1
|
Bikmal S, Liu F, Moon CH, Urbin MA. Microstructure of the residual corticofugal projection from primary motor cortex in chronic stroke. Brain Commun 2025; 7:fcaf016. [PMID: 39898326 PMCID: PMC11786220 DOI: 10.1093/braincomms/fcaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Movement dysfunction after stroke is largely due to the inability of cortical motor neurons to activate spinal motor neurons via transmission of descending motor commands along the corticofugal projection from the primary motor cortex. Pathophysiological processes that ensue following injury have mostly resolved and white matter volume within the remodelled tract has mostly stabilized by the chronic stage many months to years after symptom onset. Where along the cranial course of the residual corticofugal projection white matter microstructure explains potential to activate muscles weakened by stroke at this stage is still not well understood. Here, diffusion spectrum imaging was used to reconstruct the descending corticofugal projection and quantify its microstructure in stroke survivors (n = 25) with longstanding hand impairment (7.7 ± 6.5 years). Portions of the residual tract overlapping with abnormalities on structural images were defined as the 'Overlap' compartment, and portions above and below this compartment were defined as 'Rostral' and 'Caudal' compartments, respectively. Maximal precision grip force and size of motor-evoked potentials elicited by transcranial magnetic stimulation were used to quantify activation of paretic hand muscles. Coherence of fibre anisotropy and directional diffusivities between tracts in either cerebral hemisphere was reduced in stroke survivors relative to neurologically-intact controls, with most abnormal asymmetries observed in the 'Overlap' compartment. While differences in fibre anisotropy and diffusivity between residual and intact tracts were detected most prominently in the 'Overlap' compartment, the overall magnitude of unrestricted diffusion within the 'Caudal' compartment was most closely linked to paretic muscle activation. The ability of cortical motor neurons to access spinal motor neuron pools long after stroke onset is therefore associated with microstructural integrity in portions of the residual corticofugal projection subject to secondary degeneration. These findings expand knowledge on white matter adaptation in response to neurological injury and may inform applications that seek to reverse brain pathology long after stroke onset when movement dysfunction tends to persist.
Collapse
Affiliation(s)
- Saket Bikmal
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA
| | - Fang Liu
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA
| |
Collapse
|
2
|
Dogan F, Yilmaz K, Gumus H, Karayol SS, Gencler A, Kose D. Investigation of brain diffusion changes in children with primary nephrotic syndrome. Clin Radiol 2025; 80:106720. [PMID: 39509753 DOI: 10.1016/j.crad.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/05/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024]
Abstract
AIM Primary nephrotic syndrome, which occurs with the deterioration of kidney function, can subsequently affect the brain with systemic immune activation, vasculopathy and ischemia. The main aim of this study was to investigate the effectiveness of apparent diffusion coefficient (ADC) and diffusion weighted imaging (DWI) in identifying and detecting brain changes in pediatric patients with primary nephrotic syndrome (PNS). MATERIALS AND METHODS The study included 24 pediatric patients with PNS and 60 healthy children as a control group. The apparent diffusion coefficient values of caudate nucleus, frontal cortex, thalamus, lentiform nucleus, anterior crus and posterior crus of the internal capsule, frontal and occipital white matter were measured quantitatively. RESULTS The ADC values of thalamus, occipital white matter, caudate nucleus and frontal cortex in the PNS group were significantly lower than in the control group (p < 0.05 for all). No statistically significant difference was detected between the groups with respect of other brain locations. CONCLUSION Systemic effects and possible complications of primary nephrotic syndrome may lead to diffusion changes in brain tissue. The decrease in ADC values in patients with PNS may be explained by decreased cerebral perfusion due to cerebral vasoconstriction and vasculopathy.
Collapse
Affiliation(s)
- F Dogan
- Harran University, Department of Radiology, Sanliurfa, Turkey.
| | - K Yilmaz
- Specialist Dr. Sanliurfa Training and Research Hospital, Department of Pediatric Nephrology, Sanliurfa, Turkey.
| | - H Gumus
- Harran University, Faculty of Medicine, Department of Pediatrics, Sanliurfa, Turkey.
| | - S S Karayol
- Harran University, Department of Radiology, Sanliurfa, Turkey.
| | - A Gencler
- Harran University, Faculty of Medicine, Department of Pediatric Nephrology, Sanliurfa, Turkey.
| | - D Kose
- Harran University, Faculty of Medicine, Department of Pediatric Oncology, Sanliurfa, Turkey.
| |
Collapse
|
3
|
Filip P, Vojtíšek L, Jičínská AM, Valenta Z, Horák O, Hrunka M, Mangia S, Michaeli S, Jabandžiev P. Wide-spread brain alterations early after the onset of Crohn's disease in children in remission-a pilot study. Front Neurosci 2024; 18:1491770. [PMID: 39691628 PMCID: PMC11649648 DOI: 10.3389/fnins.2024.1491770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
Background The research on possible cerebral involvement in Crohn's disease (CD) has been largely marginalized and failed to capitalize on recent developments in magnetic resonance imaging (MRI). Objective This cross-sectional pilot study searches for eventual macrostructural and microstructural brain affection in CD in remission and early after the disease onset. Methods 14 paediatric CD patients and 14 healthy controls underwent structural, diffusion weighted imaging and quantitative relaxation metrics acquisition, both conventional free precession and adiabatic rotating frame transverse and longitudinal relaxation time constants as markers of myelination, iron content and cellular loss. Results While no inter-group differences in cortical thickness and relaxation metrics were found, lower mean diffusivity and higher intracellular volume fraction were detected in CD patients over vast cortical regions essential for the regulation of the autonomous nervous system, sensorimotor processing, cognition and behavior, pointing to wide-spread cytotoxic oedema in the absence of demyelination, iron deposition or atrophy. Conclusion Although still requiring further validation in longitudinal projects enrolling larger numbers of subjects, this study provides an indication of wide-spread cortical oedema in CD patients very early after the disease onset and sets possible directions for further research.
Collapse
Affiliation(s)
- Pavel Filip
- Department of Neurology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czechia
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
- Department of Cybernetics, Czech Technical University in Prague, Prague, Czechia
| | - Lubomír Vojtíšek
- Central European Institute of Technology (CEITEC) Masaryk University Neuroscience Centre, Brno, Czechia
| | - Anna Marie Jičínská
- Department of Paediatric Neurology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Zdeněk Valenta
- Department of Statistical Modelling, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | - Ondřej Horák
- Department of Paediatric Neurology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Matěj Hrunka
- Department of Paediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University Brno, Brno, Czechia
| | - Silvia Mangia
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Shalom Michaeli
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Petr Jabandžiev
- Department of Paediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University Brno, Brno, Czechia
| |
Collapse
|
4
|
Han B, Zhao Y, Ma L, Chen L, Hou W, Li B, Wang J, Yu J, Wang G, He Y, Ma M, Zhou J, Sun SK, Yu C, Pan J. A Minimalist Iron Oxide Nanoprobe for the High-Resolution Depiction of Stroke by Susceptibility-Weighted Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401061. [PMID: 38963320 DOI: 10.1002/smll.202401061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/30/2024] [Indexed: 07/05/2024]
Abstract
The precise mapping of collateral circulation and ischemic penumbra is crucial for diagnosing and treating acute ischemic stroke (AIS). Unfortunately, there exists a significant shortage of high-sensitivity and high-resolution in vivo imaging techniques to fulfill this requirement. Herein, a contrast enhanced susceptibility-weighted imaging (CE-SWI) using the minimalist dextran-modified Fe3O4 nanoparticles (Fe3O4@Dextran NPs) are introduced for the highly sensitive and high-resolution AIS depiction under 9.4 T for the first time. The Fe3O4@Dextran NPs are synthesized via a simple one-pot coprecipitation method using commercial reagents under room temperature. It shows merits of small size (hydrodynamic size 25.8 nm), good solubility, high transverse relaxivity (r2) of 51.3 mM-1s-1 at 9.4 T, and superior biocompatibility. The Fe3O4@Dextran NPs-enhanced SWI can highlight the cerebral vessels readily with significantly improved contrast and ultrahigh resolution of 0.1 mm under 9.4 T MR scanner, enabling the clear spatial identification of collateral circulation in the middle cerebral artery occlusion (MCAO) rat model. Furthermore, Fe3O4@Dextran NPs-enhanced SWI facilitates the precise depiction of ischemia core, collaterals, and ischemic penumbra post AIS through matching analysis with other multimodal MR sequences. The proposed Fe3O4@Dextran NPs-enhanced SWI offers a high-sensitivity and high-resolution imaging tool for individualized characterization and personally precise theranostics of stroke patients.
Collapse
Affiliation(s)
- Bing Han
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yujie Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Li Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Li Chen
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenjing Hou
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Key Laboratory of Digestive Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Bingjie Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jiaojiao Wang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jiaojiao Yu
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Guohe Wang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Yujing He
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Min Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junzi Zhou
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
5
|
Gao L, Meng Y, Luo X, Chen J, Wang X. ZnO Nanoparticles-Induced MRI Alterations to the Rat Olfactory Epithelium and Olfactory Bulb after Intranasal Instillation. TOXICS 2024; 12:724. [PMID: 39453144 PMCID: PMC11511357 DOI: 10.3390/toxics12100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
Since zinc oxide (ZnO) nanoparticles (NPs) have been widely applied, the nano community and the general public have paid great attention to the toxicity of ZnO NPs. We detected 20-nm ZnO NPs biotoxicity following nasal exposure utilizing the non-invasive and real-time magnetic resonance imaging (MRI) technique. MR images were scanned in the rat olfactory epithelium (OE) and olfactory bulb (OB) on a 4.7 T scanner following the treatment (as early as 1 day and up to 21 days after), and the histological changes were evaluated. The influence of the size of the ZnO NPs and chemical components was also investigated. Our study revealed that 20-nm ZnO NPs induced obvious structural disruption and inflammation in the OE and OB at the acute stage. The results suggest that the real-time and non-invasive advantages of MRI allow it to observe and assess, directly and dynamically, the potential toxicity of long-term exposure to ZnO NPs in the olfactory system. These findings indicate the size-dependent toxicity of ZnO NPs with respect to the olfactory bulb. Further study is needed to reveal the mechanism behind ZnO NPs' toxicity.
Collapse
Affiliation(s)
- Lifeng Gao
- Department of Medical Imaging, School of Medicine, Jianghan University, Wuhan 430056, China; (L.G.); (X.L.); (J.C.)
| | - Yuguang Meng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Xiaowen Luo
- Department of Medical Imaging, School of Medicine, Jianghan University, Wuhan 430056, China; (L.G.); (X.L.); (J.C.)
| | - Jiangyuan Chen
- Department of Medical Imaging, School of Medicine, Jianghan University, Wuhan 430056, China; (L.G.); (X.L.); (J.C.)
| | - Xuxia Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
| |
Collapse
|
6
|
Almeida AJD, Hobson BA, Saito N, Bruun DA, Porter VA, Harvey DJ, Garbow JR, Chaudhari AJ, Lein PJ. Quantitative T 2 mapping-based longitudinal assessment of brain injury and therapeutic rescue in the rat following acute organophosphate intoxication. Neuropharmacology 2024; 249:109895. [PMID: 38437913 PMCID: PMC11227117 DOI: 10.1016/j.neuropharm.2024.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Acute intoxication with organophosphate (OP) cholinesterase inhibitors poses a significant public health risk. While currently approved medical countermeasures can improve survival rates, they often fail to prevent chronic neurological damage. Therefore, there is need to develop effective therapies and quantitative metrics for assessing OP-induced brain injury and its rescue by these therapies. In this study we used a rat model of acute intoxication with the OP, diisopropylfluorophosphate (DFP), to test the hypothesis that T2 measures obtained from brain magnetic resonance imaging (MRI) scans provide quantitative metrics of brain injury and therapeutic efficacy. Adult male Sprague Dawley rats were imaged on a 7T MRI scanner at 3, 7 and 28 days post-exposure to DFP or vehicle (VEH) with or without treatment with the standard of care antiseizure drug, midazolam (MDZ); a novel antiseizure medication, allopregnanolone (ALLO); or combination therapy with MDZ and ALLO (DUO). Our results show that mean T2 values in DFP-exposed animals were: (1) higher than VEH in all volumes of interest (VOIs) at day 3; (2) decreased with time; and (3) decreased in the thalamus at day 28. Treatment with ALLO or DUO, but not MDZ alone, significantly decreased mean T2 values relative to untreated DFP animals in the piriform cortex at day 3. On day 28, the DUO group showed the most favorable T2 characteristics. This study supports the utility of T2 mapping for longitudinally monitoring brain injury and highlights the therapeutic potential of ALLO as an adjunct therapy to mitigate chronic morbidity associated with acute OP intoxication.
Collapse
Affiliation(s)
- Alita Jesal D Almeida
- Department of Biomedical Engineering, University of California-Davis College of Engineering, Davis, CA, 95616, USA; Department of Radiology, University of California-Davis School of Medicine, Sacramento, CA, 95817, USA.
| | - Brad A Hobson
- Center for Molecular and Genomic Imaging, Department of Biomedical Engineering, University of California-Davis College of Engineering, Davis, CA, 95616, USA.
| | - Naomi Saito
- Department of Public Health Sciences, University of California-Davis School of Medicine, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Valerie A Porter
- Department of Biomedical Engineering, University of California-Davis College of Engineering, Davis, CA, 95616, USA; Department of Radiology, University of California-Davis School of Medicine, Sacramento, CA, 95817, USA.
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California-Davis School of Medicine, Davis, CA, 95616, USA.
