1
|
Rasl J, Caslavsky J, Grusanovic J, Chvalova V, Kosla J, Adamec J, Grousl T, Klimova Z, Vomastek T. Depletion of calpain2 accelerates epithelial barrier establishment and reduces growth factor-induced cell scattering. Cell Signal 2024; 121:111295. [PMID: 38996955 DOI: 10.1016/j.cellsig.2024.111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Calpain2 is a conventional member of the non-lysosomal calpain protease family that has been shown to affect the dynamics of focal and cell-cell adhesions by proteolyzing the components of adhesion complexes. Here, we inactivated calpain2 using CRISPR/Cas9 in epithelial MDCK cells. We show that depletion of calpain2 has multiple effects on cell morphology and function. Calpain2-depleted cells develop epithelial shape, however, they cover a smaller area, and cell clusters are more compact. Inactivation of calpain2 enhanced restoration of transepithelial electrical resistance after calcium switch, decreased cell migration, and delayed cell scattering induced by HGF/SF. In addition, calpain2 depletion prevented morphological changes induced by ERK2 overexpression. Interestingly, proteolysis of several calpain2 targets, including E-cadherin, β-catenin, talin, FAK, and paxillin, was not discernibly affected by calpain2 depletion. Taken together, these data suggest that calpain2 regulates the stability of cell-cell and cell-substratum adhesions indirectly without affecting the proteolysis of these adhesion complexes.
Collapse
Affiliation(s)
- Jan Rasl
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Josef Caslavsky
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Josipa Grusanovic
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vera Chvalova
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Kosla
- Laboratory of Viral and Cellular Genetics and Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Jiri Adamec
- Department of Interdisciplinary Oncology, Louisiana State University HSC School of Medicine, New Orleans, USA
| | - Tomas Grousl
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Zuzana Klimova
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic.
| | - Tomas Vomastek
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic.
| |
Collapse
|
2
|
Aroda VR, Eckel RH. Reconsidering the role of glycaemic control in cardiovascular disease risk in type 2 diabetes: A 21st century assessment. Diabetes Obes Metab 2022; 24:2297-2308. [PMID: 35929480 PMCID: PMC9804800 DOI: 10.1111/dom.14830] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/09/2023]
Abstract
It is well known that the multiple factors contributing to the pathogenesis of type 2 diabetes (T2D) confer an increased risk of developing cardiovascular disease (CVD). Although the relationship between hyperglycaemia and increased microvascular risk is well established, the relative contribution of hyperglycaemia to macrovascular events has been strongly debated, particularly owing to the failure of attempts to reduce CVD risk through normalizing glycaemia with traditional therapies in high-risk populations. The debate has been further fuelled by the relatively recent discovery of the cardioprotective properties of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors. Further, as guidelines now recommend individualizing glycaemic targets, highlighting the importance of achieving glycated haemoglobin (HbA1c) goals safely, the previously observed negative influences of intensive therapy on CVD risk might not present if trials were repeated using current-day treatments and individualized HbA1c goals. Emerging longitudinal data illuminate the overall effect of excess glucose, the impacts of magnitude and duration of hyperglycaemia on disease progression and risk of CVD complications, and the importance of glycaemic control at or early after diagnosis of T2D for prevention of complications. Herein, we review the role of glucose as a modifiable cardiovascular (CV) risk factor, the role of microvascular disease in predicting macrovascular risk, and the deleterious impact of therapeutic inertia on CVD risk. We reconcile new and old data to offer a current perspective, highlighting the importance of effective, early treatment in reducing latent CV risk, and the timely use of appropriate therapy individualized to each patient's needs.
Collapse
Affiliation(s)
- Vanita R. Aroda
- Division of Endocrinology, Diabetes, and HypertensionBrigham and Women's HospitalBostonMassachusetts
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism, and Diabetes, and the Division of CardiologyUniversity of Colorado School of MedicineAuroraColorado
| |
Collapse
|
3
|
Yang H, Liu C, Wu Y, Yuan M, Huang J, Xia Y, Ling Q, Hoffmann PR, Huang Z, Chen T. Atherosclerotic plaque-targeted nanotherapeutics ameliorates atherogenesis by blocking macrophage-driven inflammation. NANO TODAY 2022; 42:101351. [DOI: 10.1016/j.nantod.2021.101351] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Liu J, Zhang Y, Tian Y, Huang W, Tong N, Fu X. Integrative biology of extracellular vesicles in diabetes mellitus and diabetic complications. Theranostics 2022; 12:1342-1372. [PMID: 35154494 PMCID: PMC8771544 DOI: 10.7150/thno.65778] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/11/2021] [Indexed: 11/14/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic systemic disease with increasing prevalence globally. An important aspect of diabetic pathogenesis is cellular crosstalk and information exchange between multiple metabolic organs and tissues. In the past decade, increasing evidence suggested that extracellular vesicles (EVs), a class of cell-derived membrane vesicles that transmit information and perform inter-cellular and inter-organ communication, are involved in the pathological changes of insulin resistance (IR), inflammation, and endothelial injury, and implicated in the development of DM and its complications. The biogenesis and cargo sorting machinery dysregulation of EVs may mediate their pathogenic roles under diabetic conditions. Moreover, the biogenesis of EVs, their ubiquitous production by different cells, their function as mediators of inter-organ communication, and their biological features in body fluids have generated great promise as biomarkers and clinical treatments. In this review, we summarize the components of EV generation and sorting machinery and highlight their role in the pathogenesis of DM and associated complications. Furthermore, we discuss the emerging clinical implications of EVs as potential biomarkers and therapeutic strategies for DM and diabetic complications. A better understanding of EVs will deepen our knowledge of the pathophysiology of DM and its complications and offer attractive approaches to improve the prevention, diagnosis, treatment, and prognosis of these disorders.
Collapse
Affiliation(s)
- Jing Liu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yanyan Zhang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Department of Geriatric Medicine, Lanzhou University Secondary Hospital, Lanzhou, Gansu, China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wei Huang
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Division of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, Laboratory of Diabetes and Islet Transplantation Research, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
5
|
Teng X, Ji C, Zhong H, Zheng D, Ni R, Hill DJ, Xiong S, Fan GC, Greer PA, Shen Z, Peng T. Selective deletion of endothelial cell calpain in mice reduces diabetic cardiomyopathy by improving angiogenesis. Diabetologia 2019; 62:860-872. [PMID: 30778623 PMCID: PMC6702672 DOI: 10.1007/s00125-019-4828-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/14/2019] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS The role of non-cardiomyocytes in diabetic cardiomyopathy has not been fully addressed. This study investigated whether endothelial cell calpain plays a role in myocardial endothelial injury and microvascular rarefaction in diabetes, thereby contributing to diabetic cardiomyopathy. METHODS Endothelial cell-specific Capns1-knockout (KO) mice were generated. Conditions mimicking prediabetes and type 1 and type 2 diabetes were induced in these KO mice and their wild-type littermates. Myocardial function and coronary flow reserve were assessed by echocardiography. Histological analyses were performed to determine capillary density, cardiomyocyte size and fibrosis in the heart. Isolated aortas were assayed for neovascularisation. Cultured cardiac microvascular endothelial cells were stimulated with high palmitate. Angiogenesis and apoptosis were analysed. RESULTS Endothelial cell-specific deletion of Capns1 disrupted calpain 1 and calpain 2 in endothelial cells, reduced cardiac fibrosis and hypertrophy, and alleviated myocardial dysfunction in mouse models of diabetes without significantly affecting systemic metabolic variables. These protective effects of calpain disruption in endothelial cells were associated with an increase in myocardial capillary density (wild-type vs Capns1-KO 3646.14 ± 423.51 vs 4708.7 ± 417.93 capillary number/high-power field in prediabetes, 2999.36 ± 854.77 vs 4579.22 ± 672.56 capillary number/high-power field in type 2 diabetes and 2364.87 ± 249.57 vs 3014.63 ± 215.46 capillary number/high-power field in type 1 diabetes) and coronary flow reserve. Ex vivo analysis of neovascularisation revealed more endothelial cell sprouts from aortic rings of prediabetic and diabetic Capns1-KO mice compared with their wild-type littermates. In cultured cardiac microvascular endothelial cells, inhibition of calpain improved angiogenesis and prevented apoptosis under metabolic stress. Mechanistically, deletion of Capns1 elevated the protein levels of β-catenin in endothelial cells of Capns1-KO mice and constitutive activity of calpain 2 suppressed β-catenin protein expression in cultured endothelial cells. Upregulation of β-catenin promoted angiogenesis and inhibited apoptosis whereas knockdown of β-catenin offset the protective effects of calpain inhibition in endothelial cells under metabolic stress. CONCLUSIONS/INTERPRETATION These results delineate a primary role of calpain in inducing cardiac endothelial cell injury and impairing neovascularisation via suppression of β-catenin, thereby promoting diabetic cardiomyopathy, and indicate that calpain is a promising therapeutic target to prevent diabetic cardiac complications.
