1
|
Nie Y, Song C, Huang H, Mao S, Ding K, Tang H. Chromatin modifiers in human disease: from functional roles to regulatory mechanisms. MOLECULAR BIOMEDICINE 2024; 5:12. [PMID: 38584203 PMCID: PMC10999406 DOI: 10.1186/s43556-024-00175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/21/2024] [Indexed: 04/09/2024] Open
Abstract
The field of transcriptional regulation has revealed the vital role of chromatin modifiers in human diseases from the beginning of functional exploration to the process of participating in many types of disease regulatory mechanisms. Chromatin modifiers are a class of enzymes that can catalyze the chemical conversion of pyrimidine residues or amino acid residues, including histone modifiers, DNA methyltransferases, and chromatin remodeling complexes. Chromatin modifiers assist in the formation of transcriptional regulatory circuits between transcription factors, enhancers, and promoters by regulating chromatin accessibility and the ability of transcription factors to acquire DNA. This is achieved by recruiting associated proteins and RNA polymerases. They modify the physical contact between cis-regulatory factor elements, transcription factors, and chromatin DNA to influence transcriptional regulatory processes. Then, abnormal chromatin perturbations can impair the homeostasis of organs, tissues, and cells, leading to diseases. The review offers a comprehensive elucidation on the function and regulatory mechanism of chromatin modifiers, thereby highlighting their indispensability in the development of diseases. Furthermore, this underscores the potential of chromatin modifiers as biomarkers, which may enable early disease diagnosis. With the aid of this paper, a deeper understanding of the role of chromatin modifiers in the pathogenesis of diseases can be gained, which could help in devising effective diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Yali Nie
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Chao Song
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Huang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuqing Mao
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Kai Ding
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Huifang Tang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Zhang JM, Au DT, Sawada H, Franklin MK, Moorleghen JJ, Howatt DA, Wang P, Aicher BO, Hampton B, Migliorini M, Ni F, Mullick AE, Wani MM, Ucuzian AA, Lu HS, Muratoglu SC, Daugherty A, Strickland DK. LRP1 protects against excessive superior mesenteric artery remodeling by modulating angiotensin II-mediated signaling. JCI Insight 2023; 8:e164751. [PMID: 36472907 PMCID: PMC9977308 DOI: 10.1172/jci.insight.164751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular smooth muscle cells (vSMCs) exert a critical role in sensing and maintaining vascular integrity. These cells abundantly express the low-density lipoprotein receptor-related protein 1 (LRP1), a large endocytic signaling receptor that recognizes numerous ligands, including apolipoprotein E-rich lipoproteins, proteases, and protease-inhibitor complexes. We observed the spontaneous formation of aneurysms in the superior mesenteric artery (SMA) of both male and female mice in which LRP1 was genetically deleted in vSMCs (smLRP1-/- mice). Quantitative proteomics revealed elevated abundance of several proteins in smLRP1-/- mice that are known to be induced by angiotensin II-mediated (AngII-mediated) signaling, suggesting that this pathway was dysregulated. Administration of losartan, an AngII type I receptor antagonist, or an angiotensinogen antisense oligonucleotide to reduce plasma angiotensinogen concentrations restored the normal SMA phenotype in smLRP1-/- mice and prevented aneurysm formation. Additionally, using a vascular injury model, we noted excessive vascular remodeling and neointima formation in smLRP1-/- mice that was restored by losartan administration. Together, these findings reveal that LRP1 regulates vascular integrity and remodeling of the SMA by attenuating excessive AngII-mediated signaling.
Collapse
Affiliation(s)
- Jackie M Zhang
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dianaly T Au
- Center for Vascular and Inflammatory Diseases and
| | - Hisashi Sawada
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | - Pengjun Wang
- Saha Cardiovascular Research Center and Saha Aortic Center and
| | - Brittany O Aicher
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Fenge Ni
- Center for Vascular and Inflammatory Diseases and
| | | | | | - Areck A Ucuzian
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Vascular Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Hong S Lu
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Alan Daugherty
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Dong CX, Malecki C, Robertson E, Hambly B, Jeremy R. Molecular Mechanisms in Genetic Aortopathy-Signaling Pathways and Potential Interventions. Int J Mol Sci 2023; 24:ijms24021795. [PMID: 36675309 PMCID: PMC9865322 DOI: 10.3390/ijms24021795] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Thoracic aortic disease affects people of all ages and the majority of those aged <60 years have an underlying genetic cause. There is presently no effective medical therapy for thoracic aneurysm and surgery remains the principal intervention. Unlike abdominal aortic aneurysm, for which the inflammatory/atherosclerotic pathogenesis is well established, the mechanism of thoracic aneurysm is less understood. This paper examines the key cell signaling systems responsible for the growth and development of the aorta, homeostasis of endothelial and vascular smooth muscle cells and interactions between pathways. The evidence supporting a role for individual signaling pathways in pathogenesis of thoracic aortic aneurysm is examined and potential novel therapeutic approaches are reviewed. Several key signaling pathways, notably TGF-β, WNT, NOTCH, PI3K/AKT and ANGII contribute to growth, proliferation, cell phenotype and survival for both vascular smooth muscle and endothelial cells. There is crosstalk between pathways, and between vascular smooth muscle and endothelial cells, with both synergistic and antagonistic interactions. A common feature of the activation of each is response to injury or abnormal cell stress. Considerable experimental evidence supports a contribution of each of these pathways to aneurysm formation. Although human information is less, there is sufficient data to implicate each pathway in the pathogenesis of human thoracic aneurysm. As some pathways i.e., WNT and NOTCH, play key roles in tissue growth and organogenesis in early life, it is possible that dysregulation of these pathways results in an abnormal aortic architecture even in infancy, thereby setting the stage for aneurysm development in later life. Given the fine tuning of these signaling systems, functional polymorphisms in key signaling elements may set up a future risk of thoracic aneurysm. Multiple novel therapeutic agents have been developed, targeting cell signaling pathways, predominantly in cancer medicine. Future investigations addressing cell specific targeting, reduced toxicity and also less intense treatment effects may hold promise for effective new medical treatments of thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Charlotte Xue Dong
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Cassandra Malecki
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
| | - Elizabeth Robertson
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Brett Hambly
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Richmond Jeremy
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
- Correspondence:
| |
Collapse
|
4
|
Jiang LP, Yu XH, Chen JZ, Hu M, Zhang YK, Lin HL, Tang WY, He PP, Ouyang XP. Histone Deacetylase 3: A Potential Therapeutic Target for Atherosclerosis. Aging Dis 2022; 13:773-786. [PMID: 35656103 PMCID: PMC9116907 DOI: 10.14336/ad.2021.1116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease, is characterized by plaque formation in the intima. Secondary lesions include intraplaque hemorrhage, plaque rupture, and local thrombosis. Vascular endothelial function impairment and smooth muscle cell migration lead to vascular dysfunction, which is conducive to the formation of macrophage-derived foam cells and aggravates inflammatory response and lipid accumulation that cause atherosclerosis. Histone deacetylase (HDAC) is an epigenetic modifying enzyme closely related to chromatin structure and gene transcriptional regulation. Emerging studies have demonstrated that the Class I member HDAC3 of the HDAC super family has cell-specific functions in atherosclerosis, including 1) maintenance of endothelial integrity and functions, 2) regulation of vascular smooth muscle cell proliferation and migration, 3) modulation of macrophage phenotype, and 4) influence on foam cell formation. Although several studies have shown that HDAC3 may be a promising therapeutic target, only a few HDAC3-selective inhibitors have been thoroughly researched and reported. Here, we specifically summarize the impact of HDAC3 and its inhibitors on vascular function, inflammation, lipid accumulation, and plaque stability in the development of atherosclerosis with the hopes of opening up new opportunities for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Li-Ping Jiang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, the Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Jin-Zhi Chen
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Mi Hu
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Yang-Kai Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Hui-Ling Lin
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Wan-Ying Tang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Ping-Ping He
- School of Nursing, University of South China, Hunan, China
- Correspondence should be addressed to: Dr. Ping-Ping He, School of Nursing, University of South China, Hunan, China. and Dr. Xin-Ping Ouyang, Department of Physiology, University of South China, Hunan, China. .
