1
|
Konishi T, Kamiyama K, Osato T, Yoshimoto T, Aoki T, Anzai T, Tanaka S. Increased Piezo1 expression in myofibroblasts in patients with symptomatic carotid atherosclerotic plaques undergoing carotid endarterectomy: A pilot study. Vascular 2024; 32:1063-1069. [PMID: 37499697 DOI: 10.1177/17085381231192380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
OBJECTIVES We aimed to investigate Piezo1 expression in myofibroblasts in symptomatic and asymptomatic patients undergoing carotid endarterectomy and its relationship with atherosclerotic plaque formation. METHODS This cross-sectional study analyzed carotid plaques of 17 randomly selected patients who underwent carotid endarterectomy from May 2015 to August 2017. In total, 51 sections (the most stenotic lesion, and the sections 5-mm proximal and distal) stained with hematoxylin-eosin and elastica-Masson were examined. Immunohistochemistry was performed using antibodies to Piezo1. The Piezo1 score of a section was calculated semiquantitatively, averaged across 30 randomly selected myofibroblasts in the fibrous cap of the plaque. RESULTS Of 17 patients (mean age: 74.2 ± 7.1 years), 15 were men, 9 had diabetes mellitus, and 13 had hypertension. Symptomatic patients had higher mean Piezo1 score than asymptomatic patients (1.78 ± 0.23 vs 1.34 ± 0.17, p < .001). Univariate linear regression analyses suggested an association between plaque rupture, thin-cap fibroatheroma and microcalcifications and the Piezo1 score (p = .001, .008, and 0.003, respectively). CONCLUSIONS Increased Piezo1 expression of myofibroblasts may be associated with atherosclerotic carotid plaque instability. Further study is warranted to support this finding.
Collapse
Affiliation(s)
- Takao Konishi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Kamiyama
- Department of Neurosurgery, Nakamura Memorial Hospital, Sapporo, Japan
| | - Toshiaki Osato
- Department of Neurosurgery, Nakamura Memorial Hospital, Sapporo, Japan
| | - Tetsuyuki Yoshimoto
- Department of Neurosurgery, Hokkaido Neurosurgical Memorial Hospital, Sapporo, Japan
| | - Takeshi Aoki
- Department of Neurosurgery, Hokkaido Neurosurgical Memorial Hospital, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Motevasseli M, Darvishi M, Khoshnevisan A, Zeinalizadeh M, Saffar H, Bayat S, Najafi A, Abbaspour MJ, Mamivand A, Olson SB, Tabrizi M. Distinct tumor-TAM interactions in IDH-stratified glioma microenvironments unveiled by single-cell and spatial transcriptomics. Acta Neuropathol Commun 2024; 12:133. [PMID: 39148129 PMCID: PMC11328419 DOI: 10.1186/s40478-024-01837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/02/2024] [Indexed: 08/17/2024] Open
Abstract
Tumor-associated macrophages (TAMs) residing in the tumor microenvironment (TME) are characterized by their pivotal roles in tumor progression, antitumor immunity, and TME remodeling. However, a thorough comparative characterization of tumor-TAM crosstalk across IDH-defined categories of glioma remains elusive, likely contributing to mixed outcomes in clinical trials. We delineated the phenotypic heterogeneity of TAMs across IDH-stratified gliomas. Notably, two TAM subsets with a mesenchymal phenotype were enriched in IDH-WT glioblastoma (GBM) and correlated with poorer patient survival and reduced response to anti-PD-1 immune checkpoint inhibitor (ICI). We proposed SLAMF9 receptor as a potential therapeutic target. Inference of gene regulatory networks identified PPARG, ELK1, and MXI1 as master transcription factors of mesenchymal BMD-TAMs. Our analyses of reciprocal tumor-TAM interactions revealed distinct crosstalk in IDH-WT tumors, including ANXA1-FPR1/3, FN1-ITGAVB1, VEGFA-NRP1, and TNFSF12-TNFRSF12A with known contribution to immunosuppression, tumor proliferation, invasion and TAM recruitment. Spatially resolved transcriptomics further elucidated the architectural organization of highlighted communications. Furthermore, we demonstrated significant upregulation of ANXA1, FN1, NRP1, and TNFRSF12A genes in IDH-WT tumors using bulk RNA-seq and RT-qPCR. Longitudinal expression analysis of candidate genes revealed no difference between primary and recurrent tumors indicating that the interactive network of malignant states with TAMs does not drastically change upon recurrence. Collectively, our study offers insights into the unique cellular composition and communication of TAMs in glioma TME, revealing novel vulnerabilities for therapeutic interventions in IDH-WT GBM.
Collapse
Affiliation(s)
- Meysam Motevasseli
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Darvishi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khoshnevisan
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Zeinalizadeh
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hiva Saffar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Bayat
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Abbaspour
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mamivand
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Susan B Olson
- Molecular and Medical Genetics, Knight Diagnostics Laboratories, Oregon Health and Science University, Portland, OR, USA
| | - Mina Tabrizi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Molecular and Medical Genetics, Knight Diagnostics Laboratories, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
3
|
Liu Y, Wang Z, Jin H, Cui L, Huo B, Xie C, Li J, Ding H, Zhang H, Xiong W, Li M, Zhang H, Guo H, Li C, Wang T, Wang X, He W, Wang Z, Bei JX, Huang P, Liu J, Xia X. Squalene-epoxidase-catalyzed 24(S),25-epoxycholesterol synthesis promotes trained-immunity-mediated antitumor activity. Cell Rep 2024; 43:114094. [PMID: 38613784 DOI: 10.1016/j.celrep.2024.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/18/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024] Open
Abstract
The importance of trained immunity in antitumor immunity has been increasingly recognized, but the underlying metabolic regulation mechanisms remain incompletely understood. In this study, we find that squalene epoxidase (SQLE), a key enzyme in cholesterol synthesis, is required for β-glucan-induced trained immunity in macrophages and ensuing antitumor activity. Unexpectedly, the shunt pathway, but not the classical cholesterol synthesis pathway, catalyzed by SQLE, is required for trained immunity induction. Specifically, 24(S),25-epoxycholesterol (24(S),25-EC), the shunt pathway metabolite, activates liver X receptor and increases chromatin accessibility to evoke innate immune memory. Meanwhile, SQLE-induced reactive oxygen species accumulation stabilizes hypoxia-inducible factor 1α protein for metabolic switching into glycolysis. Hence, our findings identify 24(S),25-EC as a key metabolite for trained immunity and provide important insights into how SQLE regulates trained-immunity-mediated antitumor activity.
