1
|
Wang Z, Fu H, Zhang N. Study on the mechanism of SAR1B in sodium acetate promoting milk fat synthesis. In Vitro Cell Dev Biol Anim 2025; 61:24-35. [PMID: 39316237 DOI: 10.1007/s11626-024-00974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024]
Abstract
Acetate can promote milk fat synthesis in dairy cow mammary epithelial cells (BMECs). In this study, gene function analysis was used to explore the role of Ras family secretion-related GTP binding protein 1B (SAR1B) in milk fat synthesis of BMECs and its role and molecular mechanism in acetate-promoted milk fat synthesis. We found that the synthesis of lipid droplets and triglycerides was inhibited, and the expression levels of key genes and proteins in milk fat synthesis such as FASN and ACC were decreased in SAR1B knockout, which was reversed by overexpression of SAR1B. Addition of sodium acetate in BMECs can promote the expression of SAR1B, and SAR1B plays an important role in the synthesis of milk fat promoted by sodium acetate. We further investigated the underlying mechanism of SAR1B upregulation by sodium acetate, and found that sodium acetate could affect SAR1B expression through the positive regulation of SAR1B gene promoter activity by C/EBPβ and PPARγ. In conclusion, the results suggest that SAR1B can promote milk fat synthesis in BMECs, while C/EBPβ and PPARγ play important roles in sodium acetate to promote the expression of SAR1B.
Collapse
Affiliation(s)
- Zhixia Wang
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Haixin Fu
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Na Zhang
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
2
|
Lin Z, Li S, Wu Q, Qu H, Shi X, Wang K, Tang C, Yin C. In situ customized apolipoprotein B48-enriched protein corona enhances oral gene delivery of chitosan-based nanoparticles. Biomaterials 2024; 311:122704. [PMID: 39018697 DOI: 10.1016/j.biomaterials.2024.122704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
The formation of protein corona (PC) is important for promoting the in vivo delivery of nanoparticles (NPs). However, PC formed in the physiological environment of oral delivery is poorly understood. Here, we engineered seven types of trimethyl chitosan-cysteine (TC) NPs, with distinct molecular weights, quaternization degrees, and thiolation degrees, to deeply investigate the influence of various PC formed in the physiological environment of oral delivery on in vivo gene delivery of polymeric NPs, further constructing the relationship between the surface characteristics of NPs and the efficacy of oral gene delivery. Our findings reveal that TC7 NPs, with high molecular weight, moderate quaternization, and high sulfhydryl content, modulate PC formation in the gastrointestinal tract, thereby reducing particle size and promoting oral delivery of gene loaded TC7 NPs. Orally delivered TC7 NPs target macrophages by in situ adsorption of apolipoprotein (Apo) B48 in intestinal tissue, leading to the improved in vivo antihepatoma efficacy via the natural tumor homing ability of macrophages. Our results suggest that efficient oral delivery of genes can be achieved through an in situ customized ApoB48-enriched PC, offering a promising modality in treating macrophage-related diseases.
Collapse
Affiliation(s)
- Ziyun Lin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Shengqi Li
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Qiuji Wu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Hongfei Qu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Xiliang Shi
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Ke Wang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, 200438, PR China.
| |
Collapse
|
3
|
Levy E, Fallet-Bianco C, Auclair N, Patey N, Marcil V, Sané AT, Spahis S. Unraveling Chylomicron Retention Disease Enhances Insight into SAR1B GTPase Functions and Mechanisms of Actions, While Shedding Light of Intracellular Chylomicron Trafficking. Biomedicines 2024; 12:1548. [PMID: 39062121 PMCID: PMC11274388 DOI: 10.3390/biomedicines12071548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past three decades, significant efforts have been focused on unraveling congenital intestinal disorders that disrupt the absorption of dietary lipids and fat-soluble vitamins. The primary goal has been to gain deeper insights into intra-enterocyte sites, molecular steps, and crucial proteins/regulatory pathways involved, while simultaneously identifying novel therapeutic targets and diagnostic tools. This research not only delves into specific and rare malabsorptive conditions, such as chylomicron retention disease (CRD), but also contributes to our understanding of normal physiology through the utilization of cutting-edge cellular and animal models alongside advanced research methodologies. This review elucidates how modern techniques have facilitated the decoding of CRD gene defects, the identification of dysfunctional cellular processes, disease regulatory mechanisms, and the essential role of coat protein complex II-coated vesicles and cargo receptors in chylomicron trafficking and endoplasmic reticulum (ER) exit sites. Moreover, experimental approaches have shed light on the multifaceted functions of SAR1B GTPase, wherein loss-of-function mutations not only predispose individuals to CRD but also exacerbate oxidative stress, inflammation, and ER stress, potentially contributing to clinical complications associated with CRD. In addition to dissecting the primary disease pathology, genetically modified animal models have emerged as invaluable assets in exploring various ancillary aspects, including responses to environmental challenges such as dietary alterations, gender-specific disparities in disease onset and progression, and embryonic lethality or developmental abnormalities. In summary, this comprehensive review provides an in-depth and contemporary analysis of CRD, offering a meticulous examination of the CRD current landscape by synthesizing the latest research findings and advancements in the field.
Collapse
Affiliation(s)
- Emile Levy
- Azrieli Research Center, CHU Ste-Justine and Department of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Catherine Fallet-Bianco
- Azrieli Research Center, CHU Ste-Justine and Pathology & Cell Biology, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Nickolas Auclair
- Azrieli Research Center, CHU Ste-Justine and Pharmacology, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Natalie Patey
- Azrieli Research Center, CHU Ste-Justine and Pathology & Cell Biology, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Valérie Marcil
- Azrieli Research Center, CHU Ste-Justine and Department of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | | | - Schohraya Spahis
- Azrieli Research Center, CHU Ste-Justine and Biochemistry & Molecular Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| |
Collapse
|
4
|
Bordat C, Cuerq C, Halimi C, Vairo D, Blond E, Restier L, Poinsot P, Duclaux-Loras R, Peretti N, Reboul E. Carotenoids in familial hypobetalipoproteinemia disorders: Malabsorption in Caco2 cell models and severe deficiency in patients. J Clin Lipidol 2024; 18:e105-e115. [PMID: 37989694 DOI: 10.1016/j.jacl.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Familial hypobetalipoproteinemias (FHBL) are rare genetic diseases characterized by lipid malabsorption. We focused on abetalipoproteinemia (FHBL-SD1) and chylomicron retention disease (FHBL-SD3), caused by mutations in microsomal triglyceride transfer protein (MTTP) and SAR1B genes, respectively. Treatments include a low-fat diet and high-dose fat-soluble vitamin supplementations. However, patients are not supplemented in carotenoids, a group of lipid-soluble pigments essential for eye health. OBJECTIVE Our aim was to evaluate carotenoid absorption and status in the context of hypobetalipoproteinemia. METHODS We first used knock-out Caco-2/TC7 cell models of FHBL-SD1 and FHBL-SD3 to evaluate carotenoid absorption. We then characterized FHBL-SD1 and FHBL-SD3 patient status in the main dietary carotenoids and compared it to that of control subjects. RESULTS In vitro results showed a significant decrease in basolateral secretion of α- and β-carotene, lutein, and zeaxanthin (-88.8 ± 2.2 % to -95.3 ± 5.8 %, -79.2 ± 4.4 % to -96.1 ± 2.6 %, -91.0 ± 4.5 % to -96.7 ± 0.3 % and -65.4 ± 3.6 % to -96.6 ± 1.9 %, respectively). Carotenoids plasma levels in patients confirmed significant deficiencies, with decreases ranging from -89 % for zeaxanthin to -98 % for α-carotene, compared to control subjects. CONCLUSION Given the continuous loss in visual function despite fat-soluble vitamin treatment in some patients, carotenoid supplementation may be of clinical utility. Future studies should assess the correlation between carotenoid status and visual function in aging patients and investigate whether carotenoid supplementation could prevent their visual impairment.