Collapse
Affiliation(s)
- Xiaomei Teng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
- Institute for Cardiovascular Science, Soochow University, Suzhou, China
- Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Chen Ji
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Huiting Zhong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Dong Zheng
- Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Rui Ni
- Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - David J Hill
- Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
- Department of Medicine, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Sidong Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peter A Greer
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
- Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Tianqing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
- Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
- Department of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
6
|
Randriamboavonjy V, Kyselova A, Fleming I. Redox Regulation of Calpains: Consequences on Vascular Function. Antioxid Redox Signal 2019; 30:1011-1026. [PMID: 30266074 DOI: 10.1089/ars.2018.7607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Calpains (CAPNs) are a family of calcium-activated cysteine proteases. The ubiquitous isoforms CAPN1 and CAPN2 have been involved in the maintenance of vascular integrity, but uncontrolled CAPN activation plays a role in the pathogenesis of vascular diseases. Recent Advances: It is well accepted that chronic and acute overproduction of reactive oxygen species (ROS) is associated with the development of vascular diseases. There is increasing evidence that ROS can also affect the CAPN activity, suggesting CAPN as a potential link between oxidative stress and vascular disease. CRITICAL ISSUES The physiopathological relevance of ROS in regulating the CAPN activity is not fully understood but seems to involve direct effects on CAPNs, redox modifications of CAPN substrates, as well as indirect effect on CAPNs via changes in Ca2+ levels. Finally, CAPNs can also stimulate ROS production; however, data showing in which context ROS are the causes or the consequences of CAPN activation are missing. FUTURE DIRECTIONS Detailed characterization of the molecular mechanisms underlying the regulation of the different members of the CAPN system by specific ROS would help understanding the pathophysiological role of CAPN in the modulation of the vascular function. Moreover, given that CAPNs have been found in different cellular compartments such as mitochondria and nucleus as well as in the extracellular space, identification of new CAPN targets as well as their functional consequences would add new insights in the function of these enigmatic proteases.
Collapse
Affiliation(s)
- Voahanginirina Randriamboavonjy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Anastasia Kyselova
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Evolving Role of Regional Depot Corticosteroids in Management of Diabetic Macular Edema. Retina 2017; 37:2201-2207. [DOI: 10.1097/iae.0000000000001826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Muniappan L, Javidan A, Jiang W, Mohammadmoradi S, Moorleghen JJ, Katz WS, Balakrishnan A, Howatt DA, Subramanian V. Calpain Inhibition Attenuates Adipose Tissue Inflammation and Fibrosis in Diet-induced Obese Mice. Sci Rep 2017; 7:14398. [PMID: 29089532 PMCID: PMC5663911 DOI: 10.1038/s41598-017-14719-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/17/2017] [Indexed: 11/09/2022] Open
Abstract
Adipose tissue macrophages have been proposed as a link between obesity and insulin resistance. However, the mechanisms underlying these processes are not completely defined. Calpains are calcium-dependent neutral cysteine proteases that modulate cellular function and have been implicated in various inflammatory diseases. To define whether activated calpains influence diet-induced obesity and adipose tissue macrophage accumulation, mice that were either wild type (WT) or overexpressing calpastatin (CAST Tg), the endogenous inhibitor of calpains were fed with high (60% kcal) fat diet for 16 weeks. CAST overexpression did not influence high fat diet-induced body weight and fat mass gain throughout the study. Calpain inhibition showed a transient improvement in glucose tolerance at 5 weeks of HFD whereas it lost this effect on glucose and insulin tolerance at 16 weeks HFD in obese mice. However, CAST overexpression significantly reduced adipocyte apoptosis, adipose tissue collagen and macrophage accumulation as detected by TUNEL, Picro Sirius and F4/80 immunostaining, respectively. CAST overexpression significantly attenuated obesity-induced inflammatory responses in adipose tissue. Furthermore, calpain inhibition suppressed macrophage migration to adipose tissue in vitro. The present study demonstrates a pivotal role for calpains in mediating HFD-induced adipose tissue remodeling by influencing multiple functions including apoptosis, fibrosis and inflammation.
Collapse
Affiliation(s)
- Latha Muniappan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Aida Javidan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Weihua Jiang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | | | | | - Wendy S Katz
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Anju Balakrishnan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Deborah A Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA.
- Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
9
|
Wakayama K, Shimamura M, Suzuki JI, Watanabe R, Koriyama H, Akazawa H, Nakagami H, Mochizuki H, Isobe M, Morishita R. Angiotensin II Peptide Vaccine Protects Ischemic Brain Through Reducing Oxidative Stress. Stroke 2017; 48:1362-1368. [DOI: 10.1161/strokeaha.116.016269] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 01/20/2023]
Abstract
Background and Purpose—
Medication nonadherence is one of major risk factors for the poor outcome in ischemic stroke. Vaccination is expected to solve such a problem because of its long-lasting effects, but its effect on ischemic brain damage is still unknown. Here, we focused on vaccination for renin–angiotensin system and examined the effects of angiotensin II (Ang II) peptide vaccine in permanent middle cerebral artery occlusion model in rats.
Methods—
Male Wistar rats were exposed to permanent middle cerebral artery occlusion after 3× injections of Ang II peptide vaccine, and the serum or brain level of anti–Ang II antibody was examined. The effects of the vaccine were evaluated by differences in infarction volume, brain renin–angiotensin system components, and markers for neurodegeneration and oxidative stress.
Results—
Ang II vaccination successfully produced anti–Ang II antibodies in serum without concomitant change in blood pressure. Sufficient production of serum anti–Ang II antibody led to reduction of infarct volume and induced the penetration of anti–Ang II antibody in ischemic hemisphere, with suppressed expression of Ang II type 1 receptor mRNA. Vaccinated rats with sufficient antibody production showed the reduction of Fluoro-Jade B–positive cells, spectrin fragmentation, 4-hydroxynonenal-positive cells, and
Nox 2
mRNA expression.
Conclusions—
Our findings indicate that Ang II vaccination exerts neuroprotective and antioxidative effects in cerebral ischemia, with renin–angiotensin system blockade by penetration of anti–Ang II antibodies into ischemic brain lesion. Ang II peptide vaccination could be a promising approach to treat ischemic stroke.
