1
|
Hage B, Way E, Barlow SM, Bashford GR. Real-Time Cerebral Hemodynamic Response to Tactile Somatosensory Stimulation. J Neuroimaging 2018; 28:615-620. [PMID: 29992676 PMCID: PMC6212317 DOI: 10.1111/jon.12546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Recent studies in rodents suggest that somatosensory stimulation could provide neuroprotection during ischemic stroke by inducing plasticity in the cortex-vasculature relationship. While functional magnetic resonance imaging (fMRI) has shown that somatosensory stimulation increases cerebral blood flow (CBF) over several seconds, subsecond changes in CBF in the basal cerebral arteries have rarely been studied due to temporal resolution limitations. This study characterized hemodynamic changes in the middle cerebral arteries (MCAs) during somatosensory stimulation with high temporal resolution (100 samples/s) using functional transcranial Doppler ultrasound (fTCD). METHODS Pneumotactile somatosensory stimulation, consisting of punctate pressure pulses traversing the glabrous skin of the hand at 25 cm/s, was used to induce CBF velocity (CBFV) response curves. Changes in CBFV were measured in the bilateral MCAs using fTCD. All 12 subjects underwent three consecutive trials consisting of 20 seconds of stimulation followed by 5 minutes of rest. RESULTS Sharp, bilateral increases in CBFV of about 20% (left MCA = 20.5%, right MCA = 18.8%) and sharp decreases in pulsatility index of about 8% were observed during stimulation. Left lateralization of up to 3.9% was also observed. The magnitude of the initial increase in CBFV showed significant adaptation between subsequent trials. CONCLUSIONS Pneumotactile somatosensory stimulation is a potent stimulus that can evoke large, rapid hemodynamic changes, with adaptation between successive stimulus applications. Due to its high temporal resolution, fTCD is useful for identifying quickly evolving hemodynamic responses, and for correlating changes in hemodynamic parameters such as pulsatility index (PI) and CBFV.
Collapse
Affiliation(s)
- Benjamin Hage
- Department of Biological Systems Engineering, University of Nebraska-Lincoln
| | - Emily Way
- Department of Biological Systems Engineering, University of Nebraska-Lincoln
| | - Steven M. Barlow
- Department of Biological Systems Engineering, University of Nebraska-Lincoln
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln
| | - Gregory R. Bashford
- Department of Biological Systems Engineering, University of Nebraska-Lincoln
| |
Collapse
|
2
|
Brain BDNF levels elevation induced by physical training is reduced after unilateral common carotid artery occlusion in rats. J Cereb Blood Flow Metab 2014; 34:1681-7. [PMID: 25052557 PMCID: PMC4269729 DOI: 10.1038/jcbfm.2014.133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/17/2014] [Accepted: 06/26/2014] [Indexed: 11/09/2022]
Abstract
We investigated the contribution of blood flow elevation in the cerebrovasculature to physical training-induced brain-derived neurotrophic factor (BDNF) levels elevation in the brain. Brain-derived neurotrophic factor protein levels were measured in the motor cortex 24 h after the last session of a forced treadmill walking (30 minutes a day, 18 m/minute for 7 consecutive days). Unilateral common carotid artery occlusion and modulation of exercise intensity (0 versus -10% inclination of the treadmill) were used as strategies to reduce the (normal) elevation of flow in the cerebrovasculature occurring during exercise. Administration of N-nitro-L-arginine methyl ester (L-NAME, 60 mg/kg before each exercise sessions) and genetic hypertension (spontaneously hypertensive rats) were used as approaches to reduce stimulation of nitric oxide production in response to shear stress elevation. Vascular occlusion totally and partially abolished the effect of physical training on BDNF levels in the hemisphere ipsilateral and contralateral to occlusion, respectively. BDNF levels were higher after high than low exercise intensity. In addition, both genetic hypertension and L-NAME treatment blunted the effects of physical training on BDNF. From these results, we propose that elevation of brain BDNF levels elicited by physical training involves changes in cerebral hemodynamics.
