1
|
Sanches EF, Dos Santos TM, do Carmo MB, Carvalho AVS, Ramires Junior OV, Sizonenko SV, Netto CA, Wyse ATS. Environmental enrichment reverses cognitive impairments and hippocampus tissue loss without altering the redox state in rats exposed to severe chronic hyperhomocysteinemia. Behav Brain Res 2025; 485:115522. [PMID: 40054505 DOI: 10.1016/j.bbr.2025.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 04/06/2025]
Abstract
INTRODUCTION Classical homocystinuria is a genetic disease caused by partial or total deficiency of cystathionine-β synthase (CβS) enzyme activity, ultimately leading to brain alterations and early atherosclerotic disease. Currently, there is no cure for the disease and the treatments consist in reducing homocysteine levels through diet, however not all patients respond to therapy. Due to its ability to increase neurotrophins production and decrease oxidative stress in the brain, environmental enrichment (EE) has been used with success as an adjuvant non-pharmacological therapy for CNS disorders. Here, we investigated the effects of 4 weeks enriched environment in a severe chronic chemically-induced model of hyperhomocysteinemia (HHCY) in Wistar rats. METHODS Animals of both sexes were subjected to homocysteine administration subcutaneously (12 h intervals) from day 6 of life (P6) to P28. After this period, animals were continuously exposed to the enriched environment (or standard cages) for 30 days. Animals were tested for cognition and locomotor abilities and hippocampi were collected for the assessment of oxidative stress and histological damage. RESULTS Animals in the HHCY group showed impaired learning in the reference memory assessment in the Morris water maze with no effects in the novel objects recognition test. HHCY did not impair locomotion in the open field nor in the horizontal ladder task. HHCY rats presented decreased hippocampal volume reversed by EE. Enrichment was also able to reverse cognitive impairments in the spatial memory, improve coordination in the ladder walking and recognition memory in the NOR test. HHCY altered redox balance, with no protective effects of EE. CONCLUSIONS Due to its benefits and no side effects reported in literature, EE can be suggested as potential complimentary therapy to improve memory and motricity impairments in homocystinuric patients, however the mechanisms involved in this neuroprotection needs further investigation.
Collapse
Affiliation(s)
- E F Sanches
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - T M Dos Santos
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - M B do Carmo
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A V S Carvalho
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - O V Ramires Junior
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - C A Netto
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A T S Wyse
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Jakubowski H, Witucki Ł. Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease. Int J Mol Sci 2025; 26:746. [PMID: 39859460 PMCID: PMC11765536 DOI: 10.3390/ijms26020746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation. Together with increased plasma levels of low-density lipoprotein (LDL), diabetes, hypertension, cigarette smoking, infectious microorganisms, and genetic factors, epidemiological studies established that dysregulated metabolism of homocysteine (Hcy) causing hyperhomocysteinemia (HHcy) is associated with CVD. Patients with severe HHcy exhibit severe CVD and die prematurely due to vascular complications. Biochemically, HHcy is characterized by elevated levels of Hcy and related metabolites such as Hcy-thiolactone and N-Hcy-protein, seen in genetic and nutritional deficiencies in Hcy metabolism in humans and animals. The only known source of Hcy in humans is methionine released in the gut from dietary protein. Hcy is generated from S-adenosylhomocysteine (AdoHcy) and metabolized to cystathionine by cystathionine β-synthase (CBS) and to Hcy-thiolactone by methionyl-tRNA synthetase. Hcy-thiolactone, a chemically reactive thioester, modifies protein lysine residues, generating N-homocysteinylated (N-Hcy)-protein. N-Hcy-proteins lose their normal native function and become cytotoxic, autoimmunogenic, proinflammatory, prothrombotic, and proatherogenic. Accumulating evidence, discussed in this review, shows that these Hcy metabolites can promote endothelial dysfunction, CVD, and stroke in humans by inducing pro-atherogenic changes in gene expression, upregulating mTOR signaling, and inhibiting autophagy through epigenetic mechanisms involving specific microRNAs, histone demethylase PHF8, and methylated histone H4K20me1. Clinical studies, also discussed in this review, show that cystathionine and Hcy-thiolactone are associated with myocardial infarction and ischemic stroke by influencing blood clotting. These findings contribute to our understanding of the complex mechanisms underlying endothelial dysfunction, atherosclerosis, CVD, and stroke and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland;
| | - Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland;
| |
Collapse
|
3
|
Milyutina YP, Kerkeshko GO, Vasilev DS, Zalozniaia IV, Bochkovskii SK, Tumanova NL, Shcherbitskaia AD, Mikhel AV, Tolibova GH, Arutjunyan AV. Placental Transport of Amino Acids in Rats with Methionine-Induced Hyperhomocysteinemia. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1711-1726. [PMID: 39523111 DOI: 10.1134/s0006297924100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 11/16/2024]
Abstract
Maternal hyperhomocysteinemia (HHcy) is a risk factor for intrauterine growth restriction presumably caused by a decrease in the placental transport of nutrients. We investigated the effect of experimental HHcy induced by daily methionine administration to pregnant rats on the free amino acid levels in the maternal and fetal blood, as well as on morphological and biochemical parameters associated with the amino acid transport through the placenta. HHcy caused an increase in the levels of most free amino acids in the maternal blood on gestational day 20, while the levels of some amino acids in the fetal blood were decreased. In rats with HHcy, the maternal sinusoids in the placental labyrinth were narrowed, which was accompanied by aggregation of red blood cells. We also observed an increase in the neutral amino acid transporters (LAT1, SNAT2) protein levels and activation of 4E-BP1, a downstream effector of mTORC1 complex, in the labyrinth zone. Maternal HHcy affected the placental barrier permeability, as evidenced by intensification of the mother-to-fetus transfer of Evans Blue dye. The imbalance in the free amino acid levels in the maternal and fetal blood in HHcy may be due to the competition of homocysteine with other amino acids for common transporters, as well as a decrease in the area of exchange zone between maternal and fetal circulations in the placental labyrinth. Upregulation of the neutral amino acid transporter expression in the labyrinth zone may be a compensatory response to an insufficient intrauterine amino acid supply and fetal growth restriction.
Collapse
Affiliation(s)
- Yulia P Milyutina
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia.
| | - Gleb O Kerkeshko
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Dmitrii S Vasilev
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Irina V Zalozniaia
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Sergey K Bochkovskii
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Natalia L Tumanova
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Anastasiia D Shcherbitskaia
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Anastasiia V Mikhel
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Gulrukhsor H Tolibova
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Alexander V Arutjunyan
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| |
Collapse
|
4
|
Witucki Ł, Jakubowski H. Homocysteine metabolites impair the PHF8/H4K20me1/mTOR/autophagy pathway by upregulating the expression of histone demethylase PHF8-targeting microRNAs in human vascular endothelial cells and mice. FASEB J 2024; 38:e70072. [PMID: 39323294 DOI: 10.1096/fj.202302116r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/21/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The inability to efficiently metabolize homocysteine (Hcy) due to nutritional and genetic deficiencies, leads to hyperhomocysteinemia (HHcy) and endothelial dysfunction, a hallmark of atherosclerosis which underpins cardiovascular disease (CVD). PHF8 is a histone demethylase that demethylates H4K20me1, which affects the mammalian target of rapamycin (mTOR) signaling and autophagy, processes that play important roles in CVD. PHF8 is regulated by microRNA (miR) such as miR-22-3p and miR-1229-3p. Biochemically, HHcy is characterized by elevated levels of Hcy, Hcy-thiolactone and N-Hcy-protein. Here, we examined the effects of these metabolites on miR-22-3p, miR-1229-3p, and their target PHF8, as well as on the downstream consequences of these effects on H4K20me1, mTOR-, and autophagy-related proteins and mRNAs expression in human umbilical vein endothelial cells (HUVEC). We found that treatments with N-Hcy-protein, Hcy-thiolactone, or Hcy upregulated miR-22-3p and miR-1229-3p, attenuated PHF8 expression, upregulated H4K20me1, mTOR, and phospho-mTOR. Autophagy-related proteins (BECN1, ATG5, ATG7, lipidated LC3-II, and LC3-II/LC3-I ratio) were significantly downregulated by at least one of these metabolites. We also found similar changes in the expression of miR-22-3p, Phf8, mTOR- and autophagy-related proteins/mRNAs in vivo in hearts of Cbs-/- mice, which show severe HHcy and endothelial dysfunction. Treatments with inhibitors of miR-22-3p or miR-1229-3p abrogated the effects of Hcy-thiolactone, N-Hcy-protein, and Hcy on miR expression and on PHF8, H4K20me1, mTOR-, and autophagy-related proteins/mRNAs in HUVEC. Taken together, these findings show that Hcy metabolites upregulate miR-22-3p and miR-1229-3p expression, which then dysregulate the PHF8/H4K20me1/mTOR/autophagy pathway, important for vascular homeostasis.
Collapse
Affiliation(s)
- Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, International Center for Public Health, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
5
|
Witucki Ł, Jakubowski H. Homocysteine metabolites inhibit autophagy by upregulating miR-21-5p, miR-155-5p, miR-216-5p, and miR-320c-3p in human vascular endothelial cells. Sci Rep 2024; 14:7151. [PMID: 38531978 DOI: 10.1038/s41598-024-57750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Nutritional and genetic deficiencies in homocysteine (Hcy) metabolism lead to hyperhomocysteinemia (HHcy) and cause endothelial dysfunction, a hallmark of atherosclerosis, which is a major cause of cardiovascular disease (CVD). Impaired autophagy causes the accumulation of damaged proteins and organelles and is associated with CVD. Biochemically, HHcy is characterized by elevated levels of Hcy and its metabolites, Hcy-thiolactone and N-Hcy-protein. However, whether these metabolites can dysregulate mTOR signaling and autophagy in endothelial cells is not known. Here, we examined the influence of Hcy-thiolactone, N-Hcy-protein, and Hcy on autophagy human umbilical vein endothelial cells. We found that treatments with Hcy-thiolactone, N-Hcy-protein, or Hcy significantly downregulated beclin 1 (BECN1), autophagy-related 5 (ATG5), autophagy-related 7 (ATG7), and microtubule-associated protein 1 light chain 3 (LC3) mRNA and protein levels. We also found that these changes were mediated by upregulation by Hcy-thiolactone, N-Hcy-protein, and Hcy of autophagy-targeting microRNA (miR): miR-21, miR-155, miR-216, and miR-320c. The effects of these metabolites on levels of miR targeting autophagy as well as on the levels of BECN1, ATG5, ATG7, and LC3 mRNA and protein were abrogated by treatments with inhibitors of miR-21, miR-155, miR-216, and mir320c. Taken together, our findings show that Hcy metabolites can upregulate miR-21, miR-155, miR-216, and mir320c, which then downregulate autophagy in human endothelial cells, important for vascular homeostasis.
Collapse
Affiliation(s)
- Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632, Poznań, Poland
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632, Poznań, Poland.
