1
|
Okeke C, Okonkwo R, Ibeh N, Chukwuma O, Okeke C. Assessment of gender differences in some inflammatory cytokines of tuberculosis patients before and during treatment. Afr Health Sci 2023; 23:336-342. [PMID: 38357187 PMCID: PMC10862618 DOI: 10.4314/ahs.v23i3.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background Gender variation is a feature of many physiological parameters including inflammatory cytokines. Inflammation is an obvious feature of Tuberculosis (TB) infection with changes in pro and anti-inflammatory cytokines. Objective To compare the levels of inflammatory cytokines between male and female TB patients before treatment, after 2-months and after 6-months anti-tuberculosis treatment. Materials and methods A total of 35 males and 25 females TB subjects were enlisted before initiation of therapy and followed up after 2-months and 6 months treatment and samples collected and analysed. Tumour necrosis factor-alpha (TNF-α), Interleukin 10 (IL-10, Interleukin -6 (IL-6), Interleukin-2 (IL-2), transforming growth factor-beta (TGF-β) were assayed by ELISA method. Results Before treatment, the median level of IL-6 (pg/ml) was significantly higher in males compared to female TB patients (P=0.046). While after 2-months treatment, TNF-α (pg/ml) and IL-10 (pg/ml) was significantly higher in males compared with females (P=0.008 and 0.045 respectively). Conversely, the median IL-6 (pg/ml) was significantly higher in female TB patients compared to the males (P=0.042). No significant differences were observed after 6-months treatment. Conclusion Gender differences exist in IL-6 before treatment and in IL-6, TNF-α and IL-10 at two months treatment. Thus, TB treatment contributes differentially to levels of inflammatory cytokines in male and female TB patients.
Collapse
|
2
|
Shields CA, Wang X, Cornelius DC. Sex differences in cardiovascular response to sepsis. Am J Physiol Cell Physiol 2023; 324:C458-C466. [PMID: 36571442 PMCID: PMC9902216 DOI: 10.1152/ajpcell.00134.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Recently, there has been increased recognition of the importance of sex as a biological factor affecting disease and health. Many preclinical studies have suggested that males may experience a less favorable outcome in response to sepsis than females. The underlying mechanisms for these differences are still largely unknown but are thought to be related to the beneficial effects of estrogen. Furthermore, the immunosuppressive role of testosterone is also thought to contribute to the sex-dependent differences that are present in clinical sepsis. There are still significant knowledge gaps in this field. This mini-review will provide a brief overview of sex-dependent variables in relation to sepsis and the cardiovascular system. Preclinical animal models for sepsis research will also be discussed. The intent of this mini-review is to inspire interest for future considerations of sex-related variables in sepsis that should be addressed to increase our understanding of the underlying mechanisms in sepsis-induced cardiovascular dysfunction for the identification of therapeutic targets and improved sepsis management and treatment.
Collapse
Affiliation(s)
- Corbin A Shields
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xi Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
3
|
Fukui S, Fukui S, Van Bruggen S, Shi L, Sheehy CE, Chu L, Wagner DD. NLRP3 inflammasome activation in neutrophils directs early inflammatory response in murine peritonitis. Sci Rep 2022; 12:21313. [PMID: 36494392 PMCID: PMC9734191 DOI: 10.1038/s41598-022-25176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
NLR family pyrin domain containing 3 (NLRP3) inflammasome mediates caspase-1-dependent processing of inflammatory cytokines such as IL-1β, an essential endothelial activator, and contributes to the pathology of inflammatory diseases. To evaluate the role of NLRP3 in neutrophils in endothelial activation, which is still elusive, we used the thioglycollate-induced peritonitis model characterized by an early neutrophil influx, on Nlrp3-/- and Nlrp3+/+ mice. Nlrp3-/- mice recruited fewer neutrophils than Nlrp3+/+ into the peritoneum and showed lower IL-1β in peritoneal lavage fluid. The higher production of IL-1β in Nlrp3+/+ was neutrophil-dependent as neutrophil depletion prevented the IL-1β production. The Nlrp3+/+ neutrophils collected from the peritoneal fluid formed significantly more filaments (specks) than Nlrp3-/- neutrophils of ASC (apoptosis-associated speck-like protein containing a caspase activating and recruitment domain), a readout for inflammasome activation. Intravital microscopy revealed that leukocytes rolled significantly slower in Nlrp3+/+ venules than in Nlrp3-/-. Nlrp3-/- endothelial cells isolated from mesenteric vessels demonstrated a lower percentage of P-selectin-positive cells with lower intensity of surface P-selectin expression than the Nlrp3+/+ endothelial cells evaluated by flow cytometry. We conclude that neutrophils orchestrate acute thioglycollate-induced peritonitis by producing IL-1β in an NLRP3-dependent manner. This increases endothelial P-selectin expression and leukocyte transmigration.
