1
|
Zheng L, Lu Z, Ma Y, Cui P, Zhang X, Gan J, Li G. Hawthorn total flavonoids ameliorate hyperlipidemia through AMPK/SREBP1-c and PPARα/PGC-1α/CPT-1A pathway activation and gut microbiota modulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:4326-4337. [PMID: 40013442 DOI: 10.1002/jsfa.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/02/2025] [Accepted: 01/20/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND The increased prevalence of hyperlipidemia significantly affects human health worldwide. Although drug treatment is very effective, the harm to the human body cannot be ignored. Improvement of lipid metabolism by natural medicinal and food homologous products is an effective approach to ameliorate hyperlipidemia and it has gradually become a research focus. In this research, we adopted HepG2 cell models and high-fat-diet-fed C57BL/6j mouse models to explore the effect of hawthorn total flavonoids (HTF) on hyperlipidemia. Moreover, we utilized western blot and gut microbiota analysis to elucidate the specific mechanism of HTF's influence on hyperlipidemia. RESULTS We found that HTF significantly alleviated hyperlipidemia and its complications, as manifested by reduced body weight gain and fat accumulation, and improved the disorder of intestinal microorganisms. HTF protected the liver, reducing aspartate transaminase and lactate dehydrogenase levels, and ameliorating inflammatory infiltration. Fat droplet amounts and necrotic cell numbers in liver cells were also decreased. Mechanistically, HTF promoted AMP-activated protein kinase phosphorylation, inhibited sterol regulatory element binding protein 1c expression, downregulating the expression of lipid synthesis-related proteins (acetyl CoA carboxylase, fatty acid synthase, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase), thus suppressing liver lipid synthesis. HTF also functioned as a natural peroxisome proliferator-activated receptor α (PPARα) agonist. Activated PPARα enhanced mitochondrial oxidation and lipid consumption via upregulating carnitine palmitoyltransferase 1A. Peroxisome proliferator-activated receptor-γ coactivator expression was also elevated, activating mitochondrial activity, increasing cholesterol 7α-hydroxylase activity and cholesterol consumption, and reducing blood lipids. Additionally, HTF regulated intestinal flora abundance, restored the ratio of Firmicutes to Bacteroidetes, balanced gut-liver axis crosstalk, and alleviated hyperlipidemia. CONCLUSION The results demonstrated that HTF alleviated the pathological symptoms caused by hyperlipidemia, and had a certain protective effect on the liver. HTF also stimulated the lipid metabolism pathway and accelerated lipid consumption. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liping Zheng
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Zhihao Lu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Yurong Ma
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Penglei Cui
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Xinxue Zhang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai, China
| | - Guoming Li
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, China
| |
Collapse
|
2
|
Chávez-Ortega MP, Almanza-Pérez JC, Sánchez-Muñoz F, Hong E, Velázquez-Reyes E, Romero-Nava R, Villafaña-Rauda S, Pérez-Ontiveros A, Blancas-Flores G, Huang F. Effect of Supplementation with Omega-3 Polyunsaturated Fatty Acids on Metabolic Modulators in Skeletal Muscle of Rats with an Obesogenic High-Fat Diet. Pharmaceuticals (Basel) 2024; 17:222. [PMID: 38399437 PMCID: PMC10892617 DOI: 10.3390/ph17020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/25/2024] Open
Abstract
Previous studies provided evidence of the benefits of omega-3 polyunsaturated fatty acids (ω-3 PUFA) on the cardiovascular system and inflammation. However, its possible effect on skeletal muscle is unknown. This study aimed to evaluate whether ω-3 PUFA reverses the dysregulation of metabolic modulators in the skeletal muscle of rats on a high-fat obesogenic diet. For this purpose, an animal model was developed using male Wistar rats with a high-fat diet (HFD) and subsequently supplemented with ω-3 PUFA. Insulin resistance was assessed, and gene and protein expression of metabolism modulators in skeletal muscle was also calculated using PCR-RT and Western blot. Our results confirmed that in HFD rats, zoometric parameters and insulin resistance were increased compared to SD rats. Furthermore, we demonstrate reduced gene and protein expression of peroxisome proliferator-activated receptors (PPARs) and insulin signaling molecules. After ω-3 PUFA supplementation, we observed that glucose (24.34%), triglycerides (35.78%), and HOMA-IR (40.10%) were reduced, and QUICKI (12.16%) increased compared to HFD rats. Furthermore, in skeletal muscle, we detected increased gene and protein expression of PPAR-α, PPAR-γ, insulin receptor (INSR), insulin receptor substrate 1 (ISR-1), phosphatidylinositol-3-kinase (PI3K), and glucose transporter 4 (GLUT-4). These findings suggest that ω-3 PUFAs decrease insulin resistance of obese skeletal muscle.
Collapse
Affiliation(s)
- Mara Patricia Chávez-Ortega
- Posgrado en Biología Experimental, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 02200, Mexico;
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico;
| | - Julio Cesar Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 02200, Mexico; (J.C.A.-P.); (E.V.-R.)
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico;
| | - Enrique Hong
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico;
| | - Elihu Velázquez-Reyes
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 02200, Mexico; (J.C.A.-P.); (E.V.-R.)
| | - Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (R.R.-N.); (S.V.-R.)
| | - Santiago Villafaña-Rauda
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (R.R.-N.); (S.V.-R.)
| | - Alfredo Pérez-Ontiveros
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico;
| | - Gerardo Blancas-Flores
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 02200, Mexico; (J.C.A.-P.); (E.V.-R.)
| | - Fengyang Huang
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico;
| |
Collapse
|
3
|
Adarthaiya S, Sehgal A. Moringa oleifera Lam. as a potential plant for alleviation of the metabolic syndrome-A narrative review based on in vivo and clinical studies. Phytother Res 2024; 38:755-775. [PMID: 38015048 DOI: 10.1002/ptr.8079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
The metabolic syndrome (MetS) refers to the co-occurrence of risk factors, including hyperglycaemia, increased body weight, hypertension and dyslipidemia, which eventually lead to diabetes and cardiovascular disease, a common health problem worldwide. Recently, there has been an increasing interest in the use of plant-based products for the management of MetS, because of their less detrimental and more beneficial effects. Moringa oleifera (Moringaceae), commonly known as drumstick, is cultivated worldwide for its nutritional and medicinal properties. This review focuses on the in vivo and human studies concerning the potential of M. oleifera in the alleviation of MetS and its comorbidities. The search for relevant articles was carried out in PubMed and Google Scholar databases. Randomised controlled and clinical trials from the PubMed database were included in this review. The results suggested that the administration of M. oleifera, in vivo, shows clear signs of improvement in MetS indices. Despite fewer human studies, the existing data documented convincing results that uphold the potential of M. oleifera against MetS. Therefore, future research discussing the probable mechanism of action is much needed which could further assure the usage of M. oleifera in the treatment regimen of MetS.
Collapse
Affiliation(s)
- Saikrupa Adarthaiya
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Amit Sehgal
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
4
|
Fuior EV, Zvintzou E, Filippatos T, Giannatou K, Mparnia V, Simionescu M, Gafencu AV, Kypreos KE. Peroxisome Proliferator-Activated Receptor α in Lipoprotein Metabolism and Atherosclerotic Cardiovascular Disease. Biomedicines 2023; 11:2696. [PMID: 37893070 PMCID: PMC10604751 DOI: 10.3390/biomedicines11102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a group of ligand-binding transcription factors with pivotal action in regulating pleiotropic signaling pathways of energetic metabolism, immune responses and cell proliferation and differentiation. A significant body of evidence indicates that the PPARα receptor is an important modulator of plasma lipid and lipoprotein metabolism, with pluripotent effects influencing the lipid and apolipoprotein cargo of both atherogenic and antiatherogenic lipoproteins and their functionality. Clinical evidence supports an important role of PPARα agonists (fibric acid derivatives) in the treatment of hypertriglyceridemia and/or low high-density lipoprotein (HDL) cholesterol levels, although the effects of clinical trials are contradictory and point to a reduction in the risk of nonfatal and fatal myocardial infarction events. In this manuscript, we provide an up-to-date critical review of the existing relevant literature.