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| | - Abhijit J Chaudhari
- Department of Radiology, University of California-Davis School of Medicine, Sacramento, CA, 95817, USA; Center for Molecular and Genomic Imaging, Department of Biomedical Engineering, University of California-Davis College of Engineering, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Mahroo A, Konstandin S, Günther M. Blood-Brain Barrier Permeability to Water Measured Using Multiple Echo Time Arterial Spin Labeling MRI in the Aging Human Brain. J Magn Reson Imaging 2024; 59:1269-1282. [PMID: 37337979 DOI: 10.1002/jmri.28874] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) plays a vital role in maintaining brain homeostasis, but the integrity of this barrier deteriorates slowly with aging. Noninvasive water exchange magnetic resonance imaging (MRI) methods may identify changes in the BBB occurring with healthy aging. PURPOSE To investigate age-related changes in the BBB permeability to water using multiple-echo-time (multi-TE) arterial spin labeling (ASL) MRI. STUDY TYPE Prospective, cohort. POPULATION Two groups of healthy humans-older group (≥50 years, mean age = 56 ± 4 years, N = 13, females = 5) and younger group (≤20 years, mean age = 18 ± 1, N = 13, females = 7). FIELD STRENGTH/SEQUENCE A 3T, multi-TE Hadamard pCASL with 3D Gradient and Spin Echo (GRASE) readout. ASSESSMENT Two different approaches of variable complexity were applied. A physiologically informed biophysical model with a higher complexity estimating time ( T ex ) taken by the labeled water to move across the BBB and a simpler model of triexponential decay measuring tissue transition rate ( k lin ) . STATISTICS Two-tailed unpaired Student t-test, Pearson's correlation coefficient and effect size. P < 0.05 was considered significant. RESULTS Older volunteers showed significant differences of 36% lower T ex , 29% lower cerebral perfusion, 17% pronged arterial transit time and 22% shorter intra-voxel transit time compared to the younger volunteers. Tissue fraction ( f EV ) at the earliest TI = 1600 msec was significantly higher in the older group, which contributed to a significantly lower k lin compared to the younger group. f EV at TI = 1600 msec showed significant negative correlation with T ex (r = -0.80), and k lin and T ex showed significant positive correlation (r = 0.73). DATA CONCLUSIONS Both approaches of Multi-TE ASL imaging showed sensitivity to detect age-related changes in the BBB permeability. High tissue fractions at the earliest TI and short T ex in the older volunteers indicate that the BBB permeability increased with age. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Amnah Mahroo
- Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Simon Konstandin
- Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- mediri GmbH, Heidelberg, Germany
| | - Matthias Günther
- Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- mediri GmbH, Heidelberg, Germany
- MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany
| |
Collapse
|
8
|
Pham J, Ng FC. Novel advanced imaging techniques for cerebral oedema. Front Neurol 2024; 15:1321424. [PMID: 38356883 PMCID: PMC10865379 DOI: 10.3389/fneur.2024.1321424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Cerebral oedema following acute ischemic infarction has been correlated with poor functional outcomes and is the driving mechanism of malignant infarction. Measurements of midline shift and qualitative assessment for herniation are currently the main CT indicators for cerebral oedema but have limited sensitivity for small cortical infarcts and are typically a delayed sign. In contrast, diffusion-weighted (DWI) or T2-weighted magnetic resonance imaging (MRI) are highly sensitive but are significantly less accessible. Due to the need for early quantification of cerebral oedema, several novel imaging biomarkers have been proposed. Based on neuroanatomical shift secondary to space-occupying oedema, measures such as relative hemispheric volume and cerebrospinal fluid displacement are correlated with poor outcomes. In contrast, other imaging biometrics, such as net water uptake, T2 relaxometry and blood brain barrier permeability, reflect intrinsic tissue changes from the influx of fluid into the ischemic region. This review aims to discuss quantification of cerebral oedema using current and developing advanced imaging techniques, and their role in predicting clinical outcomes.
Collapse
Affiliation(s)
- Jenny Pham
- Department of Radiology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Felix C. Ng
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine at Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
An J, Wendt L, Wiese G, Herold T, Rzepka N, Mueller S, Koch SP, Hoffmann CJ, Harms C, Boehm-Sturm P. Deep learning-based automated lesion segmentation on mouse stroke magnetic resonance images. Sci Rep 2023; 13:13341. [PMID: 37587160 PMCID: PMC10432383 DOI: 10.1038/s41598-023-39826-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Magnetic resonance imaging (MRI) is widely used for ischemic stroke lesion detection in mice. A challenge is that lesion segmentation often relies on manual tracing by trained experts, which is labor-intensive, time-consuming, and prone to inter- and intra-rater variability. Here, we present a fully automated ischemic stroke lesion segmentation method for mouse T2-weighted MRI data. As an end-to-end deep learning approach, the automated lesion segmentation requires very little preprocessing and works directly on the raw MRI scans. We randomly split a large dataset of 382 MRI scans into a subset (n = 293) to train the automated lesion segmentation and a subset (n = 89) to evaluate its performance. We compared Dice coefficients and accuracy of lesion volume against manual segmentation, as well as its performance on an independent dataset from an open repository with different imaging characteristics. The automated lesion segmentation produced segmentation masks with a smooth, compact, and realistic appearance that are in high agreement with manual segmentation. We report dice scores higher than the agreement between two human raters reported in previous studies, highlighting the ability to remove individual human bias and standardize the process across research studies and centers.
Collapse
Affiliation(s)
- Jeehye An
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Leo Wendt
- Scalable Minds GmbH, Potsdam, Germany
| | | | | | | | - Susanne Mueller
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Stefan Paul Koch
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Christian J Hoffmann
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Einstein Center for Neuroscience, Berlin, Germany
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany.
| |
Collapse
|
10
|
Jang M, Han S, Cho H. Correspondence between development of cytotoxic edema and cerebrospinal fluid volume and flow in the third ventricle after ischemic stroke. J Stroke Cerebrovasc Dis 2023; 32:107200. [PMID: 37290155 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
OBJECTIVES The importance of monitoring cerebrospinal fluid for the development of edema in ischemic stroke has been emphasized; however, studies on the relationship between intraventricular cerebrospinal fluid behavior and edema through longitudinal observations and analysis are rare. This study aimed to investigate the correlation between the development of cytotoxic edema and cerebrospinal fluid volume and flow in the third ventricle after ischemic stroke. MATERIALS AND METHODS The ventricle and edema regions were obtained using apparent diffusion coefficients and T2 and subdivided into lateral/ventral 3rd ventricles and cytotoxic/vasogenic (or cyst) edema, respectively. In rat models of ischemic stroke, the volume and flow (via the pseudo-diffusion coefficient [D*]) of the ventricles and edema volumes were longitudinally monitored for up to 45 days after surgery. RESULTS The volume of cytotoxic edema increased in the hyperacute and acute phases, whereas the volume (r = -0.49) and median D* values (r = -0.48 in the anterior-posterior direction) of the ventral 3rd ventricle both decreased, showing negative correlations with the volume of cytotoxic edema. In contrast, the volume of vasogenic edema/cyst was positively correlated with the volume (r = 0.73) and median D* values (r = 0.78 in the anterior-posterior direction) of the lateral ventricle in the subacute and chronic phases. CONCLUSIONS This study showed that the evolution of cerebrospinal fluid volume and flow in the ventricles was associated with edema progression at different time points in the ischemic stroke brain. This provides an efficient framework for monitoring and quantifying the interplay between cerebrospinal fluid and edema.
Collapse
Affiliation(s)
- MinJung Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea; Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - SoHyun Han
- Research Equipment Operations Division, Korea Basic Science Institute, Cheongju 28119, South Korea
| | - HyungJoon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
11
|
Wu S, Wang Y, Song Y, Hu H, Jing L, Zhu W. Application of magnetic resonance imaging-related techniques in the diagnosis of sepsis-associated encephalopathy: present status and prospect. Front Neurosci 2023; 17:1152630. [PMID: 37304016 PMCID: PMC10248056 DOI: 10.3389/fnins.2023.1152630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) refers to diffuse brain dysfunction secondary to systemic infection without central nervous system infection. The early diagnosis of SAE remains a major clinical problem, and its diagnosis is still exclusionary. Magnetic resonance imaging (MRI) related techniques, such as magnetic resonance spectroscopy (MRS), molecular MRI (mMRI), arterial spin-labeling (ASL), fluid-attenuated inversion recovery (FLAIR), and diffusion-weighted imaging (DWI), currently provide new options for the early identification of SAE. This review collected clinical and basic research and case reports related to SAE and MRI-related techniques in recent years, summarized and analyzed the basic principles and applications of MRI technology in diagnosing SAE, and provided a basis for diagnosing SAE by MRI-related techniques.
Collapse
Affiliation(s)
- Shuhui Wu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuxin Wang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongjie Hu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Jing
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Cerebrovascular G i Proteins Protect Against Brain Hypoperfusion and Collateral Failure in Cerebral Ischemia. Mol Imaging Biol 2023; 25:363-374. [PMID: 36074223 PMCID: PMC10006265 DOI: 10.1007/s11307-022-01764-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/23/2022] [Accepted: 08/02/2022] [Indexed: 10/14/2022]
Abstract
Cerebral hypoperfusion and vascular dysfunction are closely related to common risk factors for ischemic stroke such as hypertension, dyslipidemia, diabetes, and smoking. The role of inhibitory G protein-dependent receptor (GiPCR) signaling in regulating cerebrovascular functions remains largely elusive. We examined the importance of GiPCR signaling in cerebral blood flow (CBF) and its stability after sudden interruption using various in vivo high-resolution magnetic resonance imaging techniques. To this end, we induced a functional knockout of GiPCR signaling in the brain vasculature by injection of pertussis toxin (PTX). Our results show that PTX induced global brain hypoperfusion and microvascular collapse. When PTX-pretreated animals underwent transient unilateral occlusion of one common carotid artery, CBF was disrupted in the ipsilateral hemisphere resulting in the collapse of the cortically penetrating microvessels. In addition, pronounced stroke features in the affected brain regions appeared in both MRI and histological examination. Our findings suggest an impact of cerebrovascular GiPCR signaling in the maintenance of CBF, which may be useful for novel pharmacotherapeutic approaches to prevent and treat cerebrovascular dysfunction and stroke.
Collapse
|
13
|
Patzwaldt K, Berezhnoy G, Ionescu T, Schramm L, Wang Y, Owczorz M, Calderón E, Poli S, Serna Higuita LM, Gonzalez-Menendez I, Quintanilla-Martinez L, Herfert K, Pichler B, Trautwein C, Castaneda-Vega S. Repurposing the mucolytic agent ambroxol for treatment of sub-acute and chronic ischaemic stroke. Brain Commun 2023; 5:fcad099. [PMID: 37065090 PMCID: PMC10090797 DOI: 10.1093/braincomms/fcad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Ambroxol is a well-known mucolytic expectorant, which has gained much attention in amyotrophic lateral sclerosis, Parkinson's and Gaucher's disease. A specific focus has been placed on ambroxol's glucocerebrosidase-stimulating activity, on grounds that the point mutation of the gba1 gene, which codes for this enzyme, is a risk factor for developing Parkinson's disease. However, ambroxol has been attributed other characteristics, such as the potent inhibition of sodium channels, modification of calcium homeostasis, anti-inflammatory effects and modifications of oxygen radical scavengers. We hypothesized that ambroxol could have a direct impact on neuronal rescue if administered directly after ischaemic stroke induction. We longitudinally evaluated 53 rats using magnetic resonance imaging to examine stroke volume, oedema, white matter integrity, resting state functional MRI and behaviour for 1 month after ischemic stroke onset. For closer mechanistic insights, we evaluated tissue metabolomics of different brain regions in a subgroup of animals using ex vivo nuclear magnetic resonance spectroscopy. Ambroxol-treated animals presented reduced stroke volumes, reduced cytotoxic oedema, reduced white matter degeneration, reduced necrosis, improved behavioural outcomes and complex changes in functional brain connectivity. Nuclear magnetic resonance spectroscopy tissue metabolomic data at 24 h post-stroke proposes several metabolites that are capable of minimizing post-ischaemic damage and that presented prominent shifts during ambroxol treatment in comparison to controls. Taking everything together, we propose that ambroxol catalyzes recovery in energy metabolism, cellular homeostasis, membrane repair mechanisms and redox balance. One week of ambroxol administration following stroke onset reduced ischaemic stroke severity and improved functional outcome in the subacute phase followed by reduced necrosis in the chronic stroke phase.