Collapse
Affiliation(s)
- Saeko Fukui
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Shoichi Fukui
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Stijn Van Bruggen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Lai Shi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Casey E Sheehy
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Long Chu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Raza HA, Sen P, Bhatti OA, Gupta L. Sex hormones, autoimmunity and gender disparity in COVID-19. Rheumatol Int 2021; 41:1375-1386. [PMID: 33903964 PMCID: PMC8075025 DOI: 10.1007/s00296-021-04873-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic has majorly contributed to massive and widespread mortality. Epidemiological data strongly indicates a sex-based disparity in COVID-19 clinical outcomes, with women having lower infection and hospitalisation rates, coupled with better prognosis and lesser mortality. This disparity may be explained by several mechanisms including differences in innate and adaptive immune responses, genetic factors, and an interplay between sex hormones and immune effectors, as well as gender-specific behaviour differences. These pathways, particularly the immunological divergence in response to viral infection, could potentially influence not only COVID-19 pathogenesis and disease course, but also the response to antiviral drugs and vaccines. Furthermore, factors that confer a protective advantage against COVID-19 may be exploited to develop therapeutic strategies to improve clinical outcomes in COVID-19.
Collapse
Affiliation(s)
- Hussain Ahmed Raza
- Medical College, Aga Khan University Hospital, Stadium Road, Karachi, Pakistan
| | - Parikshit Sen
- Maulana Azad Medical College, 2-Bahadur Shah Zafar marg, New Delhi, India
| | - Omaima Anis Bhatti
- Medical College, Aga Khan University Hospital, Stadium Road, Karachi, Pakistan
| | - Latika Gupta
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| |
Collapse
|
5
|
Shabbir A, Rathod KS, Khambata RS, Ahluwalia A. Sex Differences in the Inflammatory Response: Pharmacological Opportunities for Therapeutics for Coronary Artery Disease. Annu Rev Pharmacol Toxicol 2020; 61:333-359. [PMID: 33035428 DOI: 10.1146/annurev-pharmtox-010919-023229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coordinated molecular responses are key to effective initiation and resolution of both acute and chronic inflammation. Vascular inflammation plays an important role in initiating and perpetuating atherosclerotic disease, specifically at the site of plaque and subsequent fibrous cap rupture. Both men and women succumb to this disease process, and although management strategies have focused on revascularization and pharmacological therapies in the acute situation to reverse vessel closure and prevent thrombogenesis, data now suggest that regulation of host inflammation may improve both morbidity and mortality, thus supporting the notion that prevention is better than cure. There is a clear sex difference in the incidence of vascular disease, and data confirm biological differences in inflammatory initiation and resolution between men and women. This article reviews contemporary opinions describing the sex difference in the initiation and resolution of inflammatory responses, with a view to explore potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Asad Shabbir
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Krishnaraj Sinhji Rathod
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Rayomand Syrus Khambata
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Amrita Ahluwalia
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| |
Collapse
|
6
|