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
- Correspondence should be addressed to: Dr. Ping-Ping He, School of Nursing, University of South China, Hunan, China. and Dr. Xin-Ping Ouyang, Department of Physiology, University of South China, Hunan, China. .
| |
Collapse
|
5
|
Muniappan L, Okuyama M, Javidan A, Thiagarajan D, Jiang W, Moorleghen JJ, Yang L, Balakrishnan A, Howatt DA, Uchida HA, Saido TC, Subramanian V. Inducible Depletion of Calpain-2 Mitigates Abdominal Aortic Aneurysm in Mice. Arterioscler Thromb Vasc Biol 2021; 41:1694-1709. [PMID: 33761765 PMCID: PMC8062307 DOI: 10.1161/atvbaha.120.315546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Angiotensin II
- Animals
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Rupture/chemically induced
- Aortic Rupture/enzymology
- Aortic Rupture/genetics
- Aortic Rupture/prevention & control
- Calpain/deficiency
- Calpain/genetics
- Calpain/metabolism
- Cells, Cultured
- Cytoskeleton/enzymology
- Cytoskeleton/pathology
- Dilatation, Pathologic
- Disease Models, Animal
- Extracellular Matrix/enzymology
- Extracellular Matrix/pathology
- Female
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Rats
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Latha Muniappan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Michihiro Okuyama
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Aida Javidan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Devi Thiagarajan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Weihua Jiang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | | | - Lihua Yang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Anju Balakrishnan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Haruhito A. Uchida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceuticals Sciences, Okayama, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
6
|
Que Y, Shu X, Wang L, Wang S, Li S, Hu P, Tong X. Inactivation of SERCA2 Cys 674 accelerates aortic aneurysms by suppressing PPARγ. Br J Pharmacol 2021; 178:2305-2323. [PMID: 33591571 DOI: 10.1111/bph.15411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/24/2020] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Inactivation of Cys674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) causes intracellular Ca2+ accumulation, which activates calcineurin-mediated nuclear factor of activated T-lymphocytes (NFAT)/NF-κB pathways, and results in the phenotypic modulation of smooth muscle cells (SMCs) to accelerate angiotensin II-induced aortic aneurysms. Our goal was to investigate the mechanism involved. EXPERIMENTAL APPROACH We used heterozygous SERCA2 C674S knock-in (SKI) mice, where half of C674 was substituted by serine, to mimic partial irreversible oxidation of C674. The aortas of SKI mice and their littermate wild-type mice were collected for RNA sequencing, cell culture, protein expression, luciferase activity and aortic aneurysm analysis. KEY RESULTS Inactivation of C674 inhibited the promoter activity and protein expression of PPARγ, which could be reversed by inhibitors of calcineurin or NF-κB. In SKI SMCs, inhibition of NF-κB by pyrrolidinedithiocarbamic acid (PDTC) or overexpression of PPARγ2 reversed the protein expression of SMC phenotypic modulation markers and inhibited cell proliferation, migration, and macrophage adhesion to SMCs. Pioglitazone, a PPARγ agonist, blocked the activation of NFAT/NF-κB, reversed the protein expression of SMC phenotypic modulation markers, and inhibited cell proliferation, migration, and macrophage adhesion to SMCs in SKI SMCs. Furthermore, pioglitazone also ameliorated angiotensin II-induced aortic aneurysms in SKI mice. CONCLUSIONS AND IMPLICATIONS The inactivation of SERCA2 C674 promotes the development of aortic aneurysms by disrupting the balance between PPARγ and NFAT/NF-κB. Our study highlights the importance of C674 redox status in regulating PPARγ to maintain aortic homeostasis.
Collapse
Affiliation(s)
- Yumei Que
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xi Shu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Langtao Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Sai Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Siqi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
7
|
van Dorst DCH, de Wagenaar NP, van der Pluijm I, Roos-Hesselink JW, Essers J, Danser AHJ. Transforming Growth Factor-β and the Renin-Angiotensin System in Syndromic Thoracic Aortic Aneurysms: Implications for Treatment. Cardiovasc Drugs Ther 2020; 35:1233-1252. [PMID: 33283255 PMCID: PMC8578102 DOI: 10.1007/s10557-020-07116-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Thoracic aortic aneurysms (TAAs) are permanent pathological dilatations of the thoracic aorta, which can lead to life-threatening complications, such as aortic dissection and rupture. TAAs frequently occur in a syndromic form in individuals with an underlying genetic predisposition, such as Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). Increasing evidence supports an important role for transforming growth factor-β (TGF-β) and the renin-angiotensin system (RAS) in TAA pathology. Eventually, most patients with syndromic TAAs require surgical intervention, as the ability of present medical treatment to attenuate aneurysm growth is limited. Therefore, more effective medical treatment options are urgently needed. Numerous clinical trials investigated the therapeutic potential of angiotensin receptor blockers (ARBs) and β-blockers in patients suffering from syndromic TAAs. This review highlights the contribution of TGF-β signaling, RAS, and impaired mechanosensing abilities of aortic VSMCs in TAA formation. Furthermore, it critically discusses the most recent clinical evidence regarding the possible therapeutic benefit of ARBs and β-blockers in syndromic TAA patients and provides future research perspectives and therapeutic implications.