Collapse
Affiliation(s)
- Kristin Patzwaldt
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Tudor Ionescu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Linda Schramm
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Yi Wang
- Hertie Institute for Clinical Brain Research, Department for Neurology, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Miriam Owczorz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Eduardo Calderón
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Sven Poli
- Hertie Institute for Clinical Brain Research, Department for Neurology, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Lina M Serna Higuita
- Institute for Clinical Epidemiology and Applied Biostatistics, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tuebingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tuebingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Bernd Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Salvador Castaneda-Vega
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen 72076, Germany
| |
Collapse
|
14
|
Precision Effects of Glibenclamide on MRI Endophenotypes in Clinically Relevant Murine Traumatic Brain Injury. Crit Care Med 2023; 51:e45-e59. [PMID: 36661464 PMCID: PMC9848216 DOI: 10.1097/ccm.0000000000005749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Addressing traumatic brain injury (TBI) heterogeneity is increasingly recognized as essential for therapy translation given the long history of failed clinical trials. We evaluated differential effects of a promising treatment (glibenclamide) based on dose, TBI type (patient selection), and imaging endophenotype (outcome selection). Our goal to inform TBI precision medicine is contextually timely given ongoing phase 2/planned phase 3 trials of glibenclamide in brain contusion. DESIGN Blinded randomized controlled preclinical trial of glibenclamide on MRI endophenotypes in two established severe TBI models: controlled cortical impact (CCI, isolated brain contusion) and CCI+hemorrhagic shock (HS, clinically common second insult). SETTING Preclinical laboratory. SUBJECTS Adult male C57BL/6J mice (n = 54). INTERVENTIONS Mice were randomized to naïve, CCI±HS with vehicle/low-dose (20 μg/kg)/high-dose glibenclamide (10 μg/mouse). Seven-day subcutaneous infusions (0.4 μg/hr) were continued. MEASUREMENTS AND MAIN RESULTS Serial MRI (3 hr, 6 hr, 24 hr, and 7 d) measured hematoma and edema volumes, T2 relaxation (vasogenic edema), apparent diffusion coefficient (ADC, cellular/cytotoxic edema), and 7-day T1-post gadolinium values (blood-brain-barrier [BBB] integrity). Linear mixed models assessed temporal changes. Marked heterogeneity was observed between CCI versus CCI+HS in terms of different MRI edema endophenotypes generated (all p < 0.05). Glibenclamide had variable impact. High-dose glibenclamide reduced hematoma volume ~60% after CCI (p = 0.0001) and ~48% after CCI+HS (p = 4.1 × 10-6) versus vehicle. Antiedema benefits were primarily in CCI: high-dose glibenclamide normalized several MRI endophenotypes in ipsilateral cortex (all p < 0.05, hematoma volume, T2, ADC, and T1-post contrast). Acute effects (3 hr) were specific to hematoma (p = 0.001) and cytotoxic edema reduction (p = 0.0045). High-dose glibenclamide reduced hematoma volume after TBI with concomitant HS, but antiedema effects were not robust. Low-dose glibenclamide was not beneficial. CONCLUSIONS High-dose glibenclamide benefitted hematoma volume, vasogenic edema, cytotoxic edema, and BBB integrity after isolated brain contusion. Hematoma and cytotoxic edema effects were acute; longer treatment windows may be possible for vasogenic edema. Our findings provide new insights to inform interpretation of ongoing trials as well as precision design (dose, sample size estimation, patient selection, outcome selection, and Bayesian analysis) of future TBI trials of glibenclamide.
Collapse
|
15
|
Juan CJ, Lin SC, Li YH, Chang CC, Jeng YH, Peng HH, Huang TY, Chung HW, Shen WC, Tsai CH, Chang RF, Liu YJ. Improving interobserver agreement and performance of deep learning models for segmenting acute ischemic stroke by combining DWI with optimized ADC thresholds. Eur Radiol 2022; 32:5371-5381. [PMID: 35201408 DOI: 10.1007/s00330-022-08633-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/26/2021] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To examine the role of ADC threshold on agreement across observers and deep learning models (DLMs) plus segmentation performance of DLMs for acute ischemic stroke (AIS). METHODS Twelve DLMs, which were trained on DWI-ADC-ADC combination from 76 patients with AIS using 6 different ADC thresholds with ground truth manually contoured by 2 observers, were tested by additional 67 patients in the same hospital and another 78 patients in another hospital. Agreement between observers and DLMs were evaluated by Bland-Altman plot and intraclass correlation coefficient (ICC). The similarity between ground truth (GT) defined by observers and between automatic segmentation performed by DLMs was evaluated by Dice similarity coefficient (DSC). Group comparison was performed using the Mann-Whitney U test. The relationship between the DSC and ADC threshold as well as AIS lesion size was evaluated by linear regression analysis. A p < .05 was considered statistically significant. RESULTS Excellent interobserver agreement and intraobserver repeatability in the manual segmentation (all ICC > 0.98, p < .001) were achieved. The 95% limit of agreement was reduced from 11.23 cm2 for GT on DWI to 0.59 cm2 for prediction at an ADC threshold of 0.6 × 10-3 mm2/s combined with DWI. The segmentation performance of DLMs was improved with an overall DSC from 0.738 ± 0.214 on DWI to 0.971 ± 0.021 on an ADC threshold of 0.6 × 10-3 mm2/s combined with DWI. CONCLUSIONS Combining an ADC threshold of 0.6 × 10-3 mm2/s with DWI reduces interobserver and inter-DLM difference and achieves best segmentation performance of AIS lesions using DLMs. KEY POINTS • Higher Dice similarity coefficient (DSC) in predicting acute ischemic stroke lesions was achieved by ADC thresholds combined with DWI than by DWI alone (all p < .05). • DSC had a negative association with the ADC threshold in most sizes, both hospitals, and both observers (most p < .05) and a positive association with the stroke size in all ADC thresholds, both hospitals, and both observers (all p < .001). • An ADC threshold of 0.6 × 10-3 mm2/s eliminated the difference of DSC at any stroke size between observers or between hospitals (p = .07 to > .99).
Collapse
Affiliation(s)
- Chun-Jung Juan
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
- Department of Medical Imaging, China Medical University Hsinchu Hospital, Hsinchu, Taiwan, Republic of China
- Department of Radiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan, Republic of China
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan, Republic of China
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Shao-Chieh Lin
- Department of Medical Imaging, China Medical University Hsinchu Hospital, Hsinchu, Taiwan, Republic of China
- Ph.D. Program in Electrical and Communication Engineering, Feng Chia University, Taichung, Taiwan, Republic of China
| | - Ya-Hui Li
- Department of Medical Imaging, China Medical University Hsinchu Hospital, Hsinchu, Taiwan, Republic of China
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chia-Ching Chang
- Department of Medical Imaging, China Medical University Hsinchu Hospital, Hsinchu, Taiwan, Republic of China
- Department of Management Science, National Chiao-Tung University, Hsinchu, Taiwan, Republic of China
| | - Yi-Hung Jeng
- Department of Medical Imaging, China Medical University Hsinchu Hospital, Hsinchu, Taiwan, Republic of China
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Teng-Yi Huang
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, Republic of China
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Wu-Chung Shen
- Department of Medical Imaging, China Medical University Hsinchu Hospital, Hsinchu, Taiwan, Republic of China
- Department of Radiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan, Republic of China
| | - Chon-Haw Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Ruey-Feng Chang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, Republic of China.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, Republic of China.
| | - Yi-Jui Liu
- Department of Automatic Control Engineering, Feng Chia University, No. 100 Wenhwa Rd., Seatwen, 40724, Taichung, Taiwan, Republic of China.
| |
Collapse
|
16
|
Kozler P, Marešová D, Pokorný J. Effect of methylprednisolone on experimental brain edema in rats - own experience reviewed. Physiol Res 2021; 70:S289-S300. [PMID: 35099248 DOI: 10.33549/physiolres.934818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Brain edema - a frequently fatal pathological state in which brain volume increases resulting in intracranial pressure elevation - can result from almost any insult to the brain, including traumatic brain injury. For many years, the objective of experimental studies was to find a method to prevent the development of brain edema at the onset. From this perspective, the use of methylprednisolone (MP) appears promising. High molecular MP (MW>50 kDa) can be incorporated into the brain - in the conditions of the experimental model - either by osmotic blood-brain barrier disruption (BBBd) or during the induction of cellular edema by water intoxication (WI) - a condition that increases the BBB permeability. The time window for administration of the MP should be at the earliest stages of edema. The neuroprotective effect of MP on the permeability of cytoplasmatic membranes of neuronal populations was proved. MP was administrated in three alternative ways: intraperitoneally during the induction of cytotoxic edema or immediately after finishing cytotoxic edema induction in a dose of 100 mg/kg b.w.; into the internal carotid artery within 2 h after finishing cytotoxic edema induction in a dose of 50 mg/kg b.w.; into internal carotid artery 10 min after edema induction by BBBd in a dose of 50 mg/kg b.w.
Collapse
Affiliation(s)
- P Kozler
- Institute of Physiology, First Faculty of Medicine, Charles University, Praha 2, Czech Republic.
| | | | | |
Collapse
|
17
|
Frank D, Gruenbaum BF, Shelef I, Zvenigorodsky V, Benjamin Y, Shapoval O, Gal R, Zlotnik A, Melamed I, Boyko M. A Novel Histological Technique to Assess Severity of Traumatic Brain Injury in Rodents: Comparisons to Neuroimaging and Neurological Outcomes. Front Neurosci 2021; 15:733115. [PMID: 34720861 PMCID: PMC8549653 DOI: 10.3389/fnins.2021.733115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Here we evaluate an alternative protocol to histologically examine blood-brain barrier (BBB) breakdown, brain edema, and lesion volume following traumatic brain injury (TBI) in the same set of rodent brain samples. We further compare this novel histological technique to measurements determined by magnetic resonance imaging (MRI) and a neurological severity score (NSS). Sixty-six rats were randomly assigned to a sham-operated, mild TBI, moderate TBI, or severe TBI group. 48 h after TBI, NSS, MRI and histological techniques were performed to measure TBI severity outcome. Both the histological and MRI techniques were able to detect measurements of severity outcome, but histologically determined outcomes were more sensitive. The two most sensitive techniques for determining the degree of injury following TBI were NSS and histologically determined BBB breakdown. Our results demonstrate that BBB breakdown, brain edema, and lesion volume following TBI can be accurately measured by histological evaluation of the same set of brain samples.
Collapse
Affiliation(s)
- Dmitry Frank
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Benjamin F Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Ilan Shelef
- Department of Radiology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vladislav Zvenigorodsky
- Department of Radiology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yair Benjamin
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Olha Shapoval
- Department of Physiology, Faculty of Biology, Ecology and Medicine, Dnepropetrovsk State University, Dnepropetrovsk, Ukraine
| | - Ron Gal
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Israel Melamed
- Department of Neurosurgery, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
18
|
Kawashima H, Abe Y, Matsui K, Yamada K. Perivascular abnormalities in pediatric encephalopathy with fulminant brain edema. Brain Dev 2021; 43:719-723. [PMID: 33597110 DOI: 10.1016/j.braindev.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Acute encephalopathy with acute brain swelling (ABS) is a recently proposed disease of unknown etiology, characterized by rapid progression to whole-brain swelling. To our knowledge, we reported the first case of a patient with acute encephalopathy with ABS wherein brain magnetic resonance imaging (MRI) abnormalities were noted prior to the diffuse brain swelling onset. CASE PRESENTATION An 11-year-old boy was admitted to our unit owing to prolonged disturbance of consciousness following febrile status epilepticus. At the initial visit, the vital signs were within the normal range, except for the body temperature and consciousness level (Glasgow Coma Scale 6; E1V1M4). The initial laboratory results showed elevated inflammatory marker levels and mild hyponatremia. Cerebrospinal fluid analysis revealed albuminocytologic dissociation, whereas the myelin basic protein level was not elevated. Electroencephalography showed diffuse, high-amplitude slow waves. No abnormalities were detected on the initial brain computed tomography (CT) scan. However, at 11 h after the seizure onset, diffuse hyperintense lesions were observed throughout the cerebrum on T2-weighted brain MRI. The patient was diagnosed with acute encephalopathy and received methylprednisolone-pulse therapy (1 g) with high-dose gamma globulin (1 g/kg) administration. At 14 h after the seizure onset, the patient was declared brain-dead; the brain CT findings revealed whole-brain swelling and herniation. CONCLUSION Our findings were suggestive of a perivascular pathophysiology and may be used for subtyping acute encephalopathy. In cases where such findings are observed, subsequent development of severe diffuse brain swelling should be considered.
Collapse
Affiliation(s)
- Hideshi Kawashima
- Division of Pediatrics, Niigata City General Hospital, Niigata, Japan
| | - Yuki Abe
- Division of Pediatrics, Niigata City General Hospital, Niigata, Japan
| | - Kou Matsui
- Division of Pediatrics, Niigata City General Hospital, Niigata, Japan
| | - Kenichi Yamada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Japan.
| |
Collapse
|
19
|
Kaiser EE, Poythress J, Scheulin KM, Jurgielewicz BJ, Lazar NA, Park C, Stice SL, Ahn J, West FD. An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model. Neural Regen Res 2021; 16:842-850. [PMID: 33229718 PMCID: PMC8178783 DOI: 10.4103/1673-5374.297079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study sought to examine the prognostic value of commonly utilized MRI parameters to predict functional outcomes in a porcine model of ischemic stroke. Stroke was induced via permanent middle cerebral artery occlusion. At 24 hours post-stroke, MRI analysis revealed focal ischemic lesions, decreased diffusivity, hemispheric swelling, and white matter degradation. Functional deficits including behavioral abnormalities in open field and novel object exploration as well as spatiotemporal gait impairments were observed at 4 weeks post-stroke. Gaussian graphical models identified specific MRI outputs and functional recovery variables, including white matter integrity and gait performance, that exhibited strong conditional dependencies. Canonical correlation analysis revealed a prognostic relationship between lesion volume and white matter integrity and novel object exploration and gait performance. Consequently, these analyses may also have the potential of predicting patient recovery at chronic time points as pigs and humans share many anatomical similarities (e.g., white matter composition) that have proven to be critical in ischemic stroke pathophysiology. The study was approved by the University of Georgia (UGA) Institutional Animal Care and Use Committee (IACUC; Protocol Number: A2014-07-021-Y3-A11 and 2018-01-029-Y1-A5) on November 22, 2017.
