which occurs when blood supply is restored after a period of ischemia. Although stroke is an important cause of death in the world, effective therapeutic strategies aiming at improving neurological outcomes in this disease are lacking. Various studies have suggested the involvement of different mechanisms in the pathogenesis of I/R injury in the nervous system. These mechanisms include oxidative stress, platelet adhesion and aggregation, leukocyte infiltration, complement activation, blood-brain barrier (BBB) disruption, and mitochondria-mediated mechanisms. Curcumin, an active ingredient of turmeric, can affect all these pathways and exert neuroprotective activity culminating in the amelioration of I/R injury in the nervous system. In this review, we discuss the protective effects of curcumin against I/R injury in the nervous system and highlight the studies that have linked biological functions of curcumin and I/R injury improvement.
Collapse
Affiliation(s)
- Kowsar Bavarsad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Mousa-Al-Reza Hadjzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
46
|
Miller ER, Kharlamov EA, Hu Z, Klein EC, Shiau DS, Kelly KM. Transient and permanent arterial occlusions modeling poststroke epilepsy in aging rats. Epilepsy Res 2018; 148:69-77. [PMID: 30391633 DOI: 10.1016/j.eplepsyres.2018.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/31/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
Abstract
The pathophysiological mechanisms of epileptogenesis following ischemic stroke in the aged brain are not well understood, largely due to limited developments in animal modeling of poststroke epilepsy (PSE). A recent study in our laboratory (Kelly et al., 2018) using transient (3 h) unilateral middle cerebral artery (MCA) and common carotid artery (CCA) occlusion (MCA/CCAo) in 4- and 20-month-old Fischer (F344) rats resulted in epileptic seizures in both age groups; age and infarction factors independently had effects on seizure frequency. We hypothesized that permanent unilateral MCA/CCAo, a simpler model, was capable of producing results comparable to those of transient MCA/CCAo. In this study, we performed permanent MCA/CCAo and compared it to transient MCA/CCAo in 76 4-, 12-, and 20-month-old F344 rats; 41 (54%) animals experienced early, unexpected mortality. The remaining 35 (46%) animals had depth electrodes implanted. Prior to implantation of depth electrodes, 9 (26%) of these 35 animals (26%) were monitored periodically by video alone before video-EEG monitoring (17,837 h total) to assess the potential development of PSE. No EEG recordings were obtained from 12- or 20-month-old transient occlusion or 20-month-old permanent occlusion animals due to premature deaths. Five animals (14%) demonstrated epileptic seizure activity after MCA/CCAo: one 4-month-old transient occlusion animal, one 4-month-old permanent occlusion animal, and three 12-month-old permanent occlusion animals. Of these 5 animals, all but the 4-month-old permanent animal demonstrated 1-4 Hz spike-wave discharges variably associated with inactivity or frank motor arrest, and 2 animals (4- and 12-month-old permanent) demonstrated generalized ictal EEG discharges associated with grade 5 convulsive activity. All animals monitored with video-EEG demonstrated generalized 7-9 Hz spike-wave discharges, innate in F344 animals and distinct from lesion-induced epileptic seizures. Gross inspection of brains revealed variability in lesion presence and size among age groups and occlusion types. Comparison of infarct volumes of permanent MCA/CCAo animals (2.9 ± 1.29 mm3, n = 6) with those of transient MCA/CCAo animals (1.7 ± 0.31 mm3, n = 3) was not significant (p = 0.44) due to the small sample size. Timm staining revealed no evidence of mossy fiber sprouting in 7 animals tested, only one of which was known to be epileptic (4-month-old transient). These results provide evidence of focal nonconvulsive electrographic ictal discharges and behavioral seizures in both permanent and transient MCA/CCAo animals lesioned at 4- or 12-months-of-age and support the use of arterial ligation as a viable method for modeling PSE.
Collapse
Affiliation(s)
- Eric R Miller
- Neurology and Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA, 15212, United States
| | - Elena A Kharlamov
- Neurology and Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA, 15212, United States; Neurology, Drexel University College of Medicine, Philadelphia, PA, 19102, United States
| | - Zeyu Hu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, United States
| | - Edwin C Klein
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, 15260, United States
| | | | - Kevin M Kelly
- Neurology and Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA, 15212, United States; Neurology, Drexel University College of Medicine, Philadelphia, PA, 19102, United States; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, United States; Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, United States.