Collapse
|
3
|
Abstract
After complete cerebral ischemia, the postischemic blood flow response to functional activation is severely attenuated for several hours. However, little is known about the spatial and temporal extent of the blood flow response in the acute postischemic period after incomplete cerebral ischemia. To investigate the relative cerebral blood flow (rCBF) response in the somatosensory cortex of rat to controlled vibrissae stimulation after transient incomplete ischemia (15-min bilateral common carotid artery occlusion+hypotension), we employed laser speckle imaging combined with statistical parametric mapping. We found that the ischemic insult had a significant impact on the baseline blood flow (P<0.005) and the activation area in response to functional stimulation was significantly reduced after ischemia (P<0.005). The maximum rCBF response in the activation area determined from the statistical analysis did not change significantly up to 3 h after ischemia (P>0.1). However, the time when rCBF response reached its maximum was significantly delayed (P<0.0001) from 2.4+/-0.2 secs before ischemia to 3.6+/-0.1 secs at 20 mins into reperfusion (P<0.001); the delay was reduced gradually to 2.9+/-0.2 secs after 3 h, which was still significantly greater than that observed before the insult (P=0.04).
Collapse
|
4
|
Marshall RS, Krakauer JW, Matejovsky T, Zarahn E, Barnes A, Lazar RM, Hirsch J. Hemodynamic impairment as a stimulus for functional brain reorganization. J Cereb Blood Flow Metab 2006; 26:1256-62. [PMID: 16421509 DOI: 10.1038/sj.jcbfm.9600274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We used functional magnetic resonance imaging to investigate whether hemispheral hemodynamic impairment can play an independent role in the functional reorganization of motor-related activity in the brain. Fourteen patients with large vessel occlusion but no infarct performed a simple motor task with the hand contralateral to the occluded vessel. Statistical parametric maps of regional activity were generated to compare the distribution of motor-related activity among patients with that of control subjects. Patients were classified into normal or abnormal cerebral hemodynamics on the basis of intracerebral vasomotor reactivity using transcranial Doppler and carbon dioxide inhalation. Controls and patients with normal vasomotor reactivity showed typical motor activity in contralateral motor areas. When the 9 patients with abnormal vasomotor reactivity were compared with the 14 control subjects in a single analysis, unique motor activation was identified in ipsilateral motor regions in the nonhypoperfused hemisphere. In a confirmatory analysis, blood oxygen level-dependent (BOLD) signal intensity was averaged in prespecified motor regions of interest. A significant group by hemisphere interaction was identified, driven by higher ipsilateral and lower contralateral hemisphere BOLD signal in patients with abnormal vasomotor reactivity compared with controls (F=12.40, P=0.002). The average ipsilateral motor region signal intensity was also significantly higher in the subgroup of patients with abnormal vasoreactivity and no TIA compared with controls (P=0.04). Our results suggest that hemodynamic impairment in one hemisphere, even in the absence of any focal lesion or any symptoms can be associated with a functional reorganization to the opposite hemisphere.
Collapse
Affiliation(s)
- Randolph S Marshall
- Department of Neurology, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Astrocytes send processes to synapses and blood vessels, communicate with other astrocytes through gap junctions and by release of ATP, and thus are an integral component of the neurovascular unit. Electrical field stimulations in brain slices demonstrate an increase in intracellular calcium in astrocyte cell bodies transmitted to perivascular end-feet, followed by a decrease in vascular smooth muscle calcium oscillations and arteriolar dilation. The increase in astrocyte calcium after neuronal activation is mediated, in part, by activation of metabotropic glutamate receptors. Calcium signaling in vitro can also be influenced by adenosine acting on A2B receptors and by epoxyeicosatrienoic acids (EETs) shown to be synthesized in astrocytes. Prostaglandins, EETs, arachidonic acid, and potassium ions are candidate mediators of communication between astrocyte end-feet and vascular smooth muscle. In vivo evidence supports a role for cyclooxygenase-2 metabolites, EETs, adenosine, and neuronally derived nitric oxide in the coupling of increased blood flow to increased neuronal activity. Combined inhibition of the EETs, nitric oxide, and adenosine pathways indicates that signaling is not by parallel, independent pathways. Indirect pharmacological results are consistent with astrocytes acting as intermediaries in neurovascular signaling within the neurovascular unit. For specific stimuli, astrocytes are also capable of transmitting signals to pial arterioles on the brain surface for ensuring adequate inflow pressure to parenchymal feeding arterioles. Therefore, evidence from brain slices and indirect evidence in vivo with pharmacological approaches suggest that astrocytes play a pivotal role in regulating the fundamental physiological response coupling dynamic changes in cerebral blood flow to neuronal synaptic activity. Future work using in vivo imaging and genetic manipulation will be required to provide more direct evidence for a role of astrocytes in neurovascular coupling.