Collapse
Affiliation(s)
- Claire Bordat
- Aix-Marseille Université, INRAE, INSERM, C2VN, Marseille, France (Dr Bordat, Halimi, Drs Vairo, Reboul); Univ-Lyon, CarMeN laboratory, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon-1, Pierre Benite 69495, France (Drs Bordat, Peretti)
| | - Charlotte Cuerq
- Biochemistry Department, Hospices Civils de Lyon, Pierre-Benite 69495, France (Drs Cuerq, Blond)
| | - Charlotte Halimi
- Aix-Marseille Université, INRAE, INSERM, C2VN, Marseille, France (Dr Bordat, Halimi, Drs Vairo, Reboul)
| | - Donato Vairo
- Aix-Marseille Université, INRAE, INSERM, C2VN, Marseille, France (Dr Bordat, Halimi, Drs Vairo, Reboul)
| | - Emilie Blond
- Biochemistry Department, Hospices Civils de Lyon, Pierre-Benite 69495, France (Drs Cuerq, Blond)
| | - Liora Restier
- Pediatric Hepato-Gastroenterology and Nutrition Unit, Hôpital Femme Mère Enfant de Lyon HFME, Hospices Civils de Lyon HCL, Bron 69677, France (Drs Restier, Poinsot, Duclaux-Loras, Peretti)
| | - Pierre Poinsot
- Pediatric Hepato-Gastroenterology and Nutrition Unit, Hôpital Femme Mère Enfant de Lyon HFME, Hospices Civils de Lyon HCL, Bron 69677, France (Drs Restier, Poinsot, Duclaux-Loras, Peretti)
| | - Rémi Duclaux-Loras
- Pediatric Hepato-Gastroenterology and Nutrition Unit, Hôpital Femme Mère Enfant de Lyon HFME, Hospices Civils de Lyon HCL, Bron 69677, France (Drs Restier, Poinsot, Duclaux-Loras, Peretti)
| | - Noël Peretti
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon-1, Pierre Benite 69495, France (Drs Bordat, Peretti); Pediatric Hepato-Gastroenterology and Nutrition Unit, Hôpital Femme Mère Enfant de Lyon HFME, Hospices Civils de Lyon HCL, Bron 69677, France (Drs Restier, Poinsot, Duclaux-Loras, Peretti); CENS ELI-2D, 165 Chemin du Grand Revoyet, Pierre Bénite F - 69310, France (Dr Peretti)
| | - Emmanuelle Reboul
- Aix-Marseille Université, INRAE, INSERM, C2VN, Marseille, France (Dr Bordat, Halimi, Drs Vairo, Reboul).
| |
Collapse
|
5
|
Li FL, Guan KL. The Arf family GTPases: Regulation of vesicle biogenesis and beyond. Bioessays 2023; 45:e2200214. [PMID: 36998106 PMCID: PMC10282109 DOI: 10.1002/bies.202200214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
The Arf family proteins are best known for their roles in the vesicle biogenesis. However, they also play fundamental roles in a wide range of cellular regulation besides vesicular trafficking, such as modulation of lipid metabolic enzymes, cytoskeleton remodeling, ciliogenesis, lysosomal, and mitochondrial morphology and functions. Growing studies continue to expand the downstream effector landscape of Arf proteins, especially for the less-studied members, revealing new biological functions, such as amino acid sensing. Experiments with cutting-edge technologies and in vivo functional studies in the last decade help to provide a more comprehensive view of Arf family functions. In this review, we summarize the cellular functions that are regulated by at least two different Arf members with an emphasis on those beyond vesicle biogenesis.
Collapse
Affiliation(s)
- Fu-Long Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Ghanemi A, Yoshioka M, St-Amand J. Trefoil Factor Family Member 2: From a High-Fat-Induced Gene to a Potential Obesity Therapy Target. Metabolites 2021; 11:metabo11080536. [PMID: 34436477 PMCID: PMC8401738 DOI: 10.3390/metabo11080536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity has its epidemiological patterns continuously increasing. With controlling both diet and exercise being the main approaches to manage the energy metabolism balance, a high-fat (HF) diet is of particular importance. Indeed, lipids have a low satiety potential but a high caloric density. Thus, focusing on pharmacologically targetable pathways remains an approach with promising therapeutic potential. Within this context, trefoil factor family member 2 (Tff2) has been characterized as specifically induced by HF diet rather than low-fat diet. TFF2 has also been linked to diverse neurological mechanisms and metabolic patterns suggesting its role in energy balance. The hypothesis is that TFF2 would be a HF diet-induced signal that regulates metabolism with a focus on lipids. Within this review, we put the spotlight on key findings highlighting this line of thought. Importantly, the hypothetical mechanisms pointed highlight TFF2 as an important contributor to obesity development via increasing lipids intestinal absorption and anabolism. Therefore, an outlook for future experimental activities and evaluation of the therapeutic potential of TFF2 inhibition is given. Indeed, its knockdown or downregulation would contribute to an antiobesity phenotype. We believe this work represents an addition to our understanding of the lipidic molecular implications in obesity, which will contribute to develop therapies aiming to manage the lipidic metabolic pathways including the absorption, storage and metabolism via targeting TFF2-related pathways. We briefly discuss important relevant concepts for both basic and clinical researchers.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Quebec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Quebec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Quebec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
7
|
The mechanism of increased intestinal palmitic acid absorption and its impact on hepatic stellate cell activation in nonalcoholic steatohepatitis. Sci Rep 2021; 11:13380. [PMID: 34183709 PMCID: PMC8239050 DOI: 10.1038/s41598-021-92790-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Dietary palmitic acid (PA) promotes liver fibrosis in patients with nonalcoholic steatohepatitis (NASH). Herein, we clarified the intestinal absorption kinetics of dietary PA and effect of trans-portal PA on the activation of hepatic stellate cells (HSCs) involved in liver fibrosis in NASH. Blood PA levels after meals were significantly increased in patients with NASH compared to those in the control. Expression of genes associated with fat absorption and chylomicron formation, such as CD36 and MTP, was significantly increased in the intestine of NASH model rats compared with that in the controls. Plasma levels of glucagon-like peptide-2, involved in the upregulation of CD36 expression, were elevated in NASH rats compared with those in the controls. Furthermore, portal PA levels after meals in NASH rats were significantly higher than those in control and nonalcoholic fatty liver rats. Moreover, PA injection into the portal vein to the liver in control rats increased the mRNA levels associated with the activation of HSCs. Increased intestinal absorption of diet-derived PA was observed in NASH. Thus, the rapid increase in PA levels via the portal vein to the liver may activate HSCs and affect the development of liver fibrosis in NASH.