Collapse
Affiliation(s)
- Erin E. Kaiser
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - J.C. Poythress
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Kelly M. Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Brian J. Jurgielewicz
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Nicole A. Lazar
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Cheolwoo Park
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Steven L. Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Jeongyoun Ahn
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Franklin D. West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
20
|
Lee JS, Hwang YH, Sohn SI. Factors Contributing to an Efficacious Endovascular Treatment for Acute Ischemic Stroke in Asian Population. Neurointervention 2021; 16:91-110. [PMID: 33765729 PMCID: PMC8261106 DOI: 10.5469/neuroint.2020.00339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Although randomized control trials about endovascular treatment (EVT) of emergent large vessel occlusion (LVO) have demonstrated the success of mechanical thrombectomy as the choice of treatment, a wide range of caveats remain unaddressed. Asian patients were rarely included in the trials, thereby raising the question of whether the treatment could be generalized. In addition, there remains a concern on the feasibility of the method with respect to its application against intracranial atherosclerosis (ICAS)-related LVO, frequently observed in the Asian population. It is important to include evidence on ICAS LVO from Asian countries in the future for a comprehensive understanding of LVO etiology. Besides the issues with EVT, prognostic concerns in diabetes patients, acute kidney injury following EVT, neuroprotective management against reperfusion injury, and other peri-EVT issues should be considered in clinical practice. In the current article, we present an in-depth review of the literature that revises information pertaining to such concerns.
Collapse
Affiliation(s)
- Jin Soo Lee
- Department of Neurology, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Yang-Ha Hwang
- Department of Neurology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sung-Il Sohn
- Department of Neurology, Keimyung University Dongsan Hospital, Kyemyung University School of Medicine, Daegu, Korea
| |
Collapse
|
21
|
Lemmerman LR, Balch MHH, Moore JT, Alzate-Correa D, Rincon-Benavides MA, Salazar-Puerta A, Gnyawali S, Harris HN, Lawrence W, Ortega-Pineda L, Wilch L, Risser IB, Maxwell AJ, Duarte-Sanmiguel S, Dodd D, Guio-Vega GP, McTigue DM, Arnold WD, Nimjee SM, Sen CK, Khanna S, Rink C, Higuita-Castro N, Gallego-Perez D. Nanotransfection-based vasculogenic cell reprogramming drives functional recovery in a mouse model of ischemic stroke. SCIENCE ADVANCES 2021; 7:eabd4735. [PMID: 33741587 PMCID: PMC7978431 DOI: 10.1126/sciadv.abd4735] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/22/2021] [Indexed: 05/14/2023]
Abstract
Ischemic stroke causes vascular and neuronal tissue deficiencies that could lead to substantial functional impairment and/or death. Although progenitor-based vasculogenic cell therapies have shown promise as a potential rescue strategy following ischemic stroke, current approaches face major hurdles. Here, we used fibroblasts nanotransfected with Etv2, Foxc2, and Fli1 (EFF) to drive reprogramming-based vasculogenesis, intracranially, as a potential therapy for ischemic stroke. Perfusion analyses suggest that intracranial delivery of EFF-nanotransfected fibroblasts led to a dose-dependent increase in perfusion 14 days after injection. MRI and behavioral tests revealed ~70% infarct resolution and up to ~90% motor recovery for mice treated with EFF-nanotransfected fibroblasts. Immunohistological analysis confirmed increases in vascularity and neuronal cellularity, as well as reduced glial scar formation in response to treatment with EFF-nanotransfected fibroblasts. Together, our results suggest that vasculogenic cell therapies based on nanotransfection-driven (i.e., nonviral) cellular reprogramming represent a promising strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Luke R Lemmerman
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Maria H H Balch
- Department of Neurosurgery, The Ohio State University, Columbus, OH 43210, USA
| | - Jordan T Moore
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Diego Alzate-Correa
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | - Ana Salazar-Puerta
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Surya Gnyawali
- Department of Neurosurgery, The Ohio State University, Columbus, OH 43210, USA
| | - Hallie N Harris
- Department of Neurosurgery, The Ohio State University, Columbus, OH 43210, USA
| | - William Lawrence
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Lilibeth Ortega-Pineda
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Lauren Wilch
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ian B Risser
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Aidan J Maxwell
- Department of Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Silvia Duarte-Sanmiguel
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
- OSU Nutrition, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Dodd
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Gina P Guio-Vega
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Medicine, National University of Colombia, Bogotá, Colombia
| | - Dana M McTigue
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - W David Arnold
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Shahid M Nimjee
- Department of Neurosurgery, The Ohio State University, Columbus, OH 43210, USA
| | - Chandan K Sen
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Savita Khanna
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cameron Rink
- Department of Neurosurgery, The Ohio State University, Columbus, OH 43210, USA
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Shi ZF, Fang Q, Chen Y, Xu LX, Wu M, Jia M, Lu Y, Wang XX, Wang YJ, Yan X, Dong LP, Yuan F. Methylene blue ameliorates brain edema in rats with experimental ischemic stroke via inhibiting aquaporin 4 expression. Acta Pharmacol Sin 2021; 42:382-392. [PMID: 32665706 PMCID: PMC8027449 DOI: 10.1038/s41401-020-0468-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022]
Abstract
Brain edema is a common and serious complication of ischemic stroke with limited effective treatment. We previously reported that methylene blue (MB) attenuated ischemic brain edema in rats, but the underlying mechanisms remained unknown. Aquaporin 4 (AQP4) in astrocytes plays a key role in brain edema. We also found that extracellular signal-regulated kinase 1/2 (ERK1/2) activation was involved in the regulation of AQP4 expression in astrocytes. In the present study, we investigated whether AQP4 and ERK1/2 were involved in the protective effect of MB against cerebral edema. Rats were subjected to transient middle cerebral artery occlusion (tMCAO), MB (3 mg/kg, for 30 min) was infused intravenously through the tail vein started immediately after reperfusion and again at 3 h after ischemia (1.5 mg/kg, for 15 min). Brain edema was determined by MRI at 0.5, 2.5, and 48 h after tMCAO. The decreases of apparent diffusion coefficient (ADC) values on diffusion-weighted MRI indicated cytotoxic brain edema, whereas the increase of T2 MRI values reflected vasogenic brain edema. We found that MB infusion significantly ameliorated cytotoxic brain edema at 2.5 and 48 h after tMCAO and decreased vasogenic brain edema at 48 h after tMCAO. In addition, MB infusion blocked the AQP4 increases and ERK1/2 activation in the cerebral cortex in ischemic penumbra at 48 h after tMCAO. In a cell swelling model established in cultured rat astrocyte exposed to glutamate (1 mM), we consistently found that MB (10 μM) attenuated cell swelling, AQP4 increases and ERK1/2 activation. Moreover, the ERK1/2 inhibitor U0126 (10 μM) had the similar effects as MB. These results demonstrate that MB improves brain edema and astrocyte swelling, which may be mediated by the inhibition of AQP4 expression via ERK1/2 pathway, suggesting that MB may be a potential choice for the treatment of brain edema.
Collapse
Affiliation(s)
- Zhong-Fang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Beijing Key Laboratory of Central Nervous System Injury, Beijing, 100070, China
| | - Qing Fang
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ye Chen
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Li-Xin Xu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Min Wu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Mei Jia
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yi Lu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiao-Xuan Wang
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yu-Jiao Wang
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xu Yan
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Li-Ping Dong
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Fang Yuan
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Beijing Key Laboratory of Central Nervous System Injury, Beijing, 100070, China.
| |
Collapse
|
23
|
Spellicy SE, Scheulin KM, Baker EW, Jurgielewicz BJ, Kinder HA, Waters ES, Grimes JA, Stice SL, West FD. Semi-Automated Cell and Tissue Analyses Reveal Regionally Specific Morphological Alterations of Immune and Neural Cells in a Porcine Middle Cerebral Artery Occlusion Model of Stroke. Front Cell Neurosci 2021; 14:600441. [PMID: 33551749 PMCID: PMC7862775 DOI: 10.3389/fncel.2020.600441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Histopathological analysis of cellular changes in the stroked brain provides critical information pertaining to inflammation, cell death, glial scarring, and other dynamic injury and recovery responses. However, commonly used manual approaches are hindered by limitations in speed, accuracy, bias, and the breadth of morphological information that can be obtained. Here, a semi-automated high-content imaging (HCI) and CellProfiler histological analysis method was developed and used in a Yucatan miniature pig permanent middle cerebral artery occlusion (pMCAO) model of ischemic stroke to overcome these limitations. Evaluation of 19 morphological parameters in IBA1+ microglia/macrophages, GFAP+ astrocytes, NeuN+ neuronal, FactorVIII+ vascular endothelial, and DCX+ neuroblast cell areas was conducted on porcine brain tissue 4 weeks post pMCAO. Out of 19 morphological parameters assessed in the stroke perilesional and ipsilateral hemisphere regions (38 parameters), a significant change in 3838 measured IBA1+ parameters, 3438 GFAP+ parameters, 3238 NeuN+ parameters, 3138 FactorVIII+ parameters, and 2838 DCX+ parameters were observed in stroked vs. non-stroked animals. Principal component analysis (PCA) and correlation analyses demonstrated that stroke-induced significant and predictable morphological changes that demonstrated strong relationships between IBA1+, GFAP+, and NeuN+ areas. Ultimately, this unbiased, semi-automated HCI and CellProfiler histopathological analysis approach revealed regional and cell specific morphological signatures of immune and neural cells after stroke in a highly translational porcine model. These identified features can provide information of disease pathogenesis and evolution with high resolution, as well as be used in therapeutic screening applications.
Collapse
Affiliation(s)
- Samantha E Spellicy
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Medical College of Georgia, University System of Georgia MD/Ph.D. Program, Augusta, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | | | - Brian J Jurgielewicz
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Elizabeth S Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Janet A Grimes
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States.,Aruna Bio Inc., Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
24
|
Sneed SE, Scheulin KM, Kaiser EE, Fagan MM, Jurgielewicz BJ, Waters ES, Spellicy SE, Duberstein KJ, Platt SR, Baker EW, Stice SL, Kinder HA, West FD. Magnetic Resonance Imaging and Gait Analysis Indicate Similar Outcomes Between Yucatan and Landrace Porcine Ischemic Stroke Models. Front Neurol 2021; 11:594954. [PMID: 33551956 PMCID: PMC7859633 DOI: 10.3389/fneur.2020.594954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
The Stroke Therapy Academic Industry Roundtable (STAIR) has recommended that novel therapeutics be tested in a large animal model with similar anatomy and physiology to humans. The pig is an attractive model due to similarities in brain size, organization, and composition relative to humans. However, multiple pig breeds have been used to study ischemic stroke with potentially differing cerebral anatomy, architecture and, consequently, ischemic stroke pathologies. The objective of this study was to characterize brain anatomy and assess spatiotemporal gait parameters in Yucatan (YC) and Landrace (LR) pigs pre- and post-stroke using magnetic resonance imaging (MRI) and gait analysis, respectively. Ischemic stroke was induced via permanent middle cerebral artery occlusion (MCAO). MRI was performed pre-stroke and 1-day post-stroke. Structural and diffusion-tensor sequences were performed at both timepoints and analyzed for cerebral characteristics, lesion diffusivity, and white matter changes. Spatiotemporal and relative pressure gait measurements were collected pre- and 2-days post-stroke to characterize and compare acute functional deficits. The results from this study demonstrated that YC and LR pigs exhibit differences in gross brain anatomy and gait patterns pre-stroke with MRI and gait analysis showing statistical differences in the majority of parameters. However, stroke pathologies in YC and LR pigs were highly comparable post-stroke for most evaluated MRI parameters, including lesion volume and diffusivity, hemisphere swelling, ventricle compression, caudal transtentorial and foramen magnum herniation, showing no statistical difference between the breeds. In addition, post-stroke changes in velocity, cycle time, swing percent, cadence, and mean hoof pressure showed no statistical difference between the breeds. These results indicate significant differences between pig breeds in brain size, anatomy, and motor function pre-stroke, yet both demonstrate comparable brain pathophysiology and motor outcomes post-stroke. The conclusions of this study suggest pigs of these different breeds generally show a similar ischemic stroke response and findings can be compared across porcine stroke studies that use different breeds.
Collapse
Affiliation(s)
- Sydney E Sneed
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Erin E Kaiser
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Madison M Fagan
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Brian J Jurgielewicz
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Elizabeth S Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Samantha E Spellicy
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Kylee J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Simon R Platt
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, United States
| | | | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Aruna Bio, Inc., Athens, GA, United States
| | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| |
Collapse
|
25
|
Maternal Undernutrition Modulates Neonatal Rat Cerebrovascular Structure, Function, and Vulnerability to Mild Hypoxic-Ischemic Injury via Corticosteroid-Dependent and -Independent Mechanisms. Int J Mol Sci 2021; 22:ijms22020680. [PMID: 33445547 PMCID: PMC7827870 DOI: 10.3390/ijms22020680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022] Open
Abstract
The present study explored the hypothesis that an adverse intrauterine environment caused by maternal undernutrition (MUN) acted through corticosteroid-dependent and -independent mechanisms to program lasting functional changes in the neonatal cerebrovasculature and vulnerability to mild hypoxic-ischemic (HI) injury. From day 10 of gestation until term, MUN and MUN-metyrapone (MUN-MET) group rats consumed a diet restricted to 50% of calories consumed by a pair-fed control; and on gestational day 11 through term, MUN-MET groups received drinking water containing MET (0.5 mg/mL), a corticosteroid synthesis inhibitor. P9/P10 pups underwent unilateral carotid ligation followed 24 h later by 1.5 h exposure to 8% oxygen (HI treatment). An ELISA quantified MUN-, MET-, and HI-induced changes in circulating levels of corticosterone. In P11/P12 pups, MUN programming promoted contractile differentiation in cerebrovascular smooth muscle as determined by confocal microscopy, modulated calcium-dependent contractility as revealed by cerebral artery myography, enhanced vasogenic edema formation as indicated by T2 MRI, and worsened neurobehavior MUN unmasked HI-induced improvements in open-field locomotion and in edema resolution, alterations in calcium-dependent contractility and promotion of contractile differentiation. Overall, MUN imposed multiple interdependent effects on cerebrovascular smooth muscle differentiation, contractility, edema formation, flow-metabolism coupling and neurobehavior through pathways that both required, and were independent of, gestational corticosteroids. In light of growing global patterns of food insecurity, the present study emphasizes that infants born from undernourished mothers may experience greater risk for developing neonatal cerebral edema and sensorimotor impairments possibly through programmed changes in neonatal cerebrovascular function.