Rathod KS, Kapil V, Velmurugan S, Khambata RS, Siddique U, Khan S, Van Eijl S, Gee LC, Bansal J, Pitrola K, Shaw C, D’Acquisto F, Colas RA, Marelli-Berg F, Dalli J, Ahluwalia A. Accelerated resolution of inflammation underlies sex differences in inflammatory responses in humans. J Clin Invest 2017; 127:169-182. [PMID: 27893465 PMCID: PMC5199722 DOI: 10.1172/jci89429] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/17/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cardiovascular disease occurs at lower incidence in premenopausal females compared with age-matched males. This variation may be linked to sex differences in inflammation. We prospectively investigated whether inflammation and components of the inflammatory response are altered in females compared with males. METHODS We performed 2 clinical studies in healthy volunteers. In 12 men and 12 women, we assessed systemic inflammatory markers and vascular function using brachial artery flow-mediated dilation (FMD). In a further 8 volunteers of each sex, we assessed FMD response to glyceryl trinitrate (GTN) at baseline and at 8 hours and 32 hours after typhoid vaccine. In a separate study in 16 men and 16 women, we measured inflammatory exudate mediators and cellular recruitment in cantharidin-induced skin blisters at 24 and 72 hours. RESULTS Typhoid vaccine induced mild systemic inflammation at 8 hours, reflected by increased white cell count in both sexes. Although neutrophil numbers at baseline and 8 hours were greater in females, the neutrophils were less activated. Systemic inflammation caused a decrease in FMD in males, but an increase in females, at 8 hours. In contrast, GTN response was not altered in either sex after vaccine. At 24 hours, cantharidin formed blisters of similar volume in both sexes; however, at 72 hours, blisters had only resolved in females. Monocyte and leukocyte counts were reduced, and the activation state of all major leukocytes was lower, in blisters of females. This was associated with enhanced levels of the resolving lipids, particularly D-resolvin. CONCLUSIONS Our findings suggest that female sex protects against systemic inflammation-induced endothelial dysfunction. This effect is likely due to accelerated resolution of inflammation compared with males, specifically via neutrophils, mediated by an elevation of the D-resolvin pathway. TRIAL REGISTRATION ClinicalTrials.gov NCT01582321 and NRES: City Road and Hampstead Ethics Committee: 11/LO/2038. FUNDING The authors were funded by multiple sources, including the National Institute for Health Research, the British Heart Foundation, and the European Research Council.
Collapse
|
7
|
Maggioli E, McArthur S, Mauro C, Kieswich J, Kusters DHM, Reutelingsperger CPM, Yaqoob M, Solito E. Estrogen protects the blood-brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brain Behav Immun 2016; 51:212-222. [PMID: 26321046 DOI: 10.1016/j.bbi.2015.08.020] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/19/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022] Open
Abstract
Sex differences have been widely reported in neuroinflammatory disorders, focusing on the contributory role of estrogen. The microvascular endothelium of the brain is a critical component of the blood-brain barrier (BBB) and it is recognized as a major interface for communication between the periphery and the brain. As such, the cerebral capillary endothelium represents an important target for the peripheral estrogen neuroprotective functions, leading us to hypothesize that estrogen can limit BBB breakdown following the onset of peripheral inflammation. Comparison of male and female murine responses to peripheral LPS challenge revealed a short-term inflammation-induced deficit in BBB integrity in males that was not apparent in young females, but was notable in older, reproductively senescent females. Importantly, ovariectomy and hence estrogen loss recapitulated an aged phenotype in young females, which was reversible upon estradiol replacement. Using a well-established model of human cerebrovascular endothelial cells we investigated the effects of estradiol upon key barrier features, namely paracellular permeability, transendothelial electrical resistance, tight junction integrity and lymphocyte transmigration under basal and inflammatory conditions, modeled by treatment with TNFα and IFNγ. In all cases estradiol prevented inflammation-induced defects in barrier function, action mediated in large part through up-regulation of the central coordinator of tight junction integrity, annexin A1. The key role of this protein was then further confirmed in studies of human or murine annexin A1 genetic ablation models. Together, our data provide novel mechanisms for the protective effects of estrogen, and enhance our understanding of the beneficial role it plays in neurovascular/neuroimmune disease.