Collapse
Affiliation(s)
- Kouji Wakayama
- From the Department of Advanced Clinical Science and Therapeutics (K.W., J.-i.S.) and Department of Cardiovascular Medicine (H.A.), Graduate School of Medicine, The University of Tokyo, Japan; Department of Neurology (M.S., H.M.), Department of Health Development and Medicine (M.S., H.K., H.N.), and Department of Clinical Gene Therapy (R.M.), Graduate School of Medicine, Osaka University, Japan; and Department of Human Genetics and Disease Diversity (R.W.) and Department of Cardiovascular Medicine
| | - Munehisa Shimamura
- From the Department of Advanced Clinical Science and Therapeutics (K.W., J.-i.S.) and Department of Cardiovascular Medicine (H.A.), Graduate School of Medicine, The University of Tokyo, Japan; Department of Neurology (M.S., H.M.), Department of Health Development and Medicine (M.S., H.K., H.N.), and Department of Clinical Gene Therapy (R.M.), Graduate School of Medicine, Osaka University, Japan; and Department of Human Genetics and Disease Diversity (R.W.) and Department of Cardiovascular Medicine
| | - Jun-ichi Suzuki
- From the Department of Advanced Clinical Science and Therapeutics (K.W., J.-i.S.) and Department of Cardiovascular Medicine (H.A.), Graduate School of Medicine, The University of Tokyo, Japan; Department of Neurology (M.S., H.M.), Department of Health Development and Medicine (M.S., H.K., H.N.), and Department of Clinical Gene Therapy (R.M.), Graduate School of Medicine, Osaka University, Japan; and Department of Human Genetics and Disease Diversity (R.W.) and Department of Cardiovascular Medicine
| | - Ryo Watanabe
- From the Department of Advanced Clinical Science and Therapeutics (K.W., J.-i.S.) and Department of Cardiovascular Medicine (H.A.), Graduate School of Medicine, The University of Tokyo, Japan; Department of Neurology (M.S., H.M.), Department of Health Development and Medicine (M.S., H.K., H.N.), and Department of Clinical Gene Therapy (R.M.), Graduate School of Medicine, Osaka University, Japan; and Department of Human Genetics and Disease Diversity (R.W.) and Department of Cardiovascular Medicine
| | - Hiroshi Koriyama
- From the Department of Advanced Clinical Science and Therapeutics (K.W., J.-i.S.) and Department of Cardiovascular Medicine (H.A.), Graduate School of Medicine, The University of Tokyo, Japan; Department of Neurology (M.S., H.M.), Department of Health Development and Medicine (M.S., H.K., H.N.), and Department of Clinical Gene Therapy (R.M.), Graduate School of Medicine, Osaka University, Japan; and Department of Human Genetics and Disease Diversity (R.W.) and Department of Cardiovascular Medicine
| | - Hiroshi Akazawa
- From the Department of Advanced Clinical Science and Therapeutics (K.W., J.-i.S.) and Department of Cardiovascular Medicine (H.A.), Graduate School of Medicine, The University of Tokyo, Japan; Department of Neurology (M.S., H.M.), Department of Health Development and Medicine (M.S., H.K., H.N.), and Department of Clinical Gene Therapy (R.M.), Graduate School of Medicine, Osaka University, Japan; and Department of Human Genetics and Disease Diversity (R.W.) and Department of Cardiovascular Medicine
| | - Hironori Nakagami
- From the Department of Advanced Clinical Science and Therapeutics (K.W., J.-i.S.) and Department of Cardiovascular Medicine (H.A.), Graduate School of Medicine, The University of Tokyo, Japan; Department of Neurology (M.S., H.M.), Department of Health Development and Medicine (M.S., H.K., H.N.), and Department of Clinical Gene Therapy (R.M.), Graduate School of Medicine, Osaka University, Japan; and Department of Human Genetics and Disease Diversity (R.W.) and Department of Cardiovascular Medicine
| | - Hideki Mochizuki
- From the Department of Advanced Clinical Science and Therapeutics (K.W., J.-i.S.) and Department of Cardiovascular Medicine (H.A.), Graduate School of Medicine, The University of Tokyo, Japan; Department of Neurology (M.S., H.M.), Department of Health Development and Medicine (M.S., H.K., H.N.), and Department of Clinical Gene Therapy (R.M.), Graduate School of Medicine, Osaka University, Japan; and Department of Human Genetics and Disease Diversity (R.W.) and Department of Cardiovascular Medicine
| | - Mitsuaki Isobe
- From the Department of Advanced Clinical Science and Therapeutics (K.W., J.-i.S.) and Department of Cardiovascular Medicine (H.A.), Graduate School of Medicine, The University of Tokyo, Japan; Department of Neurology (M.S., H.M.), Department of Health Development and Medicine (M.S., H.K., H.N.), and Department of Clinical Gene Therapy (R.M.), Graduate School of Medicine, Osaka University, Japan; and Department of Human Genetics and Disease Diversity (R.W.) and Department of Cardiovascular Medicine
| | - Ryuichi Morishita
- From the Department of Advanced Clinical Science and Therapeutics (K.W., J.-i.S.) and Department of Cardiovascular Medicine (H.A.), Graduate School of Medicine, The University of Tokyo, Japan; Department of Neurology (M.S., H.M.), Department of Health Development and Medicine (M.S., H.K., H.N.), and Department of Clinical Gene Therapy (R.M.), Graduate School of Medicine, Osaka University, Japan; and Department of Human Genetics and Disease Diversity (R.W.) and Department of Cardiovascular Medicine
| |
Collapse
|
10
|
Calpain-1 resident in lipid raft/caveolin-1 membrane microdomains plays a protective role in endothelial cells. Biochimie 2017; 133:20-27. [DOI: 10.1016/j.biochi.2016.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022]
|
11
|
Shukla V, Shakya AK, Perez-Pinzon MA, Dave KR. Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation 2017; 14:21. [PMID: 28115020 PMCID: PMC5260103 DOI: 10.1186/s12974-016-0774-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022] Open
Abstract
Stroke is one of the leading causes of death worldwide. A strong inflammatory response characterized by activation and release of cytokines, chemokines, adhesion molecules, and proteolytic enzymes contributes to brain damage following stroke. Stroke outcomes are worse among diabetics, resulting in increased mortality and disabilities. Diabetes involves chronic inflammation manifested by reactive oxygen species generation, expression of proinflammatory cytokines, and activation/expression of other inflammatory mediators. It appears that increased proinflammatory processes due to diabetes are further accelerated after cerebral ischemia, leading to increased ischemic damage. Hypoglycemia is an intrinsic side effect owing to glucose-lowering therapy in diabetics, and is known to induce proinflammatory changes as well as exacerbate cerebral damage in experimental stroke. Here, we present a review of available literature on the contribution of neuroinflammation to increased cerebral ischemic damage in diabetics. We also describe the role of hypoglycemia in neuroinflammation and cerebral ischemic damage in diabetics. Understanding the role of neuroinflammatory mechanisms in worsening stroke outcome in diabetics may help limit ischemic brain injury and improve clinical outcomes.