Collapse
|
8
|
Receptor-Mediated ER Export of Lipoproteins Controls Lipid Homeostasis in Mice and Humans. Cell Metab 2021; 33:350-366.e7. [PMID: 33186557 DOI: 10.1016/j.cmet.2020.10.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/24/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Efficient delivery of specific cargos in vivo poses a major challenge to the secretory pathway, which shuttles products encoded by ∼30% of the genome. Newly synthesized protein and lipid cargos embark on the secretory pathway via COPII-coated vesicles, assembled by the GTPase SAR1 on the endoplasmic reticulum (ER), but how lipid-carrying lipoproteins are distinguished from the general protein cargos in the ER and selectively secreted has not been clear. Here, we show that this process is quantitatively governed by the GTPase SAR1B and SURF4, a high-efficiency cargo receptor. While both genes are implicated in lipid regulation in humans, hepatic inactivation of either mouse Sar1b or Surf4 selectively depletes plasma lipids to near-zero and protects the mice from atherosclerosis. These findings show that the pairing between SURF4 and SAR1B synergistically operates a specialized, dosage-sensitive transport program for circulating lipids, while further suggesting a potential translation to treat atherosclerosis and related cardio-metabolic diseases.
Collapse
|
9
|
Levy E, Beaulieu JF, Spahis S. From Congenital Disorders of Fat Malabsorption to Understanding Intra-Enterocyte Mechanisms Behind Chylomicron Assembly and Secretion. Front Physiol 2021; 12:629222. [PMID: 33584351 PMCID: PMC7873531 DOI: 10.3389/fphys.2021.629222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
During the last two decades, a large body of information on the events responsible for intestinal fat digestion and absorption has been accumulated. In particular, many groups have extensively focused on the absorptive phase in order to highlight the critical "players" and the main mechanisms orchestrating the assembly and secretion of chylomicrons (CM) as essential vehicles of alimentary lipids. The major aim of this article is to review understanding derived from basic science and clinical conditions associated with impaired packaging and export of CM. We have particularly insisted on inborn metabolic pathways in humans as well as on genetically modified animal models (recapitulating pathological features). The ultimate goal of this approach is that "experiments of nature" and in vivo model strategy collectively allow gaining novel mechanistic insight and filling the gap between the underlying genetic defect and the apparent clinical phenotype. Thus, uncovering the cause of disease contributes not only to understanding normal physiologic pathway, but also to capturing disorder onset, progression, treatment and prognosis.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Ste-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Jean François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Schohraya Spahis
- Research Centre, CHU Ste-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
10
|
Li X, Yan M, Guo Z, Yan L, Feng R, Zhu H, Tu X, Yu S, Chen JG. Inhibition of Sar1b, the Gene Implicated in Chylomicron Retention Disease, Impairs Migration and Morphogenesis of Developing Cortical Neurons. Neuroscience 2020; 449:228-240. [DOI: 10.1016/j.neuroscience.2020.09.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
|
11
|
Lu Y, Zhou SK, Chen R, Jiang LX, Yang LL, Bi TN. Knockdown of SAR1B suppresses proliferation and induces apoptosis of RKO colorectal cancer cells. Oncol Lett 2020; 20:186. [PMID: 32952655 PMCID: PMC7479511 DOI: 10.3892/ol.2020.12048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 03/06/2020] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. SAR1 gene homolog B (SAR1B) is a GTPase that has been reported to have a central role in the regulation of lipid homeostasis and is associated with numerous diseases. However, its role in cancer, particularly in CRC, remains unclear. The present study revealed that SAR1B was overexpressed in CRC samples and this was associated with shorter overall survival time in patients with CRC. Colony formation, cell proliferation and flow cytometry assays were conducted to evaluate the functions of SAR1B in CRC. It was reported that SAR1B may be associated with tumorigenesis of CRC. Knockdown of SAR1B suppressed cell proliferation and induced significant apoptosis of RKO cells. Furthermore, microarray analysis was performed to identify the potential targets of SAR1B in CRC. Bioinformatics analysis revealed that SAR1B was significantly involved in regulating ‘TGF-β signaling’, ‘paxillin signaling’, ‘cell cycle regulation by BTG family proteins’ and ‘IGF-1 signaling’. These results suggested that SAR1B may be considered a potential prognostic biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Yong Lu
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 318000, P.R. China
| | - Shen-Kang Zhou
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 318000, P.R. China
| | - Rui Chen
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 318000, P.R. China
| | - Liang-Xian Jiang
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 318000, P.R. China
| | - Lei-Lei Yang
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 318000, P.R. China
| | - Tie-Nan Bi
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
12
|
Sané A, Ahmarani L, Delvin E, Auclair N, Spahis S, Levy E. SAR1B GTPase is necessary to protect intestinal cells from disorders of lipid homeostasis, oxidative stress, and inflammation. J Lipid Res 2019; 60:1755-1764. [PMID: 31409740 PMCID: PMC6795079 DOI: 10.1194/jlr.ra119000119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic defects in SAR1B GTPase inhibit chylomicron (CM) trafficking to the Golgi and result in a huge intraenterocyte lipid accumulation with a failure to release CMs and liposoluble vitamins into the blood circulation. The central aim of this study is to test the hypothesis that SAR1B deletion (SAR1B−/−) disturbs enterocyte lipid homeostasis (e.g., FA β-oxidation and lipogenesis) while promoting oxidative stress and inflammation. Another issue is to compare the impact of SAR1B−/− to that of its paralogue SAR1A−/− and combined SAR1A−/−/B−/−. To address these critical issues, we have generated Caco-2/15 cells with a knockout of SAR1A, SAR1B, or SAR1A/B genes. SAR1B−/− results in lipid homeostasis disruption, reflected by enhanced mitochondrial FA β-oxidation and diminished lipogenesis in intestinal absorptive cells via the implication of PPARα and PGC1α transcription factors. Additionally, SAR1B−/−cells, which mimicked enterocytes of CM retention disease, spontaneously disclosed inflammatory and oxidative characteristics via the implication of NF-κB and NRF2. In most conditions, SAR1A−/− cells showed a similar trend, albeit less dramatic, but synergetic effects were observed with the combined defects of the two SAR1 paralogues. In conclusion, SAR1B and its paralogue are needed not only for CM trafficking but also for lipid homeostasis, prooxidant/antioxidant balance, and protection against inflammatory processes.
Collapse
Affiliation(s)
- Alain Sané
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Lena Ahmarani
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Edgard Delvin
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Nikolas Auclair
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Departments of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada .,Departments of Pharmacology, Université de Montréal, Montreal, Quebec, Canada.,Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Schmidt JR, Geurtzen K, von Bergen M, Schubert K, Knopf F. Glucocorticoid Treatment Leads to Aberrant Ion and Macromolecular Transport in Regenerating Zebrafish Fins. Front Endocrinol (Lausanne) 2019; 10:674. [PMID: 31636606 PMCID: PMC6787175 DOI: 10.3389/fendo.2019.00674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Long-term glucocorticoid administration in patients undergoing immunosuppressive and anti-inflammatory treatment is accompanied by impaired bone formation and increased fracture risk. Furthermore, glucocorticoid treatment can lead to impaired wound healing and altered cell metabolism. Recently, we showed that exposure of zebrafish to the glucocorticoid prednisolone during fin regeneration impacts negatively on the length, bone formation, and osteoblast function of the regenerate. The underlying cellular and molecular mechanisms of impairment, however, remain incompletely understood. In order to further elucidate the anti-regenerative effects of continued glucocorticoid exposure on fin tissues, we performed proteome profiling of fin regenerates undergoing prednisolone treatment, in addition to profiling of homeostatic fin tissue and fins undergoing undisturbed regeneration. By using LC-MS (liquid chromatography-mass spectrometry) we identified more than 6,000 proteins across all tissue samples. In agreement with previous reports, fin amputation induces changes in chromatin structure and extracellular matrix (ECM) composition within the tissue. Notably, prednisolone treatment leads to impaired expression of selected ECM components in the fin regenerate. Moreover, the function of ion transporting ATPases and other proteins involved in macromolecule and vesicular transport mechanisms of the cell appears to be altered by prednisolone treatment. In particular, acidification of membrane-enclosed organelles such as lysosomes is inhibited. Taken together, our data indicate that continued synthetic glucocorticoid exposure in zebrafish deteriorates cellular trafficking processes in the regenerating fin, which interferes with appropriate tissue restoration upon injury.