Collapse
Affiliation(s)
- Elena Valeria Fuior
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Evangelia Zvintzou
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Theodosios Filippatos
- Internal Medicine Clinic, Department of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Katerina Giannatou
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Victoria Mparnia
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Kyriakos E. Kypreos
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
5
|
Simard T, Jung R, Di Santo P, Labinaz A, Short S, Motazedian P, Dhaliwal S, Sarma D, Rasheed A, Ramirez FD, Froeschl M, Labinaz M, Holmes DR, Alkhouli M, Hibbert B. Dipyridamole and vascular healing following stent implantation. Front Cardiovasc Med 2023; 10:1130304. [PMID: 37745122 PMCID: PMC10514894 DOI: 10.3389/fcvm.2023.1130304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Patients undergoing coronary stent implantation incur a 2% annual rate of adverse events, largely driven by in-stent restenosis (ISR) due to neointimal (NI) tissue proliferation, a process in which smooth muscle cell (SMC) biology may play a central role. Dipyridamole (DP) is an approved therapeutic agent with data supporting improved vascular patency rates. Pre-clinical data supports that DP may enact its vasculoprotective effects via adenosine receptor-A2B (ADOR-A2B). We sought to evaluate the efficacy of DP to mitigate ISR in a pre-clinical rabbit stent model. Methods & Results 24 New Zealand White Rabbits were divided into two cohorts-non-atherosclerosis and atherosclerosis (n = 12/cohort, 6 male and 6 female). Following stent implantation, rabbits were randomized 1:1 to control or oral dipyridamole therapy for 6 weeks followed by optical coherence tomography (OCT) and histology assessment of NI burden and stent strut healing. Compared to control, DP demonstrated a 16.6% relative reduction in NI volume (14.7 ± 0.8% vs. 12.5 ± 0.4%, p = 0.03) and a 36.2% relative increase in optimally healed stent struts (37.8 ± 2.8% vs. 54.6 ± 2.5%, p < 0.0001). Atherosclerosis demonstrated attenuated effect with no difference in NI burden (15.2 ± 1.0% vs. 16.9 ± 0.8%, p = 0.22) and only a 14.2% relative increase in strut healing (68.3 ± 4.1% vs. 78.7 ± 2.5%, p = 0.02). DP treated rabbits had a 44.6% (p = 0.045) relative reduction in NI SMC content. In vitro assessment of DP and coronary artery SMCs yielded dose-dependent reduction in SMC migration and proliferation. Selective small molecule antagonism of ADOR-A2B abrogated the effects of DP on SMC proliferation. DP modulated SMC phenotypic switching with ADOR-A2B siRNA knockdown supporting its role in the observed effects. Conclusion Dipyridamole reduces NI proliferation and improves stent healing in a preclinical model of stent implantation with conventional antiplatelets. Atherosclerosis attenuates the observed effect. Clinical trials of DP as an adjunctive agent may be warranted to evaluate for clinical efficacy in stent outcomes.
Collapse
Affiliation(s)
- Trevor Simard
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Richard Jung
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Pietro Di Santo
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Alisha Labinaz
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Spencer Short
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Pouya Motazedian
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Shan Dhaliwal
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Dhruv Sarma
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Adil Rasheed
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of BMI, Faculty of Medicine, Ottawa, ON, Canada
| | - F. Daniel Ramirez
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Michael Froeschl
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Marino Labinaz
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - David R. Holmes
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mohamad Alkhouli
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Benjamin Hibbert
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Chen H, Tan H, Wan J, Zeng Y, Wang J, Wang H, Lu X. PPAR-γ signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther 2023; 245:108391. [PMID: 36963510 DOI: 10.1016/j.pharmthera.2023.108391] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), currently the leading cause of global chronic liver disease, has emerged as a major public health problem, more efficient therapeutics of which are thus urgently needed. Peroxisome proliferator-activated receptor γ (PPAR-γ), ligand-activated transcription factors of the nuclear hormone receptor superfamily, is considered a crucial metabolic regulator of hepatic lipid metabolism and inflammation. The role of PPAR-γ in the pathogenesis of NAFLD is gradually being recognized. Here, we outline the involvement of PPAR-γ in the pathogenesis of NAFLD through adipogenesis, insulin resistance, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. In addition, the evidence for PPAR-γ- targeted therapy for NAFLD are summarized. Altogether, PPAR-γ is a promising therapeutic target for NAFLD, and the development of drugs that can balance the beneficial and undesirable effects of PPAR-γ will bring new light to NAFLD patients.
Collapse
Affiliation(s)
- Hao Chen
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Juan Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine / West China School of Nursing, Sichuan University, Chengdu, China
| | - Yong Zeng
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jincheng Wang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haichuan Wang
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Regan-Smith S, Fritzen R, Hierons SJ, Ajjan RA, Blindauer CA, Stewart AJ. Strategies for Therapeutic Amelioration of Aberrant Plasma Zn2+ Handling in Thrombotic Disease: Targeting Fatty Acid/Serum Albumin-Mediated Effects. Int J Mol Sci 2022; 23:ijms231810302. [PMID: 36142215 PMCID: PMC9499645 DOI: 10.3390/ijms231810302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
The initiation, maintenance and regulation of blood coagulation is inexorably linked to the actions of Zn2+ in blood plasma. Zn2+ interacts with a variety of haemostatic proteins in the bloodstream including fibrinogen, histidine-rich glycoprotein (HRG) and high molecular weight kininogen (HMWK) to regulate haemostasis. The availability of Zn2+ to bind such proteins is controlled by human serum albumin (HSA), which binds 70–85% of plasma Zn2+ under basal conditions. HSA also binds and transports non-esterified fatty acids (NEFAs). Upon NEFA binding, there is a change in the structure of HSA which leads to a reduction in its affinity for Zn2+. This enables other plasma proteins to better compete for binding of Zn2+. In diseases where elevated plasma NEFA concentrations are a feature, such as obesity and diabetes, there is a concurrent increase in hypercoagulability. Evidence indicates that NEFA-induced perturbation of Zn2+-binding by HSA may contribute to the thrombotic complications frequently observed in these pathophysiological conditions. This review highlights potential interventions, both pharmaceutical and non-pharmaceutical that may be employed to combat this dysregulation. Lifestyle and dietary changes have been shown to reduce plasma NEFA concentrations. Furthermore, drugs that influence NEFA levels such as statins and fibrates may be useful in this context. In severely obese patients, more invasive therapies such as bariatric surgery may be useful. Finally, other potential treatments such as chelation therapies, use of cholesteryl transfer protein (CETP) inhibitors, lipase inhibitors, fatty acid inhibitors and other treatments are highlighted, which with additional research and appropriate clinical trials, could prove useful in the treatment and management of thrombotic disease through amelioration of plasma Zn2+ dysregulation in high-risk individuals.
Collapse
Affiliation(s)
| | - Remi Fritzen
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | | | - Ramzi A. Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
- Correspondence: ; Tel.: +44-(0)1334-463546
| |
Collapse
|
8
|
Pan J, Zhou W, Xu R, Xing L, Ji G, Dang Y. Natural PPARs agonists for the treatment of nonalcoholic fatty liver disease. Biomed Pharmacother 2022; 151:113127. [PMID: 35598367 DOI: 10.1016/j.biopha.2022.113127] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a general term for a series of liver diseases including simple steatosis, non-alcoholic steatohepatitis, liver fibrosis, which is closely related to metabolic syndrome. The pathogenesis of NAFLD is relatively complex, which has gradually changed from the previous 'two-hit' hypothesis to the current "multiple hits" hypothesis. However, there is currently no approved treatment for NAFLD in clinic, highlighting the urgent need for drug development. Peroxisome proliferator activated receptors (PPARs) are members of the nuclear receptor superfamily, whose different subtypes have been proved to regulate different stages of NAFLD, thus becoming promising drug targets for NAFLD. As important sources of drug development, natural products have been proven to treat NAFLD through multiple pathways and multiple targets. In this paper, we outline the regulatory role of PPARs in NAFLD, and summarize some natural products that target PPARs to ameliorate NAFLD, in order to provide reference for drug development of NAFLD.
Collapse
Affiliation(s)
- Jiashu Pan
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Department of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ruohui Xu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lianjun Xing
- Department of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
9
|
Molecular Biological and Clinical Understanding of the Statin Residual Cardiovascular Disease Risk and Peroxisome Proliferator-Activated Receptor Alpha Agonists and Ezetimibe for Its Treatment. Int J Mol Sci 2022; 23:ijms23073418. [PMID: 35408799 PMCID: PMC8998547 DOI: 10.3390/ijms23073418] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022] Open
Abstract
Several randomized, double blind, placebo-controlled trials (RCTs) have demonstrated that low-density lipoprotein cholesterol (LDL-C) lowering by using statins, including high-doses of strong statins, reduced the development of cardiovascular disease (CVD). However, among the eight RCTs which investigated the effect of statins vs. placebos on the development of CVD, 56-79% of patients had the residual CVD risk after the trials. In three RCTs which investigated the effect of a high dose vs. a usual dose of statins on the development of CVD, 78-87% of patients in the high-dose statin arms still had the CVD residual risk after the trials. An analysis of the characteristics of patients in the RCTs suggests that elevated triglyceride (TG) and reduced high-density lipoprotein cholesterol (HDL-C), the existence of obesity/insulin resistance, and diabetes may be important metabolic factors which determine the statin residual CVD risk. To understand the association between lipid abnormalities and the development of atherosclerosis, we show the profile of lipoproteins and their normal metabolism, and the molecular and biological mechanisms for the development of atherosclerosis by high TG and/or low HDL-C in insulin resistance. The molecular biological mechanisms for the statin residual CVD risk include an increase of atherogenic lipoproteins such as small dense LDL and remnants, vascular injury and remodeling by inflammatory cytokines, and disturbed reverse cholesterol transport. Peroxisome proliferator-activated receptor alpha (PPARα) agonists improve atherogenic lipoproteins, reverse the cholesterol transport system, and also have vascular protective effects, such as an anti-inflammatory effect and the reduction of the oxidative state. Ezetimibe, an inhibitor of intestinal cholesterol absorption, also improves TG and HDL-C, and reduces intestinal cholesterol absorption and serum plant sterols, which are increased by statins and are atherogenic, possibly contributing to reduce the statin residual CVD risk.