Collapse
Affiliation(s)
- E Maggioli
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - S McArthur
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Department of Biomedical Sciences, Faculty of Science & Technology, University of Westminster, New Cavendish Street, London W1W 6UW, UK
| | - C Mauro
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - J Kieswich
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - D H M Kusters
- Cardiovascular Research Institute, Department of Biochemistry, Maastricht University, 6200 Maastricht, The Netherlands; Department of Pathology, University of Michigan Health System, 109 Zina Pitcher Place, 4062 BSRB, Ann Arbor, MI 48109-2200, United States
| | - C P M Reutelingsperger
- Cardiovascular Research Institute, Department of Biochemistry, Maastricht University, 6200 Maastricht, The Netherlands
| | - M Yaqoob
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - E Solito
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
8
|
Madalli S, Beyrau M, Whiteford J, Duchene J, Singh Nandhra I, Patel NSA, Motwani MP, Gilroy DW, Thiemermann C, Nourshargh S, Scotland RS. Sex-specific regulation of chemokine Cxcl5/6 controls neutrophil recruitment and tissue injury in acute inflammatory states. Biol Sex Differ 2015; 6:27. [PMID: 26617980 PMCID: PMC4661984 DOI: 10.1186/s13293-015-0047-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/17/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tissue infiltration by neutrophils during acute inflammatory states causes substantial tissue injury. While the magnitude of tissue neutrophil accumulation in innate immune responses is profoundly greater in males than females, fundamental aspects of the molecular mechanisms underlying these sex differences remain largely unknown. METHODS We investigated sex differences in neutrophil stimulation and recruitment in ischemia/reperfusion (I/R; mesenteric or renal) or carrageenan pleurisy in rats or mice, as well as skin injury in human volunteers. The induction of potent chemoattractive mediators (chemokines) and neutrophil adhesion molecules were measured by real-time PCR, flow cytometry, and protein assays. RESULTS Mesenteric I/R in age-matched Wistar rats resulted in substantially more neutrophil accumulation and tissue injury at 2 h reperfusion in males than females. Using intravital microscopy, we show that the immediate (<30 min) neutrophil response to I/R is similar in males and females but that prolonged neutrophil recruitment occurs in males at sites local and distal to inflammatory insult partly due to an increase in circulating neutrophil populations with elevated surface expression of adhesion molecules. Sex differences in neutrophil kinetics were correlated with sustained induction of chemokine Cxcl5 in the tissue, circulation, and bone marrow of males but not females. Furthermore, blockade of Cxcl5 in males prior to ischemia resulted in neutrophil responses that were similar in magnitude to those in females. Conversely, administration of Cxcl5 to males in the absence of I/R was sufficient to increase levels of systemic neutrophils. Cxcl5 treatment of bone marrow neutrophils in vitro caused substantial induction of neutrophil-mobilizing cytokine granulocyte colony-stimulating factor (GCSF) and expression of β2 integrin that accounts for sexual dimorphism in circulating neutrophil populations in I/R. Moreover, male Cxcl5-stimulated bone marrow neutrophils had an increased capacity to adhere to β2 integrin ligand ICAM-1, implicating a greater sensitivity of male leukocytes to Cxcl5-mediated activation. Differential induction of Cxcl5 (human CXCL6) between the sexes was also evident in murine renal I/R, rat pleurisy, and human skin blisters and correlated with the magnitude of neutrophil accumulation in tissues. CONCLUSIONS Our study reveals that sex-specific induction of chemokine Cxcl5/CXCL6 contributes to sexual dimorphism in neutrophil recruitment in diverse acute inflammatory responses partly due to increased stimulation and trafficking of bone marrow neutrophils in males.
Collapse
Affiliation(s)
| | - Martina Beyrau
- />Centre for Microvascular Research, London, EC1M 6BQ UK
| | | | - Johan Duchene
- />Department of Cardiovascular Research, Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Germany
| | | | - Nimesh S. A. Patel
- />Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London Medical School, Queen Mary University of London, London, EC1M 6BQ UK
| | - Madhur P. Motwani
- />Department of Medicine, Rayne Institute, University College London, London, WC1 6JJ UK
| | - Derek W. Gilroy
- />Department of Medicine, Rayne Institute, University College London, London, WC1 6JJ UK
| | - Christoph Thiemermann
- />Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London Medical School, Queen Mary University of London, London, EC1M 6BQ UK
| | | | | |
Collapse
|
9
|
Addis R, Campesi I, Fois M, Capobianco G, Dessole S, Fenu G, Montella A, Cattaneo MG, Vicentini LM, Franconi F. Human umbilical endothelial cells (HUVECs) have a sex: characterisation of the phenotype of male and female cells. Biol Sex Differ 2014; 5:18. [PMID: 25535548 PMCID: PMC4273493 DOI: 10.1186/s13293-014-0018-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/20/2014] [Indexed: 01/04/2023] Open
Abstract