Collapse
|
26
|
Castaneda-Vega S, Katiyar P, Russo F, Patzwaldt K, Schnabel L, Mathes S, Hempel JM, Kohlhofer U, Gonzalez-Menendez I, Quintanilla-Martinez L, Ziemann U, la Fougere C, Ernemann U, Pichler BJ, Disselhorst JA, Poli S. Machine learning identifies stroke features between species. Am J Cancer Res 2021; 11:3017-3034. [PMID: 33456586 PMCID: PMC7806470 DOI: 10.7150/thno.51887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/14/2020] [Indexed: 01/16/2023] Open
Abstract
Identification and localization of ischemic stroke (IS) lesions is routinely performed to confirm diagnosis, assess stroke severity, predict disability and plan rehabilitation strategies using magnetic resonance imaging (MRI). In basic research, stroke lesion segmentation is necessary to study complex peri-infarction tissue changes. Moreover, final stroke volume is a critical outcome evaluated in clinical and preclinical experiments to determine therapy or intervention success. Manual segmentations are performed but they require a specialized skill set, are prone to inter-observer variation, are not entirely objective and are often not supported by histology. The task is even more challenging when dealing with large multi-center datasets, multiple experimenters or large animal cohorts. On the other hand, current automatized segmentation approaches often lack histological validation, are not entirely user independent, are often based on single parameters, or in the case of complex machine learning methods, require vast training datasets and are prone to a lack of model interpretation. Methods: We induced IS using the middle cerebral artery occlusion model on two rat cohorts. We acquired apparent diffusion coefficient (ADC) and T2-weighted (T2W) images at 24 h and 1-week after IS induction. Subsets of the animals at 24 h and 1-week post IS were evaluated using histology and immunohistochemistry. Using a Gaussian mixture model, we segmented voxel-wise interactions between ADC and T2W parameters at 24 h using one of the rat cohorts. We then used these segmentation results to train a random forest classifier, which we applied to the second rat cohort. The algorithms' stroke segmentations were compared to manual stroke delineations, T2W and ADC thresholding methods and the final stroke segmentation at 1-week. Volume correlations to histology were also performed for every segmentation method. Metrics of success were calculated with respect to the final stroke volume. Finally, the trained random forest classifier was tested on a human dataset with a similar temporal stroke on-set. Manual segmentations, ADC and T2W thresholds were again used to evaluate and perform comparisons with the proposed algorithms' output. Results: In preclinical rat data our framework significantly outperformed commonly applied automatized thresholding approaches and segmented stroke regions similarly to manual delineation. The framework predicted the localization of final stroke regions in 1-week post-stroke MRI with a median Dice similarity coefficient of 0.86, Matthew's correlation coefficient of 0.80 and false positive rate of 0.04. The predicted stroke volumes also strongly correlated with final histological stroke regions (Pearson correlation = 0.88, P < 0.0001). Lastly, the stroke region characteristics identified by our framework in rats also identified stroke lesions in human brains, largely outperforming thresholding approaches in stroke volume prediction (P<0.01). Conclusion: Our findings reveal that the segmentation produced by our proposed framework using 24 h MRI rat data strongly correlated with the final stroke volume, denoting a predictive effect. In addition, we show for the first time that the stroke imaging features can be directly translated between species, allowing identification of acute stroke in humans using the model trained on animal data. This discovery reduces the gap between the clinical and preclinical fields, unveiling a novel approach to directly co-analyze clinical and preclinical data. Such methods can provide further biological insights into human stroke and highlight the differences between species in order to help improve the experimental setups and animal models of the disease.
Collapse
|
27
|
Little PV, Kraft SE, Chireh A, Damberg P, Holmin S. Oxygen metabolism MRI - A comparison with perfusion imaging in a rat model of MCA branch occlusion and reperfusion. J Cereb Blood Flow Metab 2020; 40:2315-2327. [PMID: 31842668 PMCID: PMC7585917 DOI: 10.1177/0271678x19892271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 11/17/2022]
Abstract
The penumbra is sustained by an increased extraction of oxygen (OEF) from blood to brain tissue. Metabolic imaging may improve penumbra specificity when examining stroke patients with wake-up stroke and a long time between admission and symptom onset. We used MRI to examine OEF, and compared the volume of regions with elevated OEF to the volume of regions with perfusion deficit in a M2 occlusion model (M2CAO) with preserved collateral blood flow. OEF was calculated from BOLD MRI examining tissue R2', with ASL perfusion imaging employed to determine cerebral blood flows (CBF) and volumes. Diffusion imaging was used to identify the ischemic core (IC). Examinations were performed during and after transient M2CAO in rats. The IC-OEF mismatch was significantly smaller than the IC-CBF mismatch during M2CAO. The penumbra OEF was significantly increased during M2CAO, and decreased significantly after reperfusion. The IC-OEF mismatch may provide increased penumbra specificity compared to IC-CBF mismatch regimens. Results strongly indicate the potential of metabolic MRI for thrombectomy patient selection in cases with a long time from symptom onset to admission. Results demonstrate the effectiveness of reperfusion in alleviating metabolic disturbances in ischemic regions, emphasizing fast treatment to achieve significant neurological recovery in stroke patients.
Collapse
Affiliation(s)
- Philip V Little
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra E Kraft
- Karolinska Experimental Research and Imaging Center (KERIC), Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Arvin Chireh
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Damberg
- Karolinska Experimental Research and Imaging Center (KERIC), Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
28
|
KOZLER P, HERYNEK V, MAREŠOVÁ D, PEREZ P, ŠEFC L, POKORNÝ J. Effect of Methylprednisolone on Experimental Brain Edema in Magnetic Resonance Imaging. Physiol Res 2020; 69:919-926. [DOI: 10.33549/physiolres.934460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging has been used for evaluating of a brain edema in experimental animals to assess cytotoxic and vasogenic edema by the apparent diffusion coefficient (ADC) and T2 imaging. This paper brings information about the effectiveness of methylprednisolone (MP) on experimental brain edema. A total of 24 rats were divided into three groups of 8 animals each. Rats with cytotoxic/intracellular brain edema induced by water intoxication were assigned to the group WI. These rats also served as the additional control group CG when measured before the induction of edema. A third group (WIMP) was intraperitoneally administered with methylprednisolone 100 mg/kg during water intoxication treatment. The group WI+MP was injected with methylprednisolone 50 mg/kg into the carotid artery within two hours after the water intoxication treatment. We evaluated the results in four groups. Two control groups (CG, WI) and two experimental groups (WIMP, WI+MP). Rats were subjected to MR scanning 24 h after edema induction. We observed significantly increased ADC values in group WI in both evaluated areas – cortex and hippocampus, which proved the occurrence of experimental vasogenic edema, while ADC values in groups WIMP and WI+MP were not increased, indicating that the experimental edema was not developed and thus confirming the protective effect of MP.
Collapse
Affiliation(s)
- P KOZLER
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - V HERYNEK
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - D MAREŠOVÁ
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - P PEREZ
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - L ŠEFC
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J POKORNÝ
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
29
|
Duering M, Adam R, Wollenweber FA, Bayer-Karpinska A, Baykara E, Cubillos-Pinilla LY, Gesierich B, Araque Caballero MÁ, Stoecklein S, Ewers M, Pasternak O, Dichgans M. Within-lesion heterogeneity of subcortical DWI lesion evolution, and stroke outcome: A voxel-based analysis. J Cereb Blood Flow Metab 2020; 40:1482-1491. [PMID: 31342832 PMCID: PMC7308518 DOI: 10.1177/0271678x19865916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 11/17/2022]
Abstract
The fate of subcortical diffusion-weighted imaging (DWI) lesions in stroke patients is highly variable, ranging from complete tissue loss to no visible lesion on follow-up. Little is known about within-lesion heterogeneity and its relevance for stroke outcome. Patients with subcortical stroke and recruited through the prospective DEDEMAS study (NCT01334749) were examined at baseline (n = 45), six months (n = 45), and three years (n = 28) post-stroke. We performed high-resolution structural MRI including DWI. Tissue fate was determined voxel-wise using fully automated tissue segmentation. Within-lesion heterogeneity at baseline was assessed by free water diffusion imaging measures. The majority of DWI lesions (66%) showed cavitation on six months follow-up but the proportion of tissue turning into a cavity was small (9 ± 13.5% of the DWI lesion). On average, 69 ± 25% of the initial lesion resolved without any visually apparent signal abnormality. The extent of cavitation at six months post-stroke was independently associated with clinical outcome, i.e. modified Rankin scale score at six months (OR = 4.71, p = 0.005). DWI lesion size and the free water-corrected tissue mean diffusivity at baseline independently predicted cavitation. In conclusion, the proportion of cavitating tissue is typically small, but relevant for clinical outcome. Within-lesion heterogeneity at baseline on advanced diffusion imaging is predictive of tissue fate.
Collapse
Affiliation(s)
- Marco Duering
- Institute for Stroke and Dementia Research
(ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ruth Adam
- Institute for Stroke and Dementia Research
(ISD), University Hospital, LMU Munich, Munich, Germany
| | - Frank A Wollenweber
- Institute for Stroke and Dementia Research
(ISD), University Hospital, LMU Munich, Munich, Germany
| | - Anna Bayer-Karpinska
- Institute for Stroke and Dementia Research
(ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ebru Baykara
- Institute for Stroke and Dementia Research
(ISD), University Hospital, LMU Munich, Munich, Germany
| | - Leidy Y Cubillos-Pinilla
- Institute for Stroke and Dementia Research
(ISD), University Hospital, LMU Munich, Munich, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research
(ISD), University Hospital, LMU Munich, Munich, Germany
| | | | - Sophia Stoecklein
- Department of Radiology, University Hospital,
LMU Munich, Munich, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research
(ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology,
Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research
(ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology
(SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases
(DZNE), Munich, Germany
| |
Collapse
|
30
|
Wu S, Zheng T, Du J, Yuan Y, Shi Q, Wang Z, Liu D, Liu J, Wang X, Liu L. Neuroprotective effect of low-intensity transcranial ultrasound stimulation in endothelin-1-induced middle cerebral artery occlusion in rats. Brain Res Bull 2020; 161:127-135. [PMID: 32439337 DOI: 10.1016/j.brainresbull.2020.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ischemic stroke is one of the leading causes of death and disability worldwide. Low-intensity transcranial ultrasound stimulation (LITUS) is a promising neuroprotective treatment for ischemic stroke. Diffusion-weighted imaging (DWI) can be highly sensitive in the detection of ischemic brain injury. Relative apparent diffusion coefficient (rADC) values can be used to evaluate the effect of LITUS on ischemic stroke. PURPOSE The aim of this study was to determine the neuroprotective effect of LITUS at different time points using endothelin-1-induced middle cerebral artery occlusion in rats as a model of ischemic stroke. METHODS Endothelin-1 (ET-1) was injected into the cerebral parenchyma near the middle cerebral artery, which induced focal, reversible, low-flow ischemia in rats. After occlusion of the middle cerebral artery for 30 min, 120 min, and 240 min, LITUS stimulation was used respectively. DWI was performed at 1, 3, 6, 12, 18, 24, 48, and 72 h after ischemia using a 3 T scanner. The rADC values were calculated, and functional outcomes assessed using neurobehavioral scores after ischemia. Nissl staining and estimation of Na+-K+-ATPase activity were used to assess the neuropathology after completing the last Magnetic Resonance Imaging (MRI) examination. RESULTS Endothelin-1-induced occlusion of the middle cerebral artery resulted in significant dysfunction and neuronal damage in rats. Rats that received LITUS exhibited reduced damage of the affected brain tissue after cerebral ischemia. The greatest protective effect was found when LITUS stimulation occurred 30 min after cerebral ischemia. CONCLUSIONS Imaging, behavioral, and histological results suggested that LITUS stimulation after an ischemic stroke produced significant neuroprotective effects.