Collapse
|
10
|
Cytotoxic and genotoxic evaluation of dipyridamole and its alternative therapeutic potential in cancer therapy: an in vitro and in vivo approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Wang QS, Li M, Li X, Zhang NW, Hu HY, Zhang LL, Ren JN, Fan G, Pan SY. Protective effect of orange essential oil on the formation of non-alcoholic fatty liver disease caused by high-fat diet. Food Funct 2022; 13:933-943. [PMID: 35005749 DOI: 10.1039/d1fo03793e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to investigate the protective effect of sniffing orange essential oil (OEO) on the formation of non-alcoholic fatty liver disease (NAFLD) caused by a high-fat diet. The results confirmed that sniffing OEO could reduce obesity caused by a high-fat diet (HFD) by reducing the levels of triglycerides (TGs), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). In addition, the observation of liver tissue sections showed that sniffing OEO could reduce lipid accumulation in liver cells. Further analysis by western blot analysis showed that OEO treatment made the expression levels of acetyl-CoA carboxylase (ACC) and Cytochrome P450 2E1 (CYP2E1) down-regulated and the expression levels of peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyltransferase-1 (CPT-1) up-regulated. These results indicate that the treatment of sniffing OEO could enhance the antioxidant capacity of mice and reduce liver damage caused by a high-fat diet. Furthermore, sniffing OEO could inhibit lipid synthesis and oxidative stress stimulated by a high-fat diet. Overall, OEO treatment had a certain protective effect on NAFLD-related diseases caused by a high-fat diet. Therefore, aromatherapy may be introduced as a treatment of long-term chronic diseases.
Collapse
Affiliation(s)
- Qing-Shan Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Min Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Na-Wei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui-Yan Hu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Structural Basis for PPARs Activation by The Dual PPARα/γ Agonist Sanguinarine: A Unique Mode of Ligand Recognition. Molecules 2021; 26:molecules26196012. [PMID: 34641558 PMCID: PMC8512631 DOI: 10.3390/molecules26196012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) play crucial roles in glucose and lipid metabolism and inflammation. Sanguinarine is a natural product that is isolated from Sanguinaria Canadensis, a potential therapeutic agent for intervention in chronic diseases. In this study, biochemical and cell-based promoter-reporter gene assays revealed that sanguinarine activated both PPARα and PPARγ, and enhanced their transcriptional activity; thus, sanguinarine was identified as a dual agonist of PPARα/γ. Similar to fenofibrate, sanguinarine upregulates the expression of PPARα-target genes in hepatocytes. Sanguinarine also modulates the expression of key PPARγ-target genes and promotes adipocyte differentiation, but with a lower adipogenic activity compared with rosiglitazone. We report the crystal structure of sanguinarine bound to PPARα, which reveals a unique ligand-binding mode of sanguinarine, dissimilar to the classic Y-shaped binding pocket, which may represent a new pharmacophore that can be optimized for selectively targeting PPARα. Further structural and functional studies uncover the molecular basis for the selectivity of sanguinarine toward PPARα/γ among all three PPARs. In summary, our study identifies a PPARα/γ dual agonist with a unique ligand-binding mode, and provides a promising and viable novel template for the design of dual-targeting PPARs ligands.
Collapse
|
13
|
Adenosine modulators and calcium channel blockers as add-on treatment for schizophrenia. NPJ SCHIZOPHRENIA 2021; 7:1. [PMID: 33479257 PMCID: PMC7820462 DOI: 10.1038/s41537-020-00135-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Abstract
Relapses remain common among individuals with schizophrenia indicating a need for improved treatments. Creating a completely new drug molecule is expensive and time consuming, and therefore drug repurposing should be considered. Aim of this study was to investigate the risk of psychiatric rehospitalization associated with use of adenosine modulators (AMs) and calcium channel blockers (CCBs) in schizophrenia. Individuals diagnosed with schizophrenia (N = 61,889) in inpatient care between 1972–2014 in Finland were included. The follow-up lasted from 1996 to 2017. Main exposures were use of AMs (allopurinol and dipyridamole) and CCBs (dihydropyridines, diltiazem, and verapamil). Thiazide diuretics were used as a negative control. Within-individual models in stratified Cox regression were used and adjusted hazard ratios (HR) with 95% confidence intervals (CIs) are reported. Use of AMs was associated with a reduced risk of psychiatric rehospitalization on drug class level (HR 0.74, 95% CI 0.65–0.84, P < 0.0001), as well as on the level of individual drugs (allopurinol HR 0.82, 95% CI 0.70–0.97, P = 0.02; dipyridamole HR 0.65, 95% CI 0.55–0.77, P < 0.0001). Use of CCBs was associated with a reduced risk of psychiatric rehospitalization on drug class level (HR 0.81, 95% CI 0.77–0.86, P < 0.0001). From the different CCBs, only exposure to dihydropyridines was associated with a reduced risk (HR 0.79, 95% CI 0.74–0.84, P < 0.0001). No effect was observed for the negative control, thiazide diuretics (HR 0.96, 0.90–1.02, P = 0.20). The effects of dipyridamole and dihydropyridines were more pronounced among younger persons and combination of AMs, and CCBs was associated with a lower risk than either drug class as monotherapy. These results indicate a need for randomized controlled trials of these drugs.
Collapse
|
14
|
Decara J, Rivera P, López-Gambero AJ, Serrano A, Pavón FJ, Baixeras E, Rodríguez de Fonseca F, Suárez J. Peroxisome Proliferator-Activated Receptors: Experimental Targeting for the Treatment of Inflammatory Bowel Diseases. Front Pharmacol 2020; 11:730. [PMID: 32536865 PMCID: PMC7266982 DOI: 10.3389/fphar.2020.00730] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptor proteins that promote ligand-dependent transcription of target genes that regulate energy production, lipid metabolism, and inflammation. The PPAR superfamily comprises three subtypes, PPARα, PPARγ, and PPARβ/δ, with differential tissue distributions. In addition to their different roles in the regulation of energy balance and carbohydrate and lipid metabolism, an emerging function of PPARs includes normal homeostasis of intestinal tissue. PPARα activation represses NF-κB signaling, which decreases the inflammatory cytokine production by different cell types, while PPARγ ligands can inhibit activation of macrophages and the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and Il-1β. In this regard, the anti-inflammatory responses induced by PPAR activation might restore physiopathological imbalances associated with inflammatory bowel diseases (IBD). Thus, PPARs and their ligands have important therapeutic potential. This review briefly discusses the roles of PPARs in the physiopathology and therapies of the most important IBDs, ulcerative colitis (UC), and Crohn's disease (CD), as well some new experimental compounds with PPAR activity as promising drugs for IBD treatment.
Collapse
Affiliation(s)
- Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Departamento de Endocrinología, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Antonio Jesús López-Gambero
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) and UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, IBIMA, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
15
|
Petretta M, Cuocolo A. The long way to defeating Chagas cardiomyopathy. J Nucl Cardiol 2019; 26:1580-1583. [PMID: 29468468 DOI: 10.1007/s12350-018-1238-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Mario Petretta
- Department of Translational Medical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy.
| |
Collapse
|
16
|
Rosenzweig JL, Bakris GL, Berglund LF, Hivert MF, Horton ES, Kalyani RR, Murad MH, Vergès BL. Primary Prevention of ASCVD and T2DM in Patients at Metabolic Risk: An Endocrine Society* Clinical Practice Guideline. J Clin Endocrinol Metab 2019; 104:3939-3985. [PMID: 31365087 DOI: 10.1210/jc.2019-01338] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To develop clinical practice guidelines for the primary prevention of atherosclerotic cardiovascular disease (ASCVD) and type 2 diabetes mellitus (T2DM) in individuals at metabolic risk for developing these conditions. CONCLUSIONS Health care providers should incorporate regular screening and identification of individuals at metabolic risk (at higher risk for ASCVD and T2DM) with measurement of blood pressure, waist circumference, fasting lipid profile, and blood glucose. Individuals identified at metabolic risk should undergo 10-year global risk assessment for ASCVD or coronary heart disease to determine targets of therapy for reduction of apolipoprotein B-containing lipoproteins. Hypertension should be treated to targets outlined in this guideline. Individuals with prediabetes should be tested at least annually for progression to diabetes and referred to intensive diet and physical activity behavioral counseling programs. For the primary prevention of ASCVD and T2DM, the Writing Committee recommends lifestyle management be the first priority. Behavioral programs should include a heart-healthy dietary pattern and sodium restriction, as well as an active lifestyle with daily walking, limited sedentary time, and a structured program of physical activity, if appropriate. Individuals with excess weight should aim for loss of ≥5% of initial body weight in the first year. Behavior changes should be supported by a comprehensive program led by trained interventionists and reinforced by primary care providers. Pharmacological and medical therapy can be used in addition to lifestyle modification when recommended goals are not achieved.