Collapse
Affiliation(s)
- Yongxiang Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zifeng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Huan Jin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Lei Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Bitao Huo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jiahui Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China
| | - Honglu Ding
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Huanling Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Wenjing Xiong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Mengyun Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; College of Life Science, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Hui Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Chunwei Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Tiantian Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Wenzhuo He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; Metabolic Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jinyun Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; Metabolic Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| |
Collapse
|
4
|
Shen X, Hu W, Xu C, Xu C, Wan Y, Hu J. Benzotriazole ultraviolet stabilizer UV-234 promotes foam cell formation in RAW264.7 macrophages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120560. [PMID: 36328287 DOI: 10.1016/j.envpol.2022.120560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) have been reported to induce inflammatory responses which may promote cholesterol accumulation and to downregulate the expression of genes involved in cholesterol biosynthesis; hence, we speculated whether BUVSs promote foam cell formation, which plays a key role in all stages of atherosclerosis. Herein, we used high-content imaging to screen all available BUVSs; of all the 17 candidates, 6 of them could promote foam cell formation at 10 μM. Further analyses showed that one BUVS UV-234 markedly increased the foam cell staining intensity by 15.0%-55.9% in the 0.5-10 μM exposure groups in a dose-dependent manner. Cholesterol influx was markedly enhanced by 21.0%-24.5% in the 5-10 μM exposure groups and cholesterol efflux was downregulated by 21.2%-59.3% in the 0.5-10 μM exposure groups, indicating that cholesterol efflux may play a major role in foam formation considering cholesterol efflux was downregulated at a relatively low concentration. Gene expression of ABCA1 and ABCG1 which regulate the cholesterol efflux were also decreased at 0.5-10 μM. The degradation of hypoxia-inducible factor 1α (HIF1α) via the ubiquitin-proteasome system was observed at 0.5-10 μM, probably contributing to the downregulated expression of the genes encoding liver X receptors (LXR) α/β and their targets, ABCA1 and ABCG1. Thus, our study revealed that BUVSs frequently detected in the environment can promote foam cell formation in macrophages, contributing to the risk of atherosclerosis in humans.
Collapse
Affiliation(s)
- Xinming Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Wenxin Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Chenke Xu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Cheng Xu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yi Wan
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
5
|
Sheng W, Ji G, Zhang L. Role of macrophage scavenger receptor MSR1 in the progression of non-alcoholic steatohepatitis. Front Immunol 2022; 13:1050984. [PMID: 36591228 PMCID: PMC9797536 DOI: 10.3389/fimmu.2022.1050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD), and the dysregulation of lipid metabolism and oxidative stress are the typical features. Subsequent dyslipidemia and oxygen radical production may render the formation of modified lipids. Macrophage scavenger receptor 1 (MSR1) is responsible for the uptake of modified lipoprotein and is one of the key molecules in atherosclerosis. However, the unrestricted uptake of modified lipoproteins by MSR1 and the formation of cholesterol-rich foamy macrophages also can be observed in NASH patients and mouse models. In this review, we highlight the dysregulation of lipid metabolism and oxidative stress in NASH, the alteration of MSR1 expression in physiological and pathological conditions, the formation of modified lipoproteins, and the role of MSR1 on macrophage foaming and NASH development and progression.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Aranda JF, Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Mateos-Gómez PA, Pardo-Marqués V, Busto R, Ramírez CM. Role of miR-199a-5p in the post-transcriptional regulation of ABCA1 in response to hypoxia in peritoneal macrophages. Front Cardiovasc Med 2022; 9:994080. [PMID: 36407436 PMCID: PMC9669644 DOI: 10.3389/fcvm.2022.994080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 01/03/2025] Open
Abstract
Hypoxia is a crucial factor contributing to maintenance of atherosclerotic lesions. The ability of ABCA1 to stimulate the efflux of cholesterol from cells in the periphery, particularly foam cells in atherosclerotic plaques, is an important anti-atherosclerotic mechanism. The posttranscriptional regulation by miRNAs represents a key regulatory mechanism of a number of signaling pathways involved in atherosclerosis. Previously, miR-199a-5p has been shown to be implicated in the endocytic and retrograde intracellular transport. Although the regulation of miR-199a-5p and ABCA1 by hypoxia has been already reported independently, the role of miR-199a-5p in macrophages and its possible role in atherogenic processes such us regulation of lipid homeostasis through ABCA1 has not been yet investigated. Here, we demonstrate that both ABCA1 and miR-199a-5p show an inverse regulation by hypoxia and Ac-LDL in primary macrophages. Moreover, we demonstrated that miR-199a-5p regulates ABCA1 mRNA and protein levels by directly binding to its 3'UTR. As a result, manipulation of cellular miR-199a-5p levels alters ABCA1 expression and cholesterol efflux in primary mouse macrophages. Taken together, these results indicate that the correlation between ABCA1-miR-199a-5p could be exploited to control macrophage cholesterol efflux during the onset of atherosclerosis, where cholesterol alterations and hypoxia play a pathogenic role.
Collapse
Affiliation(s)
- Juan Francisco Aranda
- Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| | - Ana Pérez-García
- IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
| | | | | | | | - Pedro A. Mateos-Gómez
- Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | | | - Rebeca Busto
- Department of Clinical Biochemistry, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | | |
Collapse
|
7
|
Findeisen HM, Voges VC, Braun LC, Sonnenberg J, Schwarz D, Körner H, Reinecke H, Sohrabi Y. LXRα Regulates oxLDL-Induced Trained Immunity in Macrophages. Int J Mol Sci 2022; 23:ijms23116166. [PMID: 35682840 PMCID: PMC9181299 DOI: 10.3390/ijms23116166] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/19/2022] Open
Abstract
Reprogramming of metabolic pathways in monocytes and macrophages can induce a proatherosclerotic inflammatory memory called trained innate immunity. Here, we have analyzed the role of the Liver X receptor (LXR), a crucial regulator of metabolism and inflammation, in oxidized low-density lipoprotein (oxLDL)-induced trained innate immunity. Human monocytes were incubated with LXR agonists, antagonists, and oxLDL for 24 h. After five days of resting time, cells were restimulated with the TLR-2 agonist Pam3cys. OxLDL priming induced the expression of LXRα but not LXRβ. Pharmacologic LXR activation was enhanced, while LXR inhibition prevented the oxLDL-induced inflammatory response. Furthermore, LXR inhibition blocked the metabolic changes necessary for epigenetic reprogramming associated with trained immunity. In fact, enrichment of activating histone marks at the IL-6 and TNFα promotor was reduced following LXR inhibition. Based on the differential expression of the LXR isoforms, we inhibited LXRα and LXRβ genes using siRNA in THP1 cells. As expected, siRNA-mediated knock-down of LXRα blocked the oxLDL-induced inflammatory response, while knock-down of LXRβ had no effect. We demonstrate a specific and novel role of the LXRα isoform in the regulation of oxLDL-induced trained immunity. Our data reveal important aspects of LXR signaling in innate immunity with relevance to atherosclerosis formation.