Collapse
Affiliation(s)
- Shuo Wu
- Graduate School of Hebei Medical University, China
| | - Tao Zheng
- Qinhuangdao Municipal No. 1 Hospital, China
| | - Juan Du
- Qinhuangdao Municipal No. 1 Hospital, China
| | - Yi Yuan
- Institute of Electrical Engineering, Yanshan University, China
| | - Qinglei Shi
- Scientific Clinical Specialist, Siemens Ltd., China
| | | | - Defeng Liu
- Qinhuangdao Municipal No. 1 Hospital, China
| | - Jian Liu
- Northeastern University, School of Information Science and Engineering, China
| | - Xiaohan Wang
- Graduate School of Chengde Medical University, China
| | | |
Collapse
|
31
|
Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, Li P, Gao Y. The blood brain barrier in cerebral ischemic injury – Disruption and repair. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2019.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
32
|
Griton M, Dhaya I, Nicolas R, Raffard G, Periot O, Hiba B, Konsman JP. Experimental sepsis-associated encephalopathy is accompanied by altered cerebral blood perfusion and water diffusion and related to changes in cyclooxygenase-2 expression and glial cell morphology but not to blood-brain barrier breakdown. Brain Behav Immun 2020; 83:200-213. [PMID: 31622656 DOI: 10.1016/j.bbi.2019.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) refers to brain dysfunction, including delirium, occurs during severe infection and is associated with development of post-traumatic stress disorder. SAE has been proposed to be related to reduced cerebral blood flow (CBF), blood-brain barrier breakdown (BBB), white matter edema and disruption and glia cell activation, but their exact relationships remain to be determined. In the present work, we set out to study CBF using Arterial Spin Labeling (ASL) and grey and white matter structure with T2- and diffusion magnetic resonance imaging (dMRI) in rats with cecal ligation and puncture (CLP)-induced encephalopathy. Using immunohistochemistry, the distribution of the vasoactive prostaglandin-synthesizing enzyme cyclooxygenase-2 (COX-2), perivascular immunoglobulins G (IgG), aquaporin-4 (AQP4) and the morphology of glial cell were subsequently assessed in brains of the same animals. CLP induced deficits in the righting reflex and resulted in higher T2-weighted contrast intensities in the cortex, striatum and at the base of the brain, decreased blood perfusion distribution to the cortex and increased water diffusion parallel to the fibers of the corpus callosum compared to sham surgery. In addition, CLP reduced staining for microglia- and astrocytic-specific proteins in the corpus callosum, decreased neuronal COX-2 and AQP4 expression in the cortex while inducing perivascular COX-2 expression, but did not induce widespread perivascular IgG diffusion. In conclusion, our findings indicate that experimental SAE can occur in the absence of BBB breakdown and is accompanied by increased water diffusion anisotropy and altered glia cell morphology in brain white matter.
Collapse
Affiliation(s)
- Marion Griton
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; Service de Réanimation Anesthésie Neurochirurgicale, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Ibtihel Dhaya
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, UR/11ES09, Faculté des Sciences Mathématiques, Physiques et Naturelles, Université de Tunis El Manar, Tunis, Tunisia
| | - Renaud Nicolas
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France
| | - Gérard Raffard
- CNRS, Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux, France; Univ. Bordeaux, RMSB, UMR 5536, Bordeaux, France
| | - Olivier Periot
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; Service de Médecine Nucléaire, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Bassem Hiba
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; CNRS UMR 5229, Centre de Neurosciences Cognitives Marc Jeannerod, Bron, France
| | - Jan Pieter Konsman
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France.
| |
Collapse
|
33
|
Lidington D, Fares JC, Uhl FE, Dinh DD, Kroetsch JT, Sauvé M, Malik FA, Matthes F, Vanherle L, Adel A, Momen A, Zhang H, Aschar-Sobbi R, Foltz WD, Wan H, Sumiyoshi M, Macdonald RL, Husain M, Backx PH, Heximer SP, Meissner A, Bolz SS. CFTR Therapeutics Normalize Cerebral Perfusion Deficits in Mouse Models of Heart Failure and Subarachnoid Hemorrhage. JACC Basic Transl Sci 2019; 4:940-958. [PMID: 31909302 PMCID: PMC6939007 DOI: 10.1016/j.jacbts.2019.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/01/2023]
Abstract
Heart failure (HF) and subarachnoid hemorrhage (SAH) chronically reduce cerebral perfusion, which negatively affects clinical outcome. This work demonstrates a strong relationship between cerebral artery cystic fibrosis transmembrane conductance regulator (CFTR) expression and altered cerebrovascular reactivity in HF and SAH. In HF and SAH, CFTR corrector compounds (C18 or lumacaftor) normalize pathological alterations in cerebral artery CFTR expression, vascular reactivity, and cerebral perfusion, without affecting systemic hemodynamic parameters. This normalization correlates with reduced neuronal injury. Therefore, CFTR therapeutics have emerged as valuable clinical tools to manage cerebrovascular dysfunction, impaired cerebral perfusion, and neuronal injury.
Collapse
Key Words
- CBF, cerebral blood flow
- CFTR, cystic fibrosis transmembrane conductance regulator
- HF, heart failure
- MAP, mean arterial pressure
- MOPS, 3-morpholinopropanesulfonic acid
- MRI, magnetic resonance imaging
- NIH, National Institutes of Health
- PCA, posterior cerebral artery
- S1P, sphingosine-1-phosphate
- SAH, subarachnoid hemorrhage
- TNF, tumor necrosis factor
- TPR, total peripheral resistance
- cognitive impairment
- corrector compounds
- cystic fibrosis transmembrane conductance regulator (CFTR)
- myogenic vasoconstriction
- sphingosine-1-phosphate
- tumor necrosis factor
- vascular smooth muscle cells
Collapse
Affiliation(s)
- Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
| | - Jessica C. Fares
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
| | - Franziska E. Uhl
- Wallenberg Center for Molecular Medicine and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Danny D. Dinh
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
| | - Jeffrey T. Kroetsch
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
| | - Meghan Sauvé
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
| | - Firhan A. Malik
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Frank Matthes
- Wallenberg Center for Molecular Medicine and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lotte Vanherle
- Wallenberg Center for Molecular Medicine and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Arman Adel
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Abdul Momen
- Division of Cell & Molecular Biology, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Hangjun Zhang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
| | | | - Warren D. Foltz
- STTARR Innovation Centre, Department of Radiation Oncology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Hoyee Wan
- Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre for Biomedical Research and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, St. Michael’s Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Physical Sciences Platform and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Manabu Sumiyoshi
- Division of Neurosurgery, St. Michael’s Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Health Biosciences, Department of Neurosurgery, University of Tokushima Graduate School, Tokushima, Japan
| | - R. Loch Macdonald
- Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre for Biomedical Research and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, St. Michael’s Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Mansoor Husain
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Cell & Molecular Biology, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter H. Backx
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Scott P. Heximer
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| | - Anja Meissner
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Wallenberg Center for Molecular Medicine and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Goede LL, Pflugrad H, Schmitz B, Lanfermann H, Tryc AB, Barg-Hock H, Klempnauer J, Weissenborn K, Ding XQ. Quantitative magnetic resonance imaging indicates brain tissue alterations in patients after liver transplantation. PLoS One 2019; 14:e0222934. [PMID: 31553760 PMCID: PMC6760889 DOI: 10.1371/journal.pone.0222934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To investigate cerebral microstructural alterations in patients treated with calcineurin inhibitors (CNI) after orthotopic liver transplantation (OLT) using quantitative magnetic resonance imaging (qMRI) and a cross-sectional study design. METHODS Cerebral qMRI was performed in 85 patients in a median 10 years after OLT compared to 31 healthy controls. Patients were treated with different dosages of CNI or with a CNI-free immunosuppression (CNI-free: n = 19; CNI-low: n = 36; CNI-standard: n = 30). T2-, T2*- and T2'- relaxation times, as well as apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in brain gray and white matter by using the regions of interest method. RESULTS In comparison to controls, patients revealed significantly increased T2, T2*, T2', ADC and reduced FA, predominantly in the frontal white matter, indicating microstructural brain alterations represented by increased free water (increased T2), reduced neuronal metabolism (increased T2') and a lower degree of spatial organization of the nervous fibers (reduced FA). CNI-low and CNI-free patients showed more alterations than CNI-standard patients. Analysis of their history revealed impairment of kidney function while under standard CNI dose suggesting that these patients may be more vulnerable to toxic CNI side-effects. CONCLUSION Our findings suggest that the individual sensitivity to toxic side effects should be considered when choosing an appropriate immunosuppressive regimen in patients after liver transplantation.
Collapse
Affiliation(s)
- Lukas Laurids Goede
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
- Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Henning Pflugrad
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Birte Schmitz
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Heinrich Lanfermann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Anita Blanka Tryc
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Hannelore Barg-Hock
- Clinic for Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Jürgen Klempnauer
- Clinic for Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Karin Weissenborn
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Xiao-Qi Ding
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
35
|
Mukda S, Tsai CY, Leu S, Yang JL, Chan SHH. Pinin protects astrocytes from cell death after acute ischemic stroke via maintenance of mitochondrial anti-apoptotic and bioenergetics functions. J Biomed Sci 2019; 26:43. [PMID: 31167655 PMCID: PMC6549339 DOI: 10.1186/s12929-019-0538-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/26/2019] [Indexed: 11/27/2022] Open
Abstract
Background Stroke is the second most common cause of deaths worldwide. After an ischemic stroke, the proliferated reactive astrocytes in the peri-infarct areas play a beneficial role in neuronal survival. As such, astrocytes have gradually become a target for neuroprotection in stroke. The present study assessed the hypothesis that Pinin (Pnn), originally identified as a nuclear and desmosome-associated protein and is now known to possess anti-apoptotic capacity, protects astrocytes from cell death after ischemic stroke and delineated the underlying mechanisms. Methods In in vivo experiments, adult male Sprague-Dawley rats (12-week old) were used to induce acute focal cerebral ischemia employing the middle cerebral artery occlusion (MCAO) method. In in vitro experiments, postnatal day 1 (P1) Sprague-Dawley rat pups were used to prepare cultures of primary astrocytes. Oxygen-glucose deprivation (OGD) and re-oxygenation (OGD/R) procedures were employed to mimic the hypoxic-ischemic condition of stroke in those astrocytes. Results We found in the peri-infarct area of the ipsilateral cortex and striatum in Sprague-Dawley rats after transient MCAO an increase in Pnn expression that correlated positively with the time-course of infarction as detected by T2-weighted imaging and triphenyltetrazolium chloride staining, augmented number of reactive astrocytes that double-labelled with Pnn as determined by immunofluorescence, and enhanced cytotoxic edema as revealed by diffusion weighted imaging; but mirrored the decreased cleaved caspase-3 as measured by western blot. In an OGD and OGD/R model using primary cultured astrocytes, treatment with Pnn siRNA doubled the chance of surviving astrocytes to manifest cell death as revealed by flow cytometry, and blunted activated ERK signaling, reduced Bcl-2 expression and augmented cleaved caspase 3 detected by western blot in the normoxia, OGD or OGD/R group. Gene-knockdown of Pnn also impeded the reversal from decline in cell viability, elevation in lactate dehydrogenase leakage and decrease in ATP production in the OGD/R group. Conclusion We conclude that the endogenous Pnn participates in neuroprotection after acute ischemic stroke by preserving the viability of astrocytes that survived the ischemic challenge via maintenance of mitochondrial anti-apoptotic and bioenergetics functions. Electronic supplementary material The online version of this article (10.1186/s12929-019-0538-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Rd, Kaohsiung, 83301, Taiwan
| | - Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Rd, Kaohsiung, 83301, Taiwan
| | - Steve Leu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Rd, Kaohsiung, 83301, Taiwan
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Rd, Kaohsiung, 83301, Taiwan
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Rd, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
36
|
Boyko M, Zvenigorodsky V, Grinshpun J, Shiyntum HN, Melamed I, Kutz R, Shelef I, Brotfain E, Frank D, Zlotnik A. Establishment of novel technical methods for evaluating brain edema and lesion volume in stroked rats: A standardization of measurement procedures. Brain Res 2019; 1718:12-21. [PMID: 31026458 DOI: 10.1016/j.brainres.2019.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/09/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022]
Abstract
Stroke plays a role in high morbidity and mortality. Deciphering its mechanisms and pathophysiology is critical for the creation of new drugs and therapies. Most of the previous animal models of stroke, aimed at identifying the extent and location of brain injury following stroke, require animal sacrifice, which, besides ethical considerations, also negates the ability for follow up studies with the same rats. Because of these failures, the use of clinical magnetic resonance scanners for evaluating small animal models has been increasing. Magnetic resonance imaging scanners used particularly for small-bore animals are eligible for use in high-resolution magnetic resonance imaging of rodent brains. However, high costs and scarcity factor heavily in the rare availability of these scanners. In our investigation, we sought to establish a unitary magnetic resonance imaging protocol for stroke assessment in rats. We made use of a 3-Tesla magnetic resonance imaging clinical scanner, as well as another clinical equipment, with the purpose of increasing its reproducibility. The results of inquest validated a new magnetic resonance imaging protocol, comparing a magnetic resonance imaging-measured infarcted zone to the "gold standard" of histological examination. We carried out the experimental procedure on a 3 Tesla magnetic resonance imaging clinical scanner using a conventional eight-channel receive-only coil. The two methods produced remarkable quantitative and qualitative correlations between them. Conclusively, we showed the clinical magnetic resonance imaging scanner to be a high-precision and sensitive image analysis instrument for evaluating both the infarct zone and the brain edema in a stroke experimental rat model.
Collapse
Affiliation(s)
- Matthew Boyko
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.
| | - Vladislav Zvenigorodsky
- Department of Radiology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Julia Grinshpun
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Honore N Shiyntum
- Department of Biophysics and Biochemistry, Faculty of Biology, Ecology, and Medicine, Oles' Honchar Dnipro National University, Gagarin avenue 72, Dnipro 49010, Ukraine
| | - Israel Melamed
- Department of Neurosurgery, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.
| | - Ruslan Kutz
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.
| | - Ilan Shelef
- Department of Radiology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Evgeni Brotfain
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Dmitry Frank
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.
| | - Alexander Zlotnik
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.
| |
Collapse
|
37
|
Huang X, Alakbarzade V, Khandanpour N, Pereira AC. Management of a wake-up stroke. Pract Neurol 2019; 19:326-331. [PMID: 30872357 DOI: 10.1136/practneurol-2018-002179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 01/01/2023]
Abstract
Current national guidelines advocate intravenous thrombolysis to treat patients with acute ischaemic stroke presenting within 4.5 hours from symptom onset, and thrombectomy for patients with anterior circulation ischaemic stroke from large vessel occlusion presenting within 6 hours from onset. However, a substantial group of patients presents with acute ischaemic stroke beyond these time windows or has an unknown time of onset. Recent studies are set to revolutionise treatment for these patients. Using MRI diffusion/FLAIR (fluid-attenuated inversion recovery) mismatch, it is possible to identify patients within 4.5 hours from onset and safely deliver thrombolysis. Using CT perfusion imaging, it is possible to identify subjects with a middle cerebral artery syndrome who have an extensive area of ischaemic brain but as yet have only a small area of infarction who may benefit from urgent thrombectomy in up to 24 hours. Here, we highlight the recent advances in late window stroke treatment and their potential contribution to clinical practice.