Collapse
Affiliation(s)
- Johannes R. Schmidt
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Karina Geurtzen
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
- *Correspondence: Kristin Schubert
| | - Franziska Knopf
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität (TU) Dresden, Dresden, Germany
- Franziska Knopf
| |
Collapse
|
14
|
Auclair N, Melbouci L, St-Pierre D, Levy E. Gastrointestinal factors regulating lipid droplet formation in the intestine. Exp Cell Res 2018; 363:1-14. [PMID: 29305172 DOI: 10.1016/j.yexcr.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
Cytoplasmic lipid droplets (CLD) are considered as neutral lipid reservoirs, which protect cells from lipotoxicity. It became clear that these fascinating dynamic organelles play a role not only in energy storage and metabolism, but also in cellular lipid and protein handling, inter-organelle communication, and signaling among diverse functions. Their dysregulation is associated with multiple disorders, including obesity, liver steatosis and cardiovascular diseases. The central aim of this review is to highlight the link between intra-enterocyte CLD dynamics and the formation of chylomicrons, the main intestinal dietary lipid vehicle, after overviewing the morphology, molecular composition, biogenesis and functions of CLD.
Collapse
Affiliation(s)
- N Auclair
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5
| | - L Melbouci
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - D St-Pierre
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - E Levy
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada G1V 0A6.
| |
Collapse
|
15
|
Utsunomiya H, Yamamoto Y, Takeshita E, Tokumoto Y, Tada F, Miyake T, Hirooka M, Abe M, Kumagi T, Matsuura B, Ikeda Y, Hiasa Y. Upregulated absorption of dietary palmitic acids with changes in intestinal transporters in non-alcoholic steatohepatitis (NASH). J Gastroenterol 2017; 52:940-954. [PMID: 28062946 DOI: 10.1007/s00535-016-1298-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/14/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Palmitic acid is an important risk factor for the pathogenesis of non-alcoholic steatohepatitis (NASH), but changes in palmitic acid intestinal absorption in NASH are unclear. The aim of this study was to clarify changes in palmitic acid intestinal absorption and their association with the pathogenesis of NASH. METHODS A total of 106 participants were recruited to the study, of whom 33 were control subjects (control group), 32 were patients with NASH Brunt stage 1-2 [early NASH (e-NASH)], and 41 were patients with NASH Brunt stage 3-4 [advanced NASH (a-NASH)]. 13C-labeled palmitate was administered directly into the duodenum of all participants by gastrointestinal endoscopy. Breath 13CO2 levels were measured to quantify palmitic acid absorption, and serum Apolipoprotein B-48 (ApoB-48) concentrations were measured after a test meal to quantify absorbed chylomicrons. Expressions of fatty acid (FA) transporters were also examined. The associations of breath 13CO2 levels with hepatic steatosis, fibrosis and insulin resistance was evaluated using laboratory data, elastography results and liver histology findings. RESULTS Overall, 13CO2 excretion was significantly higher in e-NASH patients than in the control subjects and a-NASH patients (P < 0.01). e-NASH patients had higher serum ApoB-48 levels, indicating increased palmitic acid transport via chylomicrons in these patients. Jejunal mRNA and protein expressions of microsomal triglyceride transfer protein and cluster of differentiation 36 were also increased in both NASH patient groups. The 13CO2 excretion of e-NASH patients was significantly correlated with the degree of hepatic steatosis, fibrosis and insulin resistance (P = 0.005, P < 0.001, P = 0.019, respectively). CONCLUSIONS Significantly upregulated palmitic acid absorption by activation of its transporters was evident in patients with NASH, and clinical progression of NASH was related to palmitic acid absorption. These dietary changes are associated with the onset and progression of NASH.
Collapse
Affiliation(s)
- Hiroki Utsunomiya
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yasunori Yamamoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Eiji Takeshita
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Fujimasa Tada
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Teruki Miyake
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Teru Kumagi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Bunzo Matsuura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshio Ikeda
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
16
|
Overeem AW, Posovszky C, Rings EHMM, Giepmans BNG, van IJzendoorn SCD. The role of enterocyte defects in the pathogenesis of congenital diarrheal disorders. Dis Model Mech 2016; 9:1-12. [PMID: 26747865 PMCID: PMC4728335 DOI: 10.1242/dmm.022269] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Congenital diarrheal disorders are rare, often fatal, diseases that are difficult to diagnose (often requiring biopsies) and that manifest in the first few weeks of life as chronic diarrhea and the malabsorption of nutrients. The etiology of congenital diarrheal disorders is diverse, but several are associated with defects in the predominant intestinal epithelial cell type, enterocytes. These particular congenital diarrheal disorders (CDDENT) include microvillus inclusion disease and congenital tufting enteropathy, and can feature in other diseases, such as hemophagocytic lymphohistiocytosis type 5 and trichohepatoenteric syndrome. Treatment options for most of these disorders are limited and an improved understanding of their molecular bases could help to drive the development of better therapies. Recently, mutations in genes that are involved in normal intestinal epithelial physiology have been associated with different CDDENT. Here, we review recent progress in understanding the cellular mechanisms of CDDENT. We highlight the potential of animal models and patient-specific stem-cell-based organoid cultures, as well as patient registries, to integrate basic and clinical research, with the aim of clarifying the pathogenesis of CDDENT and expediting the discovery of novel therapeutic strategies. Summary: Overview of the recent progress in our understanding of congenital diarrheal disorders, and the available models to study these diseases.
Collapse
Affiliation(s)
- Arend W Overeem
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Carsten Posovszky
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany
| | - Edmond H M M Rings
- Department of Pediatrics, Erasmus Medical Center Rotterdam, Erasmus University Rotterdam, 3000 CB Rotterdam, The Netherlands Department of Pediatrics, Leiden University Medical Center, Leiden University, 2300 RC Leiden, The Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
17
|
Sané A, Seidman E, Spahis S, Lamantia V, Garofalo C, Montoudis A, Marcil V, Levy E. New Insights In Intestinal Sar1B GTPase Regulation and Role in Cholesterol Homeostasis. J Cell Biochem 2016; 116:2270-82. [PMID: 25826777 DOI: 10.1002/jcb.25177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
Sar1B GTPase is a key component of Coat protein complex II (COPII)-coated vesicles that bud from the endoplasmic reticulum to export newly synthesized proteins. The aims of this study were to determine whether Sar1B responds to lipid regulation and to evaluate its role in cholesterol (CHOL) homeostasis. The influence of lipids on Sar1B protein expression was analyzed in Caco-2/15 cells by Western blot. Our results showed that the presence of CHOL (200 μM) and oleic acid (0.5 mM), bound to albumin, increases Sar1B protein expression. Similarly, supplementation of the medium with micelles composed of taurocholate with monooleylglycerol or oleic acid also stimulated Sar1B expression, but the addition of CHOL (200 μM) to micelle content did not modify its regulation. On the other hand, overexpression of Sar1B impacted on CHOL transport and metabolism in view of the reduced cellular CHOL content along with elevated secretion when incubated with oleic acid-containing micelles for 24 h, thereby disclosing induced CHOL transport. This was accompanied with higher secretion of free- and esterified-CHOL within chylomicrons, which was not the case when oleic acid was replaced with monooleylglycerol or when albumin-bound CHOL was given alone. The aforementioned cellular CHOL depletion was accompanied with a low phosphorylated/non phosphorylated HMG-CoA reductase ratio, indicating elevated enzymatic activity. Combination of Sar1B overexpression with micelle incubation led to reduction in intestinal CHOL transporters (NPC1L1, SR-BI) and metabolic regulators (PCSK9 and LDLR). The present work showed that Sar1B is regulated in a time- and concentration-dependent manner by dietary lipids, suggesting an adaptation to alimentary lipid flux. Our data also suggest that Sar1B overexpression contributes to regulation of CHOL transport and metabolism by facilitating rapid uptake and transport of CHOL.