Collapse
Affiliation(s)
- Daan C H van Dorst
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nathalie P de Wagenaar
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.,Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jolien W Roos-Hesselink
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands. .,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
He X, Deng J, Yu XJ, Yang S, Yang Y, Zang WJ. Activation of M3AChR (Type 3 Muscarinic Acetylcholine Receptor) and Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2) Signaling by Choline Alleviates Vascular Smooth Muscle Cell Phenotypic Switching and Vascular Remodeling. Arterioscler Thromb Vasc Biol 2020; 40:2649-2664. [PMID: 32938216 DOI: 10.1161/atvbaha.120.315146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a critical role in atherosclerosis, vascular restenosis, and hypertension. Choline exerts cardioprotective effects; however, little is known about its effects on VSMC phenotypic switching and vascular remodeling. Here, we investigated whether choline modulates VSMC phenotypic changes and explored the underlying mechanisms. Approach and Results: In cultured VSMCs, choline promoted Nrf2 (nuclear factor erythroid 2-related factor 2) nuclear translocation, inducing the expression of HO-1 (heme oxygenase-1) and NQO-1 (NAD[P]H quinone oxidoreductase-1). Consequently, choline ameliorated Ang II (angiotensin II)-induced increases in NOX (NAD[P]H oxidase) expression and the mitochondrial reactive oxygen species level, thereby attenuating Ang II-induced VSMC phenotypic switching, proliferation, and migration, presumably via M3AChRs (type 3 muscarinic acetylcholine receptors). Downregulation of M3AChR or Nrf2 diminished choline-mediated upregulation of Nrf2, HO-1, and NQO-1 expression, as well as inhibition of VSMC phenotypic transformation, suggesting that M3AChR and Nrf2 activation are responsible for the protective effects of choline. Moreover, activation of the Nrf2 pathway by sulforaphane suppressed Ang II-induced VSMC phenotypic switching and proliferation, indicating that Nrf2 is a key regulator of VSMC phenotypic switching and vascular homeostasis. In a rat model of abdominal aortic constriction in vivo, choline attenuated VSMC phenotypic transformation and vascular remodeling in a manner related to activation of the Nrf2 pathway. CONCLUSIONS These results reveal that choline impedes VSMC phenotypic switching, proliferation, migration, and vascular remodeling by activating M3AChR and Nrf2-antioxidant signaling and suggest a novel role for Nrf2 in VSMC phenotypic modulation.
Collapse
Affiliation(s)
- Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Juan Deng
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Xiao-Jiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Si Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Yang Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| |
Collapse
|
9
|
Reustle A, Torzewski M. Role of p38 MAPK in Atherosclerosis and Aortic Valve Sclerosis. Int J Mol Sci 2018; 19:ijms19123761. [PMID: 30486366 PMCID: PMC6321637 DOI: 10.3390/ijms19123761] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis and aortic valve sclerosis are cardiovascular diseases with an increasing prevalence in western societies. Statins are widely applied in atherosclerosis therapy, whereas no pharmacological interventions are available for the treatment of aortic valve sclerosis. Therefore, valve replacement surgery to prevent acute heart failure is the only option for patients with severe aortic stenosis. Both atherosclerosis and aortic valve sclerosis are not simply the consequence of degenerative processes, but rather diseases driven by inflammatory processes in response to lipid-deposition in the blood vessel wall and the aortic valve, respectively. The p38 mitogen-activated protein kinase (MAPK) is involved in inflammatory signaling and activated in response to various intracellular and extracellular stimuli, including oxidative stress, cytokines, and growth factors, all of which are abundantly present in atherosclerotic and aortic valve sclerotic lesions. The responses generated by p38 MAPK signaling in different cell types present in the lesions are diverse and might support the progression of the diseases. This review summarizes experimental findings relating to p38 MAPK in atherosclerosis and aortic valve sclerosis and discusses potential functions of p38 MAPK in the diseases with the aim of clarifying its eligibility as a pharmacological target.
Collapse
Affiliation(s)
- Anna Reustle
- Dr. Margarete-Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany.
- University of Tuebingen, 72074 Tuebingen, Germany.
| | - Michael Torzewski
- Department of Laboratory Medicine and Hospital Hygiene, Robert Bosch-Hospital, 70376 Stuttgart, Germany.
| |
Collapse
|
10
|
Zeng JY, Lei J, Wei YF, Zheng ZQ, Zhang W, Fu YN, Wen T, Yi DS, Ding L. Molecular mechanisms in microRNA-mediated TRB3 gene and hypertension left ventricular hypertrophy. Exp Ther Med 2017; 13:1907-1911. [PMID: 28565784 PMCID: PMC5443244 DOI: 10.3892/etm.2017.4220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/02/2017] [Indexed: 01/06/2023] Open
Abstract
The present study investigated the relationship between microRNA-mediated TRB3 gene and hypertension left ventricular hypertrophy at the molecular level. Polymorphic site in TRB3 gene was identified by direct PCR method, and the correlation between the SNP site and ventricular hypertrophy was determined. MicroRNAs target gene sequence interacting on the TRB3 polymorphic site was screened by bioinformatics, and the effect of microRNAs on the TRB3 polymorphic site was finally verified by luciferase test. Two polymorphic sites rs6186912 and rs6186923 were found in the TRB3 gene, and the direct relationship between rs6186923 polymorphic site and the hypertension left ventricular hypertrophy in patients with myocardial hypertrophy was compared and analyzed. Pictar software was used to analyze the effect of miR-100 on rs6186923, and the argumentation was verified by luciferase test. In conclusion, the study showed that the TRB3 gene polymorphism rs6186923 was able to affect the TRB3 gene by affecting the binding of miR-100, which indirectly caused the formation of hypertension left ventricular hypertrophy.
Collapse
Affiliation(s)
- Jun-Yi Zeng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Jiangxi Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Juan Lei
- Jiangxi Modern Polytechnic College, Nanchang, Jiangxi 330095, P.R. China
| | - Yun-Feng Wei
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Jiangxi Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ze-Qi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Jiangxi Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wan Zhang
- Jiangxi Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yong-Nan Fu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Da-Song Yi
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lu Ding
- Jiangxi Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
11
|
Calvier L, Chouvarine P, Legchenko E, Hoffmann N, Geldner J, Borchert P, Jonigk D, Mozes MM, Hansmann G. PPARγ Links BMP2 and TGFβ1 Pathways in Vascular Smooth Muscle Cells, Regulating Cell Proliferation and Glucose Metabolism. Cell Metab 2017; 25:1118-1134.e7. [PMID: 28467929 DOI: 10.1016/j.cmet.2017.03.011] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/21/2016] [Accepted: 03/20/2017] [Indexed: 01/24/2023]
Abstract
BMP2 and TGFβ1 are functional antagonists of pathological remodeling in the arteries, heart, and lung; however, the mechanisms in VSMCs, and their disturbance in pulmonary arterial hypertension (PAH), are unclear. We found a pro-proliferative TGFβ1-Stat3-FoxO1 axis in VSMCs, and PPARγ as inhibitory regulator of TGFβ1-Stat3-FoxO1 and TGFβ1-Smad3/4, by physically interacting with Stat3 and Smad3. TGFβ1 induces fibrosis-related genes and miR-130a/301b, suppressing PPARγ. Conversely, PPARγ inhibits TGFβ1-induced mitochondrial activation and VSMC proliferation, and regulates two glucose metabolism-related enzymes, platelet isoform of phosphofructokinase (PFKP, a PPARγ target, via miR-331-5p) and protein phosphatase 1 regulatory subunit 3G (PPP1R3G, a Smad3 target). PPARγ knockdown/deletion in VSMCs activates TGFβ1 signaling. The PPARγ agonist pioglitazone reverses PAH and inhibits the TGFβ1-Stat3-FoxO1 axis in TGFβ1-overexpressing mice. We identified PPARγ as a missing link between BMP2 and TGFβ1 pathways in VSMCs. PPARγ activation can be beneficial in TGFβ1-associated diseases, such as PAH, parenchymal lung diseases, and Marfan's syndrome.