Collapse
Affiliation(s)
- Xuya Huang
- Department of Neurology, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Vafa Alakbarzade
- Department of Neurology, St. George's University Hospitals NHS Foundation Trust, London, UK.,Royal Cornwall Hospitals NHS Trust, Truro, UK
| | - Nader Khandanpour
- Department of Neurology, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Anthony C Pereira
- Department of Neurology, St. George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
38
|
Maetani Y, Nakamori M, Imamura E, Ishii Y, Aihara H, Suyama Y, Wakabayashi S, Maruyama H. Utility of Minimum Apparent Diffusion Coefficient Ratios in Alberta Stroke Program Early CT Score Regions for Deciding on Stroke Therapy. J Stroke Cerebrovasc Dis 2019; 28:1371-1380. [PMID: 30803784 DOI: 10.1016/j.jstrokecerebrovasdis.2019.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Therapeutic indications for recombinant tissue plasminogen activator therapy and endovascular therapy need to be assessed for patients with hyperacute ischemic stroke. We investigated the relationship between the minimum apparent diffusion coefficient ratios in each Alberta Stroke Program Early CT Score region and reversible lesion in patients with hyperacute ischemic stroke receiving recombinant tissue plasminogen activator therapy and/or treated with endovascular therapy. MATERIALS AND METHODS We retrospectively evaluated 29 patients with first ischemic stroke due to stenosis/occlusion of the internal carotid artery or horizontal portion of the middle cerebral artery that was successfully recanalized by recombinant tissue plasminogen activator therapy and/or treated with endovascular therapy. We measured the minimum apparent diffusion coefficient value in each Alberta Stroke Program Early CT Score region (11 regions) and calculated the ratio. RESULTS There was a significant difference in minimum apparent diffusion coefficient ratios between regions that included and did not include infarction (P < .0001), which were distinguishable with a cutoff value of .808 (area under the curve = .80, P < .001). A statistical difference in the proportion of infarction with the cutoff value was observed between patients treated with endovascular therapy and receiving recombinant tissue plasminogen activator therapy alone (9.9% versus 24.6%, P = .0041) and between patients with affected middle cerebral and internal carotid arteries (7.0% versus 24.2%, P = .0002). The lowest apparent diffusion coefficient ratio was associated with the time to recombinant tissue plasminogen activator injection. CONCLUSIONS Minimum apparent diffusion coefficient ratios in Alberta Stroke Program Early CT Score regions are useful in predicting therapeutic effect.
Collapse
Affiliation(s)
- Yuta Maetani
- Department of Neurology, Suiseikai Kajikawa Hospital, Hiroshima, Japan; Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masahiro Nakamori
- Department of Neurology, Suiseikai Kajikawa Hospital, Hiroshima, Japan.
| | - Eiji Imamura
- Department of Neurology, Suiseikai Kajikawa Hospital, Hiroshima, Japan
| | - Yosuke Ishii
- Department of Neurosurgery, Suiseikai Kajikawa Hospital, Hiroshima, Japan
| | - Hiroshi Aihara
- Department of Neurosurgery, Suiseikai Kajikawa Hospital, Hiroshima, Japan
| | - Yoshio Suyama
- Department of Neurosurgery, Suiseikai Kajikawa Hospital, Hiroshima, Japan
| | | | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
39
|
Koch S, Mueller S, Foddis M, Bienert T, von Elverfeldt D, Knab F, Farr TD, Bernard R, Dopatka M, Rex A, Dirnagl U, Harms C, Boehm-Sturm P. Atlas registration for edema-corrected MRI lesion volume in mouse stroke models. J Cereb Blood Flow Metab 2019; 39:313-323. [PMID: 28829217 PMCID: PMC6360485 DOI: 10.1177/0271678x17726635] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lesion volume measurements with magnetic resonance imaging are widely used to assess outcome in rodent models of stroke. In this study, we improved a mathematical framework to correct lesion size for edema which is based on manual delineation of the lesion and hemispheres. Furthermore, a novel MATLAB toolbox to register mouse brain MR images to the Allen brain atlas is presented. Its capability to calculate edema-corrected lesion size was compared to the manual approach. Automated image registration performed equally well in in a mouse middle cerebral artery occlusion model (Pearson r = 0.976, p = 2.265e-11). Information encapsulated in the registration was used to generate maps of edema induced tissue volume changes. These showed discrepancies to simplified tissue models underlying the manual approach. The presented techniques provide biologically more meaningful, voxel-wise biomarkers of vasogenic edema after stroke.
Collapse
Affiliation(s)
- Stefan Koch
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
| | - Susanne Mueller
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
- Charité Core Facility 7T Experimental
MRIs,
Charité
University Medicine Berlin, Berlin,
Germany
| | - Marco Foddis
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
| | - Thomas Bienert
- Department of Radiology – Medical
Physics, and BrainLinks-BrainTools Excellence Cluster, Medical Center – University
of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Dominik von Elverfeldt
- Department of Radiology – Medical
Physics, and BrainLinks-BrainTools Excellence Cluster, Medical Center – University
of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Felix Knab
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
| | - Tracy D Farr
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
- School of Life Sciences, University of
Nottingham, Nottingham, UK
| | - René Bernard
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
| | - Monika Dopatka
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
| | - André Rex
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
| | - Ulrich Dirnagl
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
- German Center for Neurodegenerative
Diseases (DZNE), Berlin, Germany
- Berlin Institute of Health, Berlin,
Germany
| | - Christoph Harms
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
- Charité Core Facility 7T Experimental
MRIs,
Charité
University Medicine Berlin, Berlin,
Germany
- Philipp Boehm-Sturm, Department of
Experimental Neurology, Center for Stroke Research, Charitéplatz 1, Berlin
10117, Germany.
| |
Collapse
|
40
|
Amtul Z, Yang J, Nikolova S, Lee TY, Bartha R, Cechetto DF. The Dynamics of Impaired Blood-Brain Barrier Restoration in a Rat Model of Co-morbid Injury. Mol Neurobiol 2018; 55:8071-8083. [PMID: 29508280 DOI: 10.1007/s12035-018-0904-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Defect in brain microperfusion is increasingly recognized as an antecedent event to Alzheimer's disease (AD) and ischemia. Nevertheless, studies on the role of impaired microperfusion as a pathological trigger to neuroinflammation, Aβ deposition as well as blood-brain barrier (BBB) disruption, and the etiological link between AD and ischemia are lacking. In this study, we employ in vivo sequential magnetic resonance imaging (MRI) and computed tomography (CT) imaging in a co-morbid rat model of β-amyloid toxicity (Aβ) and ischemia (ET1) with subsequent histopathology of striatal lesion core and penumbra at 1, 7, and 28 days post injury. Within 24 h, cerebral injury resulted in increased BBB permeability due to the dissolution of β-dystroglycan (β-DG) and basement membrane laminin by active matrix metalloproteinase9 (MMP9). As a result, net flow of circulating IgG down a hydrostatic gradient into the parenchyma led to vasogenic edema and impaired perfusion, thus increasing the apparent hyperintensity in true fast imaging with steady-state free precession (true FISP) imaging and acute hypoperfusion in CT. This was followed by a slow recruitment of reactive astroglia to the affected brain and depolarization of aquaporin4 (AQP4) expression resulting in cytotoxic edema-in an attempt to resolve vasogenic edema. On d28, functional BBB was restored in ET1 rats as observed by astrocytic MMP9 release, β-DG stabilization, and new vessel formation. This was confirmed by reduced hyperintensity on true FISP imaging and normalized cerebral blood flow in CT. While, Aβ toxicity alone was not detrimental enough, Aβ+ET1 rats showed delayed differential expression of MMP9, late recruitment of astroglial cells, protracted loss of AQP4 depolarization, and thus delayed BBB restoration and cerebral perfusion.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| | - Jun Yang
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada
| | - Simona Nikolova
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada
| | - Ting-Yim Lee
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada.,Department of Medical Biophysics, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - David F Cechetto
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 5C1, Canada
| |
Collapse
|
41
|
Tanaka M, Ishihara Y, Mizuno S, Ishida A, Vogel CF, Tsuji M, Yamazaki T, Itoh K. Progression of vasogenic edema induced by activated microglia under permanent middle cerebral artery occlusion. Biochem Biophys Res Commun 2018; 496:582-587. [PMID: 29353043 DOI: 10.1016/j.bbrc.2018.01.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/14/2018] [Indexed: 12/11/2022]
Abstract
Brain edema is a severe complication that accompanies ischemic stroke. Increasing evidence shows that inflammatory cytokines impair tight junctions of the blood-brain barrier, suggesting the involvement of microglia in brain edema. In this study, we examined the role of microglia in the progression of ischemic brain edema using mice with permanent middle cerebral artery occlusion. The intensity of T2-weighted imaging (T2WI) in the cerebral cortex and the striatum was elevated 3 h after occlusion and spread to peripheral regions of the ischemic hemisphere. Merged images of 2,3,5-triphenyl tetrazolium chloride staining and T2WI revealed the exact vasogenic edema region, which spread from the ischemic core to outside the ischemic region. Microglia were strongly activated in the ischemic region 3 h after occlusion and, notably, activated microglia were observed in the non-ischemic region 24 h after occlusion. Pretreatment with minocycline, an inhibitor of microglial activation clearly suppressed not only vasogenic edema but also infarct formation. We demonstrated in this study that vasogenic edema spreads from the ischemic core to the peripheral region, which can be elicited, at least in part, by microglial activation induced by ischemia.
Collapse
Affiliation(s)
- Miki Tanaka
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, 739-8521, Japan; Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan
| | - Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, 739-8521, Japan; Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA.
| | - Shodo Mizuno
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan; Department of Pharmaceutical Service, Shikoku Medical Center of Children and Adults, National Hospital Organization, Kagawa, 765-8501, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Christoph F Vogel
- Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, Davis, Davis, CA, 95616, USA
| | - Mayumi Tsuji
- Department of Environmental Health, University of Occupational and Environmental Health, Fukuoka, 807-8555, Japan
| | - Takeshi Yamazaki
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan
| |
Collapse
|
42
|
Leinonen V, Vanninen R, Rauramaa T. Raised intracranial pressure and brain edema. HANDBOOK OF CLINICAL NEUROLOGY 2018; 145:25-37. [PMID: 28987174 DOI: 10.1016/b978-0-12-802395-2.00004-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Acutely increased intracranial pressure (ICP) is a life-threatening neurosurgical emergency. Optimal management strategy is selected according to the causative process. Typical causes are intracranial bleeds like traumatic subdural, epidural, or intracerebral hematoma (ICH); spontaneous ICH, intraventricular hemorrhage, subarachnoid hemorrhage, and hydrocephalus. When occurring without significant brain injury and treated effectively before herniation, a full recovery can be expected. In intraparenchymal injuries a full recovery is unlikely since dead cells in the central nervous system leave an "empty hole," to be replaced by cerebrospinal fluid. The clinical recovery is based on the surviving cells that are able to make new synapses. Surgery may decrease ICP by removing significant mass effect. In all conditions, when notable injury of brain parenchyma occurs, brain edema may gradually increase ICP and further worsen the clinical condition. This is seen typically in large brain infarctions when the formation of brain edema may lead to increased ICP for hours and days. Brain edema is traditionally classified as vasogenic or cytotoxic but according to current knowledge is rather a continuum, starting with cytotoxic cell swelling followed by ionic edema and then vasogenic edema. Here we review the causes of increased ICP, including mechanisms of brain edema, with clinical examples.
Collapse
Affiliation(s)
- Ville Leinonen
- Department of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland and Department of Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland.
| | - Ritva Vanninen
- Department of Radiology, Institute of Clinical Medicine, University of Eastern Finland and Department of Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Institute of Clinical Medicine, University of Eastern Finland and Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
43
|
Abstract
RELATION Iodide mumps is an uncommon condition, induced by iodide-containing contrast, and is characterized by a rapid, painless enlargement of the bilateral or unilateral salivary gland. At present, the pathogenesis of iodide mumps is not yet clear. It may be related to an idiosyncratic reaction, a toxic accumulation of iodine in the gland duct, or renal function damage leading to an iodine excretion disorder. This paper reports the clinical manifestations and magnetic resonance imaging results of one case of iodide mumps, which occurred after digital subtraction angiography. PATIENT CONCERNS A 66-year-old Chinese man presented to our department with a 1-month speech barrier and 1 day of vomiting. He had the history of high blood sugar, the history of high blood pressure and the history of Vitiligo. He had no history of allergies and had never previously received iodide-containing contrast. His renal function and other laboratory examinations were normal. During the digital subtraction angiography (DSA), the patient received approximately 130 mL of nonionic contrast agent (iodixanol). Five hours postsurgery, the patient experienced bilateral parotid enlargement with no other discomfort, such as pain, fever, skin redness, itching, hives, nausea, vomiting, or respiratory abnormalities. DIAGNOSES We thought the diagnosis was iodide mumps. INTERVENTION Intravenous dexamethasone (5 mg) was administered. OUTCOME 20 hours post-DSA, after which the bilateral parotid shrunk. By 4 days postsurgery, the patient's bilateral parotid had recovered completely. LESSONS We found no obvious abnormal sequence signal in diffusion magnetic resonance imaging or the corresponding apparent diffusion coefficient. Our findings suggest that vasogenic edema may play an important role in the pathogenesis of iodide mumps.