Collapse
|
8
|
Thomas C, Leleu D, Masson D. Cholesterol and HIF-1α: Dangerous Liaisons in Atherosclerosis. Front Immunol 2022; 13:868958. [PMID: 35386720 PMCID: PMC8977597 DOI: 10.3389/fimmu.2022.868958] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
HIF-1α exerts both detrimental and beneficial actions in atherosclerosis. While there is evidence that HIF-1α could be pro-atherogenic within the atheromatous plaque, experimental models of atherosclerosis suggest a more complex role that depends on the cell type expressing HIF-1α. In atheroma plaques, HIF-1α is stabilized by local hypoxic conditions and by the lipid microenvironment. Macrophage exposure to oxidized LDLs (oxLDLs) or to necrotic plaque debris enriched with oxysterols induces HIF-1α -dependent pathways. Moreover, HIF-1α is involved in many oxLDL-induced effects in macrophages including inflammatory response, angiogenesis and metabolic reprogramming. OxLDLs activate toll-like receptor signaling pathways to promote HIF-1α stabilization. OxLDLs and oxysterols also induce NADPH oxidases and reactive oxygen species production, which subsequently leads to HIF-1α stabilization. Finally, recent investigations revealed that the activation of liver X receptor, an oxysterol nuclear receptor, results in an increase in HIF-1α transcriptional activity. Reciprocally, HIF-1α signaling promotes triglycerides and cholesterol accumulation in macrophages. Hypoxia and HIF-1α increase the uptake of oxLDLs, promote cholesterol and triglyceride synthesis and decrease cholesterol efflux. In conclusion, the impact of HIF-1α on cholesterol homeostasis within macrophages and the feedback activation of the inflammatory response by oxysterols via HIF-1α could play a deleterious role in atherosclerosis. In this context, studies aimed at understanding the specific mechanisms leading to HIF-1α activation within the plaque represents a promising field for research investigations and a path toward development of novel therapies.
Collapse
Affiliation(s)
- Charles Thomas
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Damien Leleu
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Dijon, France.,CHRU Dijon Bourgogne, Laboratory of Clinical Chemistry, Dijon, France
| | - David Masson
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Dijon, France.,CHRU Dijon Bourgogne, Laboratory of Clinical Chemistry, Dijon, France
| |
Collapse
|
9
|
Zhou L, Wang M, Guo H, Hou J, Zhang Y, Li M, Wu X, Chen X, Wang L. Integrated Analysis Highlights the Immunosuppressive Role of TREM2+ Macrophages in Hepatocellular Carcinoma. Front Immunol 2022; 13:848367. [PMID: 35359989 PMCID: PMC8963870 DOI: 10.3389/fimmu.2022.848367] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Recently, attention has been focused on the central role of TREM2 in diverse pathologies. However, the role of TREM2 signaling in the tumor microenvironment of hepatocellular carcinoma (HCC) remains poorly understood. Herein, we systematically investigated the single-cell transcriptomes of human HCC tissues and found that TREM2 was predominantly expressed by a macrophage subpopulation enriched in tumor tissues that resemble lipid-associated macrophages (LAMs). The accumulation of TREM2+ LAM-like cells in HCC was confirmed in two additional cohorts using scRNA-seq analysis and immunohistochemistry. High expression of TREM2 correlated with high infiltrating macrophage abundance and poor prognosis. Based on systematic interrogations of transcriptional profiles and cellular interactions, TREM2+ LAM-like cells were identified to mainly originate from S100A8+ monocytes and represented an immunosuppressive state. TREM2+ LAM-like cells recruited suppressive Treg cells, facilitating microenvironment remodeling. Furthermore, gene regulatory analysis and in vitro functional assays indicated that activation of LXR signaling could promote the reprogramming of TREM2+ LAM-like cells. Correlation analysis of bulk RNA-sequencing data demonstrated that the enrichment of TREM2+ LAM-like cells was an independent indicator of adverse clinical outcomes in HCC patients. Our comprehensive analyses provide deeper insights into the immunosuppressive role of TREM2+ LAM-like cells in HCC.
Collapse
Affiliation(s)
- Lisha Zhou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, China
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Meiling Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, China
| | - Hanrui Guo
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, China
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
| | - Yingna Zhang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
| | - Man Li
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
- *Correspondence: Lianghai Wang, ; Xueling Chen,
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- *Correspondence: Lianghai Wang, ; Xueling Chen,
| |
Collapse
|
10
|
Yang D, Yang L, Cai J, Hu X, Li H, Zhang X, Zhang X, Chen X, Dong H, Nie H, Li Y. A sweet spot for macrophages: Focusing on polarization. Pharmacol Res 2021; 167:105576. [PMID: 33771700 DOI: 10.1016/j.phrs.2021.105576] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/21/2022]
Abstract
Macrophages are a type of functionally plastic cells that can create a pro-/anti-inflammatory microenvironment for organs by producing different kinds of cytokines, chemokines, and growth factors to regulate immunity and inflammatory responses. In addition, they can also be induced to adopt different phenotypes in response to extracellular and intracellular signals, a process defined as M1/M2 polarization. Growing evidence indicates that glycobiology is closely associated with this polarization process. In this research, we review studies of the roles of glycosylation, glucose metabolism, and key lectins in the regulation of macrophages function and polarization to provide a new perspective for immunotherapies for multiple diseases.