Collapse
Affiliation(s)
- Laurent Calvier
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Nadine Hoffmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Jonas Geldner
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Paul Borchert
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover 30625, Germany
| | - Miklos M Mozes
- Department of Pathophysiology, Semmelweis University, Budapest 1089, Hungary
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
12
|
Lozhkin A, Vendrov AE, Pan H, Wickline SA, Madamanchi NR, Runge MS. NADPH oxidase 4 regulates vascular inflammation in aging and atherosclerosis. J Mol Cell Cardiol 2017; 102:10-21. [PMID: 27986445 PMCID: PMC5625334 DOI: 10.1016/j.yjmcc.2016.12.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 01/10/2023]
Abstract
We recently reported that increased NADPH oxidase 4 (NOX4) expression and activity during aging results in enhanced cellular and mitochondrial oxidative stress, vascular inflammation, dysfunction, and atherosclerosis. The goal of the present study was to elucidate the molecular mechanism(s) for these effects and determine the importance of NOX4 modulation of proinflammatory gene expression in mouse vascular smooth muscle cells (VSMCs). A novel peptide-mediated siRNA transfection approach was used to inhibit Nox4 expression with minimal cellular toxicity. Using melittin-derived peptide p5RHH, we achieved significantly higher transfection efficiency (92% vs. 85% with Lipofectamine) and decreased toxicity (p<0.001 vs. Lipofectamine in MTT and p<0.0001 vs. Lipofectamine in LDH assays) in VSMCs. TGFβ1 significantly upregulates Nox4 mRNA (p<0.01) and protein (p<0.01) expression in VSMCs. p5RHH-mediated Nox4 siRNA transfection greatly attenuated TGFβ1-induced upregulation of Nox4 mRNA (p<0.01) and protein (p<0.0001) levels and decreased hydrogen peroxide production (p<0.0001). Expression of pro-inflammatory genes Ccl2, Ccl5, Il6, and Vcam1 was significantly upregulated in VSMCs in several settings cells isolated from aged vs. young wild-type mice, in atherosclerotic arteries of Apoe-/- mice, and atherosclerotic human carotid arteries and correlated with NOX4 expression. p5RHH-mediated Nox4 siRNA transfection significantly attenuated the expression of these pro-inflammatory genes in TGFβ1-treated mouse VSMCs, with the highest degree of inhibition in the expression of Il6. p5RHH peptide-mediated knockdown of TGFβ-activated kinase 1 (TAK1, also known as Map3k7), Jun, and Rela, but not Nfkb2, downregulated TGFβ1-induced Nox4 expression in VSMCs. Together, these data demonstrate that increased expression and activation of NOX4, which might result from increased TGFβ1 levels seen during aging, induces a proinflammatory phenotype in VSMCs, enhancing atherosclerosis.
Collapse
Affiliation(s)
- Andrey Lozhkin
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA
| | - Aleksandr E Vendrov
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA
| | - Hua Pan
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis 63110, MO, USA
| | - Samuel A Wickline
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis 63110, MO, USA
| | - Nageswara R Madamanchi
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA
| | - Marschall S Runge
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA.
| |
Collapse
|
13
|
Chen X, Rateri DL, Howatt DA, Balakrishnan A, Moorleghen JJ, Cassis LA, Daugherty A. TGF-β Neutralization Enhances AngII-Induced Aortic Rupture and Aneurysm in Both Thoracic and Abdominal Regions. PLoS One 2016; 11:e0153811. [PMID: 27104863 PMCID: PMC4841552 DOI: 10.1371/journal.pone.0153811] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/04/2016] [Indexed: 01/05/2023] Open
Abstract
AngII and TGF-β interact in development of thoracic and abdominal aortic diseases, although there are many facets of this interaction that have not been clearly defined. The aim of the present study was to determine the effects of TGF-β neutralization on AngII induced-aortic pathologies. Male C57BL/6J mice were administered with either a rabbit or mouse TGF-β neutralizing antibody and then infused with AngII. The rabbit TGF-β antibody modestly reduced serum TGF-β concentrations, with no significant enhancements to AngII-induced aneurysm or rupture. Administration of this rabbit TGF-β antibody in mice led to high serum titers against rabbit IgG that may have attenuated the neutralization. In contrast, a mouse TGF-β antibody (1D11) significantly increased rupture in both the ascending and suprarenal aortic regions, but only at doses that markedly decreased serum TGF-β concentrations. High doses of 1D11 antibody significantly increased AngII-induced ascending and suprarenal aortic dilatation. To determine whether TGF-β neutralization had effects in mice previously infused with AngII, the 1D11 antibody was injected into mice that had been infused with AngII for 28 days and were observed during continued infusion for a further 28 days. Despite near ablations of serum TGF-β concentrations, the mouse TGF-β antibody had no effect on aortic rupture or dimensions in either ascending or suprarenal region. These data provide further evidence that AngII-induced aortic rupture is enhanced greatly by TGF-β neutralization when initiated before pathogenesis.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Laboratory of Cardiovascular Disease, Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Debra L. Rateri
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Anju Balakrishnan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jessica J. Moorleghen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Lisa A. Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
14
|
Chan SH, Chu PM, Kao CL, Cheng YH, Hung CH, Tsai KL. Oleic acid activates MMPs up-regulation through SIRT1/PPAR-γ inhibition: a probable linkage between obesity and coronary arterial disease. J Biochem 2016; 160:217-225. [PMID: 27072559 DOI: 10.1093/jb/mvw028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 03/09/2016] [Indexed: 12/28/2022] Open
Abstract
Obesity is positively related to the growing prevalence of coronary arterial disease (CAD). It is well established in terms of the plasma concentrations of free fatty acid (FFA) that are up-regulated in cases associating with obesity. Oleic acid (OA) is known as the most abundant monounsaturated fatty acid in the human circulatory system. Several pro-atherosclerotic responses of OA have been established. Sirtuin 1 (SIRT1) acts as a key role in regulating the normal physical function in smooth muscle cells (SMCs). SIRT1 activation is developed as a novel approach to delay the progression of atherosclerotic injuries. However, the mechanism is still unclear as to whether OA affects SIRT1 expression and its activity in SMCs. We confirmed that OA treatment represses SIRT1 and peroxisome proliferator-activated receptors-γ levels in SMCs. Moreover, OA enhances by transforming the growth factor-β1 (TGF-β1) release via activation of NF-κB. OA causes NO production by inducing the inducible nitric oxide synthase overexpression, thereby promoting the secretions of matrix metalloproteinases-1 (MMP-1) and MMP-3. Overall, we suggested that OA enhances MMPs activation through SIRT1 down-regulation. Therefore, our findings might provide a novel route for developing new therapeutic treatments for FFAs-related CADs.