Collapse
Affiliation(s)
| | | | | | - Marie-France Hivert
- Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Rita R Kalyani
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Hassan Murad
- Evidence-Based Practice Center, Mayo Clinic, Rochester, Minnesota
| | - Bruno L Vergès
- Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| |
Collapse
|
17
|
Simard T, Jung R, Labinaz A, Faraz MA, Ramirez FD, Di Santo P, Pitcher I, Motazedian P, Gaudet C, Rochman R, Marbach J, Boland P, Sarathy K, Alghofaili S, Russo JJ, Couture E, Beanlands RS, Hibbert B. Adenosine as a Marker and Mediator of Cardiovascular Homeostasis: A Translational Perspective. Cardiovasc Hematol Disord Drug Targets 2019; 19:109-131. [PMID: 30318008 DOI: 10.2174/1871529x18666181011103719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Adenosine, a purine nucleoside, is produced broadly and implicated in the homeostasis of many cells and tissues. It signals predominantly via 4 purinergic adenosine receptors (ADORs) - ADORA1, ADORA2A, ADORA2B and ADOosine signaling, both through design as specific ADOR agonists and antagonists and as offtarget effects of existing anti-platelet medications. Despite this, adenosine has yet to be firmly established as either a therapeutic or a prognostic tool in clinical medicine to date. Herein, we provide a bench-to-bedside review of adenosine biology, highlighting the key considerations for further translational development of this proRA3 in addition to non-ADOR mediated effects. Through these signaling mechanisms, adenosine exerts effects on numerous cell types crucial to maintaining vascular homeostasis, especially following vascular injury. Both in vitro and in vivo models have provided considerable insights into adenosine signaling and identified targets for therapeutic intervention. Numerous pharmacologic agents have been developed that modulate adenmising molecule.
Collapse
Affiliation(s)
- Trevor Simard
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Richard Jung
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Alisha Labinaz
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | | | - F Daniel Ramirez
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Pietro Di Santo
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Ian Pitcher
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Pouya Motazedian
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, ON, Canada
| | - Chantal Gaudet
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Rebecca Rochman
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Jeffrey Marbach
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Paul Boland
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Kiran Sarathy
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Saleh Alghofaili
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Juan J Russo
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Etienne Couture
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Rob S Beanlands
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Benjamin Hibbert
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| |
Collapse
|
18
|
Xu C, Kuriakose AE, Truong D, Punnakitikashem P, Nguyen KT, Hong Y. Enhancing anti-thrombogenicity of biodegradable polyurethanes through drug molecule incorporation. J Mater Chem B 2018; 6:7288-7297. [PMID: 30906556 PMCID: PMC6424506 DOI: 10.1039/c8tb01582a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sufficient and sustained anti-thrombogenicity is essential for blood-contacting materials, because blood coagulation and thrombosis caused by platelet adhesion and activation on material surfaces may lead to functional failure and even fatal outcomes. Covalently conjugating antithrombogenic moieties into polymer, instead of surface modifying or blending, can maintain the anti-thrombogenicity of polymer at a high level over a time range. In this study, series of randomly crosslinked, elastic, biodegradable polyurethanes (PU-DPA) were synthesized through a one-pot and one-step method from polycaprolactone (PCL) diol, hexamethylene diisocyanate (HDI) and anti-thrombogenic drug, dipyridamole (DPA). The mechanical properties, hydrophilicity, in vitro degradation, and anti-thrombogenicity of the resultant PU-DPA polymers can be tuned by altering the incorporated DPA amount. The surface and bulk hydrophilicity of the polyurethanes decreased with increasing hydrophobic DPA amount. All PU-DPA polymers exhibited strong mechanical properties and good elasticity. The degradation rates of the PU-DPAs decreased with increasing DPA content in both PBS and lipase/PBS solutions. Covalently incorporating DPA into the polyurethane significantly reduced the platelet adhesion and activation compared to the polyurethane without DPA, and also can achieve sustained anti-thrombogenicity. The PU-DPA films also supported the growth of human umbilical vein endothelial cells. The attractive mechanical properties, blood compatibility, and cell compatibility of this anti-thrombogenic biodegradable polyurethane indicate that it has a great potential to be utilized for blood-contacting devices, and cardiovascular tissue repair and regeneration.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aneetta E. Kuriakose
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Danh Truong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Primana Punnakitikashem
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
19
|
Khan V, Sharma S, Bhandari U, Sharma N, Rishi V, Haque SE. Suppression of isoproterenol-induced cardiotoxicity in rats by raspberry ketone via activation of peroxisome proliferator activated receptor-α. Eur J Pharmacol 2018; 842:157-166. [PMID: 30431010 DOI: 10.1016/j.ejphar.2018.10.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
The peroxisome proliferator-activated receptor-α (PPAR-α) controls the lipid and glucose metabolism and also affects inflammation, cell proliferation and apoptosis during cardiovascular disease. Raspberry ketone (RK) is a red raspberry (Rubusidaeus, Family-Rosaceae) plant constituent, which activates PPAR-α. This study was conducted to assess the cardioprotective action of RK against isoproterenol (ISO)-induced cardiotoxicity. Wistar rats were randomly divided into six groups (six rats/group). Rats were orally administered with RK (50, 100 and 200 mg/kg, respectively) and fenofibrate (standard, 80 mg/kg) for 28 days and ISO was administered (85 mg/kg, subcutaneously) on 27th and 28th day. Administration of ISO in rats significantly altered hemodynamic and electrocardiogram patterns, total antioxidant capacity, PPAR-α, and apolipoprotein C-III levels. These myocardial aberrations were further confirmed during infarct size, heart weight to body weight ratio and immunohistochemical assessments (caspase-3 and nuclear factor-κB). RK pretreatment (100 and 200 mg/kg) significantly protected rats against oxidative stress, inflammation, and dyslipidemia caused by ISO as demonstrated by change in hemodynamic, biochemical and histological parameters. The results so obtained were quite comparable with fenofibrate. Moreover, RK was found to have binding affinity with PPAR-α, as confirmed by docking analysis. PPAR-α expression and concentration was also found increased in presence of RK which gave impression that RK probably showed cardioprotection via PPAR-α activation, however direct binding study of RK with PPAR-α is needed to confirm this assumption.
Collapse
Affiliation(s)
- Vasim Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Uma Bhandari
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Nishtha Sharma
- National Agri-Food Biotechnology Institute, SAS Nagar, Punjab 140306, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute, SAS Nagar, Punjab 140306, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
20
|
Malliou F, Andreadou I, Gonzalez FJ, Lazou A, Xepapadaki E, Vallianou I, Lambrinidis G, Mikros E, Marselos M, Skaltsounis AL, Konstandi M. The olive constituent oleuropein, as a PPARα agonist, markedly reduces serum triglycerides. J Nutr Biochem 2018; 59:17-28. [PMID: 29960113 DOI: 10.1016/j.jnutbio.2018.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Oleuropein (OLE), a main constituent of olive, exhibits antioxidant and hypolipidemic effects, while it reduces the infarct size in chow- and cholesterol-fed rabbits. Peroxisome proliferator-activated receptor α (PPARα) has essential roles in the control of lipid metabolism and energy homeostasis. This study focused on the mechanisms underlying the hypolipidemic activity of OLE and, specifically, on the role of PPARα activation in the OLE-induced effect. Theoretical approach using Molecular Docking Simulations and luciferase reporter gene assay indicated that OLE is a ligand of PPARα. The effect of OLE (100 mg/kg, p.o., per day, ×6 weeks) on serum triglyceride (TG) and cholesterol levels was also assessed in adult male wild-type and Ppara-null mice. Molecular Docking Simulations, Luciferase reporter gene assay and gene expression analysis indicated that OLE is a PPARα agonist that up-regulates several PPARα target genes in the liver. This effect was associated with a significant reduction of serum TG and cholesterol levels. In contrast, OLE had no effect in Ppara-null mice, indicating a direct involvement of PPARα in the OLE-induced serum TG and cholesterol reduction. Activation of hormone-sensitive lipase in the white adipose tissue (WAT) and the liver of wild-type mice and up-regulation of several hepatic factors involved in TG uptake, transport, metabolism and clearance may also contribute in the OLE-induced TG reduction. In summary, OLE has a beneficial effect on TG homeostasis via PPARα activation. OLE also activates the hormone sensitive lipase in the WAT and liver and up-regulates several hepatic genes with essential roles in TG homeostasis.