Collapse
Affiliation(s)
- Alain Sané
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Ernest Seidman
- Research Institute, McGill University, Campus MGH, C10.148.6, Montreal, Quebec, Canada, H3G 1A4
| | - Schohraya Spahis
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1A8
| | - Valérie Lamantia
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Carole Garofalo
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Alain Montoudis
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Valérie Marcil
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5.,Research Institute, McGill University, Campus MGH, C10.148.6, Montreal, Quebec, Canada, H3G 1A4
| | - Emile Levy
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1A8
| |
Collapse
|
18
|
D'Aquila T, Hung YH, Carreiro A, Buhman KK. Recent discoveries on absorption of dietary fat: Presence, synthesis, and metabolism of cytoplasmic lipid droplets within enterocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:730-47. [PMID: 27108063 DOI: 10.1016/j.bbalip.2016.04.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/16/2016] [Accepted: 04/16/2016] [Indexed: 02/07/2023]
Abstract
Dietary fat provides essential nutrients, contributes to energy balance, and regulates blood lipid concentrations. These functions are important to health, but can also become dysregulated and contribute to diseases such as obesity, diabetes, cardiovascular disease, and cancer. Within enterocytes, the digestive products of dietary fat are re-synthesized into triacylglycerol, which is either secreted on chylomicrons or stored within cytoplasmic lipid droplets (CLDs). CLDs were originally thought to be inert stores of neutral lipids, but are now recognized as dynamic organelles that function in multiple cellular processes in addition to lipid metabolism. This review will highlight recent discoveries related to dietary fat absorption with an emphasis on the presence, synthesis, and metabolism of CLDs within this process.
Collapse
Affiliation(s)
- Theresa D'Aquila
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yu-Han Hung
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Alicia Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
19
|
Ramasamy I. Recent advances in physiological lipoprotein metabolism. Clin Chem Lab Med 2015; 52:1695-727. [PMID: 23940067 DOI: 10.1515/cclm-2013-0358] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/08/2013] [Indexed: 01/21/2023]
Abstract
Research into lipoprotein metabolism has developed because understanding lipoprotein metabolism has important clinical indications. Lipoproteins are risk factors for cardiovascular disease. Recent advances include the identification of factors in the synthesis and secretion of triglyceride rich lipoproteins, chylomicrons (CM) and very low density lipoproteins (VLDL). These included the identification of microsomal transfer protein, the cotranslational targeting of apoproteinB (apoB) for degradation regulated by the availability of lipids, and the characterization of transport vesicles transporting primordial apoB containing particles to the Golgi. The lipase maturation factor 1, glycosylphosphatidylinositol-anchored high density lipoprotein binding protein 1 and an angiopoietin-like protein play a role in lipoprotein lipase (LPL)-mediated hydrolysis of secreted CMs and VLDL so that the right amount of fatty acid is delivered to the right tissue at the right time. Expression of the low density lipoprotein (LDL) receptor is regulated at both transcriptional and post-transcriptional level. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has a pivotal role in the degradation of LDL receptor. Plasma remnant lipoproteins bind to specific receptors in the liver, the LDL receptor, VLDL receptor and LDL receptor-like proteins prior to removal from the plasma. Reverse cholesterol transport occurs when lipid free apoAI recruits cholesterol and phospholipid to assemble high density lipoprotein (HDL) particles. The discovery of ABC transporters (ABCA1 and ABCG1) and scavenger receptor class B type I (SR-BI) provided further information on the biogenesis of HDL. In humans HDL-cholesterol can be returned to the liver either by direct uptake by SR-BI or through cholesteryl ester transfer protein exchange of cholesteryl ester for triglycerides in apoB lipoproteins, followed by hepatic uptake of apoB containing particles. Cholesterol content in cells is regulated by several transcription factors, including the liver X receptor and sterol regulatory element binding protein. This review summarizes recent advances in knowledge of the molecular mechanisms regulating lipoprotein metabolism.
Collapse
|
20
|
Siddiqi S, Mansbach CM. Dietary and biliary phosphatidylcholine activates PKCζ in rat intestine. J Lipid Res 2015; 56:859-70. [PMID: 25713101 DOI: 10.1194/jlr.m056051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chylomicron output by the intestine is proportional to intestinal phosphatidylcholine (PC) delivery. Using five different variations of PC delivery to the intestine, we found that lyso-phosphatidylcholine (lyso-PC), the absorbed form of PC, concentrations in the cytosol (0 to 0.45 nM) were proportional to the input rate. The activity of protein kinase C (PKC)ζ, which controls prechylomicron output rate by the endoplasmic reticulum (ER), correlated with the lyso-PC concentration suggesting that it may be a PKCζ activator. Using recombinant PKCζ, the Km for lyso-PC activation was 1.49 nM and the Vmax 1.12 nM, more than the maximal lyso-PC concentration in cytosol, 0.45 nM. Among the phospholipids and their lyso derivatives, lyso-PC was the most potent activator of PKCζ and the only one whose cytosolic concentration suggested that it could be a physiological activator because other phospholipid concentrations were negligible. PKCζ was on the surface of the dietary fatty acid transport vesicle, the caveolin-1-containing endocytic vesicle. Once activated, PKCζ, eluted off the vesicle. A conformational change in PKCζ on activation was suggested by limited proteolysis. We conclude that PKCζ on activation changes its conformation resulting in elution from its vesicle. The downstream effect of dietary PC is to activate PKCζ, resulting in greater chylomicron output by the ER.
Collapse
Affiliation(s)
- Shahzad Siddiqi
- Division of Gastroenterology, The University of Tennessee Health Science Center, Memphis, TN
| | - Charles M Mansbach
- Division of Gastroenterology, The University of Tennessee Health Science Center, Memphis, TN Veterans Affairs Medical Center, Memphis, TN
| |
Collapse
|
21
|
Prevention of oxidative stress, inflammation and mitochondrial dysfunction in the intestine by different cranberry phenolic fractions. Clin Sci (Lond) 2014; 128:197-212. [PMID: 25069567 DOI: 10.1042/cs20140210] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cranberry fruit has been reported to have high antioxidant effectiveness that is potentially linked to its richness in diversified polyphenolic content. The aim of the present study was to determine the role of cranberry polyphenolic fractions in oxidative stress (OxS), inflammation and mitochondrial functions using intestinal Caco-2/15 cells. The combination of HPLC and UltraPerformance LC®-tandem quadrupole (UPLC-TQD) techniques allowed us to characterize the profile of low, medium and high molecular mass polyphenolic compounds in cranberry extracts. The medium molecular mass fraction was enriched with flavonoids and procyanidin dimers whereas procyanidin oligomers (DP > 4) were the dominant class of polyphenols in the high molecular mass fraction. Pre-incubation of Caco-2/15 cells with these cranberry extracts prevented iron/ascorbate-mediated lipid peroxidation and counteracted lipopolysaccharide-mediated inflammation as evidenced by the decrease in pro-inflammatory cytokines (TNF-α and interleukin-6), cyclo-oxygenase-2 and prostaglandin E2. Cranberry polyphenols (CP) fractions limited both nuclear factor κB activation and Nrf2 down-regulation. Consistently, cranberry procyanidins alleviated OxS-dependent mitochondrial dysfunctions as shown by the rise in ATP production and the up-regulation of Bcl-2, as well as the decline of protein expression of cytochrome c and apoptotic-inducing factor. These mitochondrial effects were associated with a significant stimulation of peroxisome-proliferator-activated receptor γ co-activator-1-α, a central inducing factor of mitochondrial biogenesis and transcriptional co-activator of numerous downstream mediators. Finally, cranberry procyanidins forestalled the effect of iron/ascorbate on the protein expression of mitochondrial transcription factors (mtTFA, mtTFB1, mtTFB2). Our findings provide evidence for the capacity of CP to reduce intestinal OxS and inflammation while improving mitochondrial dysfunction.