Background Human umbilical endothelial cells (HUVECs) are widely used to study the endothelial physiology and pathology that might be involved in sex and gender differences detected at the cardiovascular level. This study evaluated whether HUVECs are sexually dimorphic in their morphological, proliferative and migratory properties and in the gene and protein expression of oestrogen and androgen receptors and nitric oxide synthase 3 (NOS3). Moreover, because autophagy is influenced by sex, its degree was analysed in male and female HUVECs (MHUVECs and FHUVECs). Methods Umbilical cords from healthy, normal weight male and female neonates born to healthy non-obese and non-smoking women were studied. HUVEC morphology was analysed by electron microscopy, and their function was investigated by proliferation, viability, wound healing and chemotaxis assays. Gene and protein expression for oestrogen and androgen receptors and for NOS3 were evaluated by real-time PCR and Western blotting, respectively, and the expression of the primary molecules involved in autophagy regulation [protein kinase B (Akt), mammalian target of rapamycin (mTOR), beclin-1 and microtubule-associated protein 1 light chain 3 (LC3)] were detected by Western blotting. Results Cell proliferation, migration NOS3 mRNA and protein expression were significantly higher in FHUVECs than in MHUVECs. Conversely, beclin-1 and the LC3-II/LC3-I ratio were higher in MHUVECs than in FHUVECs, indicating that male cells are more autophagic than female cells. The expression of oestrogen and androgen receptor genes and proteins, the protein expression of Akt and mTOR and cellular size and shape were not influenced by sex. Body weights of male and female neonates were not significantly different, but the weight of male babies positively correlated with the weight of the mother, suggesting that the mother’s weight may exert a different influence on male and female babies. Conclusions The results indicate that sex differences exist in prenatal life and are parameter-specific, suggesting that HUVECs of both sexes should be used as an in vitro model to increase the quality and the translational value of research. The sex differences observed in HUVECs could be relevant in explaining the diseases of adulthood because endothelial dysfunction has a crucial role in the pathogenesis of cardiovascular diseases, diabetes mellitus, neurodegeneration and immune disease.
Collapse
Affiliation(s)
- Roberta Addis
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,National Laboratory of Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Sassari Italy
| | - Marco Fois
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giampiero Capobianco
- Department of Surgical, Microsurgical and Medical Sciences, Gynaecologic and Obstetric Clinic, University of Sassari, Sassari, Italy
| | - Salvatore Dessole
- Department of Surgical, Microsurgical and Medical Sciences, Gynaecologic and Obstetric Clinic, University of Sassari, Sassari, Italy
| | - Grazia Fenu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maria Grazia Cattaneo
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Lucia M Vicentini
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Flavia Franconi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,National Laboratory of Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Sassari Italy.,Assessorato alle Politiche per la Persona, Region Basilicata, Italy
| |
Collapse
|
10
|
Pellegrini M, Bulzomi P, Lecis M, Leone S, Campesi I, Franconi F, Marino M. Endocrine disruptors differently influence estrogen receptor β and androgen receptor in male and female rat VSMC. J Cell Physiol 2014; 229:1061-8. [PMID: 24347325 DOI: 10.1002/jcp.24530] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/11/2013] [Indexed: 12/18/2022]
Abstract
Sex steroid hormones differently control the major physiological processes in male and female organisms. In particular, their effects on vascular smooth muscle cells (VSMCs) migration are at the root of sex/gender-related differences reported in the cardiovascular system. Several exogenous substances, defined endocrine disruptor chemicals (EDCs), could interfere with these androgen and estrogen effects; however, the sex/gender-related susceptibility of VSMC motility to EDCs is completely unknown. Here, the effect of naturally occurring (naringenin, Nar) and synthetic (bisphenol A, BPA) EDCs on male and female VSMC motility has been evaluated. 17β-estradiol (E2, 0.1 nM-1 µM) induced a dose-dependent inhibition of motility in female-derived VSMC. In contrast, neither dihydrotestosterone (DHT, 0.01-100 nM) nor the common precursor of sex steroid hormones, testosterone (Tes, 0.01-100 nM) modified male-derived VSMC motility. Estrogen receptor (ER) β subtype-dependent activation of p38 was necessary for the E2 effect on cell motility. High BPA concentration prevented E2 effects in female-derived cells being without any effect in male-derived cells. Nar mimicked E2 effects on female-derived cells even in the presence of E2 or BPA. Intriguingly, Nar also inhibited the male-derived VSMC mobility. This latter effect was prevented by ERβ inhibitor, but not by the androgen receptor (AR) inhibitor. As a whole, ERβ-dependent signals in VSMC results more susceptible to the impact of EDCs than AR signals suggesting a possible high and overall susceptibility of female to EDCs. However, several male-derived cells, including VSMC, express ERβ, which could also serve as target of EDC disruption in male organisms.