Collapse
Affiliation(s)
- Depeng Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lijun Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110000, China
| | - Xibo Hu
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaxin Li
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaoqing Zhang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaohan Zhang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xinghe Chen
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Haiyang Dong
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huan Nie
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Yu Li
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
11
|
Dianat-Moghadam H, Khalili M, Keshavarz M, Azizi M, Hamishehkar H, Rahbarghazi R, Nouri M. Modulation of LXR signaling altered the dynamic activity of human colon adenocarcinoma cancer stem cells in vitro. Cancer Cell Int 2021; 21:100. [PMID: 33568147 PMCID: PMC7877018 DOI: 10.1186/s12935-021-01803-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The expansion and metastasis of colorectal cancers are closely associated with the dynamic growth of cancer stem cells (CSCs). This study aimed to explore the possible effect of LXR (a regulator of glycolysis and lipid hemostasis) in the tumorgenicity of human colorectal CD133 cells. METHODS Human HT-29 CD133+ cells were enriched by MACS and incubated with LXR agonist (T0901317) and antagonist (SR9243) for 72 h. Cell survival was evaluated using MTT assay and flow cytometric analysis of Annexin-V. The proliferation rate was measured by monitoring Ki-67 positive cells using IF imaging. The modulation of LXR was studied by monitoring the activity of all factors related to ABC transporters using real-time PCR assay and western blotting. Protein levels of metabolic enzymes such as PFKFB3, GSK3β, FASN, and SCD were also investigated upon treatment of CSCs with LXR modulators. The migration of CSCs was monitored after being exposed to LXR agonist using scratch and Transwell insert assays. The efflux capacity was measured using hypo-osmotic conditions. The intracellular content of reactive oxygen species was studied by DCFH-DA staining. RESULTS Data showed incubation of CSCs with T0901317 and SR9243 reduced the viability of CD133 cells in a dose-dependent manner compared to the control group. The activation of LXR up-regulated the expression and protein levels of ABC transporters (ABCA1, ABCG5, and ABCG8) compared to the non-treated cells (p < 0.05). Despite these effects, LXR activation suppressed the proliferation, clonogenicity, and migration of CD133 cells, and increased hypo-osmotic fragility (p < 0.05). We also showed that SR9243 inhibited the proliferation and clonogenicity of CD133 cells through down-regulating metabolic enzymes PFKFB3, GSK3β, FASN, and SCD as compared with the control cells (p < 0.05). Intracellular ROS levels were increased after the inhibition of LXR by SR9243 (p < 0.05). Calling attention, both T0901317 and SR9243 compounds induced apoptotic changes in cancer stem cells (p < 0.05). CONCLUSIONS The regulation of LXR activity can be considered as a selective targeting of survival, metabolism, and migration in CSCs to control the tumorigenesis and metastasis in patients with advanced colorectal cancers.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Azizi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Ménégaut L, Jalil A, Pilot T, van Dongen K, Crespy V, Steinmetz E, Pais de Barros JP, Geissler A, Le Goff W, Venteclef N, Lagrost L, Gautier T, Thomas C, Masson D. Regulation of glycolytic genes in human macrophages by oxysterols: a potential role for liver X receptors. Br J Pharmacol 2021; 178:3124-3139. [PMID: 33377180 DOI: 10.1111/bph.15358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Subset of macrophages within the atheroma plaque displays a high glucose uptake activity. Nevertheless, the molecular mechanisms and the pathophysiological significance of this high glucose need remain unclear. While the role for hypoxia and hypoxia inducible factor 1α has been demonstrated, the contribution of lipid micro-environment and more specifically oxysterols is yet to be explored. EXPERIMENTAL APPROACH Human macrophages were conditioned in the presence of homogenates from human carotid plaques, and expression of genes involved in glucose metabolism was quantified. Correlative analyses between gene expression and the oxysterol composition of plaques were performed. KEY RESULTS Conditioning of human macrophages by plaque homogenates induces expression of several genes involved in glucose uptake and glycolysis including glucose transporter 1 (SLC2A1) and hexokinases 2 and 3 (HK2 and HK3). This activation is significantly correlated to the oxysterol content of the plaque samples and is associated with a significant increase in the glycolytic activity of the cells. Pharmacological inverse agonist of the oxysterol receptor liver X receptor (LXR) partially reverses the induction of glycolysis genes without affecting macrophage glycolytic activity. Chromatin immunoprecipitation analysis confirms the implication of LXR in the regulation of SLC2A1 and HK2 genes. CONCLUSION AND IMPLICATIONS While our work supports the role of oxysterols and the LXR in the modulation of macrophage metabolism in atheroma plaques, it also highlights some LXR-independent effects of plaques samples. Finally, this study identifies hexokinase 3 as a promising target in the context of atherosclerosis. LINKED ARTICLES This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Louise Ménégaut
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.,Laboratory of Clinical Chemistry, CHU Dijon, Dijon, France
| | - Antoine Jalil
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Thomas Pilot
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Kevin van Dongen
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.,Laboratory of Clinical Chemistry, CHU Dijon, Dijon, France
| | - Valentin Crespy
- Department of Cardiovascular Surgery, CHU Dijon, Dijon, France
| | - Eric Steinmetz
- Department of Cardiovascular Surgery, CHU Dijon, Dijon, France
| | - Jean Paul Pais de Barros
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,Lipidomic Analytic Platform, UBFC, Dijon, France
| | | | - Wilfried Le Goff
- Sorbonne Université, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Paris, France
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, IMMEDIAB, Université de Paris, Université Paris, Paris, France
| | - Laurent Lagrost
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Thomas Gautier
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Charles Thomas
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - David Masson
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.,Laboratory of Clinical Chemistry, CHU Dijon, Dijon, France
| |
Collapse
|
13
|
Guo R, Yang B. Hypoxia-Induced LXRα Contributes to the Migration and Invasion of Gastric Cancer Cells. Folia Biol (Praha) 2021; 67:91-101. [PMID: 35151242 DOI: 10.14712/fb2021067030091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Gastric cancer is characterized by the presence of high invasion ability, hypoxia and chemoresistance. Previous studies reported that liver X receptor α (LXRα) was involved in epithelial-mesenchymal transition (EMT) of gastric cancer cells. However, hypoxia-mediated EMT and the role of LXRα in gastric cancer remained elusive. In this study, we demonstrated that LXRa mRNA and protein levels were up-regulated by hypoxia treatment and LXRα played an important role in HIF-1 dimer induced-EMT. The putative HIF-1α binding site was identified in the LXRa promoter. Expression of LXRα and HIF-1α was significantly up-regulated in gastric cancer tissues compared to that in normal tissues. More importantly, we noticed that the expression of LXRα and HIF-1α was significantly correlated. Taken together, these data suggested that LXRα is regulated by the activity and accumulation of HIF-1α and contributes to EMT of gastric cancer cells. This suggests that targeting LXRα might be a potential approach for improving survival of gastric cancer patients.