Collapse
Affiliation(s)
- Vibha Shukla
- Cerebral Vascular Disease Research Laboratories, University of Miami School of Medicine, Miami, FL, 33136, USA.,Department of Neurology (D4-5), University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA
| | - Akhalesh Kumar Shakya
- Present address: Department of Microbiology and Immunology, and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami School of Medicine, Miami, FL, 33136, USA.,Department of Neurology (D4-5), University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA.,Neuroscience Program, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami School of Medicine, Miami, FL, 33136, USA. .,Department of Neurology (D4-5), University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA. .,Neuroscience Program, University of Miami School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
12
|
Ji J, Su L, Liu Z. Critical role of calpain in inflammation. Biomed Rep 2016; 5:647-652. [PMID: 28101338 DOI: 10.3892/br.2016.785] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 09/14/2016] [Indexed: 02/07/2023] Open
Abstract
Calpains are a family of cysteine proteases, implicated in a wide range of cellular calcium-regulated functions. Evidence from previous studies using an inhibitor of calpain indicates that calpain activation is involved in the process of numerous inflammation-associated diseases. As a result of in-depth studies, calpains have been proposed to influence the process of inflammation via a variety of mechanisms. The aim of the present study is to provide an overview of recent reports regarding the role of calpain in the process of inflammation, including regulation of immune cell migration, modulation of the activation of inflammatory mediators, degradation of certain associated proteins and induction of cell apoptosis. Understanding these mechanisms may contribute to the investigation of novel therapeutic targets for inflammation-associated diseases.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China; Graduate School, Guangzhou Medical University, Guangzhou, Guangdong 510010, P.R. China
| | - Lei Su
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China; Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Zhifeng Liu
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China; Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
13
|
Gumuslu E, Cine N, Ertan Gökbayrak M, Mutlu O, Komsuoglu Celikyurt I, Ulak G. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice. Med Sci Monit 2016; 22:2664-9. [PMID: 27465247 PMCID: PMC4975365 DOI: 10.12659/msm.897401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. Material/Methods The present study demonstrated the effects of exenatide treatment (0.1 μg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. Results The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. Conclusions Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM.
Collapse
Affiliation(s)
- Esen Gumuslu
- Department of Genetics, Kocaeli University, Medical Faculty, Kocaeli, Turkey
| | - Naci Cine
- Department of Genetics, Kocaeli University, Medical Faculty, Kocaeli, Turkey
| | | | - Oguz Mutlu
- Department of Pharmacology, Kocaeli University, Medical Faculty, Kocaeli, Turkey
| | | | - Guner Ulak
- Department of Pharmacology, Kocaeli University, Medical Faculty, Kocaeli, Turkey
| |
Collapse
|
14
|
Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical Update: Cardiovascular Disease in Diabetes Mellitus: Atherosclerotic Cardiovascular Disease and Heart Failure in Type 2 Diabetes Mellitus - Mechanisms, Management, and Clinical Considerations. Circulation 2016; 133:2459-502. [PMID: 27297342 PMCID: PMC4910510 DOI: 10.1161/circulationaha.116.022194] [Citation(s) in RCA: 737] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease remains the principal cause of death and disability among patients with diabetes mellitus. Diabetes mellitus exacerbates mechanisms underlying atherosclerosis and heart failure. Unfortunately, these mechanisms are not adequately modulated by therapeutic strategies focusing solely on optimal glycemic control with currently available drugs or approaches. In the setting of multifactorial risk reduction with statins and other lipid-lowering agents, antihypertensive therapies, and antihyperglycemic treatment strategies, cardiovascular complication rates are falling, yet remain higher for patients with diabetes mellitus than for those without. This review considers the mechanisms, history, controversies, new pharmacological agents, and recent evidence for current guidelines for cardiovascular management in the patient with diabetes mellitus to support evidence-based care in the patient with diabetes mellitus and heart disease outside of the acute care setting.
Collapse
Affiliation(s)
- Cecilia C Low Wang
- From Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado School of Medicine, Aurora (C.C.L.); CPC Clinical Research, Aurora, CO (C.C.L., C.N.H., W.R.H.); Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (C.N.H., W.R.H.); Joslin Diabetes Center, and Harvard Medical School, Boston, MA (A.B.G.)
| | - Connie N Hess
- From Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado School of Medicine, Aurora (C.C.L.); CPC Clinical Research, Aurora, CO (C.C.L., C.N.H., W.R.H.); Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (C.N.H., W.R.H.); Joslin Diabetes Center, and Harvard Medical School, Boston, MA (A.B.G.)
| | - William R Hiatt
- From Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado School of Medicine, Aurora (C.C.L.); CPC Clinical Research, Aurora, CO (C.C.L., C.N.H., W.R.H.); Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (C.N.H., W.R.H.); Joslin Diabetes Center, and Harvard Medical School, Boston, MA (A.B.G.)
| | - Allison B Goldfine
- From Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado School of Medicine, Aurora (C.C.L.); CPC Clinical Research, Aurora, CO (C.C.L., C.N.H., W.R.H.); Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (C.N.H., W.R.H.); Joslin Diabetes Center, and Harvard Medical School, Boston, MA (A.B.G.).
| |
Collapse
|
15
|
Chang E, Abe JI. Kinase-SUMO networks in diabetes-mediated cardiovascular disease. Metabolism 2016; 65:623-633. [PMID: 27085771 PMCID: PMC5226250 DOI: 10.1016/j.metabol.2016.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 12/20/2022]
Abstract
Type II diabetes mellitus (DM) is a common comorbidity in patients with cardiovascular disease (CVD). Epidemiological studies including the Framingham, UKPDS, and MRFIT studies have shown diabetes to be an independent risk factor for cardiovascular disease associated with increased incidence of morbidity and mortality. However, major randomized controlled clinical trials including ADVANCE, VAD, and ACCORD have failed to demonstrate a significant reduction in CVD complications from longstanding DM with strict glycemic control. This suggests that despite the strong clinical correlation between DM and CVD, the precise mechanisms of DM-mediated CVD pathogenesis remain unclear. Signal transduction investigations have shed some light on this question with numerous studies demonstrating the role of kinase pathways in facilitating DM and CVD pathology. Abnormalities in endothelial, vascular smooth muscle, and myocardial function from the pathological insults of hyperglycemia and oxidative stress in diabetes are thought to accelerate the development of cardiovascular disease. Extensive interplay between kinase pathways that regulate the complex pathology of DM-mediated CVD is heavily regulated by a number of post-translational modifications (PTMs). In this review, we focus on the role of a dynamic PTM known as SUMOylation and its role in regulating these kinase networks to provide a mechanistic link between DM and CVD.
Collapse
Affiliation(s)
- Eugene Chang
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Jun-Ichi Abe
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Howatt DA, Balakrishnan A, Moorleghen JJ, Muniappan L, Rateri DL, Uchida HA, Takano J, Saido TC, Chishti AH, Baud L, Subramanian V. Leukocyte Calpain Deficiency Reduces Angiotensin II-Induced Inflammation and Atherosclerosis But Not Abdominal Aortic Aneurysms in Mice. Arterioscler Thromb Vasc Biol 2016; 36:835-45. [PMID: 26966280 DOI: 10.1161/atvbaha.116.307285] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 02/27/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Angiotensin II (AngII) infusion profoundly increases activity of calpains, calcium-dependent neutral cysteine proteases, in mice. Pharmacological inhibition of calpains attenuates AngII-induced aortic medial macrophage accumulation, atherosclerosis, and abdominal aortic aneurysm in mice. However, the precise functional contribution of leukocyte-derived calpains in AngII-induced vascular pathologies has not been determined. The purpose of this study was to determine whether calpains expressed in bone marrow (BM)-derived cells contribute to AngII-induced atherosclerosis and aortic aneurysms in hypercholesterolemic mice. APPROACH AND RESULTS To study whether leukocyte calpains contributed to AngII-induced aortic pathologies, irradiated male low-density lipoprotein receptor(-/-) mice were repopulated with BM-derived cells that were either wild-type or overexpressed calpastatin, the endogenous inhibitor of calpains. Mice were fed a fat-enriched diet and infused with AngII (1000 ng/kg per minute) for 4 weeks. Overexpression of calpastatin in BM-derived cells significantly attenuated AngII-induced atherosclerotic lesion formation in aortic arches, but had no effect on aneurysm formation. Using either BM-derived cells from calpain-1-deficient mice or mice with leukocyte-specific calpain-2 deficiency generated using cre-loxP recombination technology, further studies demonstrated that independent deficiency of either calpain-1 or -2 in leukocytes modestly attenuated AngII-induced atherosclerosis. Calpastatin overexpression significantly attenuated AngII-induced inflammatory responses in macrophages and spleen. Furthermore, calpain inhibition suppressed migration and adhesion of macrophages to endothelial cells in vitro. Calpain inhibition also significantly decreased hypercholesterolemia-induced atherosclerosis in the absence of AngII. CONCLUSIONS The present study demonstrates a pivotal role for BM-derived calpains in mediating AngII-induced atherosclerosis by influencing macrophage function.