Collapse
|
11
|
Aomatsu M, Kato T, Kasahara E, Kitagawa S. Gender difference in tumor necrosis factor-α production in human neutrophils stimulated by lipopolysaccharide and interferon-γ. Biochem Biophys Res Commun 2013; 441:220-5. [PMID: 24140406 DOI: 10.1016/j.bbrc.2013.10.042] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 12/24/2022]
Abstract
The gender difference in tumor necrosis factor-α (TNF-α) production in human neutrophils stimulated by lipopolysaccharide (LPS) and interferon-γ (IFN-γ) was explored by using peripheral blood neutrophils from young men and women. As compared with female neutrophils, male neutrophils released greater amounts of TNF-α, and exhibited stronger activation of mitogen-activated protein kinases and phosphatidylinositol 3-kinase in response to LPS stimulation. LPS-induced TNF-α production was markedly enhanced by pretreatment of cells with IFN-γ, and IFN-γ-mediated priming in male neutrophils was significantly greater than that in female neutrophils. Male neutrophils showed higher expression of TLR4, but not IFN-γ receptors, than female neutrophils, and its expression was increased by stimulation with IFN-γ or IFN-γ plus LPS. These findings indicate that male neutrophils show higher responsiveness to stimulation with LPS and IFN-γ than female neutrophils, and suggest that the gender difference in neutrophil responsiveness to LPS and IFN-γ is partly responsible for that in the outcome of sepsis, in which premenopausal women show a favorable prognosis as compared with men.
Collapse
Affiliation(s)
- Megumi Aomatsu
- Department of Physiology, Osaka City University, Graduate School of Medicine, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | |
Collapse
|
12
|
Chan MV, Bubb KJ, Noyce A, Villar IC, Duchene J, Hobbs AJ, Scotland RS, Ahluwalia A. Distinct endothelial pathways underlie sexual dimorphism in vascular auto-regulation. Br J Pharmacol 2013; 167:805-17. [PMID: 22540539 DOI: 10.1111/j.1476-5381.2012.02012.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Pre-menopausal females have a lower incidence of cardiovascular disease compared with age-matched males, implying differences in the mechanisms and pathways regulating vasoactivity. In small arteries, myogenic tone (constriction in response to raised intraluminal pressure) is a major determinant of vascular resistance. Endothelium-derived dilators, particularly NO, tonically moderate myogenic tone and, because the endothelium is an important target for female sex hormones, we investigated whether NO-mediated moderation of myogenic tone differed between the sexes. EXPERIMENTAL APPROACH Pressure-diameter or relaxation concentration-response curves to the NO donor spermine-NO or soluble guanylate cyclase (sGC) stimulation (BAY41-2272) were constructed before and following drug intervention in murine mesenteric resistance arteries. Hypotensive responses to activators of the NO-sGC pathway were determined. Quantitative PCR and Western blotting were used for expression analysis. KEY RESULTS NO synthase inhibition enhanced myogenic tone of arteries of both sexes while block of endothelium-derived hyperpolarizing factor (EDHF) enhanced responses in arteries of females only. Spermine-NO concentration-dependently relaxed mesenteric arteries isolated from either sex. However, while inhibition of sGC activity attenuated responses of arteries from male mice only, endothelial denudation attenuated responses of arteries from females only. BAY41-2272 and spermine-NO-induced vasodilatation and hypotension were greater in males than in females. CONCLUSIONS AND IMPLICATIONS NO moderated myogenic tone in arteries of male mice by a sGC-dependent pathway while EDHF was the predominant endothelial regulator in arteries of females. This is a potentially important sexual dimorphism in NO-mediated reactivity and further implicates EDHF as the predominant endothelial vasodilator in female resistance arteries.