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, International Center for Public Health, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA.
| |
Collapse
|
6
|
Suszyńska-Zajczyk J, Witucki Ł, Perła-Kaján J, Jakubowski H. Diet-induced hyperhomocysteinemia causes sex-dependent deficiencies in offspring musculature and brain function. Front Cell Dev Biol 2024; 12:1322844. [PMID: 38559811 PMCID: PMC10979824 DOI: 10.3389/fcell.2024.1322844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Hyperhomocysteinemia (HHcy), characterized by elevated homocysteine (Hcy) levels, is a known risk factor for cardiovascular, renal, and neurological diseases, as well as pregnancy complications. Our study aimed to investigate whether HHcy induced by a high-methionine (high-Met) diet exacerbates cognitive and behavioral deficits in offspring and leads to other breeding problems. Dietary HHcy was induced four weeks before mating and continued throughout gestation and post-delivery. A battery of behavioral tests was conducted on offspring between postnatal days (PNDs) 5 and 30 to assess motor function/activity and cognition. The results were correlated with brain morphometric measurements and quantitative analysis of mammalian target of rapamycin (mTOR)/autophagy markers. The high-Met diet significantly increased parental and offspring urinary tHcy levels and influenced offspring behavior in a sex-dependent manner. Female offspring exhibited impaired cognition, potentially related to morphometric changes observed exclusively in HHcy females. Male HHcy pups demonstrated muscle weakness, evidenced by slower surface righting, reduced hind limb suspension (HLS) hanging time, weaker grip strength, and decreased activity in the beaker test. Western blot analyses indicated the downregulation of autophagy and the upregulation of mTOR activity in HHcy cortexes. HHcy also led to breeding impairments, including reduced breeding rate, in-utero fetal death, lower pups' body weight, and increased mortality, likely attributed to placental dysfunction associated with HHcy. In conclusion, a high-Met diet impairs memory and cognition in female juveniles and weakens muscle strength in male pups. These effects may stem from abnormal placental function affecting early neurogenesis, the dysregulation of autophagy-related pathways in the cortex, or epigenetic mechanisms of gene regulation triggered by HHcy during embryonic development.
Collapse
Affiliation(s)
- Joanna Suszyńska-Zajczyk
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Perła-Kaján
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers University, New Jersey Medical School, International Center for Public Health, Newark, NJ, United States
| |
Collapse
|
7
|
Largeau B, Bergeron S, Auger F, Salmon Gandonnière C, Jonville-Béra AP, Ehrmann S, Gautier S, Bordet R. Experimental Models of Posterior Reversible Encephalopathy Syndrome: A Review From Pathophysiology to Therapeutic Targets. Stroke 2024; 55:484-493. [PMID: 38126184 DOI: 10.1161/strokeaha.123.044533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Posterior reversible encephalopathy syndrome (PRES) is a clinical and radiological entity characterized by nonspecific symptomatology (eg, headache, visual disturbances, encephalopathy, and seizures) and classically cortical and subcortical vasogenic edema predominantly affecting the parietooccipital region. PRES etiologies are usually dichotomized into toxic PRES (eg, antineoplastic drugs, illicit drugs) and clinical condition-associated PRES (eg, acute hypertension, dysimmune disorders). Although the pathophysiology of PRES remains elusive, 2 main pathogenic hypotheses have been suggested: cerebral hyperperfusion due to acute hypertension and cerebral hypoperfusion related to endothelial dysfunction. Research into the pathogenesis of PRES has emerged through the development of animal models in the last decade. The motivation for developing a suitable PRES model is 2-fold: to fill in knowledge gaps of the pathophysiological mechanisms involved, and to open new perspectives for clinical assessment of pharmacological targets to improve therapeutic management of PRES. All current models of PRES have a hypertensive background, on which other triggers (acute hypertension, inflammatory, drug toxicity) have been added to address specific facets of PRES (eg, seizures). The initial model consisted in inducing a reduced uterine perfusion pressure that mimics preeclampsia, a leading cause of PRES. More recently, a model of stroke-prone spontaneously hypertensive rats on high-salt diet, originally developed for hypertensive small vessel disease and vascular cognitive impairment, has been studied in PRES. This review aims to discuss, depending on the research objective, the benefits and limitations of current experimental approaches and thus to define the desirable characteristics for studying the pathophysiology of PRES and developing new therapies.
Collapse
Affiliation(s)
- Bérenger Largeau
- CHRU de Tours, Service de Pharmacosurveillance, Centre Régional de Pharmacovigilance Centre-Val de Loire, Tours, France (B.L.)
| | - Sandrine Bergeron
- Université de Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille Neuroscience & Cognition, Unité Mixte de Recherche (UMR) 1172, équipe Troubles Cognitifs Dégénératifs et Vasculaires, Centre Hospitalier Universitaire (CHU) de Lille, Service de Pharmacologie Médicale, Centre Régional de Pharmacovigilance, France (S.B., S.G., R.B.)
| | - Florent Auger
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, CHU Lille, Institut Pasteur de Lille, US 41, Unités Mixtes de Service 2014, Plateformes Lilloises en Biologie et Santé, Lille, France (F.A.)
| | - Charlotte Salmon Gandonnière
- CHRU de Tours, Service de Médecine Intensive Réanimation, réseau CRICS-TRIGGERSEP F-CRIN (Clinical Research in Intensive Care Sepsis Trial Group for Global Evaluation Research in Sepsis, a French Clinical Research Infrastructure Network) Research Network, Tours, France (C.S.G.)
| | - Annie-Pierre Jonville-Béra
- Université de Tours, Université de Nantes, INSERM, Methods in Patients-Centered Outcomes and Health Research (SPHERE), UMR 1246, CHRU de Tours, Service de Pharmacosurveillance, Centre Régional de Pharmacovigilance Centre-Val de Loire, Tours, France (A.-P.J.-B.)
| | - Stephan Ehrmann
- Université de Tours, INSERM, Centre d'étude des Pathologies Respiratoires (CEPR), UMR 1100, CHRU de Tours, Service de Médecine Intensive Réanimation, CIC 1415, réseau CRICS-TRIGGERSEP F-CRIN Research Network, Tours, France (S.E.)
| | - Sophie Gautier
- Université de Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille Neuroscience & Cognition, Unité Mixte de Recherche (UMR) 1172, équipe Troubles Cognitifs Dégénératifs et Vasculaires, Centre Hospitalier Universitaire (CHU) de Lille, Service de Pharmacologie Médicale, Centre Régional de Pharmacovigilance, France (S.B., S.G., R.B.)
| | - Régis Bordet
- Université de Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille Neuroscience & Cognition, Unité Mixte de Recherche (UMR) 1172, équipe Troubles Cognitifs Dégénératifs et Vasculaires, Centre Hospitalier Universitaire (CHU) de Lille, Service de Pharmacologie Médicale, Centre Régional de Pharmacovigilance, France (S.B., S.G., R.B.)
| |
Collapse
|
8
|
Chatterjee B, Fatima F, Seth S, Sinha Roy S. Moderate Elevation of Homocysteine Induces Endothelial Dysfunction through Adaptive UPR Activation and Metabolic Rewiring. Cells 2024; 13:214. [PMID: 38334606 PMCID: PMC10854856 DOI: 10.3390/cells13030214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 02/10/2024] Open
Abstract
Elevation of the intermediate amino acid metabolite Homocysteine (Hcy) causes Hyperhomocysteinemia (HHcy), a metabolic disorder frequently associated with mutations in the methionine-cysteine metabolic cycle as well as with nutritional deficiency and aging. The previous literature suggests that HHcy is a strong risk factor for cardiovascular diseases. Severe HHcy is well-established to correlate with vascular pathologies primarily via endothelial cell death. Though moderate HHcy is more prevalent and associated with an increased risk of cardiovascular abnormalities in later part of life, its precise role in endothelial physiology is largely unknown. In this study, we report that moderate elevation of Hcy causes endothelial dysfunction through impairment of their migration and proliferation. We established that unlike severe elevation of Hcy, moderate HHcy is not associated with suppression of endothelial VEGF/VEGFR transcripts and ROS induction. We further showed that moderate HHcy induces a sub-lethal ER stress that causes defective endothelial migration through abnormal actin cytoskeletal remodeling. We also found that sub-lethal increase in Hcy causes endothelial proliferation defect by suppressing mitochondrial respiration and concomitantly increases glycolysis to compensate the consequential ATP loss and maintain overall energy homeostasis. Finally, analyzing a previously published microarray dataset, we confirmed that these hallmarks of moderate HHcy are conserved in adult endothelial cells as well. Thus, we identified adaptive UPR and metabolic rewiring as two key mechanistic signatures in moderate HHcy-associated endothelial dysfunction. As HHcy is clinically associated with enhanced vascular inflammation and hypercoagulability, identifying these mechanistic pathways may serve as future targets to regulate endothelial function and health.
Collapse
Affiliation(s)
- Barun Chatterjee
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Fabeha Fatima
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
| | - Surabhi Seth
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
9
|
Andrews SG, Koehle AM, Paudel D, Neuberger T, Ross AC, Singh V, Bottiglieri T, Castro R. Diet-Induced Severe Hyperhomocysteinemia Promotes Atherosclerosis Progression and Dysregulates the Plasma Metabolome in Apolipoprotein-E-Deficient Mice. Nutrients 2024; 16:330. [PMID: 38337615 PMCID: PMC10856797 DOI: 10.3390/nu16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Atherosclerosis and resulting cardiovascular disease are the leading causes of death in the US. Hyperhomocysteinemia (HHcy), or the accumulation of the intermediate amino acid homocysteine, is an independent risk factor for atherosclerosis, but the intricate biological processes mediating this effect remain elusive. Several factors regulate homocysteine levels, including the activity of several enzymes and adequate levels of their coenzymes, including pyridoxal phosphate (vitamin B6), folate (vitamin B9), and methylcobalamin (vitamin B12). To better understand the biological influence of HHcy on the development and progression of atherosclerosis, apolipoprotein-E-deficient (apoE-/- mice), a model for human atherosclerosis, were fed a hyperhomocysteinemic diet (low in methyl donors and B vitamins) (HHD) or a control diet (CD). After eight weeks, the plasma, aorta, and liver were collected to quantify methylation metabolites, while plasma was also used for a broad targeted metabolomic analysis. Aortic plaque burden in the brachiocephalic artery (BCA) was quantified via 14T magnetic resonance imaging (MRI). A severe accumulation of plasma and hepatic homocysteine and an increased BCA plaque burden were observed, thus confirming the atherogenic effect of the HHD. Moreover, a decreased methylation capacity in the plasma and aorta, indirectly assessed by the ratio of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) was detected in HHD mice together with a 172-fold increase in aortic cystathionine levels, indicating increased flux through the transsulfuration pathway. Betaine and its metabolic precursor, choline, were significantly decreased in the livers of HHD mice versus CD mice. Widespread changes in the plasma metabolome of HHD mice versus CD animals were detected, including alterations in acylcarnitines, amino acids, bile acids, ceramides, sphingomyelins, triacylglycerol levels, and several indicators of dysfunctional lipid metabolism. This study confirms the relevance of severe HHcy in the progression of vascular plaque and suggests novel metabolic pathways implicated in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Stephen G. Andrews
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Anthony M. Koehle
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Devendra Paudel
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Vishal Singh
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA;
| | - Rita Castro
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
10
|
Jalal IA, Elkhoely A, Mohamed SK, Ahmed AAE. Linagliptin and secoisolariciresinol diglucoside attenuate hyperlipidemia and cardiac hypertrophy induced by a high-methionine diet in rats via suppression of hyperhomocysteinemia-induced endoplasmic reticulum stress. Front Pharmacol 2023; 14:1275730. [PMID: 38026992 PMCID: PMC10665493 DOI: 10.3389/fphar.2023.1275730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Cardiac hypertrophy (CH) is one of the contributing causes of morbidity and mortality. Hyperhomocysteinemia (HHcy) is one of the diseases which may predispose hyperlipidemia and CH. Linagliptin (Lina) and secoisolariciresinol diglucoside (SDG) are known to alleviate a variety of illnesses by reducing oxidative stress and inflammation. Aim: This study aimed to study the effect of HHcy on cardiac tissues, with a special focus on endoplasmic reticulum (ER) stress as a mainstay pathophysiological pathway. In addition, our study examined the protective effect of Lina, SDG, and their combination against HHcy-induced hyperlipidemia and CH in rats. Methods: Seventy-five male Sprague-Dawley rats were randomly divided into five groups, and for 60 days, the following regimen was administered: Group I: rats received distilled water; Group II: rats received methionine (MET) (2 g/kg/day, p.o.); groups III and IV: rats received Lina (3 mg/kg/day, p.o.) and SDG (20 mg/kg/day, p.o.), respectively, followed by MET (2 g/kg/day, p.o.); Group V: rats received Lina and SDG, followed by MET (2 g/kg/day, p.o.). Results: Pretreatment with Lina, SDG, and their combination showed a significant decrease in serum levels of HHcy and an improved lipid profile compared to the MET group. Moreover, both drugs improved cardiac injury, as evidenced by the substantial improvement in ECG parameters, morphological features of the cardiac muscle, and reduced serum levels of cardiac markers. Additionally, Lina and SDG significantly attenuated cardiac oxidative stress, inflammation, and apoptosis. Furthermore, Lina, SDG, and their combination remarkably downregulated the enhanced expression of endoplasmic reticulum (ER) stress markers, GRP78, PERK, ATF-4, CHOP, NF-κB, and SREBP1c compared to the MET-group. Conclusion: Lina and SDG showed cardioprotective effects against HHcy-induced heart hypertrophy and hyperlipidemia in rats.