Collapse
|
22
|
Levy E. Insights from human congenital disorders of intestinal lipid metabolism. J Lipid Res 2014; 56:945-62. [PMID: 25387865 DOI: 10.1194/jlr.r052415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 12/24/2022] Open
Abstract
The intestine must challenge the profuse daily flux of dietary fat that serves as a vital source of energy and as an essential component of cell membranes. The fat absorption process takes place in a series of orderly and interrelated steps, including the uptake and translocation of lipolytic products from the brush border membrane to the endoplasmic reticulum, lipid esterification, Apo synthesis, and ultimately the packaging of lipid and Apo components into chylomicrons (CMs). Deciphering inherited disorders of intracellular CM elaboration afforded new insight into the key functions of crucial intracellular proteins, such as Apo B, microsomal TG transfer protein, and Sar1b GTPase, the defects of which lead to hypobetalipoproteinemia, abetalipoproteinemia, and CM retention disease, respectively. These "experiments of nature" are characterized by fat malabsorption, steatorrhea, failure to thrive, low plasma levels of TGs and cholesterol, and deficiency of liposoluble vitamins and essential FAs. After summarizing and discussing the functions and regulation of these proteins for reader's comprehension, the current review focuses on their specific roles in malabsorptions and dyslipidemia-related intestinal fat hyperabsorption while dissecting the spectrum of clinical manifestations and managements. The influence of newly discovered proteins (proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 protein) on fat absorption has also been provided. Finally, it is stressed how the overexpression or polymorphism status of the critical intracellular proteins promotes dyslipidemia and cardiometabolic disorders.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Sainte-Justine and Department of Nutrition, Université de Montréal, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
23
|
Mei Y, Gao C, Wang K, Cui L, Li W, Zhao X, Liu F, Wu M, Deng G, Ding W, Jia H, Li Z. Effect of microRNA-210 on prognosis and response to chemotherapeutic drugs in pediatric acute lymphoblastic leukemia. Cancer Sci 2014; 105:463-72. [PMID: 24720529 PMCID: PMC4317805 DOI: 10.1111/cas.12370] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/29/2014] [Accepted: 02/09/2014] [Indexed: 12/19/2022] Open
Abstract
Many studies have demonstrated that microRNA-210 (miR-210) expression is intensively upregulated in hypoxic states and differentially regulated in most types of cancer cells. However, the clinical significance of miR-210 and its effects on the response of leukemic cells to chemotherapeutic drugs in childhood acute lymphoblastic leukemia (ALL) remain unknown. In the current study, using real-time qRT-PCR to detect miR-210 expression in bone marrow samples from 114 children at initial diagnosis of ALL, we investigated the prognostic significance of miR-210 and determined its associations with common clinical characteristics and treatment outcome. We further examined its effect on the response to chemotherapeutic drugs in the Reh and RS4;11 cell lines. Results showed that miR-210 expression was significantly lower in patients suffering from relapse and induction failure than in other patients (P < 0.001). Using the receiver operating characteristic curve, 3.8243 was selected as the cut-off value of miR-210 expression in our test cohort (38 cases). A significantly poorer treatment outcome (P < 0.05) was found in the low-expression group and verified in the validation cohort (76 cases, P < 0.05). Patients with low expression of miR-210 and positive minimal residual disease at the end of induction had a much higher rate of relapse or induction failure (P = 0.001). Increasing/decreasing miR-210 expression using agomir/antagomir could enhance or reduce the response of Reh cells and RS4;11 cells to daunorubicin/dexamethasone/L-asparaginase and daunorubicin/dexamethasone/vincristine, respectively. In conclusion, miR-210 may be a good prognostic factor and a useful predictor of drug sensitivity, and is a potential therapeutic target for pediatric ALL.
Collapse
Affiliation(s)
- Yanyan Mei
- Key Laboratory of Major Diseases in Children (Capital Medical University), Ministry of Education, National Key Discipline of Pediatrics, Ministry of Education, Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fisher E, Lake E, McLeod RS. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J Biomed Res 2014; 28:178-93. [PMID: 25013401 PMCID: PMC4085555 DOI: 10.7555/jbr.28.20140019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the liver, VLDL is converted to low density lipoprotein (LDL) in the plasma and increased production of VLDL can therefore play a detrimental role in cardiovascular disease. Increasing evidence has helped to establish VLDL assembly as a target for the treatment of dyslipidemias. Multiple factors are involved in the folding of the apoB protein and the formation of a secretion-competent VLDL particle. Failed VLDL assembly can initiate quality control mechanisms in the hepatocyte that target apoB for degradation. ApoB is a substrate for endoplasmic reticulum associated degradation (ERAD) by the ubiquitin proteasome system and for autophagy. Efficient targeting and disposal of apoB is a regulated process that modulates VLDL secretion and partitioning of TG. Emerging evidence suggests that significant overlap exists between these degradative pathways. For example, the insulin-mediated targeting of apoB to autophagy and postprandial activation of the unfolded protein response (UPR) may employ the same cellular machinery and regulatory cues. Changes in the quality control mechanisms for apoB impact hepatic physiology and pathology states, including insulin resistance and fatty liver. Insulin signaling, lipid metabolism and the hepatic UPR may impact VLDL production, particularly during the postprandial state. In this review we summarize our current understanding of VLDL assembly, apoB degradation, quality control mechanisms and the role of these processes in liver physiology and in pathologic states.
Collapse
Affiliation(s)
- Eric Fisher
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth Lake
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roger S McLeod
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
25
|
Levy E, Spahis S, Garofalo C, Marcil V, Montoudis A, Sinnet D, Sanchez R, Peretti N, Beaulieu JF, Sane A. Sar1b transgenic male mice are more susceptible to high-fat diet-induced obesity, insulin insensitivity and intestinal chylomicron overproduction. J Nutr Biochem 2014; 25:540-8. [PMID: 24657056 DOI: 10.1016/j.jnutbio.2014.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/28/2013] [Accepted: 01/08/2014] [Indexed: 12/13/2022]
Abstract
In the intracellular secretory network, nascent proteins are shuttled from the endoplasmic reticulum to the Golgi by transport vesicles requiring Sar1b, a small GTPase. Mutations in this key enzyme impair intestinal lipid transport and cause chylomicron retention disease. The main aim of this study was to assess whether Sar1b overexpression under a hypercaloric diet accelerated lipid production and chylomicron (CM) secretion, thereby inducing cardiometabolic abnormalities. To this end, we generated transgenic mice overexpressing human Sar1b (Sar1b(+/+)) using pBROAD3-mcs that features the ubiquitous mouse ROSA26 promoter. In response to a high-fat diet (HFD), Sar1b(+/+) mice displayed significantly increased body weight and adiposity compared with Sar1b(+/+) mice under the same regimen or with wild-type (WT) mice exposed to chow diet or HFD. Furthermore, Sar1b(+/+) mice were prone to liver steatosis as revealed by significantly elevated hepatic triglycerides (TG) and cholesterol in comparison with WT animals. They also exhibited augmented levels of plasma TG along with alterations in fatty acid composition. Concomitantly, they showed susceptibility to develop insulin insensitivity and they responded abnormally to oral glucose tolerance test. Finally, Sar1b(+/+) mice that have been treated with Triton WR-1330 (to inhibit TG catabolism) and orotic acid (to block secretion of very low-density lipoprotein by the liver) responded more efficiently to fat meal tests as reflected by the rise in plasma TG and CM concentrations, indicating exaggerated intestinal fat absorption. These results suggest that Sar1b(+/+) under HFD can elicit cardiometabolic traits as revealed by incremental weight gain, fat deposition, dyslipidemia, hepatic steatosis, insulin insensitivity and intestinal fat absorption.