Collapse
Affiliation(s)
- Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | |
Collapse
|
6
|
Rosengarten B, Hecht M, Kaps M. Carotid compression: investigation of cerebral autoregulative reserve in rats. J Neurosci Methods 2005; 152:202-9. [PMID: 16253338 DOI: 10.1016/j.jneumeth.2005.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 08/25/2005] [Accepted: 09/02/2005] [Indexed: 11/17/2022]
Abstract
Easy-to-perform, reversible techniques to analyse cerebral autoregulation are still missing in animal research. The carotid compression technique has been established to investigate dynamic cerebral autoregulation in humans. Adapting the carotid compression technique, we compared data from the new application with that of a classical exsanguination method. Compressing the ipsilateral carotid artery with a non-traumatic clip device for 10s modulated cerebral perfusion pressure. After clip release, the peaking laser-Doppler flow velocity increase over the somatosensory cortex allowed calculation of the transient hyperaemic response ratio (THRR) in relation to baseline. Modulating blood-pressure levels maintenance of cerebral blood-flow velocity was compared with THRR responses. With decreasing blood-pressure levels, the THRR first increased (29+/-16% at 95+/-10 mmHg to 39+/-13% at 75+/-10 mmHg) before it returned to baseline values at 54+/-10 mmHg (27+/-14%). THRR significantly dropped to 11+/-12% at 34+/-11 mmHg when resting cerebral blood-flow velocity levels also started to decline. Based on the close correlation between blood-flow velocity levels and THRR responses, we have concluded that carotid compression is an alternative technique that can be used to assess cerebral autoregulation in rats. The technique allows less invasive and reversible testing of dynamic autoregulation to be performed, and the technique can easily be applied in conjunction with functional tests to potentially allow deeper insights into cerebral vasoregulative mechanisms.
Collapse
Affiliation(s)
- Bernhard Rosengarten
- Department of Neurology, Justus-Liebig University Giessen, Am Steg 14, D-35392 Giessen, Germany
| | | | | |
Collapse
|
7
|
Burnett MG, Detre JA, Greenberg JH. Activation–flow coupling during graded cerebral ischemia. Brain Res 2005; 1047:112-8. [PMID: 15893740 DOI: 10.1016/j.brainres.2005.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 04/11/2005] [Accepted: 04/13/2005] [Indexed: 11/16/2022]
Abstract
Most functional neuroimaging techniques rely on activation-flow coupling (AFC) to detect changes in regional brain function, but AFC responses may also be altered during pathophysiological conditions such as ischemia. To define the relationship between progressive ischemia and the AFC response, graded levels of cerebral blood flow reduction were produced using a rat compression ischemia model, and the cerebral hemodynamic response to forepaw stimulation was measured. Graded levels of cortical ischemia of the somatosensory cortex were induced in male Sprague-Dawley rats (n = 16) by compressing the intact dura with a 4-mm-diameter cylinder equipped with a laser-Doppler probe, combined with ipsilateral common carotid artery occlusion. At each level of CBF reduction, electric forepaw stimulation was conducted, and signal-averaged laser Doppler and evoked potential responses were recorded. A visible AFC response was present at all levels of CBF reduction (0-90% reduction from baseline), and the temporal characteristics of the response appeared largely preserved. However, the amplitude of the AFC response began to decline at levels of mild ischemia (10% flow reduction) and progressively decreased with further CBF reduction. The amplitude of the evoked response appeared to decrease in concert with the AFC amplitude and appeared to be equally sensitive to ischemia. AFC appears to be a sensitive marker for cerebral ischemia, and alterations in the AFC response occur at CBF reductions above the accepted thresholds for infarction. However, the AFC response is also preserved when flow is reduced below ischemic thresholds.