Collapse
Affiliation(s)
- R Guo
- Department of General Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - B Yang
- Department of General Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
14
|
Packer M. Mutual Antagonism of Hypoxia-Inducible Factor Isoforms in Cardiac, Vascular, and Renal Disorders. ACTA ACUST UNITED AC 2020; 5:961-968. [PMID: 33015417 PMCID: PMC7524787 DOI: 10.1016/j.jacbts.2020.05.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia-inducible factor (HIF)-1α and HIF-2α promote cellular adaptation to acute hypoxia, but during prolonged activation, these isoforms exert mutually antagonistic effects on the redox state and on proinflammatory pathways. Sustained HIF-1α signaling can increase oxidative stress, inflammation, and fibrosis, actions that are opposed by HIF-2α. Imbalances in the interplay between HIF-1α and HIF-2α may contribute to the progression of chronic heart failure, atherosclerotic and hypertensive vascular disorders, and chronic kidney disease. These disorders are characterized by activation of HIF-1α and suppression of HIF-2α, which are potentially related to mitochondrial and peroxisomal dysfunction and suppression of the redox sensor, sirtuin-1. Hypoxia mimetics can potentiate HIF-1α and/or HIF-2α; ideally, such agents should act preferentially to promote HIF-2α while exerting little effect on or acting to suppress HIF-1α. Selective activation of HIF-2α can be achieved with drugs that: 1) inhibit isoform-selective prolyl hydroxylases (e.g., cobalt chloride and roxadustat); or 2) promote the actions of the redox sensor, sirtuin-1 (e.g., sodium-glucose cotransporter 2 inhibitors). Selective HIF-2α signaling through sirtuin-1 activation may explain the effect of sodium-glucose cotransporter 2 inhibitors to simultaneously promote erythrocytosis and ameliorate the development of cardiomyopathy and nephropathy.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas.,Imperial College, London, United Kingdom
| |
Collapse
|
15
|
Ménégaut L, Thomas C, Jalil A, Julla JB, Magnani C, Ceroi A, Basmaciyan L, Dumont A, Le Goff W, Mathew MJ, Rébé C, Dérangère V, Laubriet A, Crespy V, Pais de Barros JP, Steinmetz E, Venteclef N, Saas P, Lagrost L, Masson D. Interplay between Liver X Receptor and Hypoxia Inducible Factor 1α Potentiates Interleukin-1β Production in Human Macrophages. Cell Rep 2020; 31:107665. [DOI: 10.1016/j.celrep.2020.107665] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/09/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
|
16
|
Dianat-Moghadam H, Heidarifard M, Jahanban-Esfahlan R, Panahi Y, Hamishehkar H, Pouremamali F, Rahbarghazi R, Nouri M. Cancer stem cells-emanated therapy resistance: Implications for liposomal drug delivery systems. J Control Release 2018; 288:62-83. [DOI: 10.1016/j.jconrel.2018.08.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022]
|
17
|
Lee HJ, Jung YH, Choi GE, Ko SH, Lee SJ, Lee SH, Han HJ. BNIP3 induction by hypoxia stimulates FASN-dependent free fatty acid production enhancing therapeutic potential of umbilical cord blood-derived human mesenchymal stem cells. Redox Biol 2017; 13:426-443. [PMID: 28704726 PMCID: PMC5508529 DOI: 10.1016/j.redox.2017.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 02/08/2023] Open
Abstract
Mitophagy under hypoxia is an important factor for maintaining and regulating stem cell functions. We previously demonstrated that fatty acid synthase (FASN) induced by hypoxia is a critical lipid metabolic factor determining the therapeutic efficacy of umbilical cord blood-derived human mesenchymal stem cells (UCB-hMSCs). Therefore, we investigated the mechanism of a major mitophagy regulator controlling lipid metabolism and therapeutic potential of UCB-hMSCs. This study revealed that Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3)-dependent mitophagy is important for reducing mitochondrial reactive oxygen species accumulation, anti-apoptosis, and migration under hypoxia. And, BNIP3 expression was regulated by CREB binding protein-mediated transcriptional actions of HIF-1α and FOXO3. Silencing of BNIP3 suppressed free fatty acid (FFA) synthesis regulated by SREBP1/FASN pathway, which is involved in UCB-hMSC apoptosis via caspases cleavage and migration via cofilin-1-mediated F-actin reorganization in hypoxia. Moreover, reduced mouse skin wound-healing capacity of UCB-hMSC with hypoxia pretreatment by BNIP3 silencing was recovered by palmitic acid. Collectively, our findings suggest that BNIP3-mediated mitophagy under hypoxia leads to FASN-induced FFA synthesis, which is critical for therapeutic potential of UCB-hMSCs with hypoxia pretreatment. BNIP3 induction by hypoxia mainly controls mitophagy and mitochondrial ROS production in UCB-hMSCs. BNIP3 silencing impairs UCB-hMSC functions such as survival, migration and free fatty acid production under hypoxia. BNIP3 silencing suppresses SREBP1/FASN-mediated free fatty acid production via ROS regulation under hypoxia. BNIP3 silencing decreased skin wound healing potential of hypoxia-pretreated UCB-hMSCs. Palmitic acid addition recovers decreased therapeutic potential of UCB-hMSCs by BNIP3 silencing.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - So Hee Ko
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea; Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 330-930, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
18
|
Ménégaut L, Thomas C, Lagrost L, Masson D. Fatty acid metabolism in macrophages: a target in cardio-metabolic diseases. Curr Opin Lipidol 2017; 28:19-26. [PMID: 27870652 DOI: 10.1097/mol.0000000000000370] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Recent studies have highlighted that macrophages dynamically and autonomously handle all the facets of fatty acid (FA) metabolism including FA oxidation and FA synthesis as well as the synthesis of monounsaturated FAs and long chain n-3 and n-6 polyunsaturated FAs. RECENT FINDINGS Macrophage M2 polarization is associated with an increase of FA oxidation. However, whether increased FA oxidation simply correlates with or is required for M2 polarization needs to be further evaluated. Macrophage M1 polarization is associated with the activation of FA synthesis, which directly contributes to the inflammatory response and affects cholesterol homeostasis and neutral lipid accumulation. Finally, recent evidences suggest that macrophages are able to autonomously produce signaling monounsaturated FAs, such as palmitoleic acid (C16 : 1 n-7), and long chain n-3 and n-6 polyunsaturated FAs, such as arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. This pathway is regulated by liver X receptors and has significant consequences on inflammation and on the FA composition of atheroma plaques. SUMMARY These studies shed new light on the tight relationship between FA metabolism, macrophage polarization, and M1/M2 macrophage functions. These processes may have major consequences for atherosclerosis pathogenesis as well as other metabolic disorders.