Collapse
Affiliation(s)
- Emile Levy
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1J4; Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4.
| | - Schohraya Spahis
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1J4
| | - Carole Garofalo
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| | - Valérie Marcil
- Research Institute, McGill University, Montreal, Quebec, Canada, H3G 1A4
| | - Alain Montoudis
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| | - Daniel Sinnet
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Rocio Sanchez
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| | - Noel Peretti
- Centre de recherche Rhône-Alpes en nutrition humaine, Hôpital Edouard-Herriot, Faculté de Médicine, Université de Lyon-1, France
| | - Jean-François Beaulieu
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Alain Sane
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| |
Collapse
|
26
|
Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci U S A 2013; 111:167-72. [PMID: 24344304 DOI: 10.1073/pnas.1314066111] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.
Collapse
|
27
|
Grenier E, Mailhot G, Dion D, Ravid Z, Spahis S, Bendayan M, Levy E. Role of the apical and basolateral domains of the enterocyte in the regulation of cholesterol transport by a high glucose concentration. Biochem Cell Biol 2013; 91:476-86. [PMID: 24219290 DOI: 10.1139/bcb-2013-0053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have recently shown that a high glucose (HG) concentration raised intestinal cholesterol (CHOL) transport and metabolism in intestinal epithelial cells. The objective of the present work is to determine whether the stimulus for increased CHOL absorption by glucose originates from the apical site (corresponding to the intestinal lumen) or from the basolateral site (related to blood circulation). We tackled this issue by using differentiated Caco-2/15 cells. Only basolateral medium, supplemented with 25 mmol/L glucose, stimulated [(14)C]-CHOL uptake via the up-regulation of the critical CHOL transporter NPC1L1 protein, as confirmed by its specific ezetimibe inhibitor that abolished the rise in glucose-mediated CHOL capture. No significant changes were noted in SR-BI and CD36. Elevated CHOL uptake was associated with an increase in the transcription factors SREBP-2, LXR-β, and ChREBP, along with a fall in RXR-α. Interestingly, although the HG concentration in the apical medium caused modest changes in CHOL processing, its impact was synergetic with that of the basolateral medium. Our results suggest that HG concentration influences positively intestinal CHOL uptake when present in the basolateral medium. In addition, excessive consumption of diets containing high levels of carbohydrates may strengthen intestinal CHOL uptake in metabolic syndrome, thereby contributing to elevated levels of circulating CHOL and, consequently, the risk of developing type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Emilie Grenier
- a Research Centre, CHU Ste-Justine, 3175 Ste-Catherine Road, Montreal, QC H3T 1C5, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Tremblay AJ, Lamarche B, Guay V, Charest A, Lemelin V, Couture P. Short-term, high-fat diet increases the expression of key intestinal genes involved in lipoprotein metabolism in healthy men. Am J Clin Nutr 2013; 98:32-41. [PMID: 23719552 DOI: 10.3945/ajcn.113.060251] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The modulation of cholesterol and fatty acid homeostasis by dietary fatty acids is thought to be mediated by changes in the expression of key intestinal genes involved in lipoprotein metabolism. However, the short-term effect of dietary fat intake on the expression of these genes has not been fully investigated in humans. OBJECTIVE To test whether short-term changes in dietary fatty acid intake affect the expression of key intestinal genes involved in lipoprotein metabolism, we conducted a randomized, double-blind, crossover study in 12 nonobese, healthy men with normal plasma lipid profiles. DESIGN Participants were subjected to the following 2 intensive 3-d dietary interventions under isocaloric conditions: 1) a high-fat diet (37% of energy from fat and 50% of energy from carbohydrates) and 2) a low-fat diet (25% of energy from fat and 62% of energy from carbohydrates). Expressions of key genes involved in lipoprotein metabolism were compared by using real-time polymerase chain reaction quantification on duodenal biopsy specimens obtained in a fasting state after each diet. RESULTS After the 3-d high-fat diet, plasma cholesterol, LDL cholesterol, and HDL cholesterol concentrations were significantly higher than concentrations observed after the low-fat diet was consumed. The high-fat diet also resulted in significant increases in the intestinal messenger RNA expression of several key genes involved in lipoprotein metabolism. Plasma triglycerides and apolipoprotein B-48 concentrations were significantly lower after the high-fat diet than after the low-fat diet. CONCLUSION These findings suggest that short-term exposure to a high-fat diet upregulates the expression of key genes involved in lipid and lipoprotein metabolism at the enterocyte level. This trial was registered at clinicaltrials.gov as NCT01806441.
Collapse
|
29
|
Yara S, Lavoie JC, Beaulieu JF, Delvin E, Amre D, Marcil V, Seidman E, Levy E. Iron-ascorbate-mediated lipid peroxidation causes epigenetic changes in the antioxidant defense in intestinal epithelial cells: impact on inflammation. PLoS One 2013; 8:e63456. [PMID: 23717425 PMCID: PMC3661745 DOI: 10.1371/journal.pone.0063456] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The gastrointestinal tract is frequently exposed to noxious stimuli that may cause oxidative stress, inflammation and injury. Intraluminal pro-oxidants from ingested nutrients especially iron salts and ascorbic acid frequently consumed together, can lead to catalytic formation of oxygen-derived free radicals that ultimately overwhelm the cellular antioxidant defense and lead to cell damage. HYPOTHESIS Since the mechanisms remain sketchy, efforts have been exerted to evaluate the role of epigenetics in modulating components of endogenous enzymatic antioxidants in the intestine. To this end, Caco-2/15 cells were exposed to the iron-ascorbate oxygen radical-generating system. RESULTS Fe/Asc induced a significant increase in lipid peroxidation as reflected by the elevated formation of malondialdehyde along with the alteration of antioxidant defense as evidenced by raised superoxide dismutase 2 (SOD2) and diminished glutathione peroxidase (GPx) activities and genes. Consequently, there was an up-regulation of inflammatory processes illustrated by the activation of NF-κB transcription factor, the higher production of interleukin-6 and cycloxygenase-2 as well as the decrease of IκB. Assessment of promoter's methylation revealed decreased levels for SOD2 and increased degree for GPx2. On the other hand, pre-incubation of Caco-2/15 cells with 5-Aza-2'-deoxycytidine, a demethylating agent, or Trolox antioxidant normalized the activities of SOD2 and GPx, reduced lipid peroxidation and prevented inflammation. CONCLUSION Redox and inflammatory modifications in response to Fe/Asc -mediated lipid peroxidation may implicate epigenetic methylation.