Collapse
|
11
|
van Hummel A, Taleski G, Sontag J, Feiten AF, Ke YD, Ittner LM, Sontag E. Methyl donor supplementation reduces phospho-Tau, Fyn and demethylated protein phosphatase 2A levels and mitigates learning and motor deficits in a mouse model of tauopathy. Neuropathol Appl Neurobiol 2023; 49:e12931. [PMID: 37565253 PMCID: PMC10947299 DOI: 10.1111/nan.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Reduced folate status and elevated levels of circulating homocysteine are modifiable risk factors for cognitive decline and dementia. Disturbances in one-carbon metabolism are associated with the pathological accumulation of phosphorylated tau, a hallmark feature of prevalent dementia, including Alzheimer's disease and subgroups of frontotemporal dementia. METHODS Here, using transgenic TAU58/2 mouse models of human tauopathy, we tested whether dietary supplementation with L-methylfolate (the active folate form), choline and betaine can reduce tau phosphorylation and associated behavioural phenotypes. RESULTS TAU58/2 mice fed with the methyl donor-enriched diet showed reduced phosphorylation of tau at the pathological S202 (CP13) and S396/S404 (PHF-1) epitopes and alleviation of associated motor and learning deficits. Compared with mice on the control diet, the decrease in cortical phosphorylated tau levels in mice fed with the methyl donor-enriched diet was associated with enhanced methylation of protein phosphatase 2A, the major brain tau Ser/Thr phosphatase. It also correlated with a reduction in protein levels of Fyn, a tau tyrosine kinase that plays a central role in mediating pathological tau-induced neurodegeneration. Conversely, Fyn expression levels were increased in mice with deficiencies in folate metabolism. CONCLUSIONS Our findings provide the first experimental evidence that boosting one-carbon metabolism with L-methylfolate, choline and betaine can mitigate key pathological, learning and motor deficits in a tauopathy mouse model. They give support to using a combination of methyl donors as a preventive or disease-modifying strategy for tauopathies.
Collapse
Affiliation(s)
- Annika van Hummel
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Goce Taleski
- School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Jean‐Marie Sontag
- School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Astrid Feentje Feiten
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Yazi D. Ke
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Lars M. Ittner
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Estelle Sontag
- School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
12
|
Arutjunyan AV, Milyutina YP, Shcherbitskaia AD, Kerkeshko GO, Zalozniaia IV. Epigenetic Mechanisms Involved in the Effects of Maternal Hyperhomocysteinemia on the Functional State of Placenta and Nervous System Plasticity in the Offspring. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:435-456. [PMID: 37080931 DOI: 10.1134/s0006297923040016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
According to modern view, susceptibility to diseases, specifically to cognitive and neuropsychiatric disorders, can form during embryonic development. Adverse factors affecting mother during the pregnancy increase the risk of developing pathologies. Despite the association between elevated maternal blood homocysteine (Hcy) and fetal brain impairments, as well as cognitive deficits in the offspring, the role of brain plasticity in the development of these pathologies remains poorly studied. Here, we review the data on the negative impact of hyperhomocysteinemia (HHcy) on the neural plasticity, in particular, its possible influence on the offspring brain plasticity through epigenetic mechanisms, such as changes in intracellular methylation potential, activity of DNA methyltransferases, DNA methylation, histone modifications, and microRNA expression in brain cells. Since placenta plays a key role in the transport of nutrients and transmission of signals from mother to fetus, its dysfunction due to aberrant epigenetic regulation can affect the development of fetal CNS. The review also presents the data on the impact of maternal HHcy on the epigenetic regulation in the placenta. The data presented in the review are not only interesting from purely scientific point of view, but can help in understanding the role of HHcy and epigenetic mechanisms in the pathogenesis of diseases, such as pregnancy pathologies resulting in the delayed development of fetal brain, cognitive impairments in the offspring during childhood, and neuropsychiatric and neurodegenerative disorders later in life, as well as in the search for approaches for their prevention using neuroprotectors.
Collapse
Affiliation(s)
- Alexander V Arutjunyan
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia.
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, 197110, Russia
| | - Yulia P Milyutina
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, 194100, Russia
| | - Anastasia D Shcherbitskaia
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia
| | - Gleb O Kerkeshko
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, 197110, Russia
| | - Irina V Zalozniaia
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| |
Collapse
|
13
|
Zhong X, He R, You S, Liu B, Wang X, Mao J. The Roles of Aerobic Exercise and Folate Supplementation in Hyperhomocysteinemia-Accelerated Atherosclerosis. ACTA CARDIOLOGICA SINICA 2023; 39:309-318. [PMID: 36911543 PMCID: PMC9999187 DOI: 10.6515/acs.202303_39(2).20221027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/27/2022] [Indexed: 03/14/2023]
Abstract
Background Hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis. Effective interventions to reduce HHcy-accelerated atherosclerosis are required. Objectives This study aimed to investigate the effects of aerobic exercise (AE) and folate (FA) supplementation on plasma homocysteine (Hcy) level and atherosclerosis development in a mouse model. Methods Six-week-old female apoE-/- mice were grouped into five groups (N = 6-8): HHcy (1.8 g/L DL-homocysteine (DL-Hcy) in drinking water), HHcy + AE (1.8 g/L DL-Hcy and aerobic exercise training on a treadmill), HHcy + FA (1.8 g/L DL-Hcy and 0.006% folate in diet), HHcy + AE + FA (1.8 g/L DL-Hcy, 0.006% folate, and aerobic exercise training on a treadmill), and a control group (regular water and diet). All treatment was sustained for 8 weeks. Triglyceride, cholesterol, lipoprotein, and Hcy levels were determined enzymatically. Plaque and monocyte chemoattractant protein-1 (MCP-1) expression levels in mouse aortic roots were evaluated by immunohistochemistry. Results Compared to the HHcy group (18.88 ± 6.13 μmol/L), plasma Hcy concentration was significantly reduced in the HHcy + AE (14.79 ± 3.05 μmol/L, p = 0.04), HHcy + FA (9.4 ± 3.85 μmol/L, p < 0.001), and HHcy + AE + FA (9.33 ± 2.21 μmol/L, p < 0.001) groups. Significantly decreased aortic root plaque area and plaque burden were found in the HHcy + AE and HHcy + AE + FA groups compared to those in the HHcy group (both p < 0.05). Plasma MCP-1 level and MCP-1 expression in atherosclerotic lesions were significantly decreased in the HHcy + AE and HHcy + AE + FA groups compared to the HHcy group (all p < 0.05). Conclusions AE reduced atherosclerosis development in HHcy apoE-/- mice independently of reducing Hcy levels. FA supplementation decreased plasma Hcy levels without attenuating HHcy-accelerated atherosclerosis. AE and FA supplementation have distinct mechanisms in benefiting atherosclerosis.
Collapse
Affiliation(s)
- Xingming Zhong
- School of Kinesiology and Health, Capital University of Physical Education and Sports
| | - Rong He
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University
| | - Shaohua You
- School of Kinesiology and Health, Capital University of Physical Education and Sports
| | - Bo Liu
- Department of Physiology, Peking University Health Center
| | - Xiujie Wang
- School of Kinesiology and Health, Capital University of Physical Education and Sports
| | - Jieming Mao
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Yang Y, Lu M, Xu Y, Qian J, Le G, Xie Y. Dietary Methionine via Dose-Dependent Inhibition of Short-Chain Fatty Acid Production Capacity Contributed to a Potential Risk of Cognitive Dysfunction in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15225-15243. [PMID: 36413479 DOI: 10.1021/acs.jafc.2c04847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High-methionine diets induce impaired learning and memory function, dementia-like neurodegeneration, and Alzheimer's disease, while low-methionine diets improve learning and memory function. We speculated that variations in intestinal microbiota may mediate these diametrically opposed effects; thus, this study aimed to verify this hypothesis. The ICR mice were fed either a low-methionine diet (LM, 0.17% methionine), normal methionine diet (NM, 0.86% methionine), or high-methionine diet (HM, 2.58% methionine) for 11 weeks. We found that HM diets damaged nonspatial recognition memory, working memory, and hippocampus-dependent spatial memory and induced anxiety-like behaviors in mice. LM diets improved nonspatial recognition memory and hippocampus-dependent spatial memory and ameliorated anxiety-like behavior, but the differences did not reach a significant level. Moreover, HM diets significantly decreased the abundance of putative short-chain fatty acid (SCFA)-producing bacteria (Roseburia, Blautia, Faecalibaculum, and Bifidobacterium) and serotonin-producing bacteria (Turicibacter) and significantly increased the abundance of proinflammatory bacteria Escherichia-Shigella. Of note, LM diets reversed the results. Consequently, the SCFA and serotonin levels were significantly decreased with HM diets and significantly increased with LM diets. Furthermore, HM diets induced hippocampal oxidative stress and inflammation and selectively downregulated the hippocampus-dependent memory-related gene expression, whereas LM diets selectively upregulated the hippocampus-dependent memory-related gene expression. In conclusion, dietary methionine via dose-dependent inhibition of SCFA production capacity contributed to a potential risk of cognitive dysfunction in mice.
Collapse
Affiliation(s)
- Yuhui Yang
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Manman Lu
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuncong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Qian
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanli Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
15
|
High dietary methionine intake may contribute to the risk of nonalcoholic fatty liver disease by inhibiting hepatic H2S production. Food Res Int 2022; 158:111507. [DOI: 10.1016/j.foodres.2022.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/06/2022]
|
16
|
Seaks CE, Weekman EM, Sudduth TL, Xie K, Wasek B, Fardo DW, Johnson LA, Bottiglieri T, Wilcock DM. Apolipoprotein E ε4/4 genotype limits response to dietary induction of hyperhomocysteinemia and resulting inflammatory signaling. J Cereb Blood Flow Metab 2022; 42:771-787. [PMID: 35023380 PMCID: PMC9254035 DOI: 10.1177/0271678x211069006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/15/2021] [Accepted: 11/17/2021] [Indexed: 01/16/2023]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) are the second leading cause of dementia behind Alzheimer's disease. Apolipoprotein E (ApoE) is a lipid transporting lipoprotein found within the brain and periphery. The APOE ε4 allele is the strongest genetic risk factor for late onset Alzheimer's disease and is a risk factor for VCID. Our lab has previously utilized a dietary model of hyperhomocysteinemia (HHcy) to induce VCID pathology and cognitive deficits in mice. This diet induces perivascular inflammation through cumulative oxidative damage leading to glial mediated inflammation and blood brain barrier breakdown. Here, we examine the impact of ApoE ε4 compared to ε3 alleles on the progression of VCID pathology and inflammation in our dietary model of HHcy. We report a significant resistance to HHcy induction in ε4 mice, accompanied by a number of related differences related to homocysteine (Hcy) metabolism and methylation cycle, or 1-C, metabolites. There were also significant differences in inflammatory profiles between ε3 and ε4 mice, as well as significant reduction in Serpina3n, a serine protease inhibitor associated with ApoE ε4, expression in ε4 HHcy mice relative to ε4 controls. Finally, we find evidence of pervasive sex differences within both genotypes in response to HHcy induction.