Collapse
Affiliation(s)
- Louise Ménégaut
- aUniversity Bourgogne Franche-Comté, LNC UMR866 bINSERM, LNC UMR866 cFCS Bourgogne-Franche Comté dCHU Dijon, laboratoire de Biochimie, Dijon, France
| | | | | | | |
Collapse
|
19
|
Aarup A, Pedersen TX, Junker N, Christoffersen C, Bartels ED, Madsen M, Nielsen CH, Nielsen LB. Hypoxia-Inducible Factor-1α Expression in Macrophages Promotes Development of Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:1782-90. [PMID: 27444197 DOI: 10.1161/atvbaha.116.307830] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/04/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Atherosclerotic lesions contain hypoxic areas, but the pathophysiological importance of hypoxia is unknown. Hypoxia-inducible factor-1α (HIF-1α) is a key transcription factor in cellular responses to hypoxia. We investigated the hypothesis that HIF-1α has effects on macrophage biology that promotes atherogenesis in mice. APPROACH AND RESULTS Studies with molecular probes, immunostaining, and laser microdissection of aortas revealed abundant hypoxic, HIF-1α-expressing macrophages in murine atherosclerotic lesions. To investigate the significance of macrophage HIF-1α, Ldlr(-/-) mice were transplanted with bone marrow from mice with HIF-1α deficiency in the myeloid cells or control bone marrow. The HIF-1α deficiency in myeloid cells reduced atherosclerosis in aorta of the Ldlr(-/-) recipient mice by ≈72% (P=0.006).In vitro, HIF-1α-deficient macrophages displayed decreased differentiation to proinflammatory M1 macrophages and reduced expression of inflammatory genes. HIF-1α deficiency also affected glucose uptake, apoptosis, and migratory abilities of the macrophages. CONCLUSIONS HIF-1α expression in macrophages affects their intrinsic inflammatory profile and promotes development of atherosclerosis.
Collapse
Affiliation(s)
- Annemarie Aarup
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Tanja X Pedersen
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Nanna Junker
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Christina Christoffersen
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Emil D Bartels
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Marie Madsen
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Carsten H Nielsen
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Lars B Nielsen
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.).
| |
Collapse
|
20
|
Choi JY, Seo JY, Yoon YS, Lee YJ, Kim HS, Kang JL. Mer signaling increases the abundance of the transcription factor LXR to promote the resolution of acute sterile inflammation. Sci Signal 2015; 8:ra21. [PMID: 25714463 DOI: 10.1126/scisignal.2005864] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The receptor tyrosine kinase Mer plays a central role in inhibiting the inflammatory response of immune cells to pathogens. We aimed to understand the function of Mer signaling in the resolution of sterile inflammation in experiments with a Mer-neutralizing antibody or with Mer-deficient (Mer-/-) mice in a model of sterile, zymosan-induced acute inflammation. We found that inhibition or deficiency of Mer enhanced local and systemic inflammatory responses. The exacerbated inflammatory responses induced by the lack of Mer signaling were associated with reduced abundance of the transcription factors liver X receptor α (LXRα) and LXRβ and decreased expression of their target genes in peritoneal macrophages, spleens, and lungs. Similarly, treatment of mice with a Mer/Fc fusion protein, which prevents the Mer ligand Gas6 (growth arrest-specific protein 6) from binding to Mer, exacerbated the inflammatory response and decreased the abundance of LXR. Coadministration of the LXR agonist T0901317 with the Mer-neutralizing antibody inhibited the aggravating effects of the antibody on inflammation in mice. In vitro exposure of RAW264.7 cells or primary peritoneal macrophages to Gas6 increased LXR abundance in an Akt-dependent manner. Thus, we have elucidated a previously uncharacterized pathway involved in the resolution of acute sterile inflammation: Enhanced Mer signaling during the recovery phase increases the abundance and activity of LXR to inactivate the inflammatory response in macrophages.
Collapse
Affiliation(s)
- Ji-Yeon Choi
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea
| | - Jeong Yeon Seo
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea
| | - Young-So Yoon
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea
| | - Ye-Ji Lee
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea
| | - Jihee Lee Kang
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea.