Collapse
Affiliation(s)
- Melissa V Chan
- William Harvey Research Institute, Barts and The London Medical School, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bubb KJ, Khambata RS, Ahluwalia A. Sexual dimorphism in rodent models of hypertension and atherosclerosis. Br J Pharmacol 2013; 167:298-312. [PMID: 22582712 DOI: 10.1111/j.1476-5381.2012.02036.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Approximately one third of all deaths are attributed to cardiovascular disease (CVD), making it the biggest killer worldwide. Despite a number of therapeutic options available, the burden of CVD morbidity continues to grow indicating the need for continued research to address this unmet need. In this respect, investigation of the mechanisms underlying the protection that premenopausal females enjoy from cardiovascular-related disease and mortality is of interest. In this review, we discuss the essential role that rodent animal models play in enabling this field of research. In particular, we focus our discussion on models of hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Kristen J Bubb
- William Harvey Research Institute, Clinical Pharmacology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | | | | |
Collapse
|
14
|
Fan Y, Guo Y, Zhang J, Subramaniam M, Song CZ, Urrutia R, Chen YE. Krüppel-like factor-11, a transcription factor involved in diabetes mellitus, suppresses endothelial cell activation via the nuclear factor-κB signaling pathway. Arterioscler Thromb Vasc Biol 2012; 32:2981-8. [PMID: 23042817 DOI: 10.1161/atvbaha.112.300349] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Endothelial cell (EC) inflammatory status is critical to many vascular diseases. Emerging data demonstrate that mutations of Krüppel-like factor-11 (KLF11), a gene coding maturity-onset diabetes mellitus of the young type 7 (MODY7), contribute to the development of neonatal diabetes mellitus. However, the function of KLF11 in the cardiovascular system still remains to be uncovered. In this study, we aimed to investigate the role of KLF11 in vascular endothelial inflammation. METHODS AND RESULTS KLF11 is highly expressed in vascular ECs and induced by proinflammatory stimuli. Adenovirus-mediated KLF11 overexpression inhibits expression of tumor necrosis factors-α-induced adhesion molecules. Moreover, small interfering RNA-mediated KLF11 knockdown augments the proinflammatory status in ECs. KLF11 inhibits promoter activity of adhesion molecules induced by tumor necrosis factor-α and nuclear factor-κB p65 overexpression. Mechanistically, KLF11 potently inhibits nuclear factor-κB signaling pathway via physical interaction with p65. Furthermore, KLF11 knockdown results in increased binding of p65 to vascular cell adhesion molecule-1 and E-selectin promoters. At the whole organism level, KLF11(-/-) mice exhibit a significant increase in leukocyte recruitment to ECs after lipopolysaccharide administration. CONCLUSIONS Taken together, our data demonstrate for the first time that KLF11 is a suppressor of EC inflammatory activation, suggesting that KLF11 constitutes a novel potential molecular target for inhibition of vascular inflammatory diseases.
Collapse
Affiliation(s)
- Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Nadkarni S, Cooper D, Brancaleone V, Bena S, Perretti M. Activation of the annexin A1 pathway underlies the protective effects exerted by estrogen in polymorphonuclear leukocytes. Arterioscler Thromb Vasc Biol 2012; 31:2749-59. [PMID: 21836070 DOI: 10.1161/atvbaha.111.235176] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The anti-inflammatory properties of the female sex hormone estrogen have been linked to a reduced incidence of cardiovascular disease. In the present study, we addressed whether estrogen could activate vasculoprotective mechanisms via annexin A1 (AnxA1) mobilization in human polymorphonuclear cells (PMNs). METHODS AND RESULTS Using whole-blood flow cytometry, we demonstrated that premenopausal women expressed higher levels of surface AnxA1 on circulating PMNs compared with males. This correlated with high plasma estrogen during the menstrual cycle. The addition of estrogen in vitro to male PMNs induced rapid mobilization of AnxA1, optimal at 5 ng/mL and a 30-minute incubation period; this effect was abolished in the presence of the estrogen receptor antagonist ICI182780. Estrogen addition to human PMNs induced a distinct AnxA1(hi) CD62L(lo) CD11b(lo) phenotype, and this was associated with lower cell activation as measured by microparticle formation. Treatment of human PMNs with E(2) inhibited cell adhesion to an endothelial cell monolayer under shear, which was absent when endogenous AnxA1 was neutralized. Of interest, addition of estrogen to PMNs flowed over the endothelial monolayer amplified its upregulation of AnxA1 localization on the cell surface. Finally, in a model of intravital microscopy, estrogen inhibition of white blood cell adhesion to the postcapillary venule was absent in mice nullified for AnxA1. CONCLUSION We unveil a novel AnxA1-dependent mechanism behind the inhibitory properties of estrogen on PMN activation, describing a novel phenotype with a conceivable impact on the vasculoprotective effects of this hormone.
Collapse
|