Collapse
Affiliation(s)
- Charles E Seaks
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY,
USA
| | - Erica M Weekman
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY,
USA
| | | | - Kevin Xie
- Department of Biostatistics, University of Kentucky, Lexington,
KY, USA
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor
Scott & White Research Institute, Dallas, TX, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Biostatistics, University of Kentucky, Lexington,
KY, USA
| | - Lance A Johnson
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY,
USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor
Scott & White Research Institute, Dallas, TX, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY,
USA
| |
Collapse
|
17
|
Nieraad H, de Bruin N, Arne O, Hofmann MCJ, Pannwitz N, Resch E, Luckhardt S, Schneider AK, Trautmann S, Schreiber Y, Gurke R, Parnham MJ, Till U, Geisslinger G. The Roles of Long-Term Hyperhomocysteinemia and Micronutrient Supplementation in the AppNL–G–F Model of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:876826. [PMID: 35572151 PMCID: PMC9094364 DOI: 10.3389/fnagi.2022.876826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
A causal contribution of hyperhomocysteinemia to cognitive decline and Alzheimer’s disease (AD), as well as potential prevention or mitigation of the pathology by dietary intervention, have frequently been subjects of controversy. In the present in vivo study, we attempted to further elucidate the impact of elevated homocysteine (HCys) and homocysteic acid (HCA) levels, induced by dietary B-vitamin deficiency, and micronutrient supplementation on AD-like pathology, which was simulated using the amyloid-based AppNL–G–F knock-in mouse model. For this purpose, cognitive assessment was complemented by analyses of ex vivo parameters in whole blood, serum, CSF, and brain tissues from the mice. Furthermore, neurotoxicity of HCys and HCA was assessed in a separate in vitro assay. In confirmation of our previous study, older AppNL–G–F mice also exhibited subtle phenotypic impairment and extensive cerebral amyloidosis, whereas dietary manipulations did not result in significant effects. As revealed by proximity extension assay-based proteome analysis, the AppNL–G–F genotype led to an upregulation of AD-characteristic neuronal markers. Hyperhomocysteinemia, in contrast, indicated mainly vascular effects. Overall, since there was an absence of a distinct phenotype despite both a significant amyloid-β burden and serum HCys elevation, the results in this study did not corroborate the pathological role of amyloid-β according to the “amyloid hypothesis,” nor of hyperhomocysteinemia on cognitive performance. Nevertheless, this study aided in further characterizing the AppNL–G–F model and in elucidating the role of HCys in diverse biological processes. The idea of AD prevention with the investigated micronutrients, however, was not supported, at least in this mouse model of the disease.
Collapse
Affiliation(s)
- Hendrik Nieraad
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Natasja de Bruin
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- *Correspondence: Natasja de Bruin,
| | - Olga Arne
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Martine C. J. Hofmann
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Nina Pannwitz
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Eduard Resch
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Sonja Luckhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Ann-Kathrin Schneider
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Sandra Trautmann
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Robert Gurke
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Michael J. Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- EpiEndo Pharmaceuticals, Reykjavík, Iceland
| | - Uwe Till
- Former Institute of Pathobiochemistry, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
18
|
The Controversial Role of HCY and Vitamin B Deficiency in Cardiovascular Diseases. Nutrients 2022; 14:nu14071412. [PMID: 35406025 PMCID: PMC9003430 DOI: 10.3390/nu14071412] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Plasma homocysteine (HCY) is an established risk factor for cardiovascular disease CVD and stroke. However, more than two decades of intensive research activities has failed to demonstrate that Hcy lowering through B-vitamin supplementation results in a reduction in CVD risk. Therefore, doubts about a causal involvement of hyperhomocysteinemia (HHcy) and B-vitamin deficiencies in atherosclerosis persist. Existing evidence indicates that HHcy increases oxidative stress, causes endoplasmatic reticulum (ER) stress, alters DNA methylation and, thus, modulates the expression of numerous pathogenic and protective genes. Moreover, Hcy can bind directly to proteins, which can change protein function and impact the intracellular redox state. As most mechanistic evidence is derived from experimental studies with rather artificial settings, the relevance of these results in humans remains a matter of debate. Recently, it has also been proposed that HHcy and B-vitamin deficiencies may promote CVD through accelerated telomere shortening and telomere dysfunction. This review provides a critical overview of the existing literature regarding the role of HHcy and B-vitamin deficiencies in CVD. At present, the CVD risk associated with HHcy and B vitamins is not effectively actionable. Therefore, routine screening for HHcy in CVD patients is of limited value. However, B-vitamin depletion is rather common among the elderly, and in such cases existing deficiencies should be corrected. While Hcy-lowering with high doses of B vitamins has no beneficial effects in secondary CVD prevention, the role of Hcy in primary disease prevention is insufficiently studied. Therefore, more intervention and experimental studies are needed to address existing gaps in knowledge.
Collapse
|
19
|
Wang J, Zheng B, Yang S, Zheng H, Wang J. Opicapone Protects Against Hyperhomocysteinemia-Induced Increase in Blood-Brain Barrier Permeability. Neurotox Res 2021; 39:2018-2028. [PMID: 34709593 DOI: 10.1007/s12640-021-00429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Hyperhomocysteinemia (HHcy)-related brain vascular disorders and brain endothelial dysfunction are important characteristics of the pathogeneses of subarachnoid hemorrhage and stroke. Upregulated homocysteine (Hcy) can impair the integrity of the blood-brain barrier (BBB). Opicapone has been recently licensed for the management of Parkinson's disease (PD); however, it is unknown whether it possesses a protective effect in brain vessels against HHcy. To investigate the beneficial effects of Opicapone on BBB permeability against HHcy, we carried out both in vivo and in vitro experiments. Mice were allocated into four groups: the Control, Opicapone, HHcy, and HHcy + Opicapone. Interestingly, we found that the administration of Opicapone attenuated the increased BBB permeability in Hcy-treated mice, as determined by sodium fluorescein staining. The immunofluorescence staining showed that Opicapone prevented homocysteine-induced reduction of claudin-2 in the mice cortices. The in situ zymography assay revealed that Opicapone suppressed homocysteine-increased matrix metalloproteinases (MMPs) activity in the cortices. In bEnd.3 brain endothelial cells, Opicapone treatment ameliorated homocysteine-induced lactate dehydrogenase (LDH) release and expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Furthermore, Opicapone alleviated homocysteine-induced decrease in claudin-2 level in bEnd.3 cells. In summary, our results show that Opicapone protects against HHcy-induced BBB permeability by reducing the expression and gelatinase activity of MMPs, and increasing the expression of claudin-2.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurology, Ya'an Peoples Hospital, Ya'an, 625000, Sichuan, China
| | - Bo Zheng
- Department of Neurology, Ya'an Peoples Hospital, Ya'an, 625000, Sichuan, China
| | - Shu Yang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, 610000, Sichuan, China
| | - Hui Zheng
- Department of Neurology, Chengdu First People's Hospital, Chengdu, 610000, Sichuan, China.
| | - Jianhong Wang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
20
|
Castro R, Whalen CA, Gullette S, Mattie FJ, Florindo C, Heil SG, Huang NK, Neuberger T, Ross AC. A Hypomethylating Ketogenic Diet in Apolipoprotein E-Deficient Mice: A Pilot Study on Vascular Effects and Specific Epigenetic Changes. Nutrients 2021; 13:nu13103576. [PMID: 34684577 PMCID: PMC8537671 DOI: 10.3390/nu13103576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/20/2022] Open
Abstract
Hyperhomocysteneinemia (HHcy) is common in the general population and is a risk factor for atherosclerosis by mechanisms that are still elusive. A hypomethylated status of epigenetically relevant targets may contribute to the vascular toxicity associated with HHcy. Ketogenic diets (KD) are diets with a severely restricted amount of carbohydrates that are being widely used, mainly for weight-loss purposes. However, studies associating nutritional ketosis and HHcy are lacking. This pilot study investigates the effects of mild HHcy induced by nutritional manipulation of the methionine metabolism in the absence of dietary carbohydrates on disease progression and specific epigenetic changes in the apolipoprotein-E deficient (apoE-/-) mouse model. ApoE-/- mice were either fed a KD, a diet with the same macronutrient composition but low in methyl donors (low methyl KD, LMKD), or control diet. After 4, 8 or 12 weeks plasma was collected for the quantification of: (1) nutritional ketosis, (i.e., the ketone body beta-hydroxybutyrate using a colorimetric assay); (2) homocysteine by HPLC; (3) the methylating potential S-adenosylmethionine to S-adenosylhomocysteine ratio (AdoHcy/AdoMet) by LC-MS/MS; and (4) the inflammatory cytokine monocyte chemoattractant protein 1 (MCP1) by ELISA. After 12 weeks, aortas were collected to assess: (1) the vascular AdoHcy/AdoMet ratio; (2) the volume of atherosclerotic lesions by high-field magnetic resonance imaging (14T-MRI); and (3) the content of specific epigenetic tags (H3K27me3 and H3K27ac) by immunofluorescence. The results confirmed the presence of nutritional ketosis in KD and LMKD mice but not in the control mice. As expected, mild HHcy was only detected in the LMKD-fed mice. Significantly decreased MCP1 plasma levels and plaque burden were observed in control mice versus the other two groups, together with an increased content of one of the investigated epigenetic tags (H3K27me3) but not of the other (H3K27ac). Moreover, we are unable to detect any significant differences at the p < 0.05 level for MCP1 plasma levels, vascular AdoMet:AdoHcy ratio levels, plaque burden, and specific epigenetic content between the latter two groups. Nevertheless, the systemic methylating index was significantly decreased in LMKD mice versus the other two groups, reinforcing the possibility that the levels of accumulated homocysteine were insufficient to affect vascular transmethylation reactions. Further studies addressing nutritional ketosis in the presence of mild HHcy should use a higher number of animals and are warranted to confirm these preliminary observations.
Collapse
Affiliation(s)
- Rita Castro
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: ; Tel.: +1-814-865-2938
| | - Courtney A. Whalen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Sean Gullette
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (S.G.); (T.N.)
| | - Floyd J. Mattie
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Cristina Florindo
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Sandra G. Heil
- Medical Center Rotterdam, Department of Clinical Chemistry, Erasmus MC University, 3015 GD Rotterdam, The Netherlands;
| | - Neil K. Huang
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
- Jean Mayer USDA Human Nutrition Research Center on Aging, Cardiovascular Nutrition Laboratory, Tufts University, Boston, MA 02111, USA
| | - Thomas Neuberger
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (S.G.); (T.N.)
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| |
Collapse
|
21
|
Mentese A, Dogramaci S, Demir S, Yaman SO, Ince I, Altay DU, Erdem M, Turan I, Alver A. The effect of homocysteine on the expression of CD36, PPARγ, and C/EBPα in adipose tissue of normal and obese mice. Arch Physiol Biochem 2021; 127:437-444. [PMID: 31373231 DOI: 10.1080/13813455.2019.1648517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to investigate the effect of homocysteine (Hcy) on CD36, PPARγ, and C/EBPα gene and protein expression in adipose tissue obtained from normal and high-calorie diet obesity models. CD36, PPARγ, and C/EBPα gene expression and protein levels in adipose tissue specimens were determined using the RT-PCR and ELISA methods, respectively. Significantly increased CD36 gene expression was observed in adipose tissue from obese mice, while Hcy significantly reduced CD36 gene expression in adipose tissue from normal and obese mice. PPARγ and C/EBPα gene expression levels decreased significantly in all groups compared to the normal group. In addition, levels of both PPARγ and C/EBPα gene expression were lower with Hcy supplementation compared to their own controls. In conclusion, Hcy's reduction of CD36 gene expression in adipose tissue may be one probable factor in hyperhomocysteinemia representing an independent risk factor for cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmet Mentese
- Program of Medical Laboratory Techniques, Vocational School of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Seniz Dogramaci
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Serap Ozer Yaman
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Imran Ince
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Diler Us Altay
- Department of Chemistry and Chemical Processing Technology, Ulubey Vocational School, Ordu University, Ordu, Turkey
| | - Mehmet Erdem
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ibrahim Turan
- Department of Genetic and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, Gumushane, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
22
|
Poddar R. Hyperhomocysteinemia is an emerging comorbidity in ischemic stroke. Exp Neurol 2021; 336:113541. [PMID: 33278453 PMCID: PMC7856041 DOI: 10.1016/j.expneurol.2020.113541] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Hyperhomocysteinemia or systemic elevation of the amino acid homocysteine is a common metabolic disorder that is considered to be a risk factor for ischemic stroke. However, it is still unclear whether predisposition to hyperhomocysteinemia could contribute to the severity of stroke outcome. This review highlights the advantages and limitations of the current rodent models of hyperhomocysteinemia, describes the consequence of mild hyperhomocysteinemia on the severity of ischemic brain damage in preclinical studies and summarizes the mechanisms involved in homocysteine induced neurotoxicity. The findings provide the premise for establishing hyperhomocysteinemia as a comorbidity for ischemic stroke and should be taken into consideration while developing potential therapeutic agents for stroke treatment.