Collapse
Affiliation(s)
- Shih-Hung Chan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chung-Lan Kao
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Hsin Cheng
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Ching-Hsia Hung
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Yamamoto S, Zhong J, Yancey PG, Zuo Y, Linton MF, Fazio S, Yang H, Narita I, Kon V. Atherosclerosis following renal injury is ameliorated by pioglitazone and losartan via macrophage phenotype. Atherosclerosis 2015; 242:56-64. [PMID: 26184694 DOI: 10.1016/j.atherosclerosis.2015.06.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 05/18/2015] [Accepted: 06/28/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Chronic kidney disease (CKD) amplifies atherosclerosis, which involves renin-angiotensin system (RAS) regulation of macrophages. RAS influences peroxisome proliferator-activated receptor-γ (PPARγ), a modulator of atherogenic functions of macrophages, however, little is known about its effects in CKD. We examined the impact of combined therapy with a PPARγ agonist and angiotensin receptor blocker on atherogenesis in a murine uninephrectomy model. METHODS Apolipoprotein E knockout mice underwent uninephrectomy (UNx) and treatment with pioglitazone (UNx + Pio), losartan (UNx + Los), or both (UNx + Pio/Los) for 10 weeks. Extent and characteristics of atherosclerotic lesions and macrophage phenotypes were assessed; RAW264.7 and primary peritoneal mouse cells were used to examine pioglitazone and losartan effects on macrophage phenotype and inflammatory response. RESULTS UNx significantly increased atherosclerosis. Pioglitazone and losartan each significantly reduced the atherosclerotic burden by 29.6% and 33.5%, respectively; although the benefit was dramatically augmented by combination treatment which lessened atherosclerosis by 55.7%. Assessment of plaques revealed significantly greater macrophage area in UNx + Pio/Los (80.7 ± 11.4% vs. 50.3 ± 4.2% in UNx + Pio and 57.2 ± 6.5% in UNx + Los) with more apoptotic cells. The expanded macrophage-rich lesions of UNx + Pio/Los had more alternatively activated, Ym-1 and arginine 1-positive M2 phenotypes (Ym-1: 33.6 ± 8.2%, p < 0.05 vs. 12.0 ± 1.1% in UNx; arginase 1: 27.8 ± 0.9%, p < 0.05 vs. 11.8 ± 1.3% in UNx). In vitro, pioglitazone alone and together with losartan was more effective than losartan alone in dampening lipopolysaccharide-induced cytokine production, suppressing M1 phenotypic change while enhancing M2 phenotypic change. CONCLUSION Combination of pioglitazone and losartan is more effective in reducing renal injury-induced atherosclerosis than either treatment alone. This benefit reflects mitigation in macrophage cytokine production, enhanced apoptosis, and a shift toward an anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Suguru Yamamoto
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Jiayong Zhong
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Patricia G Yancey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yiqin Zuo
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - MacRae F Linton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sergio Fazio
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Preventive Cardiology at The Knight Cardiovascular Institute of Oregon Health and Science University, Portland, OR, USA
| | - Haichun Yang
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
16
|
Youn SW, Park KK. Small-nucleic-acid-based therapeutic strategy targeting the transcription factors regulating the vascular inflammation, remodeling and fibrosis in atherosclerosis. Int J Mol Sci 2015; 16:11804-11833. [PMID: 26006249 PMCID: PMC4463731 DOI: 10.3390/ijms160511804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis arises when injury to the arterial wall induces an inflammatory cascade that is sustained by a complex network of cytokines, together with accumulation of lipids and fibrous material. Inflammatory cascades involve leukocyte adherence and chemotaxis, which are coordinated by the local secretion of adhesion molecules, chemotactic factors, and cytokines. Transcription factors are critical to the integration of the various steps of the cascade response to mediators of vascular injury, and are induced in a stimulus-dependent and cell-type-specific manner. Several small-nucleic-acid-based therapeutic strategies have recently been developed to target transcription factors: antisense oligodeoxynucleotides, RNA interference, microRNA, and decoy oligodeoxynucleotides. The aim of this review was to provide an overview of these particular targeted therapeutic strategies, toward regulation of the vascular inflammation, remodeling and fibrosis associated with atherosclerosis.
Collapse
Affiliation(s)
- Sung Won Youn
- Department of Radiology, Catholic University of Daegu Medical Center, School of Medicine, Catholic University of Daegu, Daegu 705-718, Korea.
| | - Kwan-Kyu Park
- Department of Pathology, Catholic University of Daegu Medical Center, School of Medicine, Catholic University of Daegu, Daegu 705-718, Korea.
| |
Collapse
|
17
|
Kadakol A, Malek V, Goru SK, Pandey A, Bagal S, Gaikwad AB. Esculetin attenuates alterations in Ang II and acetylcholine mediated vascular reactivity associated with hyperinsulinemia and hyperglycemia. Biochem Biophys Res Commun 2015; 461:342-7. [DOI: 10.1016/j.bbrc.2015.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
|
18
|
Maegdefessel L, Rayner KJ, Leeper NJ. MicroRNA Regulation of Vascular Smooth Muscle Function and Phenotype. Arterioscler Thromb Vasc Biol 2015; 35:2-6. [DOI: 10.1161/atvbaha.114.304877] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lars Maegdefessel
- From the Department of Medicine, Center for Molecular Medicine (L8:03), Karolinska Institute, 17176 Stockholm, Sweden (L.M.); Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada (K.J.R.); and Division of Vascular Surgery, Stanford University, CA (N.J.L.)
| | - Katey J. Rayner
- From the Department of Medicine, Center for Molecular Medicine (L8:03), Karolinska Institute, 17176 Stockholm, Sweden (L.M.); Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada (K.J.R.); and Division of Vascular Surgery, Stanford University, CA (N.J.L.)
| | - Nicholas J. Leeper
- From the Department of Medicine, Center for Molecular Medicine (L8:03), Karolinska Institute, 17176 Stockholm, Sweden (L.M.); Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada (K.J.R.); and Division of Vascular Surgery, Stanford University, CA (N.J.L.)