| |
Collapse
|
47
|
Poellmann MJ, Bu J, Hong S. Would antioxidant-loaded nanoparticles present an effective treatment for ischemic stroke? Nanomedicine (Lond) 2018; 13:2327-2340. [DOI: 10.2217/nnm-2018-0084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide and is in urgent need of new treatment options. The only approved treatment for stroke restores blood flow to the brain, but much of the tissue damage occurs during the subsequent reperfusion. Antioxidant therapies that directly address ischemia-reperfusion injury have shown promise in preclinical results. In this review, we discuss that reformulating antioxidant therapies as nanomedicine can potentially overcome the barriers that have kept these therapies from succeeding in the clinic. We begin by reviewing the pathophysiology of ischemic stroke with a focus on the effects of reperfusion injury. Next, we review nanotherapeutic systems designed to treat the disease with a focus on those addressing reperfusion injury. Mechanisms of passive and active transport required to traverse a blood–brain barrier are discussed. Finally, we conclude by outlining design parameters for potentially successful nanomedicines as front-line therapeutics for ischemic stroke.
Collapse
Affiliation(s)
- Michael J Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
- Carbone Cancer Center, School of Medicine & Public Health, University of Wisconsin, Madison, WI 53792, USA
- Yonsei Frontier Lab & Department of Pharmacy, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
48
|
Chen H, Zhu G, Liu N, Li Y, Xia Y. Applications and development of permeability imaging in ischemic stroke. Exp Ther Med 2018; 16:2203-2207. [PMID: 30186459 DOI: 10.3892/etm.2018.6454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/06/2017] [Indexed: 12/17/2022] Open
Abstract
Brain permeability imaging techniques are specific for the assessment of blood-brain barrier integrity. The present review article primarily focuses on the application of permeability imaging in cases of ischemic stroke. The permeability maps may be used to predict future hemorrhagic transformation in patients following acute ischemic stroke, that have been treated with tissue plasminogen activator (tPA) or recanalization therapy. The permeability imaging would help make the clinical decision to administer tPA following acute ischemic stroke or not, which is not only due to the current 3-4.5 h time window. Additionally, permeability imaging may also be used to evaluate the collateral circulation in the perfusion and permeability of the ischemic area of the brain.
Collapse
Affiliation(s)
- Hui Chen
- Department of Neurology, Military General Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Guangming Zhu
- Department of Neurology, Military General Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Nan Liu
- Department of Neurology, Military General Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Ying Li
- Department of Neurology, Military General Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Yonghong Xia
- Department of Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
49
|
Combination of curcumin and vagus nerve stimulation attenuates cerebral ischemia/reperfusion injury-induced behavioral deficits. Biomed Pharmacother 2018; 103:614-620. [DOI: 10.1016/j.biopha.2018.04.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 02/03/2023] Open
|
50
|
Li M, Wen Y, Zhang R, Xie F, Zhang G, Qin X. Adenoviral vector-induced silencing of RGMa attenuates blood-brain barrier dysfunction in a rat model of MCAO/reperfusion. Brain Res Bull 2018; 142:54-62. [PMID: 29935233 DOI: 10.1016/j.brainresbull.2018.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Repulsive guidance molecule A (RGMa) is implicated in focal cerebral ischemia-reperfusion (I/R) injury, but its mechanisms are still largely unknown. This work focused on the effects of RGMa on the blood-brain barrier (BBB) after focal cerebral I/R injury. METHODS Sprague-Dawley (SD) rats were randomly divided into four groups: sham, middle cerebral artery occlusion (MCAO)/reperfusion (I/R), MCAO/reperfusion administered recombinant adenovirus expressing sh-con (I/R + sh-con) and MCAO/reperfusion administered recombinant adenovirus expressing sh-RGMa (I/R + sh-RGMa) groups. Infarct volume, brain edema and neurological scores were evaluated at 3 day after reperfusion. Evens blue leakage and transmission electron microscopy was performed. And the expression level of claudin-5 and ZO-1, CDC-42 and PAK-1, RGMa were detected by western blot. RESULTS Compared with I/R or I/R + sh-con groups, I/R + sh-RGMa group showed smaller infarction volume, attenuated brain edema, improved neurological scores and better BBB integrity, such as reduced Evans blue leakage and ultra-structural change. We also observed improved BBB function followed by down-regulation of MMP-9 and up-regulation of claudin-5 and ZO-1 in the I/R + sh-RGMa group. In addition, up-regulation of the CDC-42 and PAK-1 in the I/R + sh-RGMa group was obtained. CONCLUSIONS RGMa may be involved in I/R injury associated with BBB dysfunction via the CDC-42/PAK-1 signal pathway and may be a promising therapeutic target for I/R injury.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Inner Mongolia People's Hospital, Hohhot, China
| | - Yuetao Wen
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fei Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|