Collapse
Affiliation(s)
- Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
23
|
Kumar M, Sandhir R. Hydrogen sulfide attenuates hyperhomocysteinemia-induced blood-brain barrier permeability by inhibiting MMP-9. Int J Neurosci 2021; 132:1061-1071. [PMID: 33287606 DOI: 10.1080/00207454.2020.1860967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Backgroud: Hyperhomocysteinemia (HHcy) is implicated in various neurovascular disorders including vascular dementia, subarachnoid hemorrhage and stroke. Elevated homocysteine (Hcy) levels are associated with increased oxidative stress and compromised blood-brain barrier (BBB) integrity. Hydrogen sulfide (H2S) has recently emerged as potent neuroprotective molecule in various neurological conditions including those associated with HHcy. The present study evaluates the protective effect of sodium hydrogen sulfide (NaHS; a source of H2S) on HHcy-induced BBB dysfunction and underpin molecular mechanisms.Materials and methods: Supplementation of NaHS restored the increased BBB permeability in the cortex and hippocampus of HHcy animals assessed in terms of diffused sodium fluorescein and Evans blue tracer dyes in the brain. Activity of matrix metalloproteinases (MMPs) assessed by gelatinase activity and in situ gelatinase assay was restored to the normal in the cortex and hippocampus of HHcy animals supplemented with NaHS.Results: Application of gelatin zymography revealed that specifically MMP-9 activity was increased in the cortex and hippocampus of HHcy animals, which was inhibited by NaHS supplementation. Real-time RT-PCR analysis showed that NaHS administration also decreased mRNA expression of MMP-9 in the hippocampus of HHcy animals. NaHS supplementation was further observed to reduce water retention in the brain regions of Hcy treated animals.Conclusion: Taken together, these findings suggest that NaHS supplementation ameliorates HHcy-induced BBB permeability and brain edema by inhibiting the mRNA expression and activity of MMP-9. Therefore, H2S and H2S releasing drugs may be used as a novel therapeutic approach to treat HHcy-associated neurovascular disorders.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, India.,College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, India
| |
Collapse
|
24
|
Boonpattrawong NP, Golbidi S, Tai DC, Aleliunas RE, Bernatchez P, Miller JW, Laher I, Devlin AM. Exercise during pregnancy mitigates the adverse effects of maternal obesity on adult male offspring vascular function and alters one-carbon metabolism. Physiol Rep 2020; 8:e14582. [PMID: 32975908 PMCID: PMC7518297 DOI: 10.14814/phy2.14582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Maternal obesity during pregnancy can adversely affect adult offspring vascular endothelial function. This study examined whether maternal exercise during pregnancy and lactation mitigates the adverse effects of maternal obesity on offspring vascular endothelial function. Female (C57BL/6N) mice were fed from weaning a control diet (10% kcal fat) or western diet (45% kcal fat) to induce excess adiposity (maternal obesity). After 13 weeks, the female mice were bred and maintained on the diets, with and without access to a running wheel (exercise), throughout breeding, pregnancy, and lactation. Offspring were weaned onto the control or western diet and fed for 13 weeks; male offspring were studied. Maternal exercise prevented the adverse effects of maternal obesity on offspring vascular endothelial function. However, this was dependent on offspring diet and the positive effect of maternal exercise was only observed in offspring fed the western diet. This was accompanied by alterations in aorta and liver one-carbon metabolism, suggesting a role for these pathways in the improved endothelial function observed in the offspring. Obesity and exercise had no effect on endothelial function in the dams but did affect aorta and liver one-carbon metabolism, suggesting the phenotype observed in the offspring may be due to obesity and exercise-induced changes in one-carbon metabolism in the dams. Our findings demonstrate that maternal exercise prevented vascular dysfunction in male offspring from obese dams and is associated with alterations in one-carbon metabolism.
Collapse
Affiliation(s)
- Nicha P. Boonpattrawong
- Department of Pathology and Laboratory MedicineThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
| | - Saeid Golbidi
- Department of Family PracticeThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
| | - Daven C. Tai
- Department of PediatricsThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
| | - Rika E. Aleliunas
- Department of PediatricsThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology and TherapeuticsThe University of British ColumbiaVancouverBCCanada
| | - Joshua W. Miller
- Department of Nutritional SciencesRutgers UniversityThe State University of New JerseyNew BrunswickNJUSA
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and TherapeuticsThe University of British ColumbiaVancouverBCCanada
| | - Angela M. Devlin
- Department of Pathology and Laboratory MedicineThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
- Department of PediatricsThe University of British Columbia, and BC Children’s Hospital Research InstituteVancouverBCCanada
| |
Collapse
|
25
|
Huang LQ, Wu CX, Wei HQ, Xu G. Clinical characteristics of H-type hypertension and its relationship with the MTHFR C677T polymorphism in a Zhuang population from Guangxi, China. J Clin Lab Anal 2020; 34:e23499. [PMID: 32790014 PMCID: PMC7676193 DOI: 10.1002/jcla.23499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/23/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Objective This study was designed to assess the clinical presentation of patients with H‐type hypertension who were of Zhuang nationality in Guangxi, China. The relationship between the C677T polymorphism in the MTHFR gene and H‐type hypertension was also assessed. Methods This was a case‐control study in which 185 Zhuang nationality patients with hypertension that had been hospitalized at the Wuming Hospital of Guangxi Medical University between February 2018 and December 2018 were assessed for plasma homocysteine (Hcy) levels. These levels were used to divide patients into H‐type (>15 μmol/L) and non‐H‐type (≤15 μmol/L) hypertension groups. Patient clinical data were then analyzed, and PCR was used to analyze samples from all patients for the presence of the C677T polymorphism in the MTHFR gene. Differences between these two groups of hypertension patients were then compared using appropriate statistical methods. Results We found that relative to patients in the non‐H‐type hypertension group, patients in the H‐type hypertension group exhibited significant differences in sex, age, urea nitrogen levels, creatinine levels, and uric acid levels. There were, however, no significant differences between these two groups with respect to interventricular septum thickness, left ventricular posterior wall thickness, or ejection fraction. We did not detect any association between the MTHFR gene C677T polymorphism and H‐type hypertension in Zhuang nationality individuals in Guangxi. Conclusion Risk of H‐type hypertension is not associated with the MTHFR C677T polymorphism in hypertensive individuals of Guangxi Zhuang nationality in China.
Collapse
Affiliation(s)
- Liu Qiang Huang
- Department of Cardiology, The Affiliated Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Chong Xin Wu
- Department of Cardiology, The Affiliated Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Hua Qing Wei
- Department of Cardiology, The Affiliated Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Ge Xu
- Department of Cardiology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
26
|
Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction. Biomolecules 2020; 10:biom10081119. [PMID: 32751132 PMCID: PMC7463551 DOI: 10.3390/biom10081119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Elevated plasma homocysteine (Hcy) level, known as hyperhomocysteinemia (HHcy) has been linked to different systemic and neurological diseases, well-known as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and has been identified as a risk factor for several ocular disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Different mechanisms have been proposed to explain HHcy-induced visual dysfunction, including oxidative stress, upregulation of inflammatory mediators, retinal ganglion cell apoptosis, and extracellular matrix remodeling. Our previous studies using in vivo and in vitro models of HHcy have demonstrated that Hcy impairs the function of both inner and outer blood retinal barrier (BRB). Dysfunction of BRB is a hallmark of vision loss in DR and AMD. Our findings highlighted oxidative stress, ER stress, inflammation, and epigenetic modifications as possible mechanisms of HHcy-induced BRB dysfunction. In addition, we recently reported HHcy-induced brain inflammation as a mechanism of blood–brain barrier (BBB) dysfunction and pathogenesis of Alzheimer’s disease (AD). Moreover, we are currently investigating the activation of glutamate receptor N-methyl-d-aspartate receptor (NMDAR) as the molecular mechanism for HHcy-induced BRB dysfunction. This review focuses on the studied effects of HHcy on BRB and the controversial role of HHcy in the pathogenesis of aging neurological diseases such as DR, AMD, and AD. We also highlight the possible mechanisms for such deleterious effects of HHcy.
Collapse
|
27
|
No Effect of Diet-Induced Mild Hyperhomocysteinemia on Vascular Methylating Capacity, Atherosclerosis Progression, and Specific Histone Methylation. Nutrients 2020; 12:nu12082182. [PMID: 32717800 PMCID: PMC7468910 DOI: 10.3390/nu12082182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is a risk factor for atherosclerosis through mechanisms which are still incompletely defined. One possible mechanism involves the hypomethylation of the nuclear histone proteins to favor the progression of atherosclerosis. In previous cell studies, hypomethylating stress decreased a specific epigenetic tag (the trimethylation of lysine 27 on histone H3, H3K27me3) to promote endothelial dysfunction and activation, i.e., an atherogenic phenotype. Here, we conducted a pilot study to investigate the impact of mild HHcy on vascular methylating index, atherosclerosis progression and H3K27me3 aortic content in apolipoprotein E-deficient (ApoE -/-) mice. In two different sets of experiments, male mice were fed high-fat, low in methyl donors (HFLM), or control (HF) diets for 16 (Study A) or 12 (Study B) weeks. At multiple time points, plasma was collected for (1) quantification of total homocysteine (tHcy) by high-performance liquid chromatography; or (2) the methylation index of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH ratio) by liquid chromatography tandem-mass spectrometry; or (3) a panel of inflammatory cytokines previously implicated in atherosclerosis by a multiplex assay. At the end point, aortas were collected and used to assess (1) the methylating index (SAM:SAH ratio); (2) the volume of aortic atherosclerotic plaque assessed by high field magnetic resonance imaging; and (3) the vascular content of H3K27me3 by immunohistochemistry. The results showed that, in both studies, HFLM-fed mice, but not those mice fed control diets, accumulated mildly elevated tHcy plasmatic concentrations. However, the pattern of changes in the inflammatory cytokines did not support a major difference in systemic inflammation between these groups. Accordingly, in both studies, no significant differences were detected for the aortic methylating index, plaque burden, and H3K27me3 vascular content between HF and HFLM-fed mice. Surprisingly however, a decreased plasma SAM: SAH was also observed, suggesting that the plasma compartment does not always reflect the vascular concentrations of these two metabolites, at least in this model. Mild HHcy in vivo was not be sufficient to induce vascular hypomethylating stress or the progression of atherosclerosis, suggesting that only higher accumulations of plasma tHcy will exhibit vascular toxicity and promote specific epigenetic dysregulation.