Collapse
Affiliation(s)
- Foteini Malliou
- University of Ioannina, Faculty of Medicine, Department of Pharmacology, Ioannina GR-45110, Greece
| | - Ioanna Andreadou
- National & Kapodistrian University of Athens, Faculty of Pharmacy, Athens, Greece
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda 20892, MD, USA
| | - Antigone Lazou
- Aristotle University of Thessaloniki, School of Biology, Laboratory of Animal Physiology, Thessaloniki 54124, Greece
| | - Eva Xepapadaki
- University of Patras, School of Medicine, Department of Pharmacology, Rio, Greece
| | - Ioanna Vallianou
- Aristotle University of Thessaloniki, School of Biology, Laboratory of Animal Physiology, Thessaloniki 54124, Greece
| | - George Lambrinidis
- National & Kapodistrian University of Athens, Faculty of Pharmacy, Athens, Greece
| | - Emmanuel Mikros
- National & Kapodistrian University of Athens, Faculty of Pharmacy, Athens, Greece
| | - Marios Marselos
- University of Ioannina, Faculty of Medicine, Department of Pharmacology, Ioannina GR-45110, Greece
| | | | - Maria Konstandi
- University of Ioannina, Faculty of Medicine, Department of Pharmacology, Ioannina GR-45110, Greece.
| |
Collapse
|
21
|
Tully J, Sim C, Hemani R, Munir M, Khalil N, Fahy S. Audit of monitoring of the parameters of metabolic syndrome in patients on clozapine. ACTA ACUST UNITED AC 2018. [DOI: 10.1192/pb.bp.111.037994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims and MethodHigh rates of metabolic syndrome exist among patients on clozapine. Monitoring its parameters facilitates interventions which may alleviate negative health consequences. We completed an audit of the monitoring of the parameters of metabolic syndrome in patients on clozapine. The results were compared with the Maudsley Guidelines for monitoring in patients on any antipsychotic medication.ResultsInitial audit showed high overall rates of concordance with guidelines for the frequency of measurement of blood pressure (91.8%), but much lower rates for measuring fasting blood glucose (43.2%) and lipid profile (52.7%), and no record of analysis of waist circumference. This prompted development of a formal protocol for measuring parameters. Repeat audit after 1 year showed marked improvement in rates of measurement.Clinical implicationsImplementation of relatively straightforward measures, such as the introduction of a one-page form on which to record parameters, can lead to a much improved rate of monitoring for metabolic syndrome. This should in turn prompt therapeutic interventions, which are discussed.
Collapse
|
22
|
Liu X, Jing Z, Jia WQ, Wang SQ, Ma Y, Xu WR, Liu JW, Cheng XC. Identification of novel PPARα/γ dual agonists by virtual screening, ADMET prediction and molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:2988-3002. [DOI: 10.1080/07391102.2017.1373706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xin Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Jing
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Wen-Qing Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shu-Qing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Wei-Ren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Jian-Wen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
23
|
Ferri N, Corsini A, Sirtori C, Ruscica M. PPAR-α agonists are still on the rise: an update on clinical and experimental findings. Expert Opin Investig Drugs 2017; 26:593-602. [DOI: 10.1080/13543784.2017.1312339] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Multimedica IRCCS, Milano, Italy
| | - Cesare Sirtori
- Centro Dislipidemie, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
24
|
Abstract
There are several established lipid-modifying agents, including statins, fibrates, niacin, and ezetimibe, that have been shown in randomized clinical outcome trials to reduce the risk of having an atherosclerotic cardiovascular event. However, in many people, the risk of having an event remains unacceptably high despite treatment with these established agents. This has stimulated the search for new therapies designed to reduce residual cardiovascular risk. New approaches that target atherogenic lipoproteins include: 1) inhibition of proprotein convertase subtilisin/kexin type 9 to increase removal of atherogenic lipoproteins from plasma; 2) inhibition of the synthesis of apolipoprotein (apo) B, the main protein component of atherogenic lipoproteins; 3) inhibition of microsomal triglyceride transfer protein to block the formation of atherogenic lipoproteins; 4) inhibition of adenosine triphosphate citrate lyase to inhibit the synthesis of cholesterol; 5) inhibition of the synthesis of lipoprotein(a), a factor known to cause atherosclerosis; 6) inhibition of apoC-III to reduce triglyceride-rich lipoproteins and to enhance high-density lipoprotein (HDL) functionality; and 7) inhibition of cholesteryl ester transfer protein, which not only reduces the concentration of atherogenic lipoproteins but also increases the level and function of the potentially antiatherogenic HDL fraction. Other new therapies that specifically target HDLs include infusions of reconstituted HDLs, HDL delipidation, and infusions of apoA-I mimetic peptides that mimic some of the functions of HDLs. This review describes the scientific basis and rationale for developing these new therapies and provides a brief summary of established therapies.
Collapse
Affiliation(s)
- Philip J Barter
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
25
|
Ratnappan R, Ward JD, Yamamoto KR, Ghazi A. Nuclear hormone receptors as mediators of metabolic adaptability following reproductive perturbations. WORM 2016; 5:e1151609. [PMID: 27073739 DOI: 10.1080/21624054.2016.1151609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 01/13/2023]
Abstract
Previously, we identified a group of nuclear hormone receptors (NHRs) that promote longevity in the nematode Caenorhabditis elegans following germline-stem cell (GSC) loss. This group included NHR-49, the worm protein that performs functions similar to vertebrate PPARα, a key regulator of lipid metabolism. We showed that NHR-49/PPARα enhances mitochondrial β-oxidation and fatty acid desaturation upon germline removal, and through the coordinated enhancement of these processes allows the animal to retain lipid homeostasis and undergo lifespan extension. NHR-49/PPARα expression is elevated in GSC-ablated animals, in part, by DAF-16/FOXO3A and TCER-1/TCERG1, two other conserved, pro-longevity transcriptional regulators that are essential for germline-less longevity. In exploring the roles of the other pro-longevity NHRs, we discovered that one of them, NHR-71/HNF4, physically interacted with NHR-49/PPARα. NHR-71/HNF4 did not have a broad impact on the expression of β-oxidation and desaturation targets of NHR-49/PPARα. But, both NHR-49/PPARα and NHR-71/HNF4 were essential for the increased expression of DAF-16/FOXO3A- and TCER-1/TCERG1-downstream target genes. In addition, nhr-49 inactivation caused a striking membrane localization of KRI-1, the only known common upstream regulator of DAF-16/FOXO3A and TCER-1/TCERG1, suggesting that it may operate in a positive feedback loop to potentiate the activity of this pathway. These data underscore how selective interactions between NHRs that function as nodes in metabolic networks, confer functional specificity in response to different physiological stimuli.
Collapse
Affiliation(s)
- Ramesh Ratnappan
- Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA
| | - Jordan D Ward
- Department of Cellular and Molecular Pharmacology, University of California , San Francisco, San Francisco, CA, USA
| | - Keith R Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California , San Francisco, San Francisco, CA, USA
| | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA
| |
Collapse
|
26
|
Fenofibrate, HDL, and cardiovascular disease in Type-2 diabetes: The DAIS trial. Atherosclerosis 2016; 247:35-39. [PMID: 26854974 DOI: 10.1016/j.atherosclerosis.2016.01.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/18/2015] [Accepted: 01/18/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND There are conflicting reports on the role of fibrates in CVD-risk. Several studies indicate beneficial effects of fibrates on CVD risk in type-2 diabetic patients. We tested how fenofibrate changes lipoprotein subfractions and glucose homeostasis in type-2 diabetic patients. STUDY DESIGN Selected markers of lipid and glucose homeostasis and inflammation were measured in 204 diabetic patients who participated in the Diabetes Atherosclerosis Intervention Study (DAIS) and were randomly assigned to 200 mg fenofibrate or placebo. Percent changes from baseline until a minimum of 3 years (average 39.6 months) on therapy (end of study) were calculated for all study parameters. RESULTS The concentrations of total LDL-C and small dense LDL-C (sdLDL-C) did not change on fenofibrate compared to placebo. Compared to placebo, fenofibrate significantly decreased concentrations of triglyceride and remnant-like particle cholesterol (RLP-C) and activity of lipoprotein-associated phospholipase A2 (Lp-PLA2), while significantly increased concentrations of HDL-C. In contrast to other lipid-modifying drugs (e.g. statins) which increase HDL-C by increasing large (α-1) HDL particles, fenofibrate increased HDL-C by increasing the smaller, less antiatherogenic HDL-C particles, α-3 and α-4. Furthermore, despite lowering TG levels by 20%, fenofibrate failed to decrease pre-β1 levels. On fenofibrate, glycated serum-protein levels increased moderately, while insulin and adiponectin levels did not change. CONCLUSION On fenofibrate, lipid homeostasis improved and Lp-PLA2 activity decreased while there was no improvement in glucose homeostasis. Despite increasing HDL-C and decreasing triglyceride levels, fenofibrate failed to improve the antiatherogenic properties of the HDL subpopulation profile.