| |
Collapse
|
19
|
Davis FM, Rateri DL, Balakrishnan A, Howatt DA, Strickland DK, Muratoglu SC, Haggerty CM, Fornwalt BK, Cassis LA, Daugherty A. Smooth muscle cell deletion of low-density lipoprotein receptor-related protein 1 augments angiotensin II-induced superior mesenteric arterial and ascending aortic aneurysms. Arterioscler Thromb Vasc Biol 2014; 35:155-62. [PMID: 25395615 DOI: 10.1161/atvbaha.114.304683] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Low-density lipoprotein receptor-related protein 1 (LRP1), a multifunctional protein involved in endocytosis and cell signaling pathways, leads to several vascular pathologies when deleted in vascular smooth muscle cells (SMCs). The purpose of this study was to determine whether LRP1 deletion in SMCs influenced angiotensin II-induced arterial pathologies. APPROACH AND RESULTS LRP1 protein abundance was equivalent in selected arterial regions, but SMC-specific LRP1 depletion had no effect on abdominal and ascending aortic diameters in young mice. To determine the effects of LRP1 deficiency on angiotensin II vascular responses, SMC-specific LRP1 (smLRP1(+/+)) and smLRP1-deficient (smLRP1(-/-)) mice were infused with saline, angiotensin II, or norepinephrine. Several smLRP(-/-) mice died of superior mesenteric arterial (SMA) rupture during angiotensin II infusion. In surviving mice, angiotensin II profoundly augmented SMA dilation in smLRP1(-/-) mice. SMA dilation was blood pressure dependent as demonstrated by a similar response during norepinephrine infusion. SMA dilation was also associated with profound macrophage accumulation, but minimal elastin fragmentation. Angiotensin II infusion led to no significant differences in abdominal aorta diameters between smLRP1(+/+) and smLRP1(-/-) mice. In contrast, ascending aortic dilation was exacerbated markedly in angiotensin II-infused smLRP1(-/-) mice, but norepinephrine had no significant effect on either aortic region. Ascending aortas of smLRP1(-/-) mice infused with angiotensin II had minimal macrophage accumulation but significantly increased elastin fragmentation and mRNA abundance of several LRP1 ligands including MMP-2 (matrix metalloproteinase-2) and uPA (urokinase plasminogen activator). CONCLUSIONS smLRP1 deficiency had no effect on angiotensin II-induced abdominal aortic aneurysm formation. Conversely, angiotensin II infusion in smLRP1(-/-) mice exacerbated SMA and ascending aorta dilation. Dilation in these 2 regions had differential association with blood pressure and divergent pathological characteristics.
Collapse
Affiliation(s)
- Frank M Davis
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Debra L Rateri
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Anju Balakrishnan
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Deborah A Howatt
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Dudley K Strickland
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Selen C Muratoglu
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Christopher M Haggerty
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Brandon K Fornwalt
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Lisa A Cassis
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (F.M.D., D.L.R., A.B., D.A.H., C.M.H., B.K.F., A.D.), Department of Pediatrics (B.K.F.), Department of Pharmacology and Nutritional Sciences (L.A.C.), University of Kentucky, Lexington; and Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore (D.K.S., S.C.M.).
| |
Collapse
|
20
|
Moran CS, Jose RJ, Biros E, Golledge J. Osteoprotegerin deficiency limits angiotensin II-induced aortic dilatation and rupture in the apolipoprotein E-knockout mouse. Arterioscler Thromb Vasc Biol 2014; 34:2609-16. [PMID: 25301844 DOI: 10.1161/atvbaha.114.304587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Mounting evidence links osteoprotegerin with cardiovascular disease. Elevated serum and aortic tissue osteoprotegerin are associated with the presence and growth of abdominal aortic aneurysm in humans; however, a role for osteoprotegerin in abdominal aortic aneurysm pathogenesis remains to be shown. We examined the functional significance of osteoprotegerin in aortic aneurysm using an Opg-deficient mouse model and in vitro investigations. APPROACH AND RESULTS Homozygous deletion of Opg in apolipoprotein E-deficient mice (ApoE(-/-)Opg(-/-)) inhibited angiotensin II-induced aortic dilatation. Survival free from aortic rupture was increased from 67% in ApoE(-/-)Opg(+/+) controls to 94% in ApoE(-/-)Opg(-/-) mice (P=0.040). Serum concentrations of proinflammatory cytokines/chemokines, and aortic expression for cathepsin S (CTSS), matrix metalloproteinase 2, and matrix metalloproteinase 9 after 7 days (early-phase) of angiotensin II infusion were significantly reduced in ApoE(-/-)Opg(-/-) mice compared with ApoE(-/-)Opg(+/+) controls. In addition, aortic expression of markers for an inflammatory phenotype in aortic vascular smooth muscle cells in response to early-phase of angiotensin II infusion was significantly lower in Opg-deficient mice. In vitro, human abdominal aortic aneurysm vascular smooth muscle cells produced more CTSS and exhibited increased CTSS-derived elastolytic activity than healthy aortic vascular smooth muscle cells, whereas recombinant human osteoprotegerin stimulated CTSS-dependent elastase activity in aortic vascular smooth muscle cells. CONCLUSIONS These findings support a role for osteoprotegerin in aortic aneurysm through upregulation of CTSS, matrix metalloproteinase 2, and matrix metalloproteinase 9 within the aorta, promoting an inflammatory phenotype in aortic vascular smooth muscle cells in response to angiotensin II.
Collapse
Affiliation(s)
- Corey S Moran
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Roby J Jose
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Erik Biros
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.)
| | - Jonathan Golledge
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia (C.S.M., R.J.J., E.B., J.G.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia (J.G.).
| |
Collapse
|
21
|
Pradhan-Nabzdyk L, Huang C, LoGerfo FW, Nabzdyk CS. Current siRNA targets in atherosclerosis and aortic aneurysm. DISCOVERY MEDICINE 2014; 17:233-246. [PMID: 24882715 PMCID: PMC4295203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Atherosclerosis (ATH) and aortic aneurysms (AA) remain challenging chronic diseases that confer high morbidity and mortality despite advances in medical, interventional, and surgical care. RNA interference represents a promising technology that may be utilized to silence genes contributing to ATH and AA. Despite positive results in preclinical and some clinical feasibility studies, challenges such as target/sequence validation, tissue specificity, transfection efficiency, and mitigation of unwanted off-target effects remain to be addressed. In this review the most current targets and some novel approaches in siRNA delivery are being discussed. Due to the plethora of investigated targets, only studies published between 2010 and 2014 were included.