Collapse
|
28
|
Effect of Moxibustion on Hyperhomocysteinemia and Oxidative Stress Induced by High-Methionine Diet. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3184785. [PMID: 32215035 PMCID: PMC7085384 DOI: 10.1155/2020/3184785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/20/2020] [Accepted: 02/11/2020] [Indexed: 11/17/2022]
Abstract
Objective The aim of this study was to assess the effects of moxibustion on the animal model of oxidative stress and cardiovascular injury induced by high-methionine diet (2% methionine and 3.5% fat on the basis of ordinary maintenance feed) during 12 weeks. Methods 53 mice were divided into four groups: mice in the Control group (n = 8), mice in the Met group (n = 8), mice in the Met group (n = 8), mice in the Met group (n = 8), mice in the Met group ( Results Compared with the Met group, our results indicated that through moxibustion intervention, the content of serum Hcy and its intermediate metabolite SAH can be reduced to a certain extent, and SOD, HO-1, and ox-LDL can be increased. Conclusion This study showed moxibustion's ability to enhance the body's antioxidation and protect vascular endothelial function, thus playing an early role in the prevention and treatment of atherosclerosis.
Collapse
|
29
|
Chen M, Zhou C, Xu H, Zhang T, Wu B. Chronopharmacological targeting of Rev-erbα by puerarin alleviates hyperhomocysteinemia in mice. Biomed Pharmacother 2020; 125:109936. [PMID: 32006903 DOI: 10.1016/j.biopha.2020.109936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/02/2019] [Accepted: 12/18/2019] [Indexed: 11/16/2022] Open
Abstract
Hyperhomocysteinemia is associated with poor health, including cardiovascular and brain diseases. Puerarin, initially isolated from Puerariae radix, has been shown to possess anti-hyperhomocysteinemia effect. However, the mechanism of puerarin action remains unknown. Here, we uncovered that puerarin targeted the circadian clock protein Rev-erbα to alleviate hyperhomocysteinemia in mice in a circadian time-dependent manner. We first identified puerarin as an antagonist of Rev-erbα based on luciferase reporter, Gal4 co-transfection and target gene expression assays. Consistent with an antagonistic effect, puerarin induced mRNA and protein expressions of Bhmt, Cbs and Cth (three enzymes involved in homocysteine catabolism and known targets of Rev-erbα) in Hepa-1c1c7 cells. These induction effects of puerarin were lost in Rev-erbα-deficient cells. Furthermore, puerarin dose-dependently alleviated methionine-induced hyperhomocysteinemia in mice as evidenced by decreased levels of total homocysteine and triglyceride. This was accompanied by increased expressions of Bhmt, Cbs and Cth in the liver. Moreover, puerarin dosed at ZT10 generated stronger pharmacological effects than drug dosed at ZT22 consistent with diurnally rhythmic expression of Rev-erbα (a high expression at ZT10 and a low expression at ZT22). In conclusion, puerarin targets Rev-erbα to alleviate hyperhomocysteinemia in mice in a circadian time-dependent manner. The finding of a circadian gene as drug target encourages chronotherapeutic practices on puerarin and related medications for optimized efficacy.
Collapse
Affiliation(s)
- Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Cui Zhou
- College of Chemistry and Biology Engineering, Yichun University, Jiangxi, China
| | - Haiman Xu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Tianpeng Zhang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
30
|
Zhang T, Chen M, Guo L, Yu F, Zhou C, Xu H, Wu B. Reverse Erythroblastosis Virus α Antagonism Promotes Homocysteine Catabolism and Ammonia Clearance. Hepatology 2019; 70:1770-1784. [PMID: 31016736 DOI: 10.1002/hep.30675] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
Metabolic homeostasis of amino acids is essential for human health. Here, we aimed to investigate a potential role for the clock component reverse erythroblastosis virus α (Rev-erbα) in circadian regulation of amino acid metabolism. RNA-seq with Rev-erbα-/- mice showed expression changes in genes involved in amino acid metabolism, particularly, the urea cycle and methionine metabolism. Rev-erbα ablation increased hepatic mRNA, protein, and enzymatic activity of betaine homocysteine methyltransferase (Bhmt), cystathionine β-synthase (Cbs), and cystathionine γ-lyase (Cth) and decreased the levels of plasma and liver homocysteine in mice. Cell-based assays confirmed negative regulation of these three genes by Rev-erbα. Combined luciferase reporter, mobility-shift, and chromatin immunoprecipitation assays identified Rev-erbα as a transcriptional repressor of Bhmt, Cbs, and Cth. Rev-erbα ablation or antagonism alleviated chemical-induced hyperhomocysteinemia in mice. This was accompanied by elevated expressions of Bhmt, Cbs, and Cth. Moreover, Rev-erbα ablation or antagonism promoted urea production and ammonia clearance. Of urea cycle-related genes, arginase 1 (Arg1), ornithine transcarbamylase (Otc), and carbamoyl-phosphate synthase 1 (Cps1) expressions were up-regulated in Rev-erbα-/- mice. Negative regulation of these urea cycle genes by Rev-erbα was validated using cell-based experiments. Mechanistic studies revealed that Rev-erbα inhibited CCAAT-enhancer-binding protein α transactivation to repress the transcription of Arg1, Cps1, and Otc. Conclusion: Rev-erbα antagonism alleviates hyperhomocysteinemia and promotes ammonia clearance. Targeting Rev-erbα represents an approach for the management of homocysteine- and ammonia-related diseases.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Lianxia Guo
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Fangjun Yu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Cui Zhou
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Haiman Xu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
31
|
Model of Moderate Hyperhomocisteinemia Associated with Mechanical Injury: Dynamics of Morphometric Parameters of Microcirculatory Vessels. Bull Exp Biol Med 2019; 167:533-535. [PMID: 31502125 DOI: 10.1007/s10517-019-04567-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 10/26/2022]
Abstract
A model of moderate hyperhomocysteinemia associated with mechanical injury of the musculoskeletal system was developed and experimentally substantiated. The adequacy of this model for studies of morphological and functional regularities is verified. This model can be used for the development of a new concept of evaluation of thrombotic complications of mechanical injury.
Collapse
|
32
|
Hyperhomocysteinemia leads to exacerbation of ischemic brain damage: Role of GluN2A NMDA receptors. Neurobiol Dis 2019; 127:287-302. [PMID: 30885791 DOI: 10.1016/j.nbd.2019.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 11/24/2022] Open
Abstract
Hyperhomocysteinemia has been implicated in several neurodegenerative disorders including ischemic stroke. However, the pathological consequences of ischemic insult in individuals predisposed to hyperhomocysteinemia and the associated etiology are unknown. In this study, we evaluated the outcome of transient ischemic stroke in a rodent model of hyperhomocysteinemia, developed by subcutaneous implantation of osmotic pumps containing L-homocysteine into male Wistar rats. Our findings show a 42.3% mortality rate in hyperhomocysteinemic rats as compared to 7.7% in control rats. Magnetic resonance imaging of the brain in the surviving rats shows that mild hyperhomocysteinemia leads to exacerbation of ischemic injury within 24 h, which remains elevated over time. Behavioral studies further demonstrate significant deficit in sensorimotor functions in hyperhomocysteinemic rats compared to control rats. Using pharmacological inhibitors targeting the NMDAR subtypes, the study further demonstrates that inhibition of GluN2A-containing NMDARs significantly reduces ischemic brain damage in hyperhomocysteinemic rats but not in control rats, indicating that hyperhomocysteinemia-mediated exacerbation of ischemic brain injury involves GluN2A-NMDAR signaling. Complementary studies in GluN2A-knockout mice show that in the absence of GluN2A-NMDARs, hyperhomocysteinemia-associated exacerbation of ischemic brain injury is blocked, confirming that GluN2A-NMDAR activation is a critical determinant of the severity of ischemic damage under hyperhomocysteinemic conditions. Furthermore, at the molecular level we observe GluN2A-NMDAR dependent sustained increase in ERK MAPK phosphorylation under hyperhomocysteinemic condition that has been shown to be involved in homocysteine-induced neurotoxicity. Taken together, the findings show that hyperhomocysteinemia triggers a unique signaling pathway that in conjunction with ischemia-induced pathways enhance the pathology of stroke under hyperhomocysteinemic conditions.
Collapse
|
33
|
Delbet JD, Ulinski T. Thrombotic microangiopathy and breastfeeding: where is the link? Answers. Pediatr Nephrol 2018; 33:987-989. [PMID: 28812187 DOI: 10.1007/s00467-017-3762-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Jean Daniel Delbet
- Pediatric Nephrology, Armand Trousseau Hospital, Assistance publique-Hôpitaux de Paris, 26 Avenue du Docteur Arnold Netter, 75012, Paris, France.,University Pierre and Marie Curie, Paris 6, Paris, France.,DHU 2iB (Inflammation, Immunotherapy and Biotherapy), UPMC Hospital Pitié-Salpêtrière, Paris, France
| | - Tim Ulinski
- Pediatric Nephrology, Armand Trousseau Hospital, Assistance publique-Hôpitaux de Paris, 26 Avenue du Docteur Arnold Netter, 75012, Paris, France. .,University Pierre and Marie Curie, Paris 6, Paris, France. .,DHU 2iB (Inflammation, Immunotherapy and Biotherapy), UPMC Hospital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
34
|
Jeon JS, Oh JJ, Kwak HC, Yun HY, Kim HC, Kim YM, Oh SJ, Kim SK. Age-Related Changes in Sulfur Amino Acid Metabolism in Male C57BL/6 Mice. Biomol Ther (Seoul) 2018; 26:167-174. [PMID: 28605831 PMCID: PMC5839495 DOI: 10.4062/biomolther.2017.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 11/05/2022] Open
Abstract
Alterations in sulfur amino acid metabolism are associated with an increased risk of a number of common late-life diseases, which raises the possibility that metabolism of sulfur amino acids may change with age. The present study was conducted to understand the age-related changes in hepatic metabolism of sulfur amino acids in 2-, 6-, 18- and 30-month-old male C57BL/6 mice. For this purpose, metabolite profiling of sulfur amino acids from methionine to taurine or glutathione (GSH) was performed. The levels of sulfur amino acids and their metabolites were not significantly different among 2-, 6- and 18-month-old mice, except for plasma GSH and hepatic homocysteine. Plasma total GSH and hepatic total homocysteine levels were significantly higher in 2-month-old mice than those in the other age groups. In contrast, 30-month-old mice exhibited increased hepatic methionine and cysteine, compared with all other groups, but decreased hepatic S-adenosylmethionine (SAM), S-adenosylhomocysteine and homocysteine, relative to 2-month-old mice. No differences in hepatic reduced GSH, GSH disulfide, or taurine were observed. The hepatic changes in homocysteine and cysteine may be attributed to upregulation of cystathionine β-synthase and down-regulation of γ-glutamylcysteine ligase in the aged mice. The elevation of hepatic cysteine levels may be involved in the maintenance of hepatic GSH levels. The opposite changes of methionine and SAM suggest that the regulatory role of SAM in hepatic sulfur amino acid metabolism may be impaired in 30-month-old mice.
Collapse
Affiliation(s)
- Jang Su Jeon
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Ja Oh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hui Chan Kwak
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hwi-Yeol Yun
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyoung Chin Kim
- Bio-Evaluation Center, KRIBB, Ochang 28116, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Soo Jin Oh
- Bio-Evaluation Center, KRIBB, Ochang 28116, Republic of Korea.,New Drug Development Center, ASAN Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
35
|
Looft-Wilson RC, Goodell CR, Mutch CA, Mutchler SM, Miller KL, Guraya M. Increased myoendothelial feedback is associated with increased connexin37 and IK1 channel expression in mesenteric arteries of diet-induced hyperhomocysteinemic mice. Microcirculation 2017; 24. [PMID: 28857417 DOI: 10.1111/micc.12398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Previously, we found that diet-induced HHcy in mice caused decreased eNOS expression and signaling in mesenteric arteries, but greatly enhanced non-NOS, non-prostacyclin-dependent vasodilation, which involves MEJ communication. To further assess whether HHcy enhances MEJ communication, this study examined endothelium-dependent attenuation of phenylephrine-induced vasoconstriction (myoendothelial feedback) and key molecules involved. METHODS Myoendothelial feedback was examined in isolated mouse mesenteric arteries, after 6-weeks diet-induced HHcy, using pressure myography. Gap junction (Cx37, Cx40, Cx43), NOS (eNOS, nNOS, iNOS), and potassium channel (IK1) protein expression were measured with immunoblots, and connexin mRNAs with real-time PCR. Contribution of nNOS + iNOS to vasomotor responses was assessed using the drug TRIM. RESULTS Myoendothelial feedback was significantly (P < .05) enhanced in HHcy arteries compared to control, coincident with significantly greater Cx37 and IK1 protein and Cx37 mRNA. Cx43 protein, but not mRNA, was significantly less in HHcy, and Cx40 was not different. eNOS protein was significantly less in HHcy. nNOS and iNOS were not different. TRIM had little effect on vasomotor function. CONCLUSIONS Diet-induced HHcy enhanced myoendothelial feedback, and increased Cx37 and IK1 expression may contribute. nNOS or iNOS did not upregulate to compensate for decreased eNOS, and they had little involvement in vasomotor function.