Collapse
Affiliation(s)
- Deborah A Howatt
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Anju Balakrishnan
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Jessica J Moorleghen
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Latha Muniappan
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Debra L Rateri
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Haruhito A Uchida
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Jiro Takano
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Takaomi C Saido
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Athar H Chishti
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Laurent Baud
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.)
| | - Venkateswaran Subramanian
- From the Saha Cardiovascular Research Center (D.A.H., A.B., J.J.M., L.M., D.L.R.), and Department of Physiology (V.S.), University of Kentucky, Lexington; Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan (H.A.U.); Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan (J.T., T.C.S.); Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA (A.H.C.); and INSERM, Université Pierre et Marie Curie-Paris, Paris, France (L.B.).
| |
Collapse
|
17
|
Li Z, Cheng L, Liang H, Duan W, Hu J, Zhi W, Yang J, Liu Z, Zhao M, Liu J. GPER inhibits diabetes-mediated RhoA activation to prevent vascular endothelial dysfunction. Eur J Cell Biol 2015; 95:100-13. [PMID: 26785611 DOI: 10.1016/j.ejcb.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/25/2015] [Accepted: 12/27/2015] [Indexed: 11/24/2022] Open
Abstract
The effect of estrogen receptors on diabetes-induced vascular dysfunction is critical, but ambiguous. Individuals with diabetic vascular disease may require estrogen receptor-specific targeted therapy in the future. The G protein-coupled estrogen receptor (GPER) has beneficial effects on vascular function. However, its fundamental mechanisms are unclear. The RhoA/Rho-kinase pathway contributes to diabetic vascular complications, whereas estrogen can suppress Rho-kinase function. Thus, we assumed that GPER inhibits diabetes-mediated RhoA activation to prevent vascular dysfunction. We further investigated the underlying mechanisms involved in this process. Vascular endothelial cells and ex vivo cultured ovariectomized (OVX) C57BL/6 mouse aortae were treated with high glucose (HG) alone or in combination with GPER agonist (G1). G1 treatment was also administered to OVX db/db mice for 8 weeks. An ex-vivo isovolumic myograph was used to analyze the endothelium-dependent vasodilation and endothelium-independent contraction of mouse aortae. Apoptosis, oxidative stress, and inflammation were attenuated in G1-pretreated vascular endothelial cells. G1 significantly decreased the phosphorylation of inhibitory endothelial nitric oxide (NO) synthase residue threonine 495 (eNOS Thr495), inhibited RhoA expression, and increased NO production. Additionally, G1 rescued the impaired endothelium-dependent relaxation and inhibited RhoA activation in the thoracic aorta of OVX db/db mice and ex-vivo cultured OVX C57BL/6 mouse aortae treated with HG. Estrogens acting via GPER could protect vascular endothelium, and GPER activation might elicit ERα-independent effect to inhibit RhoA/Rho-kinase pathway. Additionally, GPER activation might reduce vascular smooth muscle contraction by inhibiting RhoA activation. Thus, the results of the present study suggest a new therapeutic paradigm for end-stage vascular dysfunction by inhibiting RhoA/Rho-kinase pathway via GPER activation.
Collapse
Affiliation(s)
- Zilin Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China; Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiovascular Surgery, General Hospital of Lanzhou Command, PLA, Lanzhou, China
| | - Liang Cheng
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongliang Liang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Hu
- Department of Pharmacy, General Hospital of Lanzhou Command, PLA, Lanzhou, China
| | - Weiwei Zhi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinbao Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenhua Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Minggao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
18
|
Cheng Z, Jiang X, Pansuria M, Fang P, Mai J, Mallilankaraman K, Gandhirajan RK, Eguchi S, Scalia R, Madesh M, Yang X, Wang H. Hyperhomocysteinemia and hyperglycemia induce and potentiate endothelial dysfunction via μ-calpain activation. Diabetes 2015; 64:947-59. [PMID: 25352635 PMCID: PMC4338586 DOI: 10.2337/db14-0784] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plasma homocysteine (Hcy) levels are positively correlated with cardiovascular mortality in diabetes. However, the joint effect of hyperhomocysteinemia (HHcy) and hyperglycemia (HG) on endothelial dysfunction (ED) and the underlying mechanisms have not been studied. Mild (22 µmol/L) and moderate (88 µmol/L) HHcy were induced in cystathionine β-synthase wild-type (Cbs(+/+)) and heterozygous-deficient (Cbs(-/+)) mice by a high-methionine (HM) diet. HG was induced by consecutive injection of streptozotocin. We found that HG worsened HHcy and elevated Hcy levels to 53 and 173 µmol/L in Cbs(+/+) and Cbs(-/+) mice fed an HM diet, respectively. Both mild and moderate HHcy aggravated HG-impaired endothelium-dependent vascular relaxation to acetylcholine, which was completely abolished by endothelial nitric oxide synthase (eNOS) inhibitor N(G)-nitro-L-arginine methyl ester. HHcy potentiated HG-induced calpain activation in aortic endothelial cells isolated from Cbs mice. Calpain inhibitors rescued HHcy- and HHcy/HG-induced ED in vivo and ex vivo. Moderate HHcy- and HG-induced μ-calpain activation was potentiated by a combination of HHcy and HG in the mouse aorta. μ-Calpain small interfering RNA (μ-calpsiRNA) prevented HHcy/HG-induced ED in the mouse aorta and calpain activation in human aortic endothelial cells (HAECs) treated with DL-Hcy (500 µmol/L) and d-glucose (25 mmol) for 48 h. In addition, HHcy accelerated HG-induced superoxide production as determined by dihydroethidium and 3-nitrotyrosin staining and urinary 8-isoprostane/creatinine assay. Antioxidants rescued HHcy/HG-induced ED in mouse aortas and calpain activation in cultured HAECs. Finally, HHcy potentiated HG-suppressed nitric oxide production and eNOS activity in HAECs, which were prevented by calpain inhibitors or μ-calpsiRNA. HHcy aggravated HG-increased phosphorylation of eNOS at threonine 497/495 (eNOS-pThr497/495) in the mouse aorta and HAECs. HHcy/HG-induced eNOS-pThr497/495 was reversed by µ-calpsiRNA and adenoviral transduced dominant negative protein kinase C (PKC)β2 in HAECs. HHcy and HG induced ED, which was potentiated by the combination of HHcy and HG via μ-calpain/PKCβ2 activation-induced eNOS-pThr497/495 and eNOS inactivation.