Collapse
|
27
|
da Silva BP, Matyelka JCDS, Moreira MEDC, Toledo RCL, Della Lucia CM, Pinheiro-Sant'Ana HM, Martino HSD. A high fat diet does not affect the iron bioavailability in Wistar rats fed with chia and increases gene expression of iron metabolism proteins. Food Funct 2016; 7:4861-4868. [DOI: 10.1039/c6fo00759g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study evaluated the effect of chia on the iron bioavailability and gene expression of proteins involved in iron metabolism in animals fed with a high fat diet and a standard diet.
Collapse
|
28
|
Barter PJ, Rye KA. Targeting High-density Lipoproteins to Reduce Cardiovascular Risk: What Is the Evidence? Clin Ther 2015; 37:2716-31. [DOI: 10.1016/j.clinthera.2015.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/27/2015] [Indexed: 11/28/2022]
|
29
|
dos Santos JC, Bernardes A, Giampietro L, Ammazzalorso A, De Filippis B, Amoroso R, Polikarpov I. Different binding and recognition modes of GL479, a dual agonist of Peroxisome Proliferator-Activated Receptor α/γ. J Struct Biol 2015; 191:332-40. [PMID: 26185032 DOI: 10.1016/j.jsb.2015.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/30/2015] [Accepted: 07/13/2015] [Indexed: 01/06/2023]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-dependent transcription factors that control various functions in human organism, including the control of glucose and lipid metabolism. PPARγ is a target of TZD agonists, clinically used to improve insulin sensitivity whereas fibrates, PPARα ligands, lower serum triglyceride levels. We report here the structural studies of GL479, a synthetic dual PPARα/γ agonist, designed by a combination of clofibric acid skeleton and a phenyldiazenyl moiety, as bioisosteric replacement of stilbene group, in complex with both PPARα and PPARγ receptors. GL479 was previously reported as a partial agonist of PPARγ and a full agonist of PPARα with high affinity for both PPARs. Our structural studies reveal different binding modes of GL479 to PPARα and PPARγ, which may explain the distinct activation behaviors observed for each receptor. In both cases the ligand interacts with a Tyr located at helix 12 (H12), resulting in the receptor active conformation. In the complex with PPARα, GL479 occupies the same region of the ligand-binding pocket (LBP) observed for other full agonists, whereas GL479 bound to PPARγ displays a new binding mode. Our results indicate a novel region of PPARs LBP that may be explored for the design of partial agonists as well dual PPARα/γ agonists that combine, simultaneously, the therapeutic effects of the treatment of insulin resistance and dyslipidemia.
Collapse
Affiliation(s)
- Jademilson Celestino dos Santos
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil
| | - Amanda Bernardes
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil
| | - Letizia Giampietro
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Alessandra Ammazzalorso
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Barbara De Filippis
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Rosa Amoroso
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Igor Polikarpov
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil.
| |
Collapse
|
30
|
Extreme urinary betaine losses in type 2 diabetes combined with bezafibrate treatment are associated with losses of dimethylglycine and choline but not with increased losses of other osmolytes. Cardiovasc Drugs Ther 2015; 28:459-68. [PMID: 25060556 DOI: 10.1007/s10557-014-6542-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE Betaine deficiency is a probable cardiovascular risk factor and a cause of elevated homocysteine. Urinary betaine excretion is increased by fibrate treatment, and is also often elevated in diabetes. Does fibrate further increase betaine excretion in diabetes, and does it affect the plasma concentrations and excretions of related metabolites and of other osmolytes? METHODS Samples from a previous study of type 2 diabetes were selected if participants were taking bezafibrate (n = 32). These samples were compared with participants matched for age and gender and not on a fibrate (comparator group, n = 64). Betaine, related metabolites, and osmolytes were measured in plasma and urine samples from these 96 participants. RESULTS Median urinary betaine excretion in those on bezafibrate was 5-fold higher than in the comparator group (p < 0.001), itself 3.5-fold higher than the median reported for healthy populations. In the bezafibrate group, median dimethylglycine excretion was higher (9-fold, p < 0.001). Excretions of choline, and of the osmolytes myo-inositol, taurine and glycerophosphorylcholine, were not significantly different between groups. Some participants excreted more betaine than usual dietary intakes. Several betaine fractional clearances were >100 %. Betaine excretion correlated with excretions of the osmolytes myo-inositol and glycerophosphorylcholine, and also with the excretion of choline and N,N-dimethylglycine, but it was inconclusive whether these relationships were affected by bezafibrate therapy. CONCLUSIONS Increased urinary betaine excretions in type 2 diabetes are further increased by fibrate treatment, sometimes to more than their dietary intake. Concurrent betaine supplementation may be beneficial.
Collapse
|
31
|
Bell TA, Graham MJ, Baker BF, Crooke RM. Therapeutic inhibition of apoC-III for the treatment of hypertriglyceridemia. ACTA ACUST UNITED AC 2015. [DOI: 10.2217/clp.15.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Shibata R, Ohashi K, Murohara T, Ouchi N. The potential of adipokines as therapeutic agents for cardiovascular disease. Cytokine Growth Factor Rev 2014; 25:483-7. [PMID: 25066649 DOI: 10.1016/j.cytogfr.2014.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/03/2014] [Indexed: 01/08/2023]
Abstract
Adipose tissue functions as an endocrine organ by producing bioactive secretory proteins, also known as adipokines, that can directly act on nearby or remote organs. Most of the adipokines are upregulated by obese conditions, and typically promote obese complications. In contrast, some adipokines, such as adiponectin, CTRP9 and omentin, are downregulated in obese states. These factors exert salutary actions on obesity-linked cardiovascular disorders. In this review, we focus on the significance of adiponectin, CTRP9 and omentin as therapeutic agents for cardiovascular disease.
Collapse
Affiliation(s)
- Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Koji Ohashi
- Department of Molecular Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Department of Molecular Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
33
|
Kingwell BA, Chapman MJ, Kontush A, Miller NE. HDL-targeted therapies: progress, failures and future. Nat Rev Drug Discov 2014; 13:445-64. [DOI: 10.1038/nrd4279] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Lever M, McEntyre CJ, George PM, Slow S, Chambers ST, Foucher C. Fenofibrate causes elevation of betaine excretion but not excretion of other osmolytes by healthy adults. J Clin Lipidol 2014; 8:433-40. [PMID: 25110225 DOI: 10.1016/j.jacl.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/13/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cross-sectional data suggest that bezafibrate increases betaine excretion in dyslipidemic patients. OBJECTIVE We aimed to demonstrate that fenofibrate induces increased betaine excretion in normal subjects and explore whether other 1-carbon metabolites and osmolytes are similarly affected. METHODS Urine was collected from 26 healthy adults before and after treatment with fenofibrate (145 mg/day for 6 weeks). Excretions of betaine, N,N-dimethylglycine, free choline, myo-inositol, taurine, trimethylamine-N-oxide, carnitine, and acetylcarnitine were measured by liquid chromatography with mass spectrometric detection. RESULTS Fenofibrate increased the median betaine excretion from 7.5 to 25.8 mmol/mole creatinine (median increase 3-fold), P < .001. The median increase in N,N-dimethylglycine excretion was 2-fold (P < .001). Median choline excretion increased 12% (significant, P = .029). Participants with higher initial excretions tended to have larger increases (P < .001 in all 3 cases). Fenofibrate did not significantly change the median excretions of myo-inositol, taurine, trimethylamine-N-oxide, and carnitine. The excretion of acetylcarnitine decreased 4-fold on treatment, with no correlation between the baseline and after-treatment excretions. Changes in all urine components tested, except trimethylamine-N-oxide, positively correlated with changes in betaine excretion even when the median excretions before and after were not significantly different. CONCLUSIONS Fibrates increase betaine, and to a lesser extent N,N-dimethylglycine and choline, excretion. Other osmolytes are not elevated. Because the increase in betaine excretion depends on the baseline excretion, large increases in excretion in the metabolic syndrome and diabetes (where baseline excretions are high) could be expected. Replacement with betaine supplements may be considered.