Collapse
Affiliation(s)
- Sabrina Yara
- Department of Nutrition, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Claude Lavoie
- Department of Pediatrics, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-François Beaulieu
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Edgard Delvin
- Department of Biochemistry, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Devendra Amre
- Department of Pediatrics, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Valerie Marcil
- Research Institute, McGill University, Campus MGH, C10.148.6, Montreal, Quebec, Canada
| | - Ernest Seidman
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Research Institute, McGill University, Campus MGH, C10.148.6, Montreal, Quebec, Canada
| | - Emile Levy
- Department of Nutrition, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
30
|
Seixas E, Barros M, Seabra MC, Barral DC. Rab and Arf proteins in genetic diseases. Traffic 2013; 14:871-85. [PMID: 23565987 DOI: 10.1111/tra.12072] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 01/29/2023]
Abstract
Rab and ADP-ribosylation factor (Arf) family proteins are master regulators of membrane trafficking and are involved in all steps of vesicular transport. These families of small guanine-nucleotide-binding (G) proteins are well suited to regulate membrane trafficking processes since their nucleotide state determines their conformation and the capacity to bind to a multitude of effectors, which mediate their functions. In recent years, several inherited diseases have been associated with mutations in genes encoding proteins belonging to these two families or in proteins that regulate their GTP-binding cycle. The genetic diseases that are caused by defects in Rabs, Arfs or their regulatory proteins are heterogeneous and display diverse symptoms. However, these diseases mainly affect two types of subcellular compartments, namely lysosome-related organelles and cilia. Also, several of these diseases affect the nervous system. Thus, the study of these diseases represents an opportunity to understand their etiology and the molecular mechanisms involved, as well as to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Elsa Seixas
- CEDOC, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | | | | | | |
Collapse
|
31
|
Current world literature. Curr Opin Lipidol 2013; 24:86-94. [PMID: 23298962 DOI: 10.1097/mol.0b013e32835cb4f6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Tiwari S, Siddiqi S, Siddiqi SA. CideB protein is required for the biogenesis of very low density lipoprotein (VLDL) transport vesicle. J Biol Chem 2013; 288:5157-65. [PMID: 23297397 DOI: 10.1074/jbc.m112.434258] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nascent very low density lipoprotein (VLDL) exits the endoplasmic reticulum (ER) in a specialized ER-derived vesicle, the VLDL transport vesicle (VTV). Similar to protein transport vesicles (PTVs), VTVs require coat complex II (COPII) proteins for their biogenesis from the ER membranes. Because the size of the VTV is large, we hypothesized that protein(s) in addition to COPII components might be required for VTV biogenesis. Our proteomic analysis, supported by Western blotting data, shows that a 26-kDa protein, CideB, is present in the VTV but not in other ER-derived vesicles such as PTV and pre-chylomicron transport vesicle. Western blotting and immunoelectron microscopy analyses suggest that CideB is concentrated in the VTV. Our co-immunoprecipitation data revealed that CideB specifically interacts with VLDL structural protein, apolipoprotein B100 (apoB100), but not with albumin, a PTV cargo protein. Confocal microscopic data indicate that CideB co-localizes with apoB100 in the ER. Additionally, CideB interacts with COPII components, Sar1 and Sec24. To investigate the role of CideB in VTV biogenesis, we performed an in vitro ER budding assay. We show that the blocking of CideB inhibits VTV budding, indicating a direct requirement of CideB in VTV formation. To confirm our findings, we knocked down CideB in primary hepatocytes and isolated ER and cytosol to examine whether they support VTV budding. Our data suggest that CideB knockdown significantly reduces VTV biogenesis. These findings suggest that CideB forms an intricate COPII coat and regulates the VTV biogenesis.
Collapse
Affiliation(s)
- Samata Tiwari
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA
| | | | | |
Collapse
|
33
|
Rahim A, Nafi-valencia E, Siddiqi S, Basha R, Runyon CC, Siddiqi SA. Proteomic analysis of the very low density lipoprotein (VLDL) transport vesicles. J Proteomics 2012; 75:2225-35. [PMID: 22449872 DOI: 10.1016/j.jprot.2012.01.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/20/2012] [Accepted: 01/22/2012] [Indexed: 11/19/2022]
Abstract
The VLDL transport vesicle (VTV) mediates the transport of nascent VLDL particles from the ER to the Golgi and plays a key role in VLDL-secretion from the liver. The functionality of VTV is controlled by specific proteins; however, full characterization and proteomic profiling of VTV remain to be carried out. Here, we report the first proteomic profile of VTVs. VTVs were purified to their homogeneity and characterized biochemically and morphologically. Thin section transmission electron microscopy suggests that the size of VTV ranges between 100 nm to 120 nm and each vesicle contains only one VLDL particle. Immunoblotting data indicate VTV concentrate apoB100, apoB48 and apoAIV but exclude apoAI. Proteomic analysis based on 2D-gel coupled with MALDI-TOF identified a number of vesicle-related proteins, however, many important VTV proteins could only be identified using LC-MS/MS methodology. Our data strongly indicate that VTVs greatly differ in their proteome with their counterparts of intestinal origin, the PCTVs. For example, VTV contains Sec22b, SVIP, ApoC-I, reticulon 3, cideB, LPCAT3 etc. which are not present in PCTV. The VTV proteome reported here will provide a basic tool to study the mechanisms underlying VLDL biogenesis, maturation, intracellular trafficking and secretion from the liver.
Collapse
Affiliation(s)
- Abdul Rahim
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Steady increase in the incidence of atherosclerosis is becoming a major concern not only in the United States but also in other countries. One of the major risk factors for the development of atherosclerosis is high concentrations of plasma low-density lipoprotein, which are metabolic products of very low-density lipoprotein (VLDL). VLDLs are synthesized and secreted by the liver. In this review, we discuss various stages through which VLDL particles go from their biogenesis to secretion in the circulatory system. Once VLDLs are synthesized in the lumen of the endoplasmic reticulum, they are transported to the Golgi. The transport of nascent VLDLs from the endoplasmic reticulum to Golgi is a complex multistep process, which is mediated by a specialized transport vesicle, the VLDL transport vesicle. The VLDL transport vesicle delivers VLDLs to the cis-Golgi lumen where nascent VLDLs undergo a number of essential modifications. The mature VLDL particles are then transported to the plasma membrane and secreted in the circulatory system. Understanding of molecular mechanisms and identification of factors regulating the complex intracellular VLDL trafficking will provide insight into the pathophysiology of various metabolic disorders associated with abnormal VLDL secretion and identify potential new therapeutic targets.
Collapse
Affiliation(s)
- Samata Tiwari
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL 32827, USA
| | | |
Collapse
|
35
|
Zanetti G, Pahuja KB, Studer S, Shim S, Schekman R. COPII and the regulation of protein sorting in mammals. Nat Cell Biol 2011; 14:20-8. [PMID: 22193160 DOI: 10.1038/ncb2390] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secretory proteins are transported to the Golgi complex in vesicles that bud from the endoplasmic reticulum. The cytoplasmic coat protein complex II (COPII) is responsible for cargo sorting and vesicle morphogenesis. COPII was first described in Saccharomyces cerevisiae, but its basic function is conserved throughout all eukaryotes. Nevertheless, the COPII coat has adapted to the higher complexity of mammalian physiology, achieving more sophisticated levels of secretory regulation. In this review we cover aspects of mammalian COPII-mediated regulation of secretion, in particular related to the function of COPII paralogues, the spatial organization of cargo export and the role of accessory proteins.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|