Collapse
Affiliation(s)
- Zhongjian Cheng
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA
| | - Xiaohua Jiang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA Center for Cardiovascular Research, Temple University School of Medicine, Philadelphia, PA
| | - Meghana Pansuria
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA
| | - Pu Fang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA
| | - Jietang Mai
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA
| | | | | | - Satoru Eguchi
- Center for Cardiovascular Research, Temple University School of Medicine, Philadelphia, PA Department of Physiology, Temple University School of Medicine, Philadelphia, PA
| | - Rosario Scalia
- Center for Cardiovascular Research, Temple University School of Medicine, Philadelphia, PA Department of Physiology, Temple University School of Medicine, Philadelphia, PA
| | - Muniswamy Madesh
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA Center for Cardiovascular Research, Temple University School of Medicine, Philadelphia, PA Center for Thrombosis Research, Temple University School of Medicine, Philadelphia, PA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA Center for Cardiovascular Research, Temple University School of Medicine, Philadelphia, PA Center for Thrombosis Research, Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
19
|
Jing L, Wang JG, Zhang JZ, Cao CX, Chang Y, Dong JD, Guo FY, Li PA. Upregulation of ICAM-1 in diabetic rats after transient forebrain ischemia and reperfusion injury. JOURNAL OF INFLAMMATION-LONDON 2014; 11:35. [PMID: 25389378 PMCID: PMC4226864 DOI: 10.1186/s12950-014-0035-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/21/2014] [Indexed: 01/13/2023]
Abstract
Background Hyperglycemia exacerbates brain damage caused by cerebral ischemia. Neuroinflammation may play a role in mediating such enhanced damage. The objectives of this study were to examine the mRNA and protein levels and cell type distribution of ICAM-1 after cerebral ischemia in normo-and diabetic hyperglycemic rats. Results Compared to normoglycemic ischemia animals, diabetes aggravated neuronal death, decreased Nissl body staining, and increased ICAM-1 mRNA and protein levels in the frontal cortex. The increased ICAM-1 was located not only in vascular endothelial cells but also in cortical neurons. Conclusions Our results suggest that exacerbated neuro-inflammation in the brain may mediate the detrimental effects of diabetes on the ischemic brain.
Collapse
Affiliation(s)
- Li Jing
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Jian-Gang Wang
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Jian-Zhong Zhang
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Cai-Xia Cao
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Yue Chang
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Jian-Da Dong
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Feng-Ying Guo
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, North Carolina USA
| |
Collapse
|
20
|
Haidari M, Zhang W, Willerson JT, Dixon RA. Disruption of endothelial adherens junctions by high glucose is mediated by protein kinase C-β-dependent vascular endothelial cadherin tyrosine phosphorylation. Cardiovasc Diabetol 2014; 13:105. [PMID: 25927959 PMCID: PMC4223716 DOI: 10.1186/1475-2840-13-105] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/29/2014] [Indexed: 12/17/2022] Open
Abstract
Background Hyperglycemia has been recognized as a primary factor in endothelial barrier dysfunction and in the development of micro- and macrovascular diseases associated with diabetes, but the underlying biochemical mechanisms remain elusive. Tyrosine phosphorylation of vascular endothelial cadherin (VE-cad) leads to the disruption of endothelial adherens junctions and increases the transendothelial migration (TEM) of leukocytes. Methods VE-cad tyrosine phosphorylation, adherens junction integrity and TEM of monocytes in human umbilical vein endothelial cells (HUVECs) treated with high-concentration glucose were evaluated. The role of protein kinase C (PKC) in induction of endothelial cells adherence junction disruption by exposure of HUVECs to high concentration of glucose was explored. Results The treatment of HUVEC with high-concentration glucose increased VE-cad tyrosine phosphorylation, whereas mannitol or 3-O-methyl-D-glucose had no effect. In addition, high-concentration glucose increased the dissociation of the VE-cad–β-catenin complex, activation of the Wnt/β-catenin pathway, and the TEM of monocytes. These alterations were accompanied by the activation of endothelial PKC and increased phosphorylation of ERK and myosin light chain (MLC). High-concentration glucose-induced tyrosine phosphorylation of VE-cad was attenuated by: 1- the inhibition of PKC-β by overexpression of dominant-negative PKC-β 2- inhibition of MLC phosphorylation by overexpression of a nonphosphorylatable dominant-negative form of MLC, 3- the inhibition of actin polymerization by cytochalasin D and 4- the treatment of HUVECs with forskolin (an activator of adenylate cyclase). Conclusions Our findings show that the high-concentration glucose-induced disruption of endothelial adherens junctions is mediated by tyrosine phosphorylation of VE-cad through PKC-β and MLC phosphorylation.
Collapse
Affiliation(s)
- Mehran Haidari
- Department of Internal Medicine, Division of Cardiology, The University of Texas Medical School at Houston, 77030, Houston, TX, USA. .,Texas Heart Institute at St. Luke's Episcopal Hospital, PO Box 20345 C1000, 77030, Houston, TX, USA.
| | - Wei Zhang
- Texas Heart Institute at St. Luke's Episcopal Hospital, PO Box 20345 C1000, 77030, Houston, TX, USA.
| | - James T Willerson
- Department of Internal Medicine, Division of Cardiology, The University of Texas Medical School at Houston, 77030, Houston, TX, USA. .,Texas Heart Institute at St. Luke's Episcopal Hospital, PO Box 20345 C1000, 77030, Houston, TX, USA.
| | - Richard Af Dixon
- Texas Heart Institute at St. Luke's Episcopal Hospital, PO Box 20345 C1000, 77030, Houston, TX, USA.
| |
Collapse
|
21
|
Su Y, Qadri SM, Cayabyab FS, Wu L, Liu L. Regulation of methylglyoxal-elicited leukocyte recruitment by endothelial SGK1/GSK3 signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2481-91. [PMID: 25003317 DOI: 10.1016/j.bbamcr.2014.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 11/26/2022]
Abstract
Excessive levels of the glycolysis metabolite methylglyoxal (MG) elicit enhanced expression of adhesion molecules which foster leukocyte-endothelial cell interactions. The signaling mechanisms involved remain elusive. To address this, we investigated the signal transduction of leukocyte- and endothelial-expressed phosphoinositide 3-kinase (PI3K) effector kinases glycogen synthase kinase 3 (GSK3) and serum- and glucocorticoid-inducible kinase 1 (SGK1) in the regulation of MG-elicited leukocyte recruitment. Using intravital microscopy of mouse cremasteric microvasculature, we demonstrate that GSK3 inhibitors lithium and SB216763 mitigate MG-elicited leukocyte recruitment and microvascular hyperpermeability. In SVEC4-10EE2 endothelial cells, but not in neutrophils, MG transiently activates GSK3 by reducing inhibitory phospho-GSK3α/β (Ser21/9) which parallels decrease of phospho-Akt at early time points (<30min). At later time points (≥1h), MG induces GSK3 deactivation which is dissipated by siRNA silencing of SGK. MG treatment potentiates endothelial SGK1 mRNA, total SGK1, phospho-SGK1 and phospho-NDRG1. The SGK1 inhibitor GSK650394 attenuates MG-elicited leukocyte recruitment. Pharmacological inhibition or silencing endothelial GSK3 or SGK attenuates MG-triggered nuclear factor (NF)-κB activity. Furthermore, silencing SGK blunts MG-triggered redox-sensitive phosphorylation of endothelial transcription factor CREB. Inhibition of SGK1 or GSK3 mitigates the expression of endothelial adhesion molecules P- and E-selectins and ICAM-1. Moreover, SGK1-dependent CREB activation participates in MG-elicited ICAM-1 upregulation. We conclude that temporal activation of endothelial SGK1 and GSK3 is decisive in MG-elicited upregulation of transcription factors, adhesion molecule expression, and leukocyte-vascular endothelium interactions. This novel signaling pathway may link excessive MG levels in vivo to inflammation, thus, unraveling potential therapeutic targets.