Collapse
Affiliation(s)
- Leena Pradhan-Nabzdyk
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
22
|
Gien J, Tseng N, Seedorf G, Roe G, Abman SH. Peroxisome proliferator activated receptor-γ-Rho-kinase interactions contribute to vascular remodeling after chronic intrauterine pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2013; 306:L299-308. [PMID: 24375792 DOI: 10.1152/ajplung.00271.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) and Rho-kinase (ROCK) regulate smooth muscle cell (SMC) proliferation and contribute to vascular remodeling in adult pulmonary hypertension. Whether these pathways interact to contribute to the development of vascular remodeling in persistent pulmonary hypertension of the newborn (PPHN) remains unknown. We hypothesized that ROCK-PPARγ interactions increase SMC proliferation resulting in vascular remodeling in experimental PPHN. Pulmonary artery SMCs (PASMCs) were harvested from fetal sheep after partial ligation of the ductus arteriosus in utero (PPHN) and controls. Cell counts were performed daily for 5 days with or without PPARγ agonists and ROCK inhibition. PPARγ and ROCK protein expression/activity were measured by Western blot in normal and PPHN PASMCs. We assessed PPARγ-ROCK interactions by studying the effect of ROCK activation on PPARγ activity and PPARγ inhibition (siRNA) on ROCK activity and PASMC proliferation. At baseline, PPHN PASMC cell number was increased by 38% above controls on day 5. ROCK protein expression/activity were increased by 25 and 34% and PPARγ protein/activity decreased by 40 and 50% in PPHN PASMC. ROCK inhibition and PPARγ activation restored PPHN PASMC growth to normal values. ROCK inhibition increased PPARγ activity by 50% in PPHN PASMC, restoring PPARγ activity to normal. In normal PASMCs, ROCK activation decreased PPARγ activity and PPARγ inhibition increased ROCK activity and cell proliferation, resulting in a PPHN hyperproliferative PASMC phenotype. PPARγ-ROCK interactions regulate SMC proliferation and contribute to increased PPHN PASMC proliferation and vascular remodeling in PPHN. Restoring normal PPARγ-ROCK signaling may prevent vascular remodeling and improve outcomes in PPHN.
Collapse
Affiliation(s)
- Jason Gien
- Perinatal Research Facility, 13243 E. 23rd Ave., Mail Stop F441, Aurora, CO 80045.
| | | | | | | | | |
Collapse
|
23
|
Davis F, Rateri DL, Daugherty A. Aortic aneurysms in Loeys-Dietz syndrome - a tale of two pathways? J Clin Invest 2013; 124:79-81. [PMID: 24355917 DOI: 10.1172/jci73906] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Loeys-Dietz syndrome (LDS) is a connective tissue disorder that is characterized by skeletal abnormalities, craniofacial malformations, and a high predisposition for aortic aneurysm. In this issue of the JCI, Gallo et al. developed transgenic mouse strains harboring missense mutations in the genes encoding type I or II TGF-β receptors. These mice exhibited several LDS-associated phenotypes. Despite being functionally defective, the mutated receptors enhanced TGF-β signaling in vivo, inferred by detection of increased levels of phosphorylated Smad2. Aortic aneurysms in these LDS mice were ablated by treatment with the Ang II type 1 (AT1) receptor antagonist losartan. The results from this study will foster further interest into the potential therapeutic implications of AT1 receptor antagonists.
Collapse
|
24
|
Ruddy JM, Jones JA, Ikonomidis JS. Pathophysiology of thoracic aortic aneurysm (TAA): is it not one uniform aorta? Role of embryologic origin. Prog Cardiovasc Dis 2013; 56:68-73. [PMID: 23993239 DOI: 10.1016/j.pcad.2013.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thoracic aortic aneurysm (TAA) is a clinically silent and potentially fatal disease whose pathophysiology is poorly understood. Application of data derived from animal models and human tissue analysis of abdominal aortic aneurysms may prove misleading given current evidence of structural and biochemical aortic heterogeneity above and below the diaphragm. Genetic predisposition is more common in TAA and includes multi-faceted syndromes such as Marfan, Loeys-Dietz, and type IV Ehlers-Danlos as well as autosomal-dominant familial patterns of inheritance. Investigation into the consequences of these known mutations has provided insight into the cell signaling cascades leading to degenerative remodeling of the aortic medial extracellular matrix (ECM) with TGF-β playing a major role. Targeted research into modifying the upstream regulation or downstream effects of the TGF-β1 pathway may provide opportunities for intervention to attenuate TAA progression.
Collapse
Affiliation(s)
- Jean Marie Ruddy
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charlston, SC, USA
| | | | | |
Collapse
|
25
|
Chen X, Lu H, Rateri DL, Cassis LA, Daugherty A. Conundrum of angiotensin II and TGF-β interactions in aortic aneurysms. Curr Opin Pharmacol 2013; 13:180-5. [PMID: 23395156 DOI: 10.1016/j.coph.2013.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
Angiotensin II (AngII) has been invoked as a principal mediator for the development and progression of both thoracic and abdominal aortic aneurysms. While there is consistency in experimental and clinical studies that overactivation of the renin angiotensin system promotes aortic aneurysm development, there are many unknowns regarding the mechanistic basis underlying AngII-induced aneurysms. Interactions of AngII with TGF-β in both thoracic and abdominal aortic aneurysms have been the focus of recent studies. While these studies have demonstrated profound effects of manipulating TGF-β activity on AngII-induced aortic aneurysms, they have also led to more questions regarding the interactions between AngII and this multifunctional cytokine. This review compiled the recent literature to provide insights into understanding the potentially complex interactions between AngII and TGF-β in the development of aortic aneurysms.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, United States
| | | | | | | | | |
Collapse
|
26
|
Sharma A. Transgenerational epigenetic inheritance: focus on soma to germline information transfer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 113:439-46. [PMID: 23257323 DOI: 10.1016/j.pbiomolbio.2012.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 01/29/2023]
Abstract
In trangenerational epigenetic inheritance, phenotypic information not encoded in DNA sequence is transmitted across generations. In germline-dependent mode, memory of environmental exposure in parental generation is transmitted through gametes, leading to appearance of phenotypes in the unexposed future generations. The memory is considered to be encoded in epigenetic factors like DNA methylation, histone modifications and regulatory RNAs. Environmental exposure may cause epigenetic modifications in the germline either directly or indirectly through primarily affecting the soma. The latter possibility is most intriguing because it contradicts the established dogma that hereditary information flows only from germline to soma, not in reverse. As such, identification of the factor(s) mediating soma to germline information transfer in transgenerational epigenetic inheritance would be pathbreaking. Regulatory RNAs and hormone have previously been implicated or proposed to play a role in soma to germline communication in epigenetic inheritance. This review examines the recent examples of gametogenic transgenerational inheritance in plants and animals in order to assess if evidence of regulatory RNAs and hormones as mediators of information transfer is supported. Overall, direct evidence for both mobile regulatory RNAs and hormones is found to exist in plants. In animals, although involvement of mobile RNAs seems imminent, direct evidence of RNA-mediated soma to germline information transfer in transgenerational epigenetic inheritance is yet to be obtained. Direct evidence is also lacking for hormones in animals. However, detailed examination of recently reported examples of transgenerational inheritance reveals circumstantial evidence supporting a role of hormones in information transmission.