Collapse
Affiliation(s)
- Mark G Burnett
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, 415 Stemmler Hall, 3450 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104-6063, USA
| | | | | |
Collapse
|
8
|
Meno JR, Nguyen TSK, Jensen EM, Alexander West G, Groysman L, Kung DK, Ngai AC, Britz GW, Winn HR. Effect of caffeine on cerebral blood flow response to somatosensory stimulation. J Cereb Blood Flow Metab 2005; 25:775-84. [PMID: 15703695 DOI: 10.1038/sj.jcbfm.9600075] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite caffeine's wide consumption and well-documented psychoactive effects, little is known regarding the effects of caffeine on neurovascular coupling. In the present study, we evaluated the effects of caffeine, an adenosine receptor antagonist, on intracerebral arterioles in vitro and subsequently, on the pial circulation in vivo during cortical activation induced by contralateral sciatic nerve stimulation (SNS). In our in vitro studies, we utilized isolated intracerebral arterioles to determine the effects of caffeine (10 or 50 micromol/L) on adenosine-induced vasodilatation. At the lower concentration, caffeine was without effect, but at the higher concentration, caffeine produced significant attenuation. In our in vivo studies, we determined the cerebrospinal fluid (CSF) caffeine concentrations at 15, 30, and 60 mins after intravenous administration of 5, 10 and 40 mg/kg. At the latter two concentrations, CSF levels exceeded 10 micromol/L. We then evaluated the pial arteriolar response during cortical activation caused by contralateral SNS after administering caffeine intravenously (0, 5, 10, 20 30, and 40 mg/kg). The pial circulation was observed through a closed cranial window in chloralose-anesthetized Sprague-Dawley rats. The contralateral sciatic nerve was isolated, positioned on silver electrodes and stimulated for 20 secs (0.20 V, 0.5 ms, and 5 Hz). Arteriolar diameter was quantified using an automated video dimension analyzer. Contralateral SNS resulted in a 23.8% +/-3.9% increase in pial arteriolar diameter in the hindlimb sensory cortex under control conditions. Intravenous administration of caffeine at the lowest dose studied (5 mg/kg) had no effect on either resting arteriolar diameter or SNS-induced vasodilatation. However, at higher doses (10, 20, 30, and 40 mg/kg, intravenously), caffeine significantly (P < 0.05; n = 6) attenuated both resting diameter and cerebral blood flow (CBF) responses to somatosensory stimulation. Intravenous administration of theophylline (10, 20, and 40 mg/kg), another adenosine receptor antagonist, also significantly reduced SNS-induced vasodilatation in a dose-dependent manner. Hypercarbic vasodilatation was unaffected by either caffeine or theophylline. The results of the present study show that caffeine significantly reduces cerebrovascular responses to both adenosine and to somatosensory stimulation and supports a role of adenosine in the regulation of CBF during functional neuronal activity.
Collapse
Affiliation(s)
- Joseph R Meno
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rosengarten B, Lutz H, Hossmann KA. A control system approach for evaluating somatosensory activation by laser-Doppler flowmetry in the rat cortex. J Neurosci Methods 2003; 130:75-81. [PMID: 14583406 DOI: 10.1016/s0165-0270(03)00209-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Coupling between functional cortical activity and blood flow is a regulatory principle that adjusts the supply of substrates to the metabolic needs of the tissue. The flow response is usually expressed as the maximum increase over baseline; control system analysis allows the description of the entire time course and the main dynamic features of the regulative principle. In chloralose-anesthetized rats, forepaws were stimulated by trains of electric pulses of 0.3 or 5 ms duration. Blood flow was recorded in the contralateral somatosensory cortex by laser-Doppler flowmetry and correlated with the amplitude of primary somatosensory evoked potentials (SEP). Changes were analyzed by a control system approach. Pulses of 0.3 or 5 ms evoked SEPs of similar amplitude, whereas flow responses differed: 0.3 ms pulses led to a peak and plateau characteristic, 5 ms pulses evoked a plateau characteristic. The flow response evoked by 0.3 ms pulses can be modeled mathematically by an initial feedforward regulative principle followed after some delay by feedback controlled flow stabilization, whereas 5 ms pulses lack the feedforward component. The absence of an electrophysiological difference points to a dissociation between electrophysiological and hemodynamic responses and may be of importance for the understanding of flow coupling.