Collapse
Affiliation(s)
- Michael Lever
- Biochemistry Unit, Canterbury Health Laboratories, Christchurch, New Zealand; Pathology Department, University of Otago Christchurch, Christchurch, New Zealand.
| | | | - Peter M George
- Biochemistry Unit, Canterbury Health Laboratories, Christchurch, New Zealand; Pathology Department, University of Otago Christchurch, Christchurch, New Zealand
| | - Sandy Slow
- Biochemistry Unit, Canterbury Health Laboratories, Christchurch, New Zealand; Pathology Department, University of Otago Christchurch, Christchurch, New Zealand
| | - Stephen T Chambers
- Pathology Department, University of Otago Christchurch, Christchurch, New Zealand
| | | |
Collapse
|
35
|
Attridge RL, Frei CR, Ryan L, Koeller J, Linn WD. Fenofibrate-associated nephrotoxicity: a review of current evidence. Am J Health Syst Pharm 2014; 70:1219-25. [PMID: 23820458 DOI: 10.2146/ajhp120131] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The literature describing fenofibrate-associated nephrotoxicity was reviewed. SUMMARY Fenofibrate-associated nephrotoxicity is an underrecognized adverse effect that is being reported with increasing frequency in the medical literature. A MEDLINE search identified articles describing fenofibrate-associated nephrotoxicity. Two retrospective chart reviews reported this adverse reaction in transplant recipients and patients with renal insufficiency. A case series of six patients noted that the adverse reaction also occurred in patients without a predisposition to renal injury. Two small prospective studies have examined fenofibrate-associated nephrotoxicity, with conflicting findings regarding the mechanism. Finally, a large retrospective review and a population-based cohort study found that patients with preexisting renal disease or taking high-dosage fenofibrate have a higher risk of developing fenofibrate-associated nephrotoxicity. Fenofibrate-associated nephrotoxicity was shown to be reversible with both discontinuation and continued use of fenofibrate, though one study found that the elevations in serum creatinine (SCr) levels were permanent in study participants. Some argue that SCr elevations described in these articles were not due to renal toxicity but may be attributed to reversible mechanisms. While several mechanisms may be biologically plausible, none of the theories have been tested in clinical trials. A possible mechanism for the increase in SCr levels may include changes in renal hemodynamics causing volume depletion and the impairment of generation of vasodilatory prostaglandins, leading to renal vasoconstriction. CONCLUSION Fenofibrate-associated nephrotoxicity is an underrecognized adverse drug reaction. Several published reports have detailed possible etiologies; however, data detailing the true incidence of fenofibrate-associated nephrotoxicity and its associated risk factors are limited.
Collapse
Affiliation(s)
- Rebecca L Attridge
- Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78209, USA.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Epidemiological studies have shown an inverse association between high-density lipoprotein cholesterol (HDL-C) and cardiovascular disease (CVD) risk. However, genetic and interventional studies have failed to consistently support this relationship. There is an increasing body of evidence that the function of HDL, including its antiatherogenic properties and its reverse cholesterol transport activity, has a greater impact on CVD risk compared with levels of HDL alone. Targeting HDL has become a growing interest. Nevertheless, raising HDL pharmacologically has failed to show a considerable, if any, impact on cardiovascular outcome. Efforts should focus on improving HDL quality in addition to raising HDL levels when developing new therapies. Ongoing and future research will help determine the most safe and effective approach to improve cardiovascular outcome and establish the safety, efficacy and impact on atherosclerosis of the emerging HDL-raising therapies.
Collapse
Affiliation(s)
- Mirella P Hage
- American University of Beirut-Medical Center, New York, NY, USA
| | - Sami T Azar
- Department of Internal Medicine, Division of Endocrinology and Metabolism, American University of Beirut-Medical Center, 3 Dag Hammarskjold Plaza, 8th floor, New York, NY 10017, USA
| |
Collapse
|
37
|
von Eckardstein A. Implications of torcetrapib failure for the future of HDL therapy: is HDL-cholesterol the right target? Expert Rev Cardiovasc Ther 2014; 8:345-58. [DOI: 10.1586/erc.10.6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Preventive and ameliorating effects of citrus d-limonene on dyslipidemia and hyperglycemia in mice with high-fat diet-induced obesity. Eur J Pharmacol 2013; 715:46-55. [DOI: 10.1016/j.ejphar.2013.06.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/03/2013] [Accepted: 06/16/2013] [Indexed: 11/19/2022]
|
39
|
Toth PP, Barter PJ, Rosenson RS, Boden WE, Chapman MJ, Cuchel M, D'Agostino RB, Davidson MH, Davidson WS, Heinecke JW, Karas RH, Kontush A, Krauss RM, Miller M, Rader DJ. High-density lipoproteins: A consensus statement from the National Lipid Association. J Clin Lipidol 2013; 7:484-525. [DOI: 10.1016/j.jacl.2013.08.001] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/03/2013] [Indexed: 12/21/2022]
|
40
|
Abstract
High density lipoproteins (HDLs) have a number of properties that have the potential to inhibit the development of atherosclerosis and thus reduce the risk of having a cardiovascular event. These protective effects of HDLs may be reduced in patients with type 2 diabetes, a condition in which the concentration of HDL cholesterol is frequently low. In addition to their potential cardioprotective properties, HDLs also increase the uptake of glucose by skeletal muscle and stimulate the synthesis and secretion of insulin from pancreatic β cells and may thus have a beneficial effect on glycemic control. This raises the possibility that a low HDL concentration in type 2 diabetes may contribute to a worsening of diabetic control. Thus, there is a double case for targeting HDLs in patients with type 2 diabetes: to reduce cardiovascular risk and also to improve glycemic control. Approaches to raising HDL levels include lifestyle factors such as weight reduction, increased physical activity and stopping smoking. There is an ongoing search for HDL-raising drugs as agents to use in patients with type 2 diabetes in whom the HDL level remains low despite lifestyle interventions.
Collapse
Affiliation(s)
- Philip J. Barter
- Centre for Vascular Research, The University of New South Wales Faculty of Medicine, Sydney, Australia
| |
Collapse
|
41
|
Konstandi M, Shah YM, Matsubara T, Gonzalez FJ. Role of PPARα and HNF4α in stress-mediated alterations in lipid homeostasis. PLoS One 2013; 8:e70675. [PMID: 23967086 PMCID: PMC3743822 DOI: 10.1371/journal.pone.0070675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/20/2013] [Indexed: 12/13/2022] Open
Abstract
Stress is a risk factor for several cardiovascular pathologies. PPARα holds a fundamental role in control of lipid homeostasis by directly regulating genes involved in fatty acid transport and oxidation. Importantly, PPARα agonists are effective in raising HDL-cholesterol and lowering triglycerides, properties that reduce the risk for cardiovascular diseases. This study investigated the role of stress and adrenergic receptor (AR)-related pathways in PPARα and HNF4α regulation and signaling in mice following repeated restraint stress or treatment with AR-antagonists administered prior to stress to block AR-linked pathways. Repeated restraint stress up-regulated Pparα and its target genes in the liver, including Acox, Acot1, Acot4, Cyp4a10, Cyp4a14 and Lipin2, an effect that was highly correlated with Hnf4α. In vitro studies using primary hepatocyte cultures treated with epinephrine or AR-agonists confirmed that hepatic AR/cAMP/PKA/CREB- and JNK-linked pathways are involved in PPARα and HNF4α regulation. Notably, restraint stress, independent of PPARα, suppressed plasma triglyceride levels. This stress-induced effect could be attributed in part to hormone sensitive lipase activation in the white adipose tissue, which was not prevented by the increased levels of perilipin. Overall, this study identifies a mechanistic basis for the modification of lipid homeostasis following stress and potentially indicates novel roles for PPARα and HNF4α in stress-induced lipid metabolism.
Collapse
Affiliation(s)
- Maria Konstandi
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | |
Collapse
|
42
|
Site-specific antioxidative therapy for prevention of atherosclerosis and cardiovascular disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:796891. [PMID: 23738041 PMCID: PMC3657429 DOI: 10.1155/2013/796891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/09/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been implicated in pathophysiology of aging and age-associated disease. Antioxidative medicine has become a practice for prevention of atherosclerosis. However, limited success in preventing cardiovascular disease (CVD) in individuals with atherosclerosis using general antioxidants has prompted us to develop a novel antioxidative strategy to prevent atherosclerosis. Reducing visceral adipose tissue by calorie restriction (CR) and regular endurance exercise represents a causative therapy for ameliorating oxidative stress. Some of the recently emerging drugs used for the treatment of CVD may be assigned as site-specific antioxidants. CR and exercise mimetic agents are the choice for individuals who are difficult to continue CR and exercise. Better understanding of molecular and cellular biology of redox signaling will pave the way for more effective antioxidative medicine for prevention of CVD and prolongation of healthy life span.