Collapse
Affiliation(s)
- Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi University Campus, Mall Road, Delhi 110007, India.
| |
Collapse
|
27
|
Stravodimou A, Mazzoccoli G, Voutsadakis IA. Peroxisome proliferator-activated receptor gamma and regulations by the ubiquitin-proteasome system in pancreatic cancer. PPAR Res 2012; 2012:367450. [PMID: 23049538 PMCID: PMC3459232 DOI: 10.1155/2012/367450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/13/2012] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is one of the most lethal forms of human cancer. Although progress in oncology has improved outcomes in many forms of cancer, little progress has been made in pancreatic carcinoma and the prognosis of this malignancy remains grim. Several molecular abnormalities often present in pancreatic cancer have been defined and include mutations in K-ras, p53, p16, and DPC4 genes. Nuclear receptor Peroxisome Proliferator-Activated Receptor gamma (PPARγ) has a role in many carcinomas and has been found to be overexpressed in pancreatic cancer. It plays generally a tumor suppressor role antagonizing proteins promoting carcinogenesis such as NF-κB and TGFβ. Regulation of pathways involved in pancreatic carcinogenesis is effectuated by the Ubiquitin Proteasome System (UPS). This paper will examine PPARγ in pancreatic cancer, the regulation of this nuclear receptor by the UPS, and their relationship to other pathways important in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Athina Stravodimou
- Centre Pluridisciplinaire d'Oncologie, Centre Hospitalier Universitaire Vaudois, BH06, Bugnon 46, 1011 Lausanne, Switzerland
| | - Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Ioannis A. Voutsadakis
- Centre Pluridisciplinaire d'Oncologie, Centre Hospitalier Universitaire Vaudois, BH06, Bugnon 46, 1011 Lausanne, Switzerland
| |
Collapse
|
28
|
Morales MG, Vazquez Y, Acuña MJ, Rivera JC, Simon F, Salas JD, Alvarez Ruf J, Brandan E, Cabello-Verrugio C. Angiotensin II-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor beta 1 expression in skeletal muscle cells. Int J Biochem Cell Biol 2012; 44:1993-2002. [PMID: 22964022 DOI: 10.1016/j.biocel.2012.07.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Fibrotic disorders are typically characterised by excessive connective tissue and extracellular matrix (ECM) deposition that preclude the normal healing of different tissues. Several skeletal muscle dystrophies are characterised by extensive fibrosis. Among the factors involved in skeletal muscle fibrosis is angiotensin II (Ang-II), a key protein of the renin-angiotensin system (RAS). We previously demonstrated that myoblasts responded to Ang-II by increasing the ECM protein levels mediated by AT-1 receptors, implicating an Ang-II-induced reactive oxygen species (ROS) by a NAD(P)H oxidase-dependent mechanism. In this paper, we show that in myoblasts, Ang-II induced the increase of transforming growth factor beta 1 (TGF-β1) and connective tissue growth factor (CTGF) expression through its AT-1 receptor. This effect is dependent of the NAD(P)H oxidase (NOX)-induced ROS, as indicated by a decrease of the expression of both pro-fibrotic factors when the ROS production was inhibited via the NOX inhibitor apocynin. The increase in pro-fibrotic factors levels was paralleled by enhanced p38MAPK and ERK1/2 phosphorylation in response to Ang-II. However, only the p38MAPK activity was critical for the Ang-II-induced fibrotic effects, as indicated by the decrease in the Ang-II-induced TGF-β1 and CTGF expression and fibronectin levels by SB-203580, an inhibitor of the p38MAPK, but not by U0126, an inhibitor of ERK1/2 phosphorylation. Furthermore, we showed that the Ang-II-dependent p38MAPK activation, but not the ERK1/2 phosphorylation, was necessary for the NOX-derived ROS. In addition, we demonstrated that TGF-β1 expression was required for the Ang-II-induced pro-fibrotic effects evaluated by using SB-431542, an inhibitor of TGF-βRI kinase activity, and by knocking down TGF-β1 levels by shRNA technique. These results strongly suggest that the fibrotic response to Ang-II is mediated by the AT-1 receptor and requires the p38MAPK phosphorylation, NOX-induced ROS, and TGF-β1 expression increase mediated by Ang-II in skeletal muscle cells.
Collapse
Affiliation(s)
- María Gabriela Morales
- Centro de Regulación Celular y Patología, Centro de Regeneración y Envejecimiento, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pang T, Wang J, Benicky J, Sánchez-Lemus E, Saavedra JM. Telmisartan directly ameliorates the neuronal inflammatory response to IL-1β partly through the JNK/c-Jun and NADPH oxidase pathways. J Neuroinflammation 2012; 9:102. [PMID: 22642771 PMCID: PMC3410820 DOI: 10.1186/1742-2094-9-102] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 05/29/2012] [Indexed: 12/18/2022] Open
Abstract
Background Blockade of angiotensin II type 1 (AT1) receptors ameliorates brain inflammation, and reduces excessive brain interleukin-1 beta (IL-1β) production and release from cortical microglia. The aim of this study was to determine whether, in addition, AT1 receptor blockade directly attenuates IL-1β-induced inflammatory responses in neuronal cultures. Methods SK-N-SH human neuroblasts and primary rat cortical neurons were pretreated with telmisartan followed by exposure to IL-1β. Gene expression was determined by reverse transcriptase (RT)-PCR, protein expression and kinase activation by western blotting, NADPH oxidase activity by the lucigenin method, prostaglandin E2 (PGE2) release by enzyme immunoassay, reactive oxygen species (ROS) generation by the dichlorodihydrofluorescein diacetate fluorescent probe assay, and peroxisome proliferator-activated receptor gamma (PPARγ) involvement was assessed with the antagonists GW9662 and T0070907, the agonist pioglitazone and the expression of PPARγ target genes ABCG1 and CD36. Results We found that SK-N-SH neuroblasts expressed AT1 but not AT2 receptor mRNA. Telmisartan reduced IL-1β-induced cyclooxygenase-2 (COX-2) expression and PGE2 release more potently than did candesartan and losartan. Telmisartan reduced the IL-1β-induced increase in IL-1R1 receptor and NADPH oxidase-4 (NOX-4) mRNA expression, NADPH oxidase activity, and ROS generation, and reduced hydrogen peroxide-induced COX-2 gene expression. Telmisartan did not modify IL-1β-induced ERK1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation or nuclear factor-κB activation but significantly decreased IL-1β-induced c-Jun N-terminal kinase (JNK) and c-Jun activation. The JNK inhibitor SP600125 decreased IL-1β-induced PGE2 release with a potency similar to that of telmisartan. The PPARγ agonist pioglitazone reduced IL-1β-induced inflammatory reaction, whereas telmisartan did not activate PPARγ, as shown by its failure to enhance the expression of the PPARγ target genes ABCG1 and CD36, and the inability of the PPARγ antagonists GW9662 and T0070907 to modify the effect of telmisartan on COX-2 induction. The effect of telmisartan on IL-1β-stimulated COX-2 and IL-1R1 mRNA expression and ROS production was replicated in primary rat cortical neurons. Conclusions Telmisartan directly ameliorates IL-1β-induced neuronal inflammatory response by inhibition of oxidative stress and the JNK/c-Jun pathway. Our results support the hypothesis that AT1 receptor blockers are directly neuroprotective, and should be considered for the treatment of inflammatory conditions of the brain.
Collapse
Affiliation(s)
- Tao Pang
- Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Section on Pharmacology, NIMH, NIH, DHHS, 10 Center Drive, Bldg, 10, Room # 2D-57, Bethesda, MD, 20892, USA.
| | | | | | | | | |
Collapse
|