Collapse
Affiliation(s)
- Robin C Looft-Wilson
- Department of Kinesiology and Health Sciences, The College of William & Mary, Williamsburg, VA, USA
| | - Cara R Goodell
- Department of Kinesiology and Health Sciences, The College of William & Mary, Williamsburg, VA, USA
| | - Christina A Mutch
- Department of Kinesiology and Health Sciences, The College of William & Mary, Williamsburg, VA, USA
| | - Stephanie M Mutchler
- Department of Kinesiology and Health Sciences, The College of William & Mary, Williamsburg, VA, USA
| | - Kayla L Miller
- Department of Kinesiology and Health Sciences, The College of William & Mary, Williamsburg, VA, USA
| | - Monique Guraya
- Department of Kinesiology and Health Sciences, The College of William & Mary, Williamsburg, VA, USA
| |
Collapse
|
36
|
Burdennyy AM, Loginov VI, Zavarykina TM, Braga EA, Kubatiev AA. The role of molecular genetic alterations in genes involved in folate and homocysteine metabolism in multifactorial diseases pathogenesis. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417040044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Kumar M, Modi M, Sandhir R. Hydrogen sulfide attenuates homocysteine-induced cognitive deficits and neurochemical alterations by improving endogenous hydrogen sulfide levels. Biofactors 2017; 43:434-450. [PMID: 28394038 DOI: 10.1002/biof.1354] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/05/2017] [Accepted: 01/28/2017] [Indexed: 12/13/2022]
Abstract
Hyperomocysteinemia (HHcy) has been associated with mild cognitive impairment and dementia. Hydrogen sulfide (H2 S) has been suggested to be an endogenous modulator of neuronal functions. However, the effect and mechanisms involved in beneficial effect of H2 S has not been investigated in homocysteine (Hcy)-induced cognitive deficits. This study has been designed to evaluate the effect of exogenous H2 S on behavioral deficits and neurochemical alterations in HHcy animals. Hcy levels were significantly elevated in plasma, cortex, and hippocampus of Hcy administered animals. A progressive decline in memory functions and increased anxiolytic behavior was observed in HHcy animals. This was accompanied by decrease in endogenous H2 S levels along with decreased activity of cystathionase (CSE) and cystathionine β-synthase (CBS). However, a significant increase in CSE and CBS mRNAs was observed. In addition, the catecholamine and serotonin levels were reduced and the activity of monoamine oxidase A and B were increased in brain regions of HHcy animals. Haematoxylin and eosin staining revealed higher number of pyknotic cells in brain regions of HHcy animals. H2 S administration was found to lower elevated plasma and brain Hcy levels. The activities of CBS, CSE, and levels of H2 S were restored in HHcy animals administered H2 S. Exogenous H2 S also ameliorated behavioral deficits accompanied by significant increase in catecholamines. Histological analysis revealed normal cell morphology in Hcy-treated animals supplemented with H2 S. These results clearly demonstrate that the protective effect of H2 S on Hcy-induced cognitive deficits is mediated through increased catecholamine and H2 S levels thereby suggesting its beneficial role in preventing HHcy-induced neurodegeneration. © 2016 BioFactors, 43(3):434-450, 2017.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Manish Modi
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
38
|
Steger CM, Mayr T, Bonaros N, Bonatti J, Schachner T. Vein graft disease in a knockout mouse model of hyperhomocysteinaemia. Int J Exp Pathol 2016; 97:447-456. [PMID: 28004436 DOI: 10.1111/iep.12215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022] Open
Abstract
A major reason for vein graft failure after coronary artery bypass grafting is neointimal hyperplasia and thrombosis. Elevated serum levels of homocysteine (Hcy) are associated with higher incidence of cardiovascular disease, but homocysteine levels also tend to increase during the first weeks or months after cardiac surgery. To investigate this further, C57BL/6J mice (WT) and cystathionine-beta-synthase heterozygous knockout mice (CBS+/-), a mouse model for hyperhomocysteinaemia, underwent interposition of the vena cava of donor mice into the carotid artery of recipient mice. Two experimental groups were examined: 20 mice of each group underwent bypass surgery (group 1: WT donor and WT recipient; group 2: CBS+/- donor and CBS+/- recipient). After 4 weeks, the veins were harvested, dehydrated, paraffin-embedded, stained and analysed by histomorphology and immunohistochemistry. Additionally, serum Hcy levels in CBS knockout animals and in WT animals before and after bypass surgery were measured. At 4 weeks postoperatively, group 2 mice showed a higher percentage of thrombosis compared to controls, a threefold increase in neointima formation, higher general vascularization, a lower percentage of elastic fibres with shortage and fragmentation in the neointima, a lower percentage of acid mucopolysaccharides in the neointima and a more intense fibrosis in the neointima and media. In conclusion, hyperhomocysteinaemic cystathionine-beta-synthase knockout mice can play an important role in the study of mechanisms of vein graft failure. But further in vitro and in vivo studies are necessary to answer the question whether or not homocysteine itself or a related metabolic factor is the key aetiologic agent for accelerated vein graft disease.
Collapse
Affiliation(s)
- Christina Maria Steger
- Department of Pathology, Academic Teaching Hospital Feldkirch (Affiliation of the Innsbruck Medical University), Feldkirch, Austria
| | - Tobias Mayr
- Department of Surgery, State Hospital Kufstein, Kufstein, Austria
| | - Nikolaos Bonaros
- Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Johannes Bonatti
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Thomas Schachner
- Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
39
|
Luft FC. Fitting homocysteine to disease models, as well as adjusting the models to the disease. J Mol Med (Berl) 2016; 93:585-7. [PMID: 25952147 DOI: 10.1007/s00109-015-1293-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Friedrich C Luft
- Experimental and Clinical Research Center, Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Lindenbergerweg 80, 13125, Berlin, Germany,
| |
Collapse
|
40
|
Hainsworth AH, Yeo NE, Weekman EM, Wilcock DM. Homocysteine, hyperhomocysteinemia and vascular contributions to cognitive impairment and dementia (VCID). Biochim Biophys Acta Mol Basis Dis 2015; 1862:1008-17. [PMID: 26689889 DOI: 10.1016/j.bbadis.2015.11.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/27/2015] [Accepted: 11/29/2015] [Indexed: 11/29/2022]
Abstract
Homocysteine is produced physiologically in all cells, and is present in plasma of healthy individuals (plasma [HCy]: 3-10μM). While rare genetic mutations (CBS, MTHFR) cause severe hyperhomocysteinemia ([HCy]: 100-200μM), mild-moderate hyperhomocysteinemia ([HCy]: 10-100μM) is common in older people, and is an independent risk factor for stroke and cognitive impairment. As B-vitamin supplementation (B6, B12 and folate) has well-validated homocysteine-lowering efficacy, this may be a readily-modifiable risk factor in vascular contributions to cognitive impairment and dementia (VCID). Here we review the biochemical and cellular actions of HCy related to VCID. Neuronal actions of HCy were at concentrations above the clinically-relevant range. Effects of HCy <100μM were primarily vascular, including myocyte proliferation, vessel wall fibrosis, impaired nitric oxide signalling, superoxide generation and pro-coagulant actions. HCy-lowering clinical trials relevant to VCID are discussed. Extensive clinical and preclinical data support HCy as a mediator for VCID. In our view further trials of combined B-vitamin supplementation are called for, incorporating lessons from previous trials and from recent experimental work. To maximise likelihood of treatment effect, a future trial should: supply a high-dose, combination supplement (B6, B12 and folate); target the at-risk age range; and target cohorts with low baseline B-vitamin status. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Cardiovascular and Cell Sciences Research Centre, St Georges University of London, London SW17 0RE, UK.
| | - Natalie E Yeo
- Cardiovascular and Cell Sciences Research Centre, St Georges University of London, London SW17 0RE, UK
| | - Erica M Weekman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40536, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40536, USA.
| |
Collapse
|
41
|
Dayal S, Lentz SR. Homocysteine. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Homocysteine thiolactone and N-homocysteinylated protein induce pro-atherogenic changes in gene expression in human vascular endothelial cells. Amino Acids 2015; 47:1319-39. [PMID: 25802182 PMCID: PMC4458266 DOI: 10.1007/s00726-015-1956-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/04/2015] [Indexed: 12/11/2022]
Abstract
Genetic or nutritional deficiencies in homocysteine (Hcy) metabolism lead to hyperhomocysteinemia (HHcy) and cause endothelial dysfunction, a hallmark of atherosclerosis. In addition to Hcy, related metabolites accumulate in HHcy but their role in endothelial dysfunction is unknown. Here, we examine how Hcy-thiolactone, N-Hcy-protein, and Hcy affect gene expression and molecular pathways in human umbilical vein endothelial cells. We used microarray technology, real-time quantitative polymerase chain reaction, and bioinformatic analysis with PANTHER, DAVID, and Ingenuity Pathway Analysis (IPA) resources. We identified 47, 113, and 30 mRNAs regulated by N-Hcy-protein, Hcy-thiolactone, and Hcy, respectively, and found that each metabolite induced a unique pattern of gene expression. Top molecular pathways affected by Hcy-thiolactone were chromatin organization, one-carbon metabolism, and lipid-related processes [−log(P value) = 20–31]. Top pathways affected by N-Hcy-protein and Hcy were blood coagulation, sulfur amino acid metabolism, and lipid metabolism [−log(P value)] = 4–11; also affected by Hcy-thiolactone, [−log(P value) = 8–14]. Top disease related to Hcy-thiolactone, N-Hcy-protein, and Hcy was ‘atherosclerosis, coronary heart disease’ [−log(P value) = 9–16]. Top-scored biological networks affected by Hcy-thiolactone (score = 34–40) were cardiovascular disease and function; those affected by N-Hcy-protein (score = 24–35) were ‘small molecule biochemistry, neurological disease,’ and ‘cardiovascular system development and function’; and those affected by Hcy (score = 25–37) were ‘amino acid metabolism, lipid metabolism,’ ‘cellular movement, and cardiovascular and nervous system development and function.’ These results indicate that each Hcy metabolite uniquely modulates gene expression in pathways important for vascular homeostasis and identify new genes and pathways that are linked to HHcy-induced endothelial dysfunction and vascular disease.