Collapse
Affiliation(s)
- B Rosengarten
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Gleueler Strasse 50, D-50931 Cologne, Germany
| | | | | |
Collapse
|
10
|
Buerk DG, Ances BM, Greenberg JH, Detre JA. Temporal dynamics of brain tissue nitric oxide during functional forepaw stimulation in rats. Neuroimage 2003; 18:1-9. [PMID: 12507439 DOI: 10.1006/nimg.2002.1314] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report the first dynamic measurements of tissue nitric oxide (NO) during functional activation of rat somatosensory cortex by electrical forepaw stimulation. Cortical tissue NO was measured electrochemically with rapid-responding recessed microelectrodes (tips <10 microm). Simultaneous blood flow measurements were made by laser-Doppler flowmetry (LDF). NO immediately increased, reaching a peak 125.5 +/- 32.8 (SE) nM above baseline (P < 0.05) within 400 ms after stimulus onset, preceding any LDF changes, and then returned close to prestimulus levels after 2 s (123 signal-averaged trials, 12 rats). Blood flow began rising after a 1-s delay, reaching a peak just before electrical stimulation was ended at t = 4 s. A consistent poststimulus NO undershoot was observed as LDF returned to baseline. These findings complement our previous study (B. M. Ances et al., 2001, Neurosci. Lett. 306, 106-110) in which a transient decrease in rat somatosensory cortex tissue oxygen partial pressure was found to precede blood flow increases during functional activation.
Collapse
Affiliation(s)
- Donald G Buerk
- Department of Physiology, Institute for Environmental Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
11
|
Ances BM, Greenberg JH, Detre JA. The effects of graded hypercapnia on the activation flow coupling response due to forepaw stimulation in alpha-chloralose anesthetized rats. Brain Res 2001; 911:82-8. [PMID: 11489447 DOI: 10.1016/s0006-8993(01)02721-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Activation flow coupling (AFC), changes in cerebral blood flow (CBF) due to changes in neural activity with functional stimulation, provides the physiological basis of many neuroimaging techniques. Hypercapnia leads to an increase in CBF while neural activity remains unaffected. Laser Doppler (LD) flowmetry was used to measure CBF changes (LD(CBF)) in the somatosensory cortex due to periodic electrical forepaw stimulation (4 s in duration) before and during graded hypercapnia (3% CO(2), 5% CO(2) and 10% CO(2)). With increasing CO(2) concentrations, the baseline LD(CBF) progressively increased. The peak height (PH) of the LD(CBF) response, expressed as a percent change from the observed baseline for each hypercapnic state, significantly decreased (P<0.05) with increasing CO(2) concentrations. However, the absolute magnitude of the LD(CBF) change was independent of CO(2) concentration. The temporal dynamics of the LD(CBF) response during hypercapnia were significantly prolonged compared to baseline conditions (P<0.05).
Collapse
Affiliation(s)
- B M Ances
- Department of Neurology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
12
|
Ances BM, Detre JA. Laser Doppler imaging of changes in cerebral blood flow during acute carotid occlusion. JOURNAL OF CLINICAL LASER MEDICINE & SURGERY 2000; 18:131-7. [PMID: 11799977 DOI: 10.1089/clm.2000.18.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To determine by laser Doppler imaging (LDI) the spatial and temporal characteristics of the changes in cerebral blood flow (CBF) in response to electrical forepaw stimulation in rats before and during acute unilateral carotid occlusion. BACKGROUND DATA Single laser Doppler (LD) probes provide a minimally invasive approach for measuring CBF changes due to functional stimulation. Using an electrical forepaw stimulation model in rats, we have previously demonstrated a prolongation in the temporal dynamics of the CBF response during acute mechanical carotid occlusion. However, the spatial resolution of this model system was limited by the diameter of the single LD probe. Recently, we have successfully used LDI, which uses an optically driven low power laser beam to measure CBF changes in two dimensions, to investigate the spatial and temporal changes in CBF due to forepaw stimulation. METHODS LDI was used to measure the spatial and temporal characteristics of the changes in CBF response in a-chloralose anesthetized rats (n = 5) both before and during acute unilateral occlusion of the common carotid contralateral to the forepaw stimulated. RESULTS Acute mechanical occlusion of the common carotid contralateral to the forepaw stimulated did not affect the area of activation due to functional stimulation. However, the amplitude of the CBF response was significantly reduced compared to prior to occlusion. Further, acute occlusion led to a significant prolongation of temporal dynamics of the CBF response. These observations are in agreement with previous results we have obtained using a single LD probe. CONCLUSIONS Our results suggest a promising role for the application of LDI to study the spatial and temporal characteristics of CBF changes in animal models and may allow a diagnostic technique for testing patients with carotid occlusion.
Collapse
Affiliation(s)
- B M Ances
- Department of Neurology, University of Pennsylvania, Philadelphia 19104-4283, USA
| | | |
Collapse
|