Collapse
|
44
|
Unlu E, Duran AH, Balcik C, Beker-Acay M, Yildiz Y, Tulmac OB, Unlu BS, Yucel A. Brain Diffusion Changes in Polycystic Ovary Syndrome. Can Assoc Radiol J 2017; 68:414-418. [PMID: 28888742 DOI: 10.1016/j.carj.2017.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/10/2017] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ebru Unlu
- Department of Radiology, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Alper H Duran
- Department of Radiology, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA.
| | - Cinar Balcik
- Department of Radiology, School of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Mehtap Beker-Acay
- Department of Radiology, School of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Yunus Yildiz
- Clinic of Obstetrics and Gynecology, Ilgin State Hospital, Konya, Turkey
| | - Ozlem B Tulmac
- Department of Obstetrics and Gynecology, School of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Bekir S Unlu
- Department of Obstetrics and Gynecology, School of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Aylin Yucel
- Department of Radiology, School of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
45
|
Castaneda Vega S, Weinl C, Calaminus C, Wang L, Harant M, Ehrlichmann W, Thiele D, Kohlhofer U, Reischl G, Hempel JM, Ernemann U, Quintanilla Martinez L, Nordheim A, Pichler BJ. Characterization of a novel murine model for spontaneous hemorrhagic stroke using in vivo PET and MR multiparametric imaging. Neuroimage 2017; 155:245-256. [DOI: 10.1016/j.neuroimage.2017.04.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/29/2017] [Accepted: 04/29/2017] [Indexed: 01/07/2023] Open
|
46
|
Ni WW, Christen T, Zaharchuk G. Benchmarking transverse spin relaxation based oxygenation measurements in the brain during hypercapnia and hypoxia. J Magn Reson Imaging 2017; 46:704-714. [PMID: 28306210 DOI: 10.1002/jmri.25582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To simultaneously assess reproducibility of three MRI transverse relaxation parameters ( R2', R2*, and R2 ) for brain tissue oxygenation mapping and to assess changes in these parameters with inhalation of gases that increase and decrease oxygenation, to identify the most sensitive parameter for imaging brain oxygenation. MATERIALS AND METHODS Forty-eight healthy subjects (25 male, ages 35 ± 8 years) were scanned at 3.0 Tesla, each with one of four gases (mildly and strongly hypercapnic and hypoxic) administered in a challenge paradigm, using a gas delivery setup designed for patient use. Cerebral blood flow mapping with arterial spin labeling, and simultaneous R2', R2*, and R2 mapping with gradient-echo sampling of free induction decay and echo (GESFIDE) were performed. Reproducibility in air and gas-induced changes were evaluated using nonparametric analysis with correction for multiple comparisons. RESULTS Our gas delivery setup achieved stable gas challenges as shown by physiological monitoring. Test-retest variability of R2', R2*, and R2 were found to be 0.24 s-1 (8.6% of mean), 0.24 s-1 (1.3% of mean), and 0.15 s-1 (1.0% of mean), respectively. Strong hypoxia produced the most conclusive oxygenation-driven relaxation change, inducing increases in R2' (25 ± 13%, P = 0.03), R2* (5 ± 2%, P = 0.02), and R2 (2 ± 2%, NS). CONCLUSION We benchmarked the intra-scan test-retest variability in GESFIDE-based transverse relaxation rate mapping. Using a reliable framework for gas challenge paradigms, we recommend strong hypoxia for validating oxygenation mapping methods, and the use of tissue R2' change, instead of R2* or R2 , as a metric for studying brain tissue oxygenation using transverse relaxation methods. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:704-714.
Collapse
Affiliation(s)
- Wendy W Ni
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Thomas Christen
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
47
|
Jiang T, Xie L, Lou X, Li D, Chen Z, Xiao H, Ma L. T2 relaxation time measurements in the brains of scalded rats. SCIENCE CHINA-LIFE SCIENCES 2017; 60:5-10. [PMID: 28078505 DOI: 10.1007/s11427-016-0382-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
This study aimed to evaluate the T2 relaxation time of the brain in severely scalded rats using a magnetic resonance (MR) T2 mapping sequence, and to investigate the correlation between T2 relaxation time and plasma glucose level. Twenty-eight Wistar rats were randomly divided into the scalded group (n=21) and control group (n=7). Magnetic resonance scans were performed with T1WI, T2WI, and T2-mapping sequences in the scalded group; the scans were performed 1 day prior to scalding and 1, 3, 5, and 7 days post-scalding; in addition, identical MR scans were performed in the control group at the same time points. T2-maps were generated and T2 relaxation times were acquired from the following brain regions: the hippocampus, thalamus, caudate-putamen, and cerebrum. Pathological changes of the hippocampus were observed. The plasma glucose level of each rat was measured before each MR scan, and a correlation analysis was performed between T2 relaxation time and plasma glucose level. We found that conventional T1WI and T2WI did not reveal any abnormal signals or morphological changes in the hippocampus, thalamus, caudate-putamen, or cerebrum post-scalding. Both the T2 relaxation times of the selected brain regions and plasma glucose levels increased 1, 3, and 5 days post-scalding, and returned to normal levels 7 days post-scalding. The most marked increase of T2 relaxation time was found in the hippocampus; similar changes were also revealed in the thalamus, caudate-putamen, and cerebrum. No correlation was found between T2 relaxation time and plasma glucose level in scalded rats. Pathological observation of the hippocampus showed edema 1, 3, and 5 days post-scalding, with recovery to normal findings at 7 days post-scalding. Thus, we concluded that T2 mapping is a sensitive method for detecting and monitoring scald injury in the rat brain. As the hippocampus is the main region for modulating a stress reaction, it showed significantly increased water content along with an increased plasma glucose level post-scalding.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Radiology, PLA General Hospital, Beijing, 100853, China
- Department of Radiology, PLA 401 Hospital, Qingdao, 266071, China
| | - Liqi Xie
- Department of Radiology, PLA 401 Hospital, Qingdao, 266071, China
| | - Xin Lou
- Department of Radiology, PLA General Hospital, Beijing, 100853, China
| | - Dawei Li
- Department of Burn and Plastic Surgery, PLA 304 Hospital, Beijing, 100048, China
| | - Zhiye Chen
- Department of Radiology, PLA General Hospital, Beijing, 100853, China
| | - Huafeng Xiao
- Department of Radiology, PLA 302 Hospital, Beijing, 100039, China
| | - Lin Ma
- Department of Radiology, PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
48
|
Piazza M, Munasinghe J, Murayi R, Edwards N, Montgomery B, Walbridge S, Merrill M, Chittiboina P. Simulating vasogenic brain edema using chronic VEGF infusion. J Neurosurg 2017; 127:905-916. [PMID: 28059647 DOI: 10.3171/2016.9.jns1627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To study peritumoral brain edema (PTBE), it is necessary to create a model that accurately simulates vasogenic brain edema (VBE) without introducing a complicated tumor environment. PTBE associated with brain tumors is predominantly a result of vascular endothelial growth factor (VEGF) secreted by brain tumors, and VEGF infusion alone can lead to histological blood-brain barrier (BBB) breakdown in the absence of tumor. VBE is intimately linked to BBB breakdown. The authors sought to establish a model for VBE with chronic infusion of VEGF that can be validated by serial in-vivo MRI and histological findings. METHODS Male Fischer rats (n = 182) underwent stereotactic striatal implantation of MRI-safe brain cannulas for chronic infusion of VEGF (2-20 µg/ml). Following a preinfusion phase (4-6 days), the rats were exposed to VEGF or control rat serum albumin (1.5 µl/hr) for as long as 144 hours. Serial MRI was performed during infusion on a high-field (9.4-T) machine at 12-24, 24-36, 48-72, and 120-144 hours. Rat brains were then collected and histological analysis was performed. RESULTS Control animals and animals infused with 2 µg/ml of VEGF experienced no neurological deficits, seizure activity, or abnormal behavior. Animals treated with VEGF demonstrated a significantly larger volume (42.90 ± 3.842 mm3) of T2 hyper-attenuation at 144 hours when compared with the volume (8.585 ± 1.664 mm3) in control animals (mean difference 34.31 ± 4.187 mm3, p < 0.0001, 95% CI 25.74-42.89 mm3). Postcontrast T1 enhancement in the juxtacanalicular region indicating BBB breakdown was observed in rats undergoing infusion with VEGF. At the later time periods (120-144 hrs) the volume of T1 enhancement (34.97 ± 8.99 mm3) was significantly less compared with the region of edema (p < 0.0001). Histologically, no evidence of necrosis or inflammation was observed with VEGF or control infusion. Immunohistochemical analysis demonstrated astrocyte activation, vascular remodeling, and increased claudin-5 expression in juxtacanalicular regions. Aquaporin-4 expression was increased in both control and VEGF animals in the juxtacanalicular regions. CONCLUSIONS The results of this study show that chronic brain infusion of VEGF creates a reliable model of VBE. This model lacks necrosis and inflammation that are characteristic of previous models of VBE. The model allows for a precise investigation into the mechanism of VBE formation. The authors also anticipate that this model will allow for investigation into the mechanism of glucocorticoid action in abrogating VBE, and to test novel therapeutic strategies targeting PTBE.
Collapse
Affiliation(s)
- Martin Piazza
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, and
| | | | - Roger Murayi
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, and
| | - Nancy Edwards
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, and
| | - Blake Montgomery
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, and
| | - Stuart Walbridge
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, and
| | - Marsha Merrill
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, and
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, and
| |
Collapse
|
49
|
Sanganalmath SK, Gopal P, Parker JR, Downs RK, Parker JC, Dawn B. Global cerebral ischemia due to circulatory arrest: insights into cellular pathophysiology and diagnostic modalities. Mol Cell Biochem 2016; 426:111-127. [PMID: 27896594 DOI: 10.1007/s11010-016-2885-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023]
Abstract
Circulatory arrest (CA) remains a major unresolved public health problem in the United States; the annual incidence of which is ~0.50 to 0.55 per 1000 population. Despite seminal advances in therapeutic approaches over the past several decades, brain injury continues to be the leading cause of morbidity and mortality after CA. In brief, CA typically results in global cerebral ischemia leading to delayed neuronal death in the hippocampal pyramidal cells as well as in the cortical layers. The dynamic changes occurring in neurons after CA are still unclear, and predicting these neurological changes in the brain still remains a difficult issue. It is hypothesized that the "no-flow" period produces a cytotoxic cascade of membrane depolarization, Ca2+ ion influx, glutamate release, acidosis, and resultant activation of lipases, nucleases, and proteases. Furthermore, during reperfusion injury, neuronal death occurs due to the generation of free radicals by interfering with the mitochondrial respiratory chain. The efficacy of many pharmacological agents for CA patients has often been disappointing, reflecting our incomplete understanding of this enigmatic disease. The primary obstacles to the development of a neuroprotective therapy in CA include uncertainties with regard to the precise cause(s) of neuronal dysfunction and what to target. In this review, we summarize our knowledge of the pathophysiology as well as specific cellular changes in brain after CA and revisit the most important neurofunctional, neuroimaging techniques, and serum biomarkers as potent predictors of neurologic outcome in CA patients.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Division of Cardiovascular Diseases, Department of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| | - Purva Gopal
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - John R Parker
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Richard K Downs
- Division of Neuroradiology, Department of Radiology, University of Louisville, Louisville, KY, USA
| | - Joseph C Parker
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Department of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| |
Collapse
|
50
|
Sen CK, Khanna S, Harris H, Stewart R, Balch M, Heigel M, Teplitsky S, Gnyawali S, Rink C. Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury. FASEB J 2016; 31:927-936. [PMID: 27895105 DOI: 10.1096/fj.201600437r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022]
Abstract
The efficacy and optimization of poststroke physical therapy paradigms is challenged in part by a lack of objective tools available to researchers for systematic preclinical testing. This work represents a maiden effort to develop a robot-assisted mechanical therapy (RAMT) device to objectively address the significance of mechanical physiotherapy on poststroke outcomes. Wistar rats were subjected to right hemisphere middle-cerebral artery occlusion and reperfusion. After 24 h, rats were split into control (RAMT-) or RAMT+ groups (30 min daily RAMT over the stroke-affected gastrocnemius) and were followed up to poststroke d 14. RAMT+ increased perfusion 1.5-fold in stroke-affected gastrocnemius as compared to RAMT- controls. Furthermore, RAMT+ rats demonstrated improved poststroke track width (11% wider), stride length (21% longer), and travel distance (61% greater), as objectively measured using software-automated testing platforms. Stroke injury acutely increased myostatin (3-fold) and lowered brain-derived neurotrophic factor (BDNF) expression (0.6-fold) in the stroke-affected gastrocnemius, as compared to the contralateral one. RAMT attenuated the stroke-induced increase in myostatin and increased BDNF expression in skeletal muscle. Additional RAMT-sensitive myokine targets in skeletal muscle (IL-1ra and IP-10/CXCL10) were identified from a cytokine array. Taken together, outcomes suggest stroke acutely influences signal transduction in hindlimb skeletal muscle. Regimens based on mechanical therapy have the clear potential to protect hindlimb function from such adverse influence.-Sen, C. K., Khanna, S., Harris, H., Stewart, R., Balch, M., Heigel, M., Teplitsky, S., Gnyawali, S., Rink, C. Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury.
Collapse
Affiliation(s)
- Chandan K Sen
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Savita Khanna
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hallie Harris
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Richard Stewart
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Maria Balch
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mallory Heigel
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Seth Teplitsky
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Surya Gnyawali
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Cameron Rink
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|