Collapse
|
43
|
Magné J, Huneau JF, Borderie D, Mathé V, Bos C, Mariotti F. Plasma asymmetric and symmetric dimethylarginine in a rat model of endothelial dysfunction induced by acute hyperhomocysteinemia. Amino Acids 2015; 47:1975-82. [PMID: 25792109 DOI: 10.1007/s00726-015-1959-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/05/2015] [Indexed: 12/25/2022]
Abstract
Hyperhomocysteinemia induces vascular endothelial dysfunction, an early hallmark of atherogenesis. While higher levels of circulating asymmetric dimethylarginine (ADMA) and symmetric dimethyl arginine (SDMA), endogenous inhibitors of nitric oxide synthesis, have been associated with increased cardiovascular risk, the role that ADMA and SDMA play in the initiation of hyperhomocysteinemia-induced endothelial dysfunction remains still controversial. In the present study, we studied the changes of circulating ADMA and SDMA in a rat model of acutely hyperhomocysteinemia-induced endothelial dysfunction. In healthy rats, endothelium-related vascular reactivity (measured as acetylcholine-induced transient decrease in mean arterial blood pressure), plasma ADMA and SDMA, total plasma homocysteine (tHcy), cysteine and glutathione were measured before and 2, 4 and 6 h after methionine loading or vehicle. mRNA expression of hepatic dimethylarginine dimethylaminohydrolase-1 (DDAH1), a key protein responsible for ADMA metabolism, was measured 6 h after the methionine loading or the vehicle. Expectedly, methionine load induced a sustained increase in tHcy (up to 54.9 ± 1.9 µM) and a 30 % decrease in vascular reactivity compared to the baseline values. Plasma ADMA and SDMA decreased transiently after the methionine load. Hepatic mRNA expression of DDAH1, cathepsin D, and ubiquitin were significantly lower 6 h after the methionine load than after the vehicle. The absence of an elevation of circulating ADMA and SDMA in this model suggests that endothelial dysfunction induced by acute hyperhomocysteinemia cannot be explained by an up-regulation of protein arginine methyltransferases or a down-regulation of DDAH1. In experimental endothelial dysfunction induced by acute hyperhomocysteinemia, down-regulation of the proteasome is likely to dampen the release of ADMA and SDMA in the circulation.
Collapse
Affiliation(s)
- Joëlle Magné
- Atherosclerosis Research Unit, Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, 171 76, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
44
|
The application of a chemical determination of N-homocysteinylation levels in developing mouse embryos: implication for folate responsive birth defects. J Nutr Biochem 2014; 26:312-8. [PMID: 25620692 DOI: 10.1016/j.jnutbio.2014.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/24/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022]
Abstract
Elevated homocysteine levels have long been associated with various disease states, including cardiovascular disease and birth defects, including neural tube defects (NTDs). One hypothesis regarding the strong correlation between these various disorders and high levels of homocysteine is that a reactive form of this small molecule can attach to mammalian proteins in a phenomenon known as homocysteinylation. These posttranslational modifications may become antigenic or may even directly disrupt certain protein function. It remains to be determined whether dietary influences that can cause globally increased levels of circulating homocysteine confer negative effects maternally, or may otherwise negatively and materially impact the metabolic balance in developing embryos. Herein we present the application of a chemical method of determination of N-homocysteinylation to a set of neural tube closure stage mouse embryos and their mothers. We explore the uses of this newly described technique to investigate levels of maternal and embryonic N-homocysteinylation using dietary manipulations of one-carbon metabolism with two known folate-responsive NTD mouse models. The data presented reveal that although diet appeared to have significant effects on the maternal metabolic status, those effects did not directly correlate to the embryonic folate or N-homocysteinylation status. Our studies indicate that maternal diet and embryonic genotype most significantly affected the embryonic developmental outcome.
Collapse
|
45
|
Kalani A, Kamat PK, Givvimani S, Brown K, Metreveli N, Tyagi SC, Tyagi N. Nutri-epigenetics ameliorates blood-brain barrier damage and neurodegeneration in hyperhomocysteinemia: role of folic acid. J Mol Neurosci 2014; 52:202-15. [PMID: 24122186 DOI: 10.1007/s12031-013-0122-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/10/2013] [Indexed: 01/01/2023]
Abstract
Epigenetic mechanisms underlying nutrition (nutrition epigenetics) are important in understanding human health. Nutritional supplements, for example folic acid, a cofactor in one-carbon metabolism, regulate epigenetic alterations and may play an important role in the maintenance of neuronal integrity. Folic acid also ameliorates hyperhomocysteinemia, which is a consequence of elevated levels of homocysteine. Hyperhomocysteinemia induces oxidative stress that may epigenetically mediate cerebrovascular remodeling and leads to neurodegeneration; however, the mechanisms behind such alterations remain unclear. Therefore, the present study was designed to observe the protective effects of folic acid against hyperhomocysteinemia-induced epigenetic and molecular alterations leading to neurotoxic cascades. To test this hypothesis, we employed 8-weeks-old male wild-type (WT) cystathionine-beta-synthase heterozygote knockout methionine-fed (CBS+/− + Met), WT, and CBS+/− + Met mice supplemented with folic acid (FA) [WT + FA and CBS+/− + Met + FA, respectively, 0.0057-μg g−1 day−1 dose in drinking water/4 weeks]. Hyperhomocysteinemia in CBS+/− + Met mouse brain was accompanied by a decrease in methylenetetrahydrofolate reductase and an increase in S-adenosylhomocysteine hydrolase expression, symptoms of oxidative stress, upregulation of DNA methyltransferases, rise in matrix metalloproteinases, a drop in the tissue inhibitors of metalloproteinases, decreased expression of tight junction proteins, increased permeability of the blood-brain barrier, neurodegeneration, and synaptotoxicity. Supplementation of folic acid to CBS+/− + Met mouse brain led to a decrease in the homocysteine level and rescued pathogenic and epigenetic alterations, showing its protective efficacy against homocysteine-induced neurotoxicity.
Collapse
|
46
|
Central and systemic responses to methionine-induced hyperhomocysteinemia in mice. PLoS One 2014; 9:e105704. [PMID: 25153079 PMCID: PMC4143291 DOI: 10.1371/journal.pone.0105704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/22/2014] [Indexed: 01/08/2023] Open
Abstract
Hyperhomocysteinemia has been considered a risk factor for neuropsychiatric disorders, but the mechanisms involved in this process have not been completely elucidated. The aim of this study was to analyze the influence of hyperhomocysteinemia induction by methionine supplementation considering different levels and periods of exposure in mice. For this purpose, methionine supplementation at concentrations of 0.5 and 1% were administered in water to increase homocysteinemia in male C57BL/6 mice, and was maintained for 3 time periods (2, 4 and 6 months of treatment). The results from one-carbon metabolism parameters, brain-derived neurotrophic factor (BDNF) concentrations and behavioral evaluation were compared. The 0.5% supplementation was efficient in increasing plasma homocysteine levels after 2 and 6 months. The 1% supplementation, increased plasma homocysteine after 2, 4 and 6 months. Little influence was observed in cysteine and glutathione concentrations. Frontal cortex BDNF levels showed a lack of treatment influence in all periods; only the expected decrease due to increasing age was observed. Moreover, the only behavioral alteration observed using a novel object recognition task was that which was expected with increasing age. We found that responses to hyperhomocysteinemia varied based on how it was reached, and the length of toxicity. Moreover, hyperhomocysteinemia can affect the normal pattern of one carbon metabolism during age increase in mice. These findings allow the establishment of a reliable animal model for studies in this field.
Collapse
|
47
|
Ruhui L, Jinfa J, Jiahong X, Wenlin M. Influence of hyperhomocysteinemia on left ventricular diastolic function in Chinese patients with hypertension. Herz 2014; 40:679-84. [PMID: 24863078 DOI: 10.1007/s00059-014-4098-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/06/2014] [Accepted: 03/14/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The aim of this study was to assess the effect of plasma homocysteine (Hcy) on left ventricular (LV) diastolic function in Chinese patients with essential hypertension. PATIENTS AND METHODS A total of 74 patients with hypertension were enrolled in the present study and were divided into two groups according to the plasma levels of Hcy: high levels of Hcy (Hhcy) group (n = 37) and control group (n = 37) with normal levels of homocysteine. The study participants consisted of 37 hypertensive patients with Hhcy and 37 hypertensive patients without Hhcy. Transthoracic Doppler echocardiography was performed to assess the LV diastolic function of the patients. RESULTS The plasma level of Hcy was directly related to LV diastolic echocardiographic parameters in patients with hypertension whereby the ratio E/e' was higher (12.7 ± 2.64 vs. 8.98 ± 1.55, p < 0.01), e'/a' was lower (0.59 ± 0.13 vs. 0.83 ± 0.20, p < 0.01), and the left atrial (LA) diameter was longer (43.4 ± 3.6 mm vs. 37.6 ± 5.0 mm, p < 0.01) in the Hhcy group than in the control group. CONCLUSION The LV diastolic function was significantly deteriorated in Chinese hypertensive patients with Hhcy and there were significant correlations between LV diastolic function indices and Hcy levels.
Collapse
Affiliation(s)
- L Ruhui
- Department of Cardiology, Tongji Hospital, Tongji University, No. 389 Xincun Road, 200065, Shanghai, China
| | | | | | | |
Collapse
|
48
|
[Alterations in the protein content and dysfunction of high-density lipoproteins from hyperhomocysteinemic mice]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2013; 25:164-73. [PMID: 23938051 DOI: 10.1016/j.arteri.2013.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/05/2013] [Indexed: 11/21/2022]
Abstract
AIM The aim of this study was to evaluate the proteic changes in high-density lipoproteins (HDL) induced by methionine-induced hyperhomocysteinemia in mice and its relationship with two of their main antiatherogenic properties. METHODS AND RESULTS The oral administration of methionine resulted in an elevation (~8 times) in the plasma concentration of homocysteine. Hyperhomocysteinemia was inversely correlated with the plasma concentration of HDL cholesterol and its main protein component of HDL, apolipoprotein (apo) A-I, respectively. The cholesterol efflux in vivo from macrophages to HDL was decreased in hyperhomocysteinemic mice compared with the control mice. However, the reverse cholesterol transport from macrophages to feces remained unchanged. On the other hand, the ability of HDL from hyperhomocysteinemic mice to prevent the oxidative modification of low-density lipoproteins (LDL) was found decreased and associated with a concomitant reduction in the plasma activity of paraoxonase-1 (PON1) and the plasma concentration of apoA-I, and with a relative reduction in the apoA-IV content (~1.5 times) in the hyperhomocysteinemic HDL, respectively. CONCLUSION The decrease in the ability of HDL from hyperhomocysteinemic mice to prevent LDL from oxidation was associated with a decrease in the apoA-I, PON1 and apoA-IV.
Collapse
|
49
|
Julve J, Escolà-Gil JC, Rodríguez-Millán E, Martín-Campos JM, Jauhiainen M, Quesada H, Rentería-Obregón IM, Osada J, Sánchez-Quesada JL, Blanco-Vaca F. Methionine-induced hyperhomocysteinemia impairs the antioxidant ability of high-density lipoproteins without reducing in vivo macrophage-specific reverse cholesterol transport. Mol Nutr Food Res 2013; 57:1814-24. [DOI: 10.1002/mnfr.201300133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/26/2013] [Accepted: 03/31/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Josep Julve
- Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau); Barcelona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas; CIBERDEM Spain
| | - Joan C. Escolà-Gil
- Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau); Barcelona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas; CIBERDEM Spain
| | | | - Jesús M. Martín-Campos
- Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau); Barcelona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas; CIBERDEM Spain
| | - Matti Jauhiainen
- National Institute for Health and Welfare, Public Health Genomics Unit; Biomedicum Helsinki Finland
| | - Helena Quesada
- Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau); Barcelona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas; CIBERDEM Spain
| | | | - Jesús Osada
- CIBER de Fisiopatología de la Obesidad y Nutrición; Instituto de Salud Carlos III; Madrid Spain
- Departamento de Bioquímica y Biología Molecular y Celular; Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza; Zaragoza Spain
| | | | - Francisco Blanco-Vaca
- Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau); Barcelona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas; CIBERDEM Spain
- Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; Barcelona Spain
| |
Collapse
|
50
|
Jakubowski H. The Mechanism and Consequences of Homocysteine Incorporation Into Protein in Humans. PHOSPHORUS SULFUR 2013. [DOI: 10.1080/10426507.2012.736104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hieronim Jakubowski
- a Department of Microbiology & Molecular Genetics, UMDNJ-New Jersey Medical School , International Center for Public Health , Newark , NJ , USA
- b Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, and Department of Biochemistry and Biotechnology , University of Life Sciences , Poznań , Poland
| |
Collapse
|