Collapse
Affiliation(s)
- Yang Su
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Syed M Qadri
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Francisco S Cayabyab
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lingyun Wu
- Department of Health Sciences, Lakehead University, Thunder Bay, Ontario, Canada; Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
22
|
Kishore R, Benedict C, Cheng Z. μ-Calpain as a Novel Target for Impairment of Nitric Oxide-Mediated Vascular Relaxation in Diabetes: A Mini Review. J Mol Genet Med 2014; 9. [PMID: 26120352 PMCID: PMC4482122 DOI: 10.4172/1747-0862.1000167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Diabetes is one of the most prevalent metabolic disorders. In diabetes, incidence of coronary artery diseases and peripheral vascular diseases is increased 2- to 4-fold and 10-fold, respectively, compared to healthy individuals. In spite of extensive studies, the underlying mechanisms of endothelial dysfunction (ED), an early event in the development of vascular diseases, remain incompletely understood in diabetes. This mini-review discusses the role and signaling pathways of calpains - a family of Ca2+-sensitive intracellular proteases in nitric oxide (NO)-mediated ED in diabetes. We conclude that activation of calpains, especially μ-calpain, plays an important role in the pathogenesis of NO-mediated ED and inflammatory responses in diabetes which is mainly via endothelial Nitric Oxide Synthase (eNOS) inactivation/degradation in macro- and micro-vasculature. We review existing literature demonstrating that hyperhomocysteinemia, elevated plasma homocysteine level, potentiates hyperglycemia-induced ED via μ-calpain/PKCβ2 activation-induced eNOS-pThr497/495 and eNOS inactivation. μ-calpain may be a critical therapeutic target for NO-mediated ED in diabetes.
Collapse
Affiliation(s)
- Raj Kishore
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, USA
| | - Cynthia Benedict
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, USA
| | - Zhongjian Cheng
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, USA
| |
Collapse
|
23
|
Seo J, Jo SA, Hwang S, Byun CJ, Lee HJ, Cho DH, Kim D, Koh YH, Jo I. Trichostatin A epigenetically increases calpastatin expression and inhibits calpain activity and calcium-induced SH-SY5Y neuronal cell toxicity. FEBS J 2013; 280:6691-701. [DOI: 10.1111/febs.12572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Jungwon Seo
- Department of Molecular Medicine; Ewha Womans University Medical School; Seoul South Korea
- Institute of Pharmaceutical Research and Development; College of Pharmacy; Wonkwang University; Iksan South Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science; BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan South Korea
- Department of Pharmacology; College of Pharmacy; Dankook University; Cheonan South Korea
| | - Soojin Hwang
- Department of Molecular Medicine; Ewha Womans University Medical School; Seoul South Korea
| | | | - Hyeon-Ju Lee
- Department of Nanobiomedical Science; BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan South Korea
- Department of Pharmacology; College of Pharmacy; Dankook University; Cheonan South Korea
| | - Du-Hyong Cho
- Department of Neuroscience; Konkuk University Medical School; Seoul South Korea
| | - Dueon Kim
- Institute of Pharmaceutical Research and Development; College of Pharmacy; Wonkwang University; Iksan South Korea
| | - Young Ho Koh
- Division of Brain Disease; Center for Biomedical Sciences; National Institute of Health; Osong South Korea
| | - Inho Jo
- Department of Molecular Medicine; Ewha Womans University Medical School; Seoul South Korea
| |
Collapse
|
24
|
Kones R. Molecular sources of residual cardiovascular risk, clinical signals, and innovative solutions: relationship with subclinical disease, undertreatment, and poor adherence: implications of new evidence upon optimizing cardiovascular patient outcomes. Vasc Health Risk Manag 2013; 9:617-70. [PMID: 24174878 PMCID: PMC3808150 DOI: 10.2147/vhrm.s37119] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Residual risk, the ongoing appreciable risk of major cardiovascular events (MCVE) in statin-treated patients who have achieved evidence-based lipid goals, remains a concern among cardiologists. Factors that contribute to this continuing risk are atherogenic non-low-density lipoprotein (LDL) particles and atherogenic processes unrelated to LDL cholesterol, including other risk factors, the inherent properties of statin drugs, and patient characteristics, ie, genetics and behaviors. In addition, providers, health care systems, the community, public policies, and the environment play a role. Major statin studies suggest an average 28% reduction in LDL cholesterol and a 31% reduction in relative risk, leaving a residual risk of about 69%. Incomplete reductions in risk, and failure to improve conditions that create risk, may result in ongoing progression of atherosclerosis, with new and recurring lesions in original and distant culprit sites, remodeling, arrhythmias, rehospitalizations, invasive procedures, and terminal disability. As a result, identification of additional agents to reduce residual risk, particularly administered together with statin drugs, has been an ongoing quest. The current model of atherosclerosis involves many steps during which disease may progress independently of guideline-defined elevations in LDL cholesterol. Differences in genetic responsiveness to statin therapy, differences in ability of the endothelium to regenerate and repair, and differences in susceptibility to nonlipid risk factors, such as tobacco smoking, hypertension, and molecular changes associated with obesity and diabetes, may all create residual risk. A large number of inflammatory and metabolic processes may also provide eventual therapeutic targets to lower residual risk. Classically, epidemiologic and other evidence suggested that raising high-density lipoprotein (HDL) cholesterol would be cardioprotective. When LDL cholesterol is aggressively lowered to targets, low HDL cholesterol levels are still inversely related to MCVE. The efflux capacity, or ability to relocate cholesterol out of macrophages, is believed to be a major antiatherogenic mechanism responsible for reduction in MCVE mediated in part by healthy HDL. HDL cholesterol is a complex molecule with antioxidative, anti-inflammatory, anti-thrombotic, antiplatelet, and vasodilatory properties, among which is protection of LDL from oxidation. HDL-associated paraoxonase-1 has a major effect on endothelial function. Further, HDL promotes endothelial repair and progenitor cell health, and supports production of nitric oxide. HDL from patients with cardiovascular disease, diabetes, and autoimmune disease may fail to protect or even become proinflammatory or pro-oxidant. Mendelian randomization and other clinical studies in which raising HDL cholesterol has not been beneficial suggest that high plasma levels do not necessarily reduce cardiovascular risk. These data, coupled with extensive preclinical information about the functional heterogeneity of HDL, challenge the "HDL hypothesis", ie, raising HDL cholesterol per se will reduce MCVE. After the equivocal AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides: Impact on Global Health Outcomes) study and withdrawal of two major cholesteryl ester transfer protein compounds, one for off-target adverse effects and the other for lack of efficacy, development continues for two other agents, ie, anacetrapib and evacetrapib, both of which lower LDL cholesterol substantially. The negative but controversial HPS2-THRIVE (the Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events) trial casts further doubt on the HDL cholesterol hypothesis. The growing impression that HDL functionality, rather than abundance, is clinically important is supported by experimental evidence highlighting the conditional pleiotropic actions of HDL. Non-HDL cholesterol reflects the cholesterol in all atherogenic particles containing apolipoprotein B, and has outperformed LDL cholesterol as a lipid marker of cardiovascular risk and future mortality. In addition to including a measure of residual risk, the advantages of using non-HDL cholesterol as a primary lipid target are now compelling. Reinterpretation of data from the Treating to New Targets study suggests that better control of smoking, body weight, hypertension, and diabetes will help lower residual risk. Although much improved, control of risk factors other than LDL cholesterol currently remains inadequate due to shortfalls in compliance with guidelines and poor patient adherence. More efficient and greater use of proven simple therapies, such as aspirin, beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, combined with statin therapy, may be more fruitful in improving outcomes than using other complex therapies. Comprehensive, intensive, multimechanistic, global, and national programs using primordial, primary, and secondary prevention to lower the total level of cardiovascular risk are necessary.