| |
Collapse
|
21
|
Na TY, Han YH, Ka NL, Park HS, Kang YP, Kwon SW, Lee BH, Lee MO. 22-S-Hydroxycholesterol protects against ethanol-induced liver injury by blocking the auto/paracrine activation of MCP-1 mediated by LXRα. J Pathol 2015; 235:710-20. [PMID: 25557254 PMCID: PMC6084351 DOI: 10.1002/path.4494] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/05/2014] [Accepted: 11/29/2014] [Indexed: 02/01/2023]
Abstract
Chronic ethanol consumption causes hepatic steatosis and inflammation, which are associated with liver hypoxia. Monocyte chemoattractant protein‐1 (MCP‐1) is a hypoxia response factor that determines recruitment and activation of monocytes to the site of tissue injury. The level of MCP‐1 is elevated in the serum and liver of patients with alcoholic liver disease (ALD); however, the molecular details regarding the regulation of MCP‐1 expression are not yet understood completely. Here, we show the role of liver X receptor α (LXRα) in the regulation of MCP‐1 expression during the development of ethanol‐induced fatty liver injury, using an antagonist, 22‐S‐hydroxycholesterol (22‐S‐HC). First, administration of 22‐S‐HC attenuated the signs of liver injury with decreased levels of MCP‐1 and its receptor CCR2 in ethanol‐fed mice. Second, hypoxic conditions or treatment with the LXRα agonist GW3965 significantly induced the expression of MCP‐1, which was completely blocked by treatment with 22‐S‐HC or infection by shLXRα lentivirus in the primary hepatocytes. Third, over‐expression of LXRα or GW3965 treatment increased MCP‐1 promoter activity by increasing the binding of hypoxia‐inducible factor‐1α to the hypoxia response elements, together with LXRα. Finally, treatment with recombinant MCP‐1 increased the level of expression of LXRα and LXRα‐dependent lipid droplet accumulation in both hepatocytes and Kupffer cells. These data show that LXRα and its ligand‐induced up‐regulation of MCP‐1 and MCP‐1‐induced LXRα‐dependent lipogenesis play a key role in the autocrine and paracrine activation of MCP‐1 in the pathogenesis of alcoholic fatty liver disease, and that this activation may provide a promising new target for ALD therapy.Copyright © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tae-Young Na
- College of Pharmacy, Seoul National University, Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yoo W, Noh KH, Ahn JH, Yu JH, Seo JA, Kim SG, Choi KM, Baik SH, Choi DS, Kim TW, Kim HJ, Kim NH. HIF-1α expression as a protective strategy of HepG2 cells against fatty acid-induced toxicity. J Cell Biochem 2014; 115:1147-58. [PMID: 24402912 DOI: 10.1002/jcb.24757] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/20/2013] [Indexed: 01/04/2023]
Abstract
Free fatty acid-induced lipotoxicity via increased endoplasmic reticulum (ER) stress and hepatocyte apoptosis is a key pathological mechanism of non-alcoholic steatohepatitis. A role of hypoxia-inducible factor 1α (HIF-1α) in this process has been suggested, but direct evidence is lacking. Here, we used HepG2 cells as a model to study whether HIF-1α can reduce palmitic acid-induced lipotoxicity and ER stress. In HepG2 cells treated with 500 µM palmitic acid, HIF-1α expression increased transiently, the decline was associated with increased cleaved caspase-3 expression. Overexpression and knockdown of HIF-1α decreased and exacerbated, respectively, palmitic acid-induced lipoapoptosis. The overexpression also blunted upregulation of the ER stress markers, C/EBP homologous protein (CHOP) and chaperone immunoglobulin heavy chain binding protein (Bip), while the knockdown increased the level of CHOP. In line with this, CHOP promoter activity decreased following HIF-1α binding to the CHOP promoter hypoxia response element. These results indicate that hepatocyte lipotoxicity is associated with decreased HIF-1α expression. It also suggests that upregulation of HIF-1α can be a possible strategy to reduce lipotoxicity in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Wonbaek Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea; Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Hypoxia triggers various cellular processes, both in physiological and pathological conditions, and has recently also been implicated in atherosclerosis. This review summarizes the recent evidence for the presence and the role of hypoxia in atherosclerosis. Additionally, it will elucidate on hypoxic signaling, which is interlinked with inflammatory signaling, and discuss recent advances in imaging of hypoxia in atherosclerosis. RECENT FINDINGS Hypoxia is present in atherosclerotic plaques in humans and animal models, and systemic hypoxia promotes atherosclerosis. Hypoxia stimulates proatherosclerotic processes, like deficient lipid efflux, inflammation, interference with macrophage polarization and glucose metabolism. However, the molecular mechanism of hypoxia-mediated atherogenesis remains unclear. Noninvasive imaging directly targeting plaque hypoxia has been applied in animal models of atherosclerosis, but remains to be validated in humans. Meanwhile, the metabolic marker ¹⁸F-fluorodeoxyglucose, used to detect human atherosclerosis in vivo, may serve as an indirect marker of plaque hypoxia due to enhanced glucose uptake in anaerobic metabolism. SUMMARY Recent studies underscore the proatherogenic role of hypoxia in macrophage lipid and glucose metabolism, inflammation and polarization. These studies provide new insights into the pathogenesis of atherosclerosis and unravel novel therapeutic targets and new options for noninvasive imaging of human atherosclerotic plaques.
Collapse
Affiliation(s)
- Elke Marsch
- Department of Pathology, Cardiovascular Research Institute Maastricht-CARIM, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | |
Collapse
|
24
|
Korhonen JT, Olkkonen VM, Lahesmaa R, Puolakkainen M. ABC-cassette transporter 1 (ABCA1) expression in epithelial cells in Chlamydia pneumoniae infection. Microb Pathog 2013; 61-62:57-61. [PMID: 23707398 DOI: 10.1016/j.micpath.2013.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 11/15/2022]
Abstract
ATP-binding cassette transporter A1 (ABCA1) mediates reverse cholesterol transport and innate immunity response in different cell types. We have investigated the regulation of ABCA1 expression in response to intracellular Chlamydia pneumoniae infection in A549 epithelial lung carcinoma cells. C. pneumoniae infection decreased ABCA1 expression in A549 cells, and the activity of the ABCA1 promoter was decreased. The decreased promoter activity was dependent on its E-box and GnT-box elements of the promoter. Chlamydial growth was decreased in ABCA1-silenced epithelial lung carcinoma cells. These data indicate an important role for ABCA1 in intracellular bacterial infection.