Collapse
|
43
|
Gluba A, Mikhailidis DP, Lip GY, Hannam S, Rysz J, Banach M. Metabolic syndrome and renal disease. Int J Cardiol 2013; 164:141-50. [DOI: 10.1016/j.ijcard.2012.01.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/31/2011] [Accepted: 01/06/2012] [Indexed: 02/07/2023]
|
44
|
Karahashi M, Hoshina M, Yamazaki T, Sakamoto T, Mitsumoto A, Kawashima Y, Kudo N. Fibrates Reduce Triacylglycerol Content by Upregulating Adipose Triglyceride Lipase in the Liver of Rats. J Pharmacol Sci 2013; 123:356-70. [DOI: 10.1254/jphs.13149fp] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
45
|
Xiao L, Wang J, Jiang M, Xie W, Zhai Y. The emerging role of constitutive androstane receptor and its cross talk with liver X receptors and peroxisome proliferator-activated receptor A in lipid metabolism. VITAMINS AND HORMONES 2013; 91:243-58. [PMID: 23374719 DOI: 10.1016/b978-0-12-407766-9.00010-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The regulation of lipid metabolism is central to energy homeostasis in higher multicellular organisms. Lipid homeostasis depends on factors that are able to transduce metabolic parameters into regulatory events representing the fundamental components of the general control system. Nuclear receptors form a superfamily of ligand-activated transcription factors implicated in various physiological functions including energy metabolism. The constitutive androstane receptor (CAR, NR1I3), initially identified as a xenobiotic-sensing receptor, may also have roles in lipid homeostasis. The nuclear receptors liver X receptors (LXRs, NR1H2/3) and peroxisome proliferator-activated receptors (PPARs, NR1C) have been known for their roles in lipid metabolism. LXR is a sterol sensor that promotes lipogenesis, whereas PPARα controls a variety of genes in several pathways of lipid metabolism. This chapter focuses primarily on the role of CAR in lipid metabolism directly or through its cross talk with LXRs and PPARα.
Collapse
Affiliation(s)
- Lei Xiao
- Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, Biomedicine Research Institute and College of Life Sciences, Beijing Normal University, Beijing, China
| | | | | | | | | |
Collapse
|
46
|
Nakajima K. Multidisciplinary pharmacotherapeutic options for nonalcoholic Fatty liver disease. Int J Hepatol 2012; 2012:950693. [PMID: 23304532 PMCID: PMC3523542 DOI: 10.1155/2012/950693] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/13/2012] [Indexed: 12/22/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are multidisciplinary liver diseases that often accompany type 2 diabetes or metabolic syndrome, which are characterized by insulin resistance. Therefore, effective treatment of type 2 diabetes and metabolic syndrome should target not only the cardiometabolic abnormalities, but also the associated liver disorders. In the last decade, it has been shown that metformin, thiazolidinediones, vitamin E, ezetimibe, n-3 polyunsaturated fatty acids, renin-angiotensin system (RAS) blockers, and antiobesity drugs may improve hepatic pathophysiological disorders as well as clinical parameters. Accordingly, insulin sensitizers, antioxidative agents, Niemann-Pick C1-like 1 (NPC1L1) inhibitors, RAS blockers, and drugs that target the central nervous system may represent candidate pharmacotherapies for NAFLD and possibly NASH. However, the efficacy, safety, and tolerability of long-term treatment (potentially for many years) with these drugs have not been fully established. Furthermore, clinical trials have not comprehensively examined the efficacy of lipid-lowering drugs (i.e., statins, fibrates, and NPC1L1 inhibitors) for the treatment of NAFLD. Although clinical evidence for RAS blockers and incretin-based agents (GLP-1 analogs and dipeptidyl peptidase-4 inhibitors) is also lacking, these agents are promising in terms of their insulin-sensitizing and anti-inflammatory effects without causing weight gain.
Collapse
Affiliation(s)
- Kei Nakajima
- Division of Clinical Nutrition, Department of Medical Dietetics, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama, Sakado 350-0295, Japan
| |
Collapse
|
47
|
Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2012; 2:236-40. [PMID: 22247890 PMCID: PMC3255347 DOI: 10.4103/2231-4040.90879] [Citation(s) in RCA: 699] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of nuclear hormone receptor superfamily comprising of the following three subtypes: PPARα, PPARγ, and PPARβ/δ. Activation of PPAR-α reduces triglyceride level and is involved in regulation of energy homeostasis. Activation of PPAR-γ causes insulin sensitization and enhances glucose metabolism, whereas activation of PPAR-β/δ enhances fatty acids metabolism. Thus, PPAR family of nuclear receptors plays a major regulatory role in energy homeostasis and metabolic function. The present review critically analyzes the protective and detrimental effect of PPAR agonists in dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, fertility or reproduction, pain, and obesity.
Collapse
Affiliation(s)
- Sandeep Tyagi
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | | | | | | | | |
Collapse
|
48
|
PPAR Medicines and Human Disease: The ABCs of It All. PPAR Res 2012; 2012:504918. [PMID: 22919365 PMCID: PMC3423947 DOI: 10.1155/2012/504918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/04/2012] [Accepted: 04/06/2012] [Indexed: 12/21/2022] Open
Abstract
ATP-dependent binding cassette (ABC) transporters are a family of transmembrane proteins that pump a variety of hydrophobic compounds across cellular and subcellular barriers and are implicated in human diseases such as cancer and atherosclerosis. Inhibition of ABC transporter activity showed promise in early preclinical studies; however, the outcomes in clinical trials with these agents have not been as encouraging. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that regulate genes involved in fat and glucose metabolism, and inflammation. Activation of PPAR signaling is also reported to regulate ABC gene expression. This suggests the potential of PPAR medicines as a novel means of controlling ABC transporter activity at the transcriptional level. This paper summarizes the advances made in understanding how PPAR medicines affect ABC transporters, and the potential implications for impacting on human diseases, in particular with respect to cancer and atherosclerosis.
Collapse
|
49
|
Borel AL, Nazare JA, Smith J, Alméras N, Tremblay A, Bergeron J, Poirier P, Després JP. Visceral and not subcutaneous abdominal adiposity reduction drives the benefits of a 1-year lifestyle modification program. Obesity (Silver Spring) 2012; 20:1223-33. [PMID: 22262155 DOI: 10.1038/oby.2011.396] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Excess visceral adipose tissue (VAT) is associated with an increased cardiometabolic risk. The study examined whether changes in cardiometabolic risk markers after a 1-year lifestyle intervention in viscerally obese men were associated with changes in VAT or with changes in subcutaneous abdominal adipose tissue (SAT). The relative contributions of changes in global adiposity vs. changes in cardiorespiratory fitness to changes in VAT were also quantified. One hundred and forty four men were selected on the basis of an increased waist circumference (≥ 90 cm) associated with dyslipidemia (triglycerides ≥ 1.69 and/or high-density lipoprotein (HDL)-cholesterol <1.03 mmol/l); 117 men completed the 1-year intervention which consisted in a healthy eating, physical activity/exercise program. Body weight, body composition, and fat distribution were assessed by anthropometry and dual-energy X-ray absorptiometry (DEXA)/computed tomography. Cardiorespiratory fitness, plasma adipokine/inflammatory markers, fasting lipoprotein-lipid profile, and oral glucose tolerance test (OGTT) were assessed. VAT volume decreased by 26%, cardiorespiratory fitness improved by 20% (P < 0.0001) after 1 year. Plasma adipokine/inflammatory markers, lipids/lipoproteins, and glucose homeostasis were improved. One-year changes in triglyceride (r = 0.29), apolipoprotein B (r = 0.21), 120-min OGTT-glucose (r = 0.27), and fasting insulin (r = 0.27) levels correlated with changes in VAT (all P < 0.05) after adjustment for changes in SAT. Using a multilinear regression model, VAT reduction was independently associated with SAT reduction and with improvement in cardiorespiratory fitness (R(2) = 0.58, P < 0.0001). Therefore, this healthy eating-physical activity/exercise program improved the cardiometabolic risk profile of viscerally obese men in relation to the reduction of VAT. Furthermore, the reduction in VAT was independently related to the reduction in global adiposity and to the improvement in cardiorespiratory fitness.
Collapse
Affiliation(s)
- Anne-Laure Borel
- Department of Cardiology, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Residual cardiovascular risk despite optimal LDL cholesterol reduction with statins: the evidence, etiology, and therapeutic challenges. Curr Atheroscler Rep 2012; 14:1-10. [PMID: 22102062 DOI: 10.1007/s11883-011-0219-7] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review captures the existence, cause, and treatment challenges of residual cardiovascular risk (CVR) after aggressive low-density lipoprotein cholesterol (LDL-C) reduction. Scientific evidence implicates low high-density lipoprotein cholesterol (HDL-C) and high triglycerides (TG) in the CVR observed after LDL-C lowering. However, the Action to Control Cardiovascular Risk in Diabetes (ACCORD) lipid trial with fenofibrate, the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) study with torcetrapib, and the recently terminated Atherothrombosis Intervention in Metabolic Syndrome with Low HDL Cholesterol/High Triglyceride and Impact on Global Health Outcomes (AIM-HIGH) study with niacin, do not clearly attribute risk reduction value to HDL-C/TG modulation. The optimum approach to long-term lipid-modifying therapies for CVR reduction remains uncertain. Consequently, absolute risk modulation via lifestyle changes remains the centerpiece of a strategy addressing the physiologic drivers of CVR associated with HDL-C/TG, especially in the context of diabetes/metabolic syndrome.
Collapse
|