Collapse
Affiliation(s)
- Richard Kones
- Cardiometabolic Research Institute, Houston, TX, USA
| |
Collapse
|
25
|
Li WA, Moore-Langston S, Chakraborty T, Rafols JA, Conti AC, Ding Y. Hyperglycemia in stroke and possible treatments. Neurol Res 2013; 35:479-91. [PMID: 23622737 DOI: 10.1179/1743132813y.0000000209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hyperglycemia affects approximately one-third of acute ischemic stroke patients and is associated with poor clinical outcomes. In experimental and clinical stroke studies, hyperglycemia has been shown to be detrimental to the penumbral tissue for several reasons. First, hyperglycemia exacerbates both calcium imbalance and the accumulation of reactive oxygen species (ROS) in neurons, leading to increased apoptosis. Second, hyperglycemia fuels anaerobic energy production, causing lactic acidosis, which further stresses neurons in the penumbral regions. Third, hyperglycemia decreases blood perfusion after ischemic stroke by lowering the availability of nitric oxide (NO), which is a crucial mediator of vasodilation. Lastly, hyperglycemia intensifies the inflammatory response after stroke, causing edema, and hemorrhage through disruption of the blood brain barrier and degradation of white matter, which leads to a worsening of functional outcomes. Many neuroprotective treatments addressing hyperglycemia in stroke have been implemented in the past decade. Early clinical use of insulin provided mixed results due to insufficiently controlled glucose levels and heterogeneity of patient population. Recently, however, the latest Stroke Hyperglycemia Insulin Network Effort trial has addressed the shortcomings of insulin therapy. While glucagon-like protein-1 administration, hyperbaric oxygen preconditioning, and ethanol therapy appear promising, these treatments remain in their infancy and more research is needed to better understand the mechanisms underlying hyperglycemia-induced injuries. Elucidation of these mechanistic pathways could lead to the development of rational treatments that reduce hyperglycemia-associated injuries and improve functional outcomes for ischemic stroke patients.
Collapse
Affiliation(s)
- William A Li
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
26
|
Miyazaki T, Koya T, Kigawa Y, Oguchi T, Lei XF, Kim-Kaneyama JR, Miyazaki A. Calpain and atherosclerosis. J Atheroscler Thromb 2012; 20:228-37. [PMID: 23171729 DOI: 10.5551/jat.14787] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This review highlights the pro-atherogenic roles of Ca(2+)-sensitive intracellular protease calpains. Among more than ten species of calpain isozymes, µ- and m-calpains have been characterized most extensively. These two isozymes are ubiquitously expressed in mammalian tissues, including blood vessels, and tightly regulate functional molecules in the vascular component cells through limited proteolytic cleavage. Indeed, previous cell-based experiments showed that calpains play significant roles in nitric oxide production in vascular endothelial cells (ECs), maintenance of EC barrier function and angiogenesis for maintaining vascular homeostasis. Recently, we demonstrated that modified-low density lipoprotein (LDL)-induced m-calpain causes hyperpermeability in ECs, leading to the infiltration of monocytes/macrophages and plasma lipids into the intimal spaces (Miyazaki T. et al., Circulation. 2011; 124: 2522-2532). Calpains also mediate oxidized LDL-induced apoptotic death in ECs. In monocytes/macrophages, calpains induce proteolytic degradation of ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1), which results in impaired cholesterol efflux and subsequent macrophage foam cell formation. In vascular smooth muscle cells, calpains may be involved in the conversion from contractile phenotype to proliferative phenotype. In hepatocytes, calpains disrupt the biogenesis of high-density lipoprotein via proteolytic degradation of ABCA1. Thus, calpains may serve as novel candidate molecular targets for control of atherosclerosis.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
CXCL1-triggered interaction of LFA1 and ICAM1 control glucose-induced leukocyte recruitment during inflammation in vivo. Mediators Inflamm 2012; 2012:739176. [PMID: 23093821 PMCID: PMC3474340 DOI: 10.1155/2012/739176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/16/2012] [Accepted: 08/23/2012] [Indexed: 12/26/2022] Open
Abstract
It is well acknowledged that proinflammatory stimulation during acute hyperglycemia is able to aggravate inflammatory diseases. However, the mechanisms of proinflammatory effects of glucose are controversially discussed. We investigated leukocyte recruitment after intravenous injection of glucose in different inflammatory models using intravital microscopy. Flow chamber experiments, expression analysis, functional depletion, and knockout of key adhesion molecules gave mechanistic insight in involved pathways. We demonstrated that a single injection of glucose rapidly increased blood glucose levels in a dose-dependent manner. Notably, during tumor necrosis factor (TNF) α-induced inflammation leukocyte recruitment was not further enhanced by glucose administration, whereas glucose injection profoundly augmented leukocyte adhesion and transmigration into inflamed tissue in the trauma model, indicating that proinflammatory properties of glucose are stimulus dependent. Experiments with functional or genetic inhibition of the chemokine receptor CXCR2, intercellular adhesion molecule 1 (ICAM1), and lymphocyte function antigen 1 (LFA1) suggest that keratino-derived-chemokine CXCL1-triggered interactions of ICAM1 and LFA1 are crucially involved in the trauma model of inflammation. The lacking effect of glucose on β(2) integrin expression and on leukocyte adhesion in dynamic flow chamber experiments argues against leukocyte-driven underlying mechanisms and favours an endothelial pathway since endothelial ICAM1 expression was significantly upregulated in response to glucose.
Collapse
|
28
|
Calpain inhibition attenuates angiotensin II-induced abdominal aortic aneurysms and atherosclerosis in low-density lipoprotein receptor-deficient mice. J Cardiovasc Pharmacol 2012; 59:66-76. [PMID: 21964156 DOI: 10.1097/fjc.0b013e318235d5ea] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic infusion of angiotensin II (AngII) augments atherosclerosis and abdominal aortic aneurysm (AAA) formation in hypercholesterolemic mice. AngII-induced AAAs are associated with medial macrophage accumulation and matrix metalloproteinase (MMP) activation. Inhibition of calpain, a calcium-activated neutral cysteine protease, by overexpression of its endogenous inhibitor, calpastatin, attenuates AngII-induced leukocyte infiltration, perivascular inflammation, and MMP activation in mice. The purpose of this study was to define whether pharmacological inhibition of calpain influences AngII-induced AAAs in hypercholesterolemic mice. Male low-density lipoprotein receptor-/- mice were fed a fat-enriched diet and administered with either vehicle or a calpain-specific inhibitor, BDA-410 (30 mg/kg per day) for 5 weeks. After 1 week of feeding, mice were infused with AngII (1000 ng/kg per minute) for 4 weeks. AngII-infusion profoundly increased aortic calpain protein and activity. BDA-410 administration had no effect on plasma cholesterol concentrations or AngII-increased systolic blood pressure. Calpain inhibition significantly attenuated AngII-induced AAA formation and atherosclerosis development. BDA-410 administration attenuated activation of MMP12, proinflammatory cytokines (IL-6, monocyte chemoattractant protein-1), and macrophage infiltration into the aorta. BDA-410 administration significantly attenuated thioglycolate-elicited macrophage accumulation in the peritoneal cavity. We conclude that calpain inhibition using BDA-410 attenuated AngII-induced AAA formation and atherosclerosis development in low-density lipoprotein receptor-/- mice.
Collapse
|
29
|
Abstract
Calpains, a family of Ca(2+)-dependent cytosolic cysteine proteases, can modulate their substrates' structure and function through limited proteolytic activity. In the human genome, there are 15 calpain genes. The most-studied calpains, referred to as conventional calpains, are ubiquitous. While genetic studies in mice have improved our understanding about the conventional calpains' physiological functions, especially those essential for mammalian life as in embryogenesis, many reports have pointed to overactivated conventional calpains as an exacerbating factor in pathophysiological conditions such as cardiovascular diseases and muscular dystrophies. For treatment of these diseases, calpain inhibitors have always been considered as drug targets. Recent studies have introduced another aspect of calpains that calpain activity is required to protect the heart and skeletal muscle against stress. This review summarizes the functions and regulation of calpains, focusing on the relevance of calpains to cardiovascular disease.
Collapse
Affiliation(s)
- Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | |
Collapse
|