Collapse
Affiliation(s)
- Juha T Korhonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | | | | | | |
Collapse
|
25
|
Crucet M, Wüst SJA, Spielmann P, Lüscher TF, Wenger RH, Matter CM. Hypoxia enhances lipid uptake in macrophages: role of the scavenger receptors Lox1, SRA, and CD36. Atherosclerosis 2013; 229:110-7. [PMID: 23706521 DOI: 10.1016/j.atherosclerosis.2013.04.034] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/11/2013] [Accepted: 04/26/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The core of advanced atherosclerotic plaques turns hypoxic as the arterial wall thickens and oxygen diffusion capacity becomes impaired. Macrophage-derived foam cells play a pivotal role in atherosclerotic plaque formation by expressing scavenger receptors that regulate lipid uptake. However, the role of hypoxia in scavenger receptor regulation remains incompletely understood. METHODS AND RESULTS Using RT-qPCR, flow cytometry and immunoblotting, we found that mRNA and protein expression levels of the scavenger receptor A (SRA) and the cluster of differentiation 36 (CD36) were upregulated by oxidized low-density lipoprotein (oxLDL), but decreased following exposure of macrophages to hypoxia. In contrast, lectin-like oxLDL receptor (Lox-1) mRNA and protein levels were upregulated under hypoxic conditions. Flow cytometry confirmed the increased lipid content in macrophages after exposure to 0.2% oxygen and the hypoxia-mimetic dimethyloxalylglycine (DMOG). Antibody-mediated blocking of Lox-1 receptor decreased the hypoxic induction of oxLDL uptake and lipid content. RNAi-mediated knock-down of hypoxia-inducible factor (HIF)-1α in macrophages attenuated the hypoxic induction of Lox-1. CONCLUSIONS Hypoxia increases lipid uptake into macrophages and differentially regulates the expression of oxLDL receptors. Lox-1 plays a major role in hypoxia-induced foam cell formation which is, at least in part, mediated by HIF-1α.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Atherosclerosis/metabolism
- Atherosclerosis/physiopathology
- Biological Transport/physiology
- CD36 Antigens/metabolism
- Carcinoma, Hepatocellular
- Cell Line, Tumor
- Cholesterol/metabolism
- Foam Cells/metabolism
- Gene Knockdown Techniques
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lipid Metabolism/physiology
- Lipoproteins, LDL/metabolism
- Liver Neoplasms
- Macrophages/cytology
- Macrophages/metabolism
- Mice
- RNA, Messenger/metabolism
- Scavenger Receptors, Class A/genetics
- Scavenger Receptors, Class A/metabolism
- Scavenger Receptors, Class E/genetics
- Scavenger Receptors, Class E/immunology
- Scavenger Receptors, Class E/metabolism
Collapse
Affiliation(s)
- Margot Crucet
- Cellular Oxygen Physiology, Institute of Physiology, University of Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Lim CS, Kiriakidis S, Sandison A, Paleolog EM, Davies AH. Hypoxia-inducible factor pathway and diseases of the vascular wall. J Vasc Surg 2013; 58:219-30. [PMID: 23643279 DOI: 10.1016/j.jvs.2013.02.240] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/11/2013] [Accepted: 02/16/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hypoxia may contribute to the pathogenesis of various diseases of the vascular wall. Hypoxia-inducible factors (HIFs) are nuclear transcriptional factors that regulate the transcription of genes that mediate cellular and tissue homeostatic responses to altered oxygenation. This article reviews the published literature on and discusses the role of the HIF pathway in diseases involving the vascular wall, including atherosclerosis, arterial aneurysms, pulmonary hypertension, vascular graft failure, chronic venous diseases, and vascular malformation. METHODS PubMed was searched with the terms "hypoxia-inducible factor" or "HIF" and "atherosclerosis," "carotid stenosis," "aneurysm," "pulmonary artery hypertension," "varicose veins," "venous thrombosis," "graft thrombosis," and "vascular malformation." RESULTS In atherosclerotic plaque, HIF-1α was localized in macrophages and smooth muscle cells bordering the necrotic core. Increased HIF-1α may contribute to atherosclerosis through alteration of smooth muscle cell proliferation and migration, angiogenesis, and lipid metabolism. The expression of HIF-1α is significantly elevated in aortic aneurysms compared with nonaneurysmal arteries. In pulmonary hypertension, HIF-1α contributes to the increase of intracellular K(+) and Ca(2+) leading to vasoconstriction of pulmonary smooth muscle cells. Alteration of the HIF pathway may contribute to vascular graft failure through the formation of intimal hyperplasia. In chronic venous disease, HIF pathway dysregulation contributes to formation of varicose veins and venous thromboembolism. However, whether the activation of the HIF pathway is protective or destructive to the venous wall is unclear. Increased activation of the HIF pathway causes aberrant expression of angiogenic factors contributing to the formation and maintenance of vascular malformations. CONCLUSIONS Pathologic vascular wall remodelling of many common diseases of the blood vessels has been found to be associated with altered activity of the HIF pathway. Therefore, understanding the role of the HIF pathway in diseases of the vascular wall is important to identify novel therapeutic strategies in the management of these pathologies.
Collapse
Affiliation(s)
- Chung S Lim
- Academic Section of Vascular Surgery, Department of Surgery and Cancer, Faculty of Medicine, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Hypoxia in murine atherosclerotic plaques and its adverse effects on macrophages. Trends Cardiovasc Med 2013; 23:80-4. [PMID: 23375596 DOI: 10.1016/j.tcm.2012.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 11/23/2022]
Abstract
Hypoxia has been found in the atherosclerotic plaques of larger mammals, including humans. Whether hypoxia occurs in the plaques of standard mouse models with atherosclerosis has been controversial, given their small size. In this review, we summarize the findings of a recent report demonstrating that direct evidence of hypoxia can indeed be found in the plaques of mice deficient in apolipoprotein E (apoE-/-mice). Furthermore, studies in vitro showed that hypoxia promoted lipid synthesis and reduced cholesterol efflux through the ABCA1 pathway, and that the transcription factor HIF-1α mediated many, but not all, of the effects. These results are discussed in the context of the literature and clinical practice.
Collapse
|
28
|
Li L, Liu B, Håversen L, Lu E, Magnusson LU, Ståhlman M, Borén J, Bergström G, Levin MC, Hultén LM. The importance of GLUT3 for de novo lipogenesis in hypoxia-induced lipid loading of human macrophages. PLoS One 2012; 7:e42360. [PMID: 22876317 PMCID: PMC3410913 DOI: 10.1371/journal.pone.0042360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/04/2012] [Indexed: 12/15/2022] Open
Abstract
Atherosclerotic lesions are characterized by lipid-loaded macrophages (foam cells) and hypoxic regions. Although it is well established that foam cells are produced by uptake of cholesterol from oxidized LDL, we previously showed that hypoxia also promotes foam cell formation even in the absence of exogenous lipids. The hypoxia-induced lipid accumulation results from increased triglyceride biosynthesis but the exact mechanism is unknown. Our aim was to investigate the importance of glucose in promoting hypoxia-induced de novo lipid synthesis in human macrophages. In the absence of exogenous lipids, extracellular glucose promoted the accumulation of Oil Red O-stained lipid droplets in human monocyte-derived macrophages in a concentration-dependent manner. Lipid droplet accumulation was higher in macrophages exposed to hypoxia at all assessed concentrations of glucose. Importantly, triglyceride synthesis from glucose was increased in hypoxic macrophages. GLUT3 was highly expressed in macrophage-rich and hypoxic regions of human carotid atherosclerotic plaques and in macrophages isolated from these plaques. In human monocyte-derived macrophages, hypoxia increased expression of both GLUT3 mRNA and protein, and knockdown of GLUT3 with siRNA significantly reduced both glucose uptake and lipid droplet accumulation. In conclusion, we have shown that hypoxia-induced increases in glucose uptake through GLUT3 are important for lipid synthesis in macrophages, and may contribute to foam cell formation in hypoxic regions of atherosclerotic lesions.
Collapse
Affiliation(s)
- Lu Li
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Liu
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Liliana Håversen
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emma Lu
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lisa U. Magnusson
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Göran Bergström
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